®

Check for
updates

Chemical Reaction Networks
and Stochastic Local Search

Erik Winfree®™)

California Institute of Technology, Pasadena, CA, USA
winfree@caltech.edu

Abstract. Stochastic local search can be an effective method for solv-
ing a wide variety of optimization and constraint satisfaction problems.
Here I show that some stochastic local search algorithms map naturally
to stochastic chemical reaction networks. This connection highlights new
ways in which stochasticity in chemical reaction networks can be used
for search and thus for finding solutions to problems. The central exam-
ple is a chemical reaction network construction for solving Boolean for-
mula satisfiability problems. Using an efficient general-purpose stochas-
tic chemical reaction network simulator, I show that direct simulation
of the networks proposed here can be more efficient, in wall-clock time,
than a somewhat outdated but industrial-strength commercial satisfia-
bility solver. While not of use for practical computing, the constructions
emphasize that exploiting the stochasticity inherent in chemical reaction
network dynamics is not inherently inefficient — and indeed I propose
that stochastic local search could be an important aspect of biological
computation and should be exploited when engineering future artificial
cells.

1 Introduction

Can a cell solve Sudoku? While few would take seriously the prospect of whether
an individual E. coli could beat the puzzle page of the Daily Mail, this question
of principle has significant implications. Sudoku, when generalized, is a par-
ticularly relatable example of an NP-complete problem, and it has been effec-
tively used to illustrate methods to solve constraint satisfaction problems [1,2]
as well as to explore neural computing architectures underlying natural intel-
ligence [3,4]. So our real question is whether 1 cubic micron of biochemistry
could efliciently implement the kinds of algorithms necessary to solve difficult
problems like Sudoku, and if so, how? An answer to this more general question
could be valuable for engineering a future artificial cell that makes the most of
its limited computing resources to get by in the world; it may conceivably also
provide new perspectives on the principles exploited by naturally evolved cells
to solve the problems they encounter during their lives.

We will use the P = NP question to frame our discussion [5]. Informally, P
is the class of problems that are solvable in polynomial time (with respect to
© Springer Nature Switzerland AG 2019

C. Thachuk and Y. Liu (Eds.): DNA 25, LNCS 11648, pp. 1-20, 2019.
https://doi.org/10.1007/978-3-030-26807-7_1


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26807-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-26807-7_1

2 E. Winfree

the size of the problem instance). A canonical problem in P is the CIRCUITE-
VALUATION problem, where a problem instance specifies a feedforward Boolean
circuit and values for each input wire, and the solution is what the circuit should
output on the given input. To solve such an instance requires simply evaluating
each gate in order, which requires only polynomial (roughly linear) time. Infor-
mally, NP is the class of problems whose solutions are wverifiable in polynomial
time (where a solution now is the answer accompanied by a polynomial-sized
certificate that explains why). A canonical problem in NP is the CIRCUITSAT-
ISFIABILITY problem, where a problem instance specifies a feedforward Boolean
circuit and values for each output wire, and the solution is whether there exist
input values for which the circuit produces the specified output; those input
values constitute a certificate that can be verified in polynomial (roughly linear)
time. CIRCUITSATISFIABILITY is effectively the inverse problem for CIRCUITE-
VALUATION. Problems in NP always can be solved within exponential time by
brute-force enumerating all possible certificates, and verifying them one by one

— if any certificate checks out, then an answer has been found. The P Z NP
question essentially asks whether there are better algorithms for NP problems
that do something much more clever and thus are guaranteed to find solutions
in polynomial time — if this is possible for all NP problems, then P = NP. But
most computer scientists think the answer is “no”: while clever algorithms may
reduce the form of the exponential, or may provide polynomial time solutions
for a subset of cases, nonetheless for the worst-case hard problem instances of
NP problems, no algorithm can guarantee a polynomial time to find a solution.

What interests us here is not whether P = NP or not, but rather the fact
that studying this question has revealed how fundamental and natural the class
NP is. Presuming that P # NP, then there are problems (many problems!) that
are often enough very hard to solve, yet recognizing that a solution has been
found is relatively easy. Problems with this character have substantial impact
in the real world. For example, in cryptography, decoding a message is hard
without a key, but easy with the key — and this makes internet commerce feasible.
But problems with this character can be found far beyond computer science
and technology. For example, in academia, a professor managing a large group
is feasible only because solving research problems is hard and time-consuming
(the graduate student’s job) but recognizing that the research problem has been
solved (the professor’s job) is dramatically easier and less time-consuming. In
fact, the professor is able to steer the research group in the direction she wants
just by wisely posing a set of problems to be tackled, waiting for the students
to solve them (by cleverness, by luck, by standard techniques, by unexpected
genius, by brute force, it doesn’t matter), and then verifying that each solution
is genuine. More generally, hierarchical organization in science, business, and
society relies on the distinction between the difficulty of doing a task and the
ease of verifying that it has been done properly. The design of organizations
that are effective at accomplishing their goals in turn relies on aptly defining the
subtasks and the criteria for success.



Chemical Reaction Networks and Stochastic Local Search 3

Let’s call this programming by recognition: rather than specifying all the
details of an algorithm for how to find a solution, the programmer just provides
a simpler specification for how to recognize a solution. This is in fact a central
idea for constraint logic programming languages, such as PROLOG and CLP,
where the programmer concerns himself with what (easy to check) constraints
define the solution that is being sought, and standardized methods are used to
find the solution [6]. Programs in such languages often don’t have guarantees on
run times, but when done carefully, they can often find solutions effectively.

