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Abstract. Models of nucleic acid thermal stability are calibrated to a
wide range of experimental observations, and typically predict equilib-
rium probabilities of nucleic acid secondary structures with reasonable
accuracy. By comparison, a similar calibration and evaluation of nucleic
acid kinetic models to a broad range of measurements has not been
attempted so far. We introduce an Arrhenius model of interacting nucleic
acid kinetics that relates the activation energy of a state transition with
the immediate local environment of the affected base pair. Our model
can be used in stochastic simulations to estimate kinetic properties and
is consistent with existing thermodynamic models. We infer parameters
for our model using an ensemble Markov chain Monte Carlo (MCMC)
approach on a training dataset with 320 kinetic measurements of hairpin
closing and opening, helix association and dissociation, bubble closing
and toehold-mediated strand exchange. Our new model surpasses the
performance of the previously established Metropolis model both on the
training set and on a testing set of size 56 composed of toehold-mediated
3-way strand displacement with mismatches and hairpin opening and
closing rates: reaction rates are predicted to within a factor of three for
93.4% and 78.5% of reactions for the training and testing sets, respec-
tively.

1 Introduction

Although nucleic acids are commonly synthesized and applied in various set-
tings, it remains difficult to predict the kinetics of their interaction and con-
formational change. Accurate models of nucleic acid kinetics are desirable for
biological and biotechnological applications, such as understanding the vari-
ous roles of RNA within the cell and the design of sensitive molecular probes.
Within the field of molecular programming, hairpin motifs and toehold-mediated
strand displacement are commonly used to implement autonomous devices such
as DNA walkers and logic gates. Models of nucleic acid thermal stability have
been extensively calibrated to experimental data [4,16] and enable secondary
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structure software such as RNAsoft, ViennaRNA, RNAstructure, NUPACK,
and mfold [3,12,26,27,29] to efficiently predict the equilibrium probabilities of
nucleic acid secondary structures. In comparison, a similar extensive calibra-
tion and evaluation of nucleic acid kinetic models has not been attempted so
far, despite the development of kinetic models and simulation software such as
Multistrand and Kinefold [7,9,21,22,25]. Of particular interest is a study by
Srinivas et al., which demonstrates that the Metropolis model of Multistrand is
incompatible with observations of toehold-mediated strand displacement [23].
We develop a nucleic acid kinetic model based on Arrhenius dynamics that
surpasses the performance of the Metropolis model. States in our continuous-
time Markov chain (CTMC) model correspond to non-pseudoknotted secondary
structures and each transition in the model corresponds to either the opening
or closing of a base pair. A key difference with the Metropolis model is the
use of activation energy, which depends on the immediate local environment
surrounding the affected base pair. To calibrate and evaluate the Arrhenius and
the Metropolis models, we compile a dataset of 376 experimentally determined
reaction rate constants that we source from existing publications and cover a
wide range of reactions, including hairpin closing and opening, bubble closing,
helix association and dissociation, toehold-mediated 3-way strand displacement,
and toehold-mediated 4-way strand exchange (see Fig.1). To efficiently infer
parameters and to obtain posterior parameter distributions, we use an ensemble
Markov chain Monte Carlo (MCMC) approach. Similar to the Metropolis model,
our model is consistent with existing thermodynamic models and Gillespie’s
stochastic simulation algorithm can be used to estimate kinetic rate constants
for a variety of reactions. However, obtaining precise predictions using explicit
stochastic simulation is computationally expensive, making MCMC parameter
inference difficult. Instead we employ a reduced state space approach, enabling
reaction rate constants to be computed efficiently and exactly using a sparse
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Fig. 1. Five types of reactions that we simulate and for which reaction rate constants
have been measured. (a) Hairpin closing and opening. (b) Bubble closing. (c¢) Helix
association and dissociation. (d) Toehold-mediated 3-way strand displacement. (e)
Toehold-mediated 4-way strand exchange.
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matrix representation. Our state space is based on ‘zipper models’ that were
investigated previously to model DNA hybridization [11].

Our results are encouraging and suggest that the new Arrhenius model is
applicable to a wide range of DNA dynamic interactions and can be efficiently
trained with our framework. The rest of this paper is organized as follows.
Section 2 describes preliminaries and the Metropolis kinetic model, Sect. 3 intro-
duces our Arrhenius kinetic model, Sect. 4 introduces our kinetic dataset, Sect. 5
introduces our inference framework, Sect. 6 describes our results comparing the
inferred parameters to the database of experimental measurements, Sect. 7 dis-
cusses the limitations of our approach and directions for future research, and in
Sect. 8 we describe details of the methods we used.

