Theoretical Computer Science I (R1EN) IEI-1EE

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Erratum

Erratum to “The computational power of Benenson automata” [Theoret.
Comput. Sci. 344 (2005) 279-297]

David Soloveichik®*, Erik Winfree P!

4 University of Washington, AC101, Paul G. Allen Center, Box 352350, 185 Stevens Way, Seattle, WA 98195, United States
b California Institute of Technology, MC 136-93 1200, E California Blvd, Pasadena, CA 91125, United States

ARTICLE INFO

Article history:

Received 21 February 2011
Accepted 25 April 2011
Communicated by G. Rozenberg

()

We erroneously claim that Lemma 5.1 applies to both non-deterministic and deterministic Benenson automata, while
it applies only to deterministic ones. The following corrected lemma holds for both deterministic and non-deterministic
Benenson automata. It also exponentially improves on the dependence on D for both for circuit depth and size compared
to the paper version. Note that compared with the paper version, the circuit depth has an extra logarithmic dependence on
n, and the circuit size has an extra linear dependence on n. Theorem 3.2 follows from Lemma 5.1(corrected) as before, by
taking D = 0(1), S = O(logn), and L = poly(n).

Lemma 5.1 (Corrected). A function f : {0, 1}" — {0, 1} computed, possibly non-deterministically, by a Benenson automaton
(S,D,L, ¥,n, o, R) can be computed by a O(log(L/D) log D + log? D + log n) depth, O(LD? log D + LDn) size circuit.

The proof of Lemma 5.1(corrected) proceeds as in the paper with the following exceptions. In contrast to what is stated
in the paper, when the given Benenson automaton is non-deterministic, in order to generate the initial series of matrices
Ti2(x), ..., To—1,0 (%), each gadget A; may require more than 2D bits of input. Indeed, whether any cutting rule applies at
the exposed sticky end may depend on all n inputs. In matrix Ty ¢ (x) the bit at row j, column h (both O-indexed) is 1 iff
ol(gq— DD +jl =} ol(q¢ —1)D + h].2 For non-deterministic Benenson automata we can construct the initial matrices
Ti2(%), ..., To—1,0(x) as follows. In each gadget A, first we construct a D x D binary matrix M; which captures one-step
cuts only: the bit at row j, column h (both 0-indexed) is 1iff 6[(q — 1)D + j] —x o[(q — 1)D + h]. To compute a bit of M,
requires a O(log n)-depth and O(n)-size tree of ORs since there could be O(n) relevant cutting rules for non-deterministic
automata. Now note that using matrix multiplication where + is logical OR and - is logical AND, and I is the identity matrix,
(I + My)" is the reachability matrix after up to ¢ cuts. Thus Ty g1 = (I + Mq)2D since at most 2D cuts are possible to get
from the beginning of one segment to the end of the following one. We can compute (I 4 Mq)ZD by squaring O(log D) times
using the same construction as for gadgets B, each of which has depth O(log D) and size O(D?). This results in gadgets A of
depth O(log? D + log n) and size O(D? log D + D?n). With the rest of the construction as in the paper, the total circuit depth
is O(log(L/D) log D + log? D + log n) and size O(LD? log D + LDn + LD*) = O(LD? log D + LDn) as desired.

DOI of original article: 10.1016/j.tcs.2005.07.027.
* Corresponding author. Tel.: +1 310 293 9594; fax: +1 206 543 3842.
E-mail addresses: dsolov@u.washington.edu (D. Soloveichik), winfree@caltech.edu (E. Winfree).
1 Tel.: +1 626 395 6246; fax: +1 626 584 0630.
2 Thereisa typographical error on page 294 in the expression defining T, 4/, neglecting to subtract 1 from g, q'. The correct expression is as given here.

0304-3975/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2011.04.044

Please cite this article in press as: D. Soloveichik, E. Winfree, Erratum to “The computational power of Benenson automata” [Theoret. Comput. Sci. 344
(2005) 279-297], Theoretical Computer Science (2011), doi:10.1016/j.tcs.2011.04.044



http://dx.doi.org/10.1016/j.tcs.2011.04.044
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
http://dx.doi.org/10.1016/j.tcs.2005.07.027
mailto:dsolov@u.washington.edu
mailto:winfree@caltech.edu
http://dx.doi.org/10.1016/j.tcs.2011.04.044

2 D. Soloveichik, E. Winfree / Theoretical Computer Science I (R1EE) INE-ENI
(ii)

Section 5 makes two claims which should not be interpreted more broadly than is justified by the proofs in the paper;
specifically: “. . .allowing non-determinism does not increase the computational power...”, and “. . .increasing the sticky
end size to be larger than O(log n) does not increase computational power”. The correct sense is as expressed in Section 3:
Benenson automata with sticky end size S = O(log nn), cutting range D = 0(1), and state string size L = poly(n) compute
the same class of families of functions as O(log n)-depth circuits, and allowing non-determinism or larger sticky ends does
not expand this class. However, it may be possible that non-determinism or larger sticky ends add a lot of computational
power if we allow a cutting range D = O(n), for example.

Acknowledgement

We thank Semih Salihoglu for bringing these issues to our attention.

Please cite this article in press as: D. Soloveichik, E. Winfree, Erratum to “The computational power of Benenson automata” [Theoret. Comput. Sci. 344
(2005) 279-297], Theoretical Computer Science (2011), doi:10.1016/j.tcs.2011.04.044




	Erratum to ``The computational power of Benenson automata'' [Theoret. Comput. Sci. 344 (2005) 279--297]
	Acknowledgement