From this perspective, CIRCUITSATISFIABILITY can be viewed as a very low-
level constraint logic programming language, and along with more powerful gen-
eralizations such as satisfiability modulo theories, Boolean satisfiability solvers
are now used routinely in industry [7—10]. While carefully-crafted deterministic
algorithms remain the dominant general-purpose methods for solving Boolean
constraint problems, for many years a broad class of hard problems were best
solved by surprisingly simple stochastic algorithms that perform biased random
walks through the space of potential solutions [11-14]. This observation posi-
tions stochastic local search as a viable engine to power systems designed using
the programming by recognition paradigm.

There is ample evidence for programming by recognition in biology, suggest-
ing that it provides evolutionary advantages as a system architecture. A classic
example occurs during Eukaryotic cell division, when it becomes necessary to
move one copy of each chromosome to polar opposite sides of the cell. Since
the interior of a cell can be chaotic, this poses the problem of how to find each
chromosome, prior to pushing them into place. Nature’s solution is to grow
microtubules bridging pairs of chromosomes, using a “search and capture” app-
roach [15] whereby microtubules grow in all directions but are stabilized only
when they recognize their proper target. The search involves stochastic explo-
ration and energetically expensive mechanisms such as “dynamic instability”
that alternate fast growth with fast depolymerization, which has been shown to
be a more effective algorithm than a passive and energetically-neutral random
walk of polymer length [16]. Compared to a hypothetical deterministic molec-
ular algorithm for solving the same problem (“take a left at the endoplasmic
reticulum...”), the stochastic “search and capture” algorithm presumably has
the advantages that it is simpler to encode genetically, more robust, and thus
more easily evolvable [17,18]. Moving to a higher level of biological organiza-
tion, a second classic example is learning, which often involves a biased random
walk through parameter space that recognizes when good performance has been
achieved [19,20]. As before, there are advantages: organisms that learn can have
smaller genomes, are more robust, and can evolve faster than organisms with
hard-coded circuity [21]. Indeed, evolution itself exhibits some characteristics of
programming by recognition — if survival is the ultimate form of recognition.

Our interest here is to explore programming by recognition as a paradigm for
engineering circuits within artificial cells that exploit the natural stochasticity
of molecular interactions to provide efficient solutions to hard problems that the
cell might encounter. For simplicity, we ignore the geometric factors present in



4 E. Winfree

the motivating example of cell division and instead focus on well-mixed chemical
reaction networks involving a finite number of species in a finite volume. This
choice is attractive not only for its mathematical simplicity, but also because it
can be considered a programming language for engineering molecular systems
using dynamic DNA nanotechnology [22-25].

2 Stochastic Chemical Reaction Networks

We will use the standard model for formal chemical reaction networks (CRNs)
with discrete stochastic semantics for mass-action kinetics [26]. A CRN is spec-
ified by a finite set of species, e.g. {A,B,C,..., X,Y,Z} and a finite set of

reactions, e.g. {A + B ﬁ>B,X + AEC, vE A4 C, Ak B}, where k; are the
stochastic rate constants with respect to an implicitly given reaction volume.
The state of the CRN at time ¢ is given by the discrete counts of each species,
which we will refer to (with a mild abuse of notation) as A;, By, etc. The propen-
sity p; of a reaction i at time ¢ gives the instantaneous rate of firing for that
reaction, and may be calculated as the product of k; and the current counts
of each reactant (if all reaction stoichiometries are 1), e.g. p1(t) = k1 A:B; in
the example above. The total propensity p = >, p; is the sum over all reac-
tions. This implicitly defines a continuous time Markov chain (CTMC) with an
infinite state space (although, depending on the CRN and initial state, only a
finite subset may be reachable). In the standard stochastic simulation algorithm
(SSA), the time at which the next reaction occurs is chosen from an exponential
distribution with mean 1/p, and at this time, the reaction that occurs is reaction
¢ with probability p;/p. Simulation continues until a fixed time is exceeded, or a
state is reached where p = 0.

Since our central thesis is that stochastic chemical kinetics allow surprisingly
effective problem-solving, it is worth reviewing how stochastic chemical kinetics
(appropriate for a finite volume containing discrete counts of each species) differs
from the more familiar deterministic chemical kinetics (which models a hypo-
thetical well-mixed but infinite volume where real-valued concentrations are the
appropriate measure and ordinary differential equations provide the appropriate
dynamics). I will offer six perspectives.

Noisy behavior. The classical view is that stochastic CRNs are just noisy
versions of deterministic CRNs. There are senses in which this is true. For
non-explosive CRNs [27], if the volume V of a stochastic CRN is scaled up
while keeping the initial concentrations of each species constant, then for
chosen time ¢, the concentrations in the stochastic model approach the con-
centrations in the deterministic model [28]. This is a Central Limit Theorem
result, that is, X; approaches a Gaussian with coefficient of variation shrink-
ing with V. But it is not a uniform convergence: to ensure that the stochastic
CRN’s concentrations are likely within a certain percentage of the determin-
istic CRN, V may have to grow with ¢ (depending on the specific CRN).



Chemical Reaction Networks and Stochastic Local Search 5

Extinction and reachability. For a fixed volume, stochastic CRN behavior
can differ qualitatively from deterministic behavior. Most notably, species (or
reactions) may become extinct in the stochastic CRN despite being active
forever in the deterministic CRN. This occurs in the classical predator-prey
oscillator, {R—2R,F + R—2F, F —{(}. More generally, stochastic CRNs
can be limited by discrete state-space reachability constraints, reflecting deep
connections to computability theory [29-31] that are not present in the con-
tinuous deterministic state space.

Perfect Boolean values. The hard distinction between none and some that
is inherent to stochastic CRNs can make deterministic computation easier
than in deterministic CRNs. For example, implementing feedforward Boolean
logic circuit computations is straightforward with stochastic CRNs [22], where
signals on wires can be represented by counts of 0 or 1 for specific species.
But when signals are represented as high or low real-valued concentrations
in deterministic CRNs, error-correcting non-linearities are needed to perform
signal restoration [32].