2 Preliminaries

In this section, we briefly discuss the type of reactions we are interested in
modeling, and we discuss the Metropolis kinetic model (Sect.2.1).

When DNA strands interact, base pairs form and break stochastically under the
influence of thermal noise, resulting in a highly stochastic back-and-forth dynamic
process. When two strands share a mutual base pair, we regard the strands as con-
nected and we define a complex to be a set of connected strands. A single complex
can have many different secondary structures. Similar to Kinfold [9] and Multi-
strand [20,21], we model the kinetics of interacting DN A strands as a CTMC, where
the state space S is a set of non-pseudoknotted secondary structures. Transitions
between states correspond to the forming or breaking of a single base pair, which
may be called an elementary step. For example, in Fig. 2, state ¢ can transition to
states h and j. The rate at which a transition triggers is determined by a kinetic
model, that is, the Metropolis or the Arrhenius model, and we distinguish between
unimolecular and bimolecular transitions. Because all transitions in our model are
reversible, we group transitions into pairs of forward and reverse reactions; a tran-
sition in the model is called bimolecular if a complex grows or shrinks by one strand,
and is called unimolecular otherwise. As a result, successful helix association and
helix dissociation both require at least one bimolecular transition to trigger, despite
the latter reaction being strictly first order.

Experimentally observable reactions involve pathways of multiple elemen-
tary step transitions, are also inherently reversible, and thus can be classified
similarly. We are interested in modeling both unimolecular and bimolecular reac-
tions. In a unimolecular reaction, a complex of strands is altered through the
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Fig. 2. State i can transition to states h and j. See Sect.5.1 for definitions of the
pointers po and p;.
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formation or disruption of base pairs, but all strands in the complex remain con-
nected. An example of a unimolecular reaction is hairpin closing (Fig. 1a), where
a DNA strand hybridizes itself and forms a hairpin loop. Another example of a
unimolecular reaction is bubble closing (Fig. 1b). Helix association (Fig. 1c) is a
bimolecular reaction. Toehold-mediated 3-way strand displacement (Fig.1d) is
another example of a bimolecular reaction, where one of the strands in a duplex is
replaced by the invader strand. The duplex consists of an incumbent strand and
a complementary strand. In addition to the hybridized domain, the incumbent
strand also contains an unhybridized region called a toehold. The invading strand
binds to the toehold region of the substrate and then displaces the incumbent
strand via three-way branch migration. Another bimolecular example is toehold-
mediated 4-way strand exchange (Fig. le), where two duplexes simultaneously
exchange strands via four-way branch migration.

2.1 The Metropolis Kinetic Model

The Metropolis model is one of the kinetic rate models implemented in Multi-
strand [20,21]. The Multistrand model considers a finite set of strands in a fixed
volume (‘the box’) and defines the energy of a state as the sum of the standard
free energy for each complex and a volume-dependent entropy term. To ensure
that simulations converge to the Boltzmann distribution over the states at equi-
librium, the transition rates between any two adjacent states ¢ and j must satisfy
detailed balance:

hij /kji = exp { = (AGTo(j) = AGRox (D)) /RT} S

where k;; is the transition rate from state i to state j, AGY (i) is the free
energy of state ¢, R is the gas constant, and T is the temperature. For a state @
containing A strands and M complexes, the free energy is

box ‘ ZAGcomplcx ) (N M)AGvolumc (2)

where AG
tive to the reference state and standard buffer conditions ([Na*] = 1 M), and
AGY, = —RTInu is the loss of entropy resulting from fixing the position
of a strand of concentration u relative to the standard concentration (1 M).
Unimolecular transition rates are given by

Kuni if AGY o (7) < AGY (1)
Fir =\ s exp(Acaox@) Acboxm)

Complcx( ¢) is the difference in Gibbs free energy of complex ¢ rela-

3)

otherwise

where kyni > 0 is the unimolecular rate constant (units: sfl). For bimolecular
transitions ¢ — j where two previously unconnected strands form a mutual base
pair, the rate is given as

ki; = kpiu (4)
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and the rate of dissociation for the bimolecular transition j — ¢ is given by

AGbox(l) AGbox (])+Acvolume

kj; = kpie” RT x M (5)

where kp; > 0 is the bimolecular rate constant (units: M~ 's~'). We treat

= {Inkuni,Inkpi} as 2 free parameters in the model that we calibrate to
experimental measurements. We emphasize that the rate of dissociation, Eq. 5,
is independent of concentration v and AGY which follows from the defini-
tion of the free energy in a state (Eq.2).

volume?

