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Justification: Although the equation for ptube/phelix in the

paper is correct, the original Supporting Information pre-

sented an incorrect derivation (invoking mass moment instead

of area moment of inertia). Here we provide a correct deriva-

tion. We use the letters J and j to emphasize that area mo-

ments rather than mass moments are being calculated, the

latter of which are commonly designated by the letter I.

3 Derivation of Persistence Length Estimate
for Tubes

The persistence length of a double-helix is proportional to

the Young’s modulus, E, and the area moment of inertia

for the helix, j, about an axis that bisects its cross-section:

phelix = Ej/kT .1 Assuming that the Young’s modulus of a

DNA nanotube is the same as that of the helices that com-

prise it, the persistence length of a DNA nanotube is simi-

larly ptube = EJ/kT , where J is the area moment of inertia

of the tube about an axis that bisects its cross-section. Thus

ptube/phelix = J/j.

Assuming a tube is a circular array of n = 2N (where N is

the number of tiles in circumference) rigidly linked cylindrical

rods of radius r, J can be calculated in terms of j, using the

parallel axis theorem:
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n�
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�
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�
.

Here a = πr2 is the cross-sectional area of a rod and di is the
distance from the center of the ith rod to the neutral axis of

interest. For a neutral axis that bisects the cross-section of

the tube, di can be expressed in terms of the radius of the

tube R,

J =
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j + πr2(R sin θi)
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where θi = 2πi/n+ φ is the angular position of the center of

the ith rod along the circumference of the tube and the phase

φ relative to the axis is arbitrary.

Solving for the ratio of the area moments,
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, for n > 2.

(Note that for n ≤ 2, the sum depends on the phase φ. When

n = 1 it equals sin
2 φ and when n = 2 it equals 2 sin

2 φ.
Interestingly, the equation holds for all n if one averages over

φ because �sin2 φ� = 1/2.)

Here we have used the well-known result
2
that j = πr4/4,

the trigonometric identity

sin
2
(x) = (1− cos(2x))/2 ,

and a generalization of Lagrange’s trigonometric identity
3
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