Computing with counts. The count for a single chemical species can store
the value of an arbitrary non-negative integer, giving stochastic CRNs the
ability to perform uniform computation — in the sense that a single computing
machine can process arbitrarily large input instances [33-36]. Turing-universal
computation is possible with vanishingly small probability of error.

Computing with distributions. Probabilistic behavior and probabilistic rea-
soning is an adaptive response for living in a world where partial information is
available. Unlike deterministic CRNs, where probabilities must be represented
as concentrations [37,38], stochastic CRNs have the potential to directly rep-
resent probabilities via probabilities [39-41]. Although stochastic CRNs that
satisfy detailed balance can only produce equilibrium distributions that are
products of Poisson distributions [42], constraints of state-space reachabil-
ity can shape marginals to approximate arbitrary distributions, as can non-
equilibrium steady-states in CRNs that do not satisfy detailed balance [43].

That was only five. The sixth perspective — that stochastic CRNs inher-
ently perform stochastic local search — is developed in the rest of this

paper.

3 Evaluating and Satisfying Circuits

We begin by reviewing how stochastic CRNs can efficiently solve CIRCUITE-
VALUATION problems, using methods similar those in work cited above. Given a
feedforward Boolean circuit that uses 2-input unbounded fan-out gates, our goal
is to construct a stochastic CRN that, presented with molecules representing
any input to the circuit, will produce molecules representing the output of the
circuit, and then all reactions will become extinct. Specifically, for a circuit ¢
with NV inputs and M gates, the CRN CIRCUITEVALUATIONCRN|¢] will employ
2(N + M) species and 4M reactions, as illustrated in Fig. 1(A) and as follows:



6 E. Winfree

(A)
N inputs, M gates

Species:

Initial conditions:

Reactions:

A0+ B0+ D1->A0+B0+D0
A0 +B1+D1->A0+B1+D0
A1+B0+D1->A1+B0+D0
A1+B1+D0 > A1+B1+D1

A0, A1, B0, B1, C0, C1, DO, D1, EO, E1, FO, F1, GO, G1, HO, H1,
10, 11, JO, J1, KO, K1, LO, L1, MO, M1, NO, N1, O0, O1

1 molecule each for each variable, e.g. A1, B0, C0, D1, etc...
Set the inputs to the desired values, let the others be arbitrary

A0 +B0+D1->A0+B0+D0
A0 +B1+D1->A0+B1+D0
A1+B0+D1->A1+B0+D0
A1+B1+D0->A1+B1+D1

(B)

A0O+CO+E1>A0+CO0+EOD
A0O+C1+E1>A0+C1+E0
A1+CO+E1>A1+CO0+E0
A1+C1+E0~>A1+C1+E1

A0+ B0+D1->A0+B1+D1
A0+ B1+D1->A0+B0+D1
A1+B0+D1->A1+B1+D1
A1+ B1+D0 > A1+B0+D0

A0 + B0 + D1 > A1+ B0+ D1
A0 +B1+D1->A1+B1+D1
A1+B0+D1->A0+B0+D1
A1+B1+D0->A0+B1+D0

01-> 00

Fig.1. (A) Evaluating feedforward Boolean circuits with stochastic CRNs.
Red reactions correspond to the gate with the red dot; blue reactions correspond to
the gate with the blue dot. (B) Solving Circuit-SAT with stochastic CRNs. Red
reactions correspond to the gate with the red dot. Clamping reactions set the output
to the desired value. In this example, N = 3 and M = 12. (Color figure online)

e Each wire in the circuit is named, and for each wire X we use two species,

X0 and X1.

e Initially, and for all time thereafter, there will be one molecule per wire, i.e.

X0t+X1t = ].

e For each gate Z = g(X,Y) where g is a Boolean function, the four reactions

are

X0+ Y0+ Z(1—v)— X0+ Y0+ Z(v
X0+Y1+Z(1-v)—»X04+Y1+Z(v
X14+Y0+Z(1—v)—X1+Y0+ Z(v
X14+Y1+Z(1-v)—=X1+Y1+Z(v

)
)
)
)

withv = ¢(0,0)
withv = ¢(0,1)
withv = ¢(1,0)
withv = ¢g(1,1)

where Z(0) = Z0, Z(1) = Z1, and all rate constants are identical, say k.



Chemical Reaction Networks and Stochastic Local Search 7

In other words, for each input case for the gate, there are reactions that
catalytically convert an incorrect output species into a correct output species. It
will be convenient to associate full states of the CRN, in which there are exactly
one molecule for each wire, with assignments of Boolean values to each wire, in
the obvious way. We can generalize this to partial assignments, so that e.g. for
circuit input z, WIRES[z] refers to any full state of the CRN such that the species
representing input wires have the specified values, while other species have arbi-
trary counts consistent with the one-molecule-per wire constraint. Similarly, for
circuit output y, WIRES[y| refers to any full state of the CRN such that the
output species have the specified values, and other species are unconstrained.

Theorem 1 (Feedforward circuit evaluation). For feedforward Boolean cir-
cuit ¢, input x, and stochastic CRN CIRCUITEVALUATIONCRN]c|, any initial
state WIRES[z] will evolve to a state WIRES[c(z)] at which point all reactions
will be extinct.