3 The Arrhenius Kinetic Model

In our Arrhenius kinetic model, the activation energy of each transition depends
on the immediate context of the closing or opening base pair. Our classification
incorporates some, but not all, factors that may affect the activation energy of
a transition. For example, the activation energy might depend on the strand
sequence, but modeling this dependence would increase the number of free para-
meters, and we anticipate to have insufficient experimental evidence to accu-
rately distinguish all relevant factors. However, we emphasize that transition
rates in the model still depend on the nucleotide sequence via the nearest neigh-
bor model of base pair stability that determines the free energy of a complex
(see Egs. 3 and 5).

Consider a reaction where a base pair is formed or broken, and denote by
I, € C one half of the local context on either side of the base pair. Our model
differentiates between seven different half contexts

C = {stack, loop, end, stack+loop, stack+end, loop+end, stack+stack}  (6)

stack loop ry ri end stack-+loop r, rq
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Fig. 3. The right side of the red base pair forms one half of the local context. The
classification of the half context depends on the pairing status of the two bases r1 and

2 (if they exist) immediately to the right side of the base pair: stack means r1 and
ro form a base pair with each other, loop means that neither 1 nor r» forms a base
pair, end means that neither r1 nor re exists, stack+loop means that both r; and r2
exist and one of the bases forms a base pair with another base while the other does
not, stack+end means that only one of 71 or r2 exists and forms a base pair, loop+end
means that only one of 71 or r2 exists and it does not form a base pair, and stack+stack
means that both r1 and r2 exist and they both form base pairs with other bases. Stars
indicate the possible continuation of the strands, which may be connected to other
starred strands, provided the resulting complex is non-pseudoknotted.
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so that the set of local contexts is given by C x C. The different half contexts are
shown in Fig. 3. The Arrhenius model is equal to the Metropolis model (Egs. 3,4
and 5), except that we now re-define kyni : C X C — Rs and ky; : C X C — Ry
by setting

kani(l,7) = kik. k= Ajexp(—E;/RT) k.= A,.exp(—FE,./RT) (7)

kbi(l,r) = akuni(l,r) (8)

where A;, A, are Arrhenius rate constants, E;, F, are activation energies, and
a is a bimolecular scaling constant. We treat 0 = {ln A;, E; |Vl € C} U{a} as
15 free parameters that we fit to data.

4 Dataset

We compiled a dataset of experimentally determined reaction rate constants,
extracting 376 reaction rate constants published in the literature. Each data
point in our dataset is annotated with a reaction temperature and the concen-
tration of Na™ and Mg?" cations in the buffer. The dataset is partitioned into
a training set of size 320, which we call Dy;ain, and a testing set with size 56,
which we call Diest. The training set covers a wide range of observations, in
terms of both reaction types and half contexts. The testing set includes both
unimolecular and bimolecular reactions. An overview of our dataset is given in

Table 1.

Table 1. Dataset of experimentally measured reaction rate constants. The T sign indi-
cates that the experiment was performed without Na™ in the buffer, in which case our
model computes the free energy as if 50 mM [Na't] is present (in addition to Mg*™).

Dirain [Nat] /M | [Mg2t] /mM | T /°C | Source
Hairpin closing and opening 0.1 10-49 | Fig. 4 of Bonnet et al. [6]
0.1-0.5 10-49 | Fig. 6 of Bonnet et al. [6]
0.25 18-49 Fig. 3.28 of Bonnet [5]
0.137 20 Fig.3 of Kim et al. [14]
Bubble closing 0.1 25-45 | Fig.4 of Altan-Bonnet et al. [2]
Association and dissociation 1.0 4-68 Fig. 6 of Morrison and Stols [17]
0.05" 4 30-55 | Fig. 6a of Reynaldo et al. [19]
Toehold-mediated 3-way strand | 0.05T 4 30-55 | Fig.6b of Reynaldo et al. [19]
displacement
0.05" 12.5 25 Fig. 3b of Zhang and Winfree [28]
Toehold-mediated 4-way strand 0.05" 12.5 25 Table 5.2 of Dabby [8]
exchange
Dhest
Hairpin closing and opening 0.137 10-60 | Fig.5a, b of Kim et al. [14]
Toehold-mediated 3-way strand | 0.05T 10 23 Fig. 2d of Machinek et al. [15]

displacement with mismatches
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5 Modeling Framework