Proof. Since c is feedforward, we can order the gates such that their inputs
are always either prior gates or inputs to the circuit. Because each reaction is
catalytic in the gate inputs, once all wires prior to a gate are correct, they will
never change again. That gate will become correct with expected time 1/k. Thus,
all M wires will be correct within expected time O(M/k). O

Feedforward circuits compute from input to output in polynomial time. To
reverse the information flow from output to input, thus solving a circuit sat-
isfaction problem, requires some guesswork or brute-force enumeration, and (if
P # NP) requires more than polynomial time, e.g. exponential time. Surpris-
ingly, the stochastic CRN for solving this problem is not significantly larger, in
terms of the number of reactions.

The idea remains that each CRN reaction will detect a violation of circuit
correctness, such that if all reactions go extinct, then the circuit represents a
valid solution to the problem. There are two new ingredients. First, unlike how
we set the inputs for feedforward evaluation using the initial state, here we will
allow arbitrary initial state, but treat the output species having the wrong value
as a violation of circuit correctness. Therefore, we introduce clamping reactions
that detect if the output is wrong, and if so, fix it. E.g. if output wire Y should be
0, we include a reaction Y1 — Y 0. Second, when a gate’s output is inconsistent
with its input, we no longer know whether the problem is that the output is
incorrect, or the input is incorrect — so we also include reactions that detect the
gate’s inconsistency and change one of the inputs, instead of changing the output.
These reactions are illustrated in Fig. 1(B). Which reaction fires first is random,
according to stochastic CRN semantics. Altogether, for circuit ¢ and output
y, this construction results in a circuit CIRCUITSATCRN]c, y] with 2(N + M)
species and 12M + L reactions, where there are L output wires. Note that the
circuit no longer needs to be feedforward, and the clamped target values do not
need to be output wires; our comments below can be trivially extended to this
generalization.



8 E. Winfree

Theorem 2 (Solving circuit satisfiability). For satisfiable Boolean circuit
¢, output y, and stochastic CRN CIRCUITSATCRN|c,y|, any initial state will
evolve to a state WIRES|x,y| where y = ¢(z), at which point all reactions will be
extinct.

Proof. Since the set of possible local violations of correctness correspond exactly
to the set of reaction reactants, it follows that if all reactions go extinct, then a
solution has been found. Similarly, if the current CRN state does not correspond
to a solution, then at least one reaction in the CRN will be poised to fire. What
remains to be shown is that, from any initial state, a state representing a valid
solution can be reached. Let s be a CRN state corresponding to a valid solution,
and let s’ be the current state, which is not a valid solution. Suppose s’ deviates
from s in n wires. If s’ is not valid because of an incorrect output wire, then we
can take a reaction that corrects the output wire, leading to a state s’ that has
n—1 deviations from s. If s’ is not valid because of an incorrect gate, then either
an input or the output of that gate deviates from s. One of the 12 reactions for
that gate corrects this deviation, leading to a state s’ that has n — 1 deviations
from s. Either way, if s” is not itself a valid solution, then we recursively show
that there is a sequence of reactions that leads either to s or to another valid
solution. O

Thus, when CIRCUITSATCRN|e, 3] is started in any one-molecule-per-wire
state, it will eventually find a solution x if one exists. However, if no solution
exists — i.e. the circuit is not satisfiable — then the CRN will continue exploring
the state space forever. And even when a solution does exist, we have no useful
bound on how long the CRN will take to find it!.

4 Formula Satisfiability

The computer science community has converged not on circuit satisfiability
problems, but on formula satisfiability problems as the standard for Boolean
logic constraint solvers. Circuit satisfiability problems can be translated to for-
mula satisfiability problems with little overhead; in fact, even when limited to
clauses with no more than three literals each —i.e. 3-SAT — the problem is still
NP-complete. Such simple building blocks facilitate analysis and constructions.
Figure 2(A) illustrates how to construct stochastic CRN FORMULASATCRN]f]
that solves 3-SAT formula f using the same principles as for circuit satisfiabil-
ity, but now using just 2N species and 3M reactions, where f has N variables
and M clauses. A sample run is shown in Fig. 2(B). This CRN has similar mer-
its and demerits as the circuit satisfiability CRN: in theory, it is guaranteed to
eventually find a solution if one exists; in practice, you're not likely to have the
patience to watch it try to solve a hard problem with 100 variables.

! The sequence of reactions identified in the proof will have a positive probability of
occurring next, specifically, at least (12M +L)_(N +M)  This provides an exponential
bound on the expected time to halt, to wit, less than (12M 4+ L)Y ™M /k 4+ (N +M) /k.
But is that useful?



Chemical Reaction Networks and Stochastic Local Search 9

(A)

(AorLorN) and (Aor!Kor!N)and (!J or P or IR) and
(QorEorl)and (D or!Aor !K)and (B or T or C) and
(Oorlor!Q)and (Gor!Oor!Q)and (KorDorF)and
(Tor!Mor!B)and (Mor!Sor!B)and (RorC orIT) and
(Ror!Por!C)and (S or For !D) and (L or | or !E) and
(lor!Lor!E)and (Mor S or!F) and (H or !0 or !G) and
(P or IJ or !H) and (J or !G or !H) and (L or E or !l) and
(Eor!Lor!l)and (L or !E or!l) and (!L or !E or !l)

Given: a boolean formula

Construct: a chemical reaction
network that stops when it finds
a solution to the formula

A0, A1, B0, B1, C0, C1, DO, D1, EO, E1, FO, F1, GO, G1, HO, H1,
Species: 10, 1, JO, J1, KO, K1, L0, L1, MO, M1, NO, N1, OO0, O1, PO, P1,
Qo, Q1, RO, R1, S0, $1, T0, T1

Initial conditions: 1 molecule each for each variable, e.g. A1, B0, C0, D1, etc...

Reactions: A0 + L0+ NO->A1+L0+NO A0 + K1+N1->A1+K1+N1
A0 +L0+NO~>A0+L1+NO A0 + K1+ N1 > A0 + KO + N1
A0 + L0+ NO->A0+LO+N1 A0 + K1+N1->A0+K1+NO0

J1+P1+R1>J0+P1+R1
J1+P1+R1>J1+P0+R1
J1+P1+R1>J1+P1+R0

(B)

Time >

Fig. 2. (A) Solving 3-SAT problems with stochastic CRNs. Red reactions cor-
respond to the red clause; blue reactions correspond to the blue clause; green reaction
correspond to the green clause. The (N = 20, M = 24) formula illustrated here was
once solved on a DNA computer [44], although variables have been renamed. (B)
Space-time history of a 3-SAT run. Species are arranged vertically; each column
of 40 pixels corresponds to the state of the CRN before or after each reaction fires;
black if the species count is 0, grey if the species count is 1 but that disagrees with the
solution eventually found, white if the species count is 1 and it agrees with the solution
eventually found. At the end of time, the CRN has gone extinct. (Color figure online)

Why is our formula satisfiability CRN so ineffective? One intuition is that
when a clause is not satisfied, there are three possible ways to try to fix it — flip
one of the three variables — but some of those actions will cause other clauses to
break. The CRN makes no distinctions, so in a situation where there is one way
to make things better, and two ways to make things worse, it is more likely to
make things worse. Thus, as the CRN performs a stochastic local search of the
state space, the projection onto the number of conflicted clauses does a random
walk that hovers around some average number, making occasional excursions
toward more or toward fewer.



10 E. Winfree

Similar problems have been encountered in conventional SAT-solvers based
on stochastic local search, and effective — though heuristic — countermeasures
have been devised [11-14]. The basic idea is to bias the choice of clause and
variable to flip so as to favor moves that reduce the number of conflicts. A
particularly simple and effective incarnation of this idea is WalkSAT [12]. The
core algorithm is just this:

1. Start with a random assignment of values to variables.

2. At random choose an unsatisfied clause.

3. Flip a variable from that clause, thus making it satisfied, such that the fewest
other clauses become unsatisfied.

4. With some low probability, flip a random variable.

5. If the formula is not satisfied, go back to step 2.

Variants of this algorithm dominated the “random” category in the international
SAT competitions for over a decade, until 2014 [9]. (For formulas generated
randomly with a certain ratio of clauses to variables, a = M/N, there is a
critical value of o = 4.26 below which problems are likely to be satisfiable and
“easy” to solve, and above which problems are likely to be unsatisfiable; near
the threshold, problems become quite hard [14,45,46].)

A similar kind of bias can be introduced into our CRN SAT-solver, yielding a
new construction WALKSATCRN][f], which now has 4N species and 4M + 2N
reactions. What seems simplest to implement in a CRN is to reject attempts to flip
bits that, if changed, would cause many clauses to become unsatisfied. Our spe-
cific construction is illustrated in Fig. 3(A). If there is an unsatisfied clause, e.g.
(A or L or N),then the corresponding species will all attempt to flip, e.g. via the
reaction A0+ L0+ NO — tryAl+tryL14+tryN1. While they are trying to flip, these
variables cannot be involved in additional conflict detection events, thus somewhat
limiting the number of variables that simultaneously try to flip. However, at the
beginning of the run, a “wound area” of variables trying to flip will quickly emerge,
possibly until all clauses either have some flipping variable or are already satisfied.
Now there is a competition for “healing” the wound: at a slow rate, variables try-
ing to flip will successfully solidify their choice via reactions such as tryAl — Al;
while at a faster rate flips will be rejected if solidifying would have introduced a con-
flict, e.g. via the rejection reaction DO+ tryAl + K1 — D0+ A0+ K1 associated
with clause (D or !A or !K). Thus, the healing wound will result in changed values
preferentially for variables that introduce no new conflicts, or few of them — with
the preference being more strongly against changes that introduce more conflicts,
because the rate of rejecting an attempted flip will be proportional to the number
of reactions trying to reject it. Nonetheless, occasionally changes will increase the
number of conflicts, since which reaction occurs next is probabilistic in the SSA.

Whereas a simple argument sufficed to show that CIRCUITSATCRN]c, 3]
and FORMULASATCRN]f] halt with a valid solution if and only if their problem
is satisfiable, the fact that WALKSATCRN|[f] attempts to flip three variables



Chemical Reaction Networks and Stochastic Local Search 11

simultaneously has so far confounded my attempts to prove its correctness?.

Moreover, we have no theoretical guarantees for the effectiveness of the stochastic
local search bias for finding solutions quickly.

Therefore, without further analysis and sticking with the first fast-to-slow
reaction rate ratio that seemed to work OK, we evaluated the effectiveness of
WALKSATCRN]|f] on random satisfiable formulas near the critical threshold.
Formulas with 100 variables were reliably solved in just a few seconds, while
formulas with 500 variables were reliably solved in under an hour (103-5¢ seconds)
and typically much faster. In no case did we encounter a satisfiable formula that
the CRN failed solve. Several comments are in order. First, how fast the CRN
runs, in wall-clock time, depends on what CRN simulator you use. Second, it
would be useful to have a point of comparison for how hard it is to solve the
random formula instances.

For the comparison, we used Mathematica’s built-in command SatisfiableQ,
which makes use of the MiniSAT 1.4 library [47]. MiniSAT is a deterministic
algorithm that can both solve satisfiable problems as well as declare problems
to be unsatisfiable. MiniSAT and its variants have been perennial winners in the
international SAT competition, although in recent competitions the improved
MiniSAT 2.2 has merely been the baseline that the winning algorithms soundly
surpass [9].

Regarding the simulator, I used a general-purpose Mathematica-based CRN
simulator originally developed by Soloveichik [48] that I extended to be more effi-
cient on large CRNs by using data structures similar to those in prior work [49-
51]. Specifically, the simulator pre-computes a fixed binary tree of reactions in
which all reaction propensities are stored, along with a list A;, for each reaction
1, indicating which other reactions’ propensities will be changed when reaction ¢
fires — i.e. those whose reactants have their counts changed by the given reaction.
Thus, for a CRN with R reactions, each step of the SSA involves lg R choices
through the binary tree to navigate to the selected reaction ¢, followed by recal-
culation of the propensities of only the reactions in A;, followed by |A;|lg R
hierarchical updates of propensities within the binary tree. This avoids much of
the redundant calculations in naive implementations of SSA. For further speed,
the inner loop of the SSA uses Mathematica’s Compile function, which effec-
tively compiles to C. Thus, the CRN simulator we use here is reasonably fast,
but has no optimizations that are specific to the SAT-solving CRN constructions
— it is a general-purpose CRN simulator.

Figure 3(B) compares the wall-clock time for running the CRN simulator on
WALKSATCRN][f] for random hard formulas f (selected by SatisfiableQ to
be satisfiable) versus the time taken by SatisfiableQ itself to solve the same
problem. For a given problem size (i.e. dot color, labeled by N for M = 4.2N),

2 A straightforward adaptation of the previous argument works for a closely related
CRN that is identical to WALKSATCRN](f] except that species ¢tryX0 and tryX1
are conflated as tryX for each variable X. This CRN should work similarly, as the
main difference is merely that a variable being flipped now might spontaneously
revert. But it is not the CRN that I simulated.



12 E. Winfree

(A)

(AorLorN) and (A or !K or IN) and (1J or !P or IR) and
(QorEorl)and (D or!Aor!K)and (B or T or C) and
(O orlor!Q)and (Gor!Oor!Q)and (K orD orF)and
(Tor!Mor!B)and (Mor!Sor!B)and (RorCor!T)and
(Ror!Por!C)and (S orF or!D)and (L orlor !E) and
(lor!Lor!E)and (Mor S or !F) and (H or !0 or !G) and
(Por!lJor!H)and (J or |G or !H) and (L or E or !l) and
(E or!Lor!l)and (L or E or !l) and (!L or !E or !l)

Given: aboolean formula

Construct: a chemical reaction
network that stops when it finds
a solution to the formula

A0, A1, B0, B1, ..., T0, T1

Species: tryAO, tryA1, tryBO, tryB1, ..., tryTO, tryT1
Initial conditions: 1 molecule each for each variable, e.g. A1, B0, C0, D1, etc...
Reactions: A0 + L0 + NO - tryA1 + tryL1 + tryN1 1. Try to fix a problem.
fast tryAO + LO + NO > A1+ L0 + NO 2. Prevent another
A0 + tryLO + NO > A0 + L1+ NO clause’s reaction
A0 + LO + tryNO > A0 + LO + N1 making a change that
slow would cause a problem.
tryA0 > A0 3. If no one complains,
make it so.

(B)

Solving 3SAT on random N-variable problems (100 for each N)

3 .
® 2 S
: .
° *
o -
@ KR
(7]
g 1 .
[ .
£ .
-
€ o

1

2 0 2 4

Mathematica time (log seconds)

Fig. 3. (A) A WalkSAT-inspired CRN for solving 3-SAT problems with
stochastic CRNs. Fast reactions have rate constant 1.0, while slow reactions have
rate constant 0.1. (B) Wall-clock time comparison for solving random 3-SAT
problems. Each dot represents a different random 3-SAT formula with M = 4.2N
and the indicated number of variables. Times are reported by their logarithm base 10.
Blue dashed line indicates where Mathematica’s SatisfiableQ takes the same time as
simulating the CRN. A 2.6 GHz Macbook Pro (2013) was used. (Color figure online)



Chemical Reaction Networks and Stochastic Local Search 13

there is considerable scatter in the times taken to solve different instances. The
vertical scatter (the CRN time) is due not only to the variability in the problem
instance, but also due to variability in the CRN’s stochastic local search pro-
cess — solving the same large instance multiple times reveals a timing standard
deviation nearly equal to the mean. (In contrast, Mathematica’s solver exhibited
only 3% variation when re-solving the same problem, which was presumably due
to background processes in the operating system.) The CRN simulator clearly
has a substantial overhead: for small (N = 50) problems, the average CRN time
is about a third of a second, while Mathematica solves most problems in little
more than a millisecond. Despite this, the CRN becomes more efficient for larger
problems, eventually out-performing Mathematica on the largest (N = 500)
instances. Here, the CRN is taking on average about 5 minutes, while Mathe-
matica is averaging at over two hours. For this N, the CRN has roughly 10,000
reactions.

Today’s best SAT-solvers can beat random 3-SAT problems with a = 4.267
and N > 5000 in under an hour [9]. T have not tried it, but I don’t presume
the WALKSATCRN]f] simulation would be anywhere close to being compet-
itive. The take-home message is not that simulating a CRN is a good way to
solve SAT problems — I don’t think it is — but rather that stochastic local search
comes fairly naturally to CRNs, and they are not incredibly bad at it. For a
given SAT problem, the size of the CRN is linear in the number of variables and
clauses (specifically, 4M +2N) and the volume required to store one molecule per
wire is just O(N). (Note, however, that for a DNA strand displacement imple-
mentation, one DNA fuel complex would be required for each time a reaction
fires, entailing a ridiculously unrealistic overhead since solving SAT problems
of the scale shown in Fig.3(B) involves millions or billions of reaction events.
For fuel-efficient SAT-solving CRNs, see the beautiful papers by Thachuk and
colleagues [52—-54]; their CRNs effectively implement a brute-force enumeration
method, but using reversible reactions within polynomial volume.)