We augmented the Multistrand software [20,21] to implement the new Arrhenius
model using the full state space of all non-pseudoknotted secondary structures.
Given values for the 15 free parameters, a sufficient number of stochastic sim-
ulations could be run to estimate the models prediction for an experimental
reaction of interest. Unfortunately, obtaining low error bars on this estimate is
prohibitively slow, and thus is not feasible within the inner loop of parameter
inference procedures. To address this limitation, we developed a computational
framework in which we obtain fast, exact predictions for a feasible approximation
of the full Multistrand state space. Specifically, we use a reduced state space that
is a strict subset of the full state space, enabling sparse matrix computations of
mean first passage times, from which reaction rate constants are predicted. With
this computation in the inner loop, we used two methods for training the model.
The first is a maximum a priori (MAP) approach that optimizes a single set of
parameters, and the second is based on MCMC that produces an ensemble of
parameter sets. In the latter case, a posterior parameter probability density is
computed.

5.1 State Space

In this section, we describe our reduced state space. In the future, our aim is to
train the model using a larger set of non-pseudonotted secondary structures. In
either case, the number of states in the model directly affects the computational
cost of inference through the set of linear equations (Eq. 10 in Sect.5.2) that is
solved for each reaction at each iteration of the parameter search. In this study,
the largest state space in the training data is toehold-mediated 4-way strand
exchange and contains 14,438 states.

In our reduced state space, base pairs are permitted to form if and only
if they occur in either the initial or final state of our simulation. For example,
during the simulation of duplex hybridization, only base pairs that are consistent
with the perfect alignment of the two strands are permitted to form. We further
prune the state space by only allowing base pairs to form or break at the edge
of a hybridized domain.

A separate state space S, is constructed for each reaction r that we wish
to model (Fig.1). Each state corresponds to a set of indices (pg,p1,...) € Sy,
where the indices indicate the begin and end points of the hybridized domains.
The maximum number of continuously hybridized domains is precisely defined
for each reaction r. For example, the state space for hairpin closing and opening
(Fig. 1a) and hybridization (Fig. 1c) only contain one hybridized domain. In such
cases, the state description requires only two indices, and the length of the
hybridized domain is given by p; — pg. In Fig. 2, we show the pointers for the
states h, i, and j in the state space for hairpin closing and opening. In each
transition, one of the pointers is incremented or decremented. Specifically, state
1 can transition to state h by incrementing pg and it can transition to state j
by decrementing p;. We restrict 0 < pg < p; < m, where m is the length of the
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stem in the closed state. If pg = p;, then the domain is absent in the given state.
A full description of the state space is given in the online appendix.

5.2 Estimating Mean First Passage Times with Exact Solvers

Given a parametrized kinetic model, we describe how to compute the mean first
passage time of a CTMC with state space S using a sparse matrix representa-
tion. Let the mean first passage time ¢ be the average time it takes to reach one
of a set of final states Sgna from an initial state ig. For a first order reaction
r, the reaction rate constant is found as lAcr = 1 . For a second order reaction,

the reaction rate constant is computed as k. = ;5 where u is the initial concen-
tration of the reactants in the simulation [20]. A bimolecular reaction may be
effectively first order or second order under the given conditions, depending on
the time scale of the unimolecular portion of the reaction pathway relative to the
overall reaction time. In our reaction kinetics dataset, all bimolecular reactions
are second order in the forward direction.

Let the random variable Tiﬁ“aLI represent the time required to reach any state
in Sgnar starting in state i € S, where Tiﬁnal = 0 for i € Sgpai. The time required
to reach Sgpa starting in 4 is equal to the initial holding time in state 4, which we
call h;, plus the time required to hit Sgna starting in the next visited state. h; is
distributed exponentially with exit rate k; = > ._o ki;. The probability to move

JjES

to state j is directly proportional to the transition rate, so that P(i — j) = k—J
Therefore, the mean first passage time is found as [24]

E(rfna) = L 4 3 M gppfinay (9)

’ ki =k 77
JeES

Multiplying Eq. 9 by the exit rate k; and applying k; = ZjES k;i; then yields

Z k” Tﬁnal E[Tiﬁnal]) — (10)

jeSs
Equation 10 permits a sparse matrix representation Kt = —1 for a rate matrix
K and solution vector ¢, where K;; = k;; for i # j, K; = _Zjes kij, and

t; = E[Tf"al]. To compute first passage times for a distribution over initial states
Sinit rather than an individual state, the weighted average of the first passage
time is computed.

5.3 Estimating the Unnormalized Posterior Distribution of the
Parameters

Let 6 be the set of parameters in a kinetic model. For a given experimentally
observable reaction r, the predicted reaction rate constant k, will deviate from
the experimental measurement k,.. We define the error of the prediction to be the
log,, difference, €, = log,, k, — log,q kr. To produce a measure of likelihood for
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our parameter valuation, we assume €, is normally distributed with an unbiased
mean and variance o2, so that e, ~ N(0,02). We treat o as a nuisance parameter.
For reaction r the likelihood function is given as

" 2
P(r|0,0) = \/% exp {— <log10 k. —logyg k) /202} (11)

and the likelihood function over the set of training data is given as

P(Duainlf0) = [ P(r]0,0)
7€D4rain
N2
Ere'Dtmin (108'10 kr —logy kr)

_ _ _n 2
= exp 52 5 log 270 (12)

where n is the number of observations in Dy ain. To define the probability of the
parameters given the data we need to assume prior distributions for # and o.
During preliminary fitting, a number of parameter values were found to be diver-
gent, which we explain as follows. For a fixed temperature T and a fixed local
context (I, r), there are many assignments of A;, E; and A,, E, that result in
nearly equal transition rates kyni(l,7) = A A, exp {—(E; + E,)/RT} (we expand
Eq.7) that result in similar model predictions k,. This allows dissimilar valua-
tions for E and A to have nearly equal (log)likelihood scores (Eq. 12). The prob-
lem becomes even more apparent when we consider the intrinsic measurement
error on k, (for example, a standard deviation of 22% was reported by Machinek
et al. [15]), the limited range of temperatures (see Table 1) inherent to our obser-
vations, and the relative frequency of the different half contexts appearing in each
simulation (see the online appendix). In practice, kyuni(l,7) is well constrained
for many different [, € C. As is common in data-fitting applications, we assume
a regularization prior that improves the stability of the estimation. We assume
that all parameters in 6 are independent and identically Gaussian distributed
with mean 0 and variance % In our inference, we use A = 0.02, and the predic-
tive quality of the model does not change for minor adjustments to A. For the
nuisance parameter o, we use a non-informative Jeffreys prior [13]. Under these
assumptions, the posterior distribution is proportional to:

P(Dirain|0, 0)P(0)P(0)
P(Dtrain)
16]

2m\ % M3 1
— P(Dtrain|670) ()\) exp{—”2|2} —. (13)

P (0, 0|Dirain) = o P(Dirain|0, 0)P(0)P(0)

g

In conclusion, the log of the posterior distribution is equal to the following equa-
tion, up to an additive constant not depending on the parameters

IOg P(97 U|Dtrain) ~

1 ~ A
—(n+1)logo — 292 Z (logy kr —logy kyr)* — EHQHS (14)

7€Dtrain



Inferring Parameters for an Elementary Step Model of DNA Kinetics 181

where the squared L2 norm in Eq.14 is computed as [|0]|3 = a? + |In kyw|? +
| In ki |? for the Metropolis model and as [|0]|3 = o® + >, cc [In A2+ 37, |Ei]?
for the Arrhenius model. Note that |#] = 2 for the Metropolis model and 6| = 15
for the Arrhenius model.

Our MAP approach seeks a unique parameter set that maximizes the nor-
malized log posterior of the dataset (Eq. 14). We use the Nelder-Mead optimiza-
tion method [18], a gradient-free local optimizer. For MCMC, we use the emcee
software package [10], that implements an affine invariant ensemble sampling
algorithm.