5 Recognizing and Generating Patterns

We are tempted to think of SAT-solving by stochastic local search as a general-
purpose mechanism for programming by recognition in molecular systems. The
hard SAT instances may not represent the most interesting or useful cases; the
value might be in the flexibility and robustness of the computing paradigm.
Consider the problem of making inferences about complex environmental
signals. Formulas, circuits, or most generally, networks of relations [55] can be
used to represent knowledge about a domain in terms of constraints. In the
absence of information from the environment, there may be an enormous number
of possible solutions; perhaps we only need one. When additional information is
available, in the form of certain variables being True or False, all we need are
clamping reactions (such as A1 — AQ if the environment dictates that A is False),
and the stochastic local search will be forced to find a solution that also satisfies
the environmental constraints. Depending on the structure of the network and
which variables are clamped, this may correspond to evaluating a circuit in the



14 E. Winfree

feedforward direction (easy!) or solving a circuit satisfiability problem (hard!)
or something in between. It is a general form for potentially omnidirectional
computing in CRNs by clamping. (There are striking similarities to the Chemical
Boltzmann Machine [40], which allows for similarly omnidirectional inferences to
be made by clamping species representing known information, but in that work
the inference is probabilistic and computes conditional probabilities.)

A classic paradigm for omnidirectional computation is the associative recall
of memories in the Hopfield model [56]. The task here is to store a finite set
of “memories” (i.e. binary vectors) into the weights of a neural network, such
that when the network is initialized with a test vector, the dynamics of neural
updates will bring the system to the known memory that is “closest” (in some
sense) and halt there. For example, suppose the memories are 17 x 17 binary
images of Alan Turing, George Boole, Ludwig Boltzmann, Rosalind Franklin,
Ada Lovelace, and Warren McCulloch. If the network can “see” only the top
half of an image — i.e. the neurons corresponding to those pixels are clamped to
the correct values for one of the memories, while the rest of the neurons continue
to be updated — then it will reconstruct the rest of the image by “associative
recall”. It can do the same if it sees any sufficiently large subset of pixels. If the
pixels that it sees are partially corrupted, then when the clamping is released,
the errors will be corrected and the stored memory established — at least most
of the time, with some caveats, and if not too many memories are stored.

A very similar associative memory task can be accomplished by a Boolean
SAT solver performing stochastic local search. To “store” the memories, one
needs to construct a formula (or circuit) that has several valid solutions — one for
each memory. Now, if enough variables are clamped such that only one memory
is compatible with the clamped variables, the SAT solver is guaranteed to find
that unique solution, thus performing associative recall. If, instead, the variables
are initialized (but not clamped) to a pattern similar to one of the memorized
patterns, then the stochastic local search is likely to reach that solution first.
We demonstrate this idea by constructing a formula whose only solutions are
exactly those shown in Fig.4(A), using the Exclusion Network approach [55].
Specifically, we randomly choose n triples of variables, for each triple make a
subformula that allows only the combinations that occur in the set of target
memories, and create a formula that is the conjunction of all n subformulas.
This formula is guaranteed to have the target memories as valid solutions, and
as n increases, it excludes more and more alternative solutions (if there are not
too many target memories). After algebraically converting to conjunctive normal
form for 3-SAT, we can build the CRN SAT-solver.

The constraints imposed by a SAT formula may be used to define not only
pattern recognition processes, but also pattern generation processes. To illustrate
the use of SAT solving for a morphogenesis application, we consider a case where,
rather than having a unique solution or a small number of chosen solutions as
in the associative memory discussed above, the SAT constraints define a com-
binatorial set of solutions with meaningful properties in common. Figure 4(B)
shows several solutions of a SAT formula that imposes only local restrictions that



Chemical Reaction Networks and Stochastic Local Search 15

(!P1v2 and !P15v14 and !P6v1l) or

(!P1v2 and !P15v14 and P6v11) or
(P1v2 and !P15v14 and !P6v1l)
= T '
- nl I
= \
r ' r r
m
O

)and ...

Fig.4. (A) The WalkSAT-inspired CRN performing as an associative mem-
ory. Top: The principle for constructing a Boolean formula encoding the memo-
ries. Bottom: Clamping a 9-pixel portion of Boltzmann leads to recall of Boltzmann.
Grey pixels are trying to flip. (B) The WalkSAT-inspired CRN maintaining a
membrane-like structure. The Boolean formula only enforces that solutions have
black in the corners and all interior cells are either white or have exactly two immediate
neighbors that are black. Ten representative solutions are shown.

£=(

amount to insisting that black pixels form uninterrupted lines that connect to
the corners. Thus, these patterns are fixed points for the SAT-solving CRN, but
if disturbed by external perturbations — or additional internal constraints — the
CRN will perform stochastic local search to re-establish the connectivity of the
membrane-like patterns. Here we see that stochastic local search simultaneously
forms the pattern and provides a self-healing capability.

These examples are intended to highlight the connection between stochastic
local search SAT solvers and more biological notions of memory, inference, mor-
phogenesis, self-healing, homeostasis, and robustness — how a biological organ-
ism self-regulates to restore and maintain critical structures, concentrations, and
functions [57].



16 E. Winfree

5|3 7 5(3[4]16|7(8]9]|1]|2
6 1(9(|5 6|7|2]1(9|5]|3|4|8
9(8 6 119(8]3[4]|2]|5[6]7

8 6 8[5(9]7(6|1]4]|2]|3
4 8 3 1 412|1618|5|3]7|9(1
7 2 711]13]19(2[4]8]|5]|6
6 2|8 9(6[1|5(3(7]2]|8|4
419 5 2(8(7]14]1(9]6]3]|5

8 719 3/4]15]12|8[6]1]7]|9

Fig. 5. Sudoku. Left: The puzzle instance. Given the black digits, the remaining cells
must be filled in such that every 3 x 3 square has all digits 1...9, as does every row
and every column. Right: The solution to this puzzle, in red. (Color figure online)

6 Sudoku

This paper wouldn’t be complete without a return to the original question of
whether a cell could solve Sudoku. To take a first stab at answering that question,
note that the constraints of Sudoku can be expressed as a SAT formula [1,2].
Unfortunately, at least for the approach I used, the resulting formulas could
not be easily solved by WALKSATCRN]f] simulations. This is perhaps not too
surprising; while the classical WalkSAT algorithm is effective for hard random
problems and many easy problems, on most “structured” problems, deterministic
algorithms that perform clever depth-first search, like MiniSAT, perform much
better [14].

Can stochastic CRNs also perform efficient depth-first search? It would be
easier — and nearly as effective — to repeatedly take random dives through the
search tree to a leaf, rather than to deterministically traverse each node exactly
once, which would require extra bookkeeping. Such a stochastic depth-first search
would bear some similarity to dynamic instability in microtubules’ search for
chromosomes [15,16]: the microtubule quickly grows in a random direction, mak-
ing random choices as it goes; if it is unsuccessful finding a chromosome, it even-
tually suffers a “catastophe” and rapidly contracts, then starts over... until it
finds a chromosome.

Based on this vision, we can construct a stochastic CRN to solve an arbitrary
Sudoku puzzle (Fig. 5). There are 9% species whose presence indicates that a spe-
cific digit may possibly be in a specific cell; another 92 that indicate it is definitely
not; another 9% that indicate that a cell’s value is known (i.e. only one digit may
be there); more that indicate it is unknown; and some additional bookkeeping
species, including Forward and Reverse. When Forward is present, a set of
reactions quickly enforce logical constraints among the species; more slowly, a
cell with few options will spontaneously choose one, thus descending the search
tree. If a contradiction is noted, a reaction will convert Forward to Reverse,
and the logic bookkeeping will dissolve... to be rebuilt when Reverse switches to



Chemical Reaction Networks and Stochastic Local Search 17

Forward again. The CRN has roughly 35, 000 reactions, and solves all available
Sudoku problems in under half an hour, including the hardest ones on Gordon
Royle’s list [58].

The number of reactions in the Sudoku CRN is within an order of magnitude
of existing whole-cell models of bacteria [59]. So maybe we could conceive of
a bacterial-sized artificial cell that implemented that many reactions. However,
successfully solving hard Sudoku puzzles involves many dives into the search tree
and many millions or billions of reaction events. Even assuming rate constants on
the order of 1 per second, that would take many days or years. F. coli reproduces
in 20 min. So no, it seems that cells are unlikely to be successful solving Sudoku.

7 Discussion

Nonetheless, we may have learned something during this somewhat stochastic
exploration of ideas. Foremost in my mind is that the stochasticity inherent
in CRNs provides a natural engine for stochastic local search and thus pro-
gramming by recognition — the hallmark algorithmic architecture defining NP
problems. The architecture is robust and flexible, pivoting seamlessly from effi-
cient solution of easy problems to relatively efficient solution of hard problems,
naturally accommodating memory, inference, self-healing, and homeostasis with
respect to constraints.

Software. Mathematica packages and notebooks for the CRN simulator, SAT-
solving CRN constructions, and Sudoku solver can be found on the author’s
website [60].

Acknowledgements. This work was supported in part by National Science Foun-
dation (NSF) grant 1317694 — The Molecular Programming Project. Thanks to Matt
Cook, David Soloveichik, Chris Thachuk, William Poole, Lulu Qian, Grzegorz Rozen-
berg, Moshe Vardi, Tony Rojko, and Henry Lester for stimulating questions, comments,
and encouragement.

References

1. Simonis, H.: Sudoku as a constraint problem. In: Proceedings of the 4th Interna-
tional Workshop on Modelling and Reformulating Constraint Satisfaction Prob-
lems, vol. 12, pp. 13—-27 (2005)

2. Lynce, 1., Ouaknine, J.: Sudoku as a SAT problem. In: Proceedings of the 9th
International Symposium on Artificial Intelligence and Mathematics (AIMATH)
(2006)

3. Hopfield, J.J.: Searching for memories, Sudoku, implicit check bits, and the iter-
ative use of not-always-correct rapid neural computation. Neural Comput. 20,
1119-1164 (2008)

4. Jonke, Z., Habenschuss, S., Maass, W.: Solving constraint satisfaction problems
with networks of spiking neurons. Front. Neurosci. 10, 118 (2016)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman and
Company, New York (1979)



18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

E. Winfree

Jaffar, J., Maher, M.J.: Constraint logic programming: a survey. J. Logic Program.
19, 503-581 (1994)

Vardi, M.Y.: Boolean satisfiability theory and engineering. Commun. ACM 57, 5
(2014)

Jarvisalo, M., Le Berre, D., Roussel, O., Simon, L.: The international SAT solver
competitions. AI Mag. 33, 89-92 (2012)

Balyo, T., Heule, M.J.H., Jarvisalo, M.: SAT competition 2016: recent develop-
ments. In: Thirty-First AAAT Conference on Artificial Intelligence (2017)

de Moura, L., Bjgrner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3-24

Selman, B., Kautz, H.A., Cohen, B.: Local search strategies for satisfiability testing.
Cliques, Color. Satisf. 26, 521-532 (1993)

Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search.
In: Proceedings of the 12th National Conference on Artificial Intelligence, vol. 94,
pp. 337-343. MIT Press (1994)

Hoos, H.H., Stiitzle, T.: Stochastic