6 Results

Table 2 shows the performance of the Metropolis and the Arrhenius models with
the MAP and MCMC approaches. For details on computational settings for the
approaches see Sect. 8. The Arrhenius model fits the training data better than
the Metropolis model (for details see the online appendix, Figs. S3—-S14), which is
unsurprising when considering the increase of adjustable parameters in the Arrhe-
nius model (2 vs. 15). However, the Arrhenius model also has better predictive
qualities for the testing set, as evidenced by the MCMC ensemble mean standard
deviation of 1/0.99 = 0.99 for the Metropolis model and v/0.42 = 0.64 for the
Arrhenius model. The improvement in the prediction of the testing set is apparent
in Fig. 4, where both models predict the Machinek et al. study of toehold-mediated
3-way strand displacement with mismatches, and in predictions of opening and

Table 2. Performance of the Metropolis and the Arrhenius models on the training and
testing sets. The Mean Squared Error (MSE) is the mean of |log,, k» — log,, k|2 over
r € D. The Within Factor of Three metric shows the percentage of reactions for which
|log, g kr — log, o kx| < log,, 3. Initial is the initial parameter set of the MAP approach
(Sect.8). MAP is the MAP inference method. Mode is the parameter set from the
MCMC ensemble that has the highest posterior on Dirain. Ensemble is the MCMC
ensemble method where the reaction rate constant I%T is averaged over all parameter
sets.

Mean Squared | Within Factor
Error of Three
Dtrain Dtcst Dtrain Dtcst
Metropolis | Initial .55 1.3 69.3% | 33.9%
MAP 33 .94 79.0% | 41.0%
Mode .33 .95 79.0% | 41.0%
Ensemble | .33 .99 79.6% | 37.5%
Arrhenius | Initial .59 1.3 71.2% | 33.9%
MAP .14 AT 92.1% | 73.2%
Mode 12 .40 92.8% | 78.5%
Ensemble | .12 42 93.4% | 78.5%
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Metropolis with MAP Metropolis with MCMC Mode Metropolis with MCMC Ensemble
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Fig. 4. Model predictions (dashed lines) of reaction rate constants (y axis) for toehold-
mediated 3-way strand displacement with mismatches, experimental data (solid lines)
from Fig.2d of Machinek et al. [15]. For the MCMC ensemble method, error bars
indicate the range (minimum to maximum) of 100 predictions (see Sect.8). Arrows
indicate no mismatch. The mismatch in the invading strand affects the reaction rate.
The length of the toehold domain is ten, seven, and six nucleotides long for B, ®, and
V , respectively.

closing rates for hairpin with short stems (1-2 nt) (Figs. S15 and S16 in the online
appendix). It is impressive that the models, when trained on a comprehensive
training dataset, can predict the results of experiments not seen during training.

There are two reasons for the superior performance of the Arrhenius model.
First, the presence of the temperature dependent activation energy allows the
Arrhenius model to better calibrate to measurements at varying temperatures.
On average, the reaction rate constants kyupni(l,7) double in the Arrhenius model
between T = 25°C and T = 60°C (this follows from the parameter values in
which E[E; 4+ E,] = 3.32 keal mol ™ '). A second factor is the relation between the
activation energy of a transition and the local context. In Fig. 5, the inferred distri-
bution of ki (I, 7) is given for all local contexts that occur in the model. Strikingly,
for many local contexts, the kuni(l, ) are narrowly distributed and often mutually
exclusive, indicating that our model captures intrinsic qualitative differences in
activation energy.

7 Discussion

A common problem for Arrhenius models in biophysics is that the limited range
of temperatures in experimental data can result in ambiguous parameter infer-
ence, and this is indeed the case for our model with the current data set. Despite
the generally narrow bands for the transition rates (Fig. 5a), the inferred A and E
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Fig. 5. Box plots of model features inferred by the MCMC ensemble method, using a
sample of 100 parameter sets. Edges of the box correspond to the first and third quartile
of the distribution. The whisker length is set to cover all parameter values in the sample,
or is limited to at most 1.5 times the box height with the outliers plotted separately. (a)
kuni and kp; for the Metropolis model. (b) kuni(l,7) at 25°C for the Arrhenius model.
Combinations that do not occur in the model are not shown.
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Fig. 6. The Arrhenius model parameters inferred by the MCMC ensemble method. (a)
Box plots of the half context parameters. Edges of the box correspond to the first and
third quartile of the distribution. The whisker length is set to cover all parameter values
in the sample, or is limited to at most 1.5 times the box height with the outliers plotted

0,0,
M, where cov(X,Y) =

E[(X —E[X])(Y —E[Y])] and ox = /E[(X — E[X])?]. (Color figure available online)

separately. (b) The Pearson correlation coefficients R;; =
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parameters are poorly constrained, as is evident from the wide range in the para-
meter posterior probability distribution and correlation matrix (Fig.6). Mathe-
matically, measurements at a single temperature only restrict In 4; + ;{}73,’ rather
than A; and E; independently, and a significant fraction of the measurements were
performed at constant temperature. If further mining of the existing experimental
literature does not resolve the issue, one solution would be to develop customized
experiments to calibrate the model further. Interestingly, the relative lack of corre-
lation between the parameters for different half contexts suggests that there could
be benefit in subdividing the half context categories further.

We envision further improvements to the model by adjusting the state space
and the thermodynamic energy model. For the state space, the requirement for
hybridizing strands to only engage in perfectly aligned base pairing is not realis-
tic, and we plan on using a state space generated directly from stochastic Multi-
strand simulations to avoid these problems. Our simulation depends on the model
of thermal stability implemented in the NUPACK software [27] and adjustments
to the thermodynamic model also could improve the quality of our predictions. For
example, hairpin closing rates are known to depend on the loop sequence, as open
poly(A) loops are more rigid than poly(T) loops [1]. The current thermodynamic
model does not incorporate this effect, and we avoid comparing the model to mea-
surements on poly(A) loop hairpins. Similarly, the initiation of branch migration
is known to have a significant thermodynamic cost, with one study measuring a
cost of 2.0 kcal mol™" at room temperature [23]. This initialization cost is not yet
incorporated in NUPACK.

We have reported the initial results of our effort to develop accurate kinetic
models for nucleic acids. Our Arrhenius model surpasses the performance of the
Metropolis model, trained and evaluated on a wide range of experimental DNA
reaction rate constants. Although our current analysis focuses on DNA, we believe
our approach would also apply to RNA reaction kinetics.

8 Methods

We fit the Metropolis and Arrhenius kinetic models using the MAP approach to a
learn parameter set that maximizes Eq. 14. Using the MCMC approach, we max-
imize the same equation, but instead obtain an ensemble of parameter sets.

The MAP method is sensitive to the initial parameters, and for the Metropo-
lis model, we use kuni = 8.2 x 106 s and ky; = 3.3 x 105 M~ !s~1, following
known estimates for a one dimensional model of toehold-mediated strand displace-
ment [23]. For the Arrhenius model, we initialize E, = 3 kcal mol™* for all € C
and we initialize v and A, such that, at T = 23 °C, equally kyni (1,7) = 8.2x10% s~ 1
and kpi(1,7) = 3.3 x 10° M~ s~ for all local contexts I, € C. For both models,
we initialize o = 1.
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Results for the MCMC should generally depend less on the initial value of the
sets in the ensemble. To initialize the parameter assignment for each parameter set
in the MCMC ensemble, we realize random variables

E, ~U(0,6) x kcalmol™* A, ~U(0,10%) x s71/2 Vrec
Euni ~ U(0,10%) x 571 kpi ~ U(0,10%) x M~ 's~!
a~U(0,10) x M~ ! o~ U(0,1) (15)

where U(a,b) is the uniform distribution over (a,b). During the inference, the
parameters are not restricted to initialization bounds, and instead we only require
kuni, kpi, A7, « and o to be positive.

In the emcee software [10], an ensemble of walkers each represents a set of para-
meters, which are updated through stretch moves. Given two walkers 61 and 65, a
new parameter assignment 6] for the first walker is generated as

1 if z € l’
0, = 260, + (1 — Z)0, (2=l T2Elnd g
0 otherwise

where g(z) is the probability density of Z. We use ¢ = 2 (default value) and an
ensemble of 100 walkers. We only use the last step of each walker to make predic-
tions, which results in an ensemble of 100 parameter sets for each model.

For the MAP approach, we continue the inference until an absolute tolerance
of 10™* is reached. For the MCMC approach, we continue the inference until 750
iterations are performed per walker.

We implemented our framework in Python. All experiments were run on a sys-
tem with 16 2.93GHz Intel Xeon processors and 64GB RAM, running openSUSE
42.1. On this system, each iteration takes less than 6 s.

Our framework and dataset, as well as an
online appendix that has a full description of the state space, more experimental
plots and analysis, and algorithms that underlie our framework, are available at
https://github.com/DNA-and-Natural-Algorithms-Group/ArrheniusInference.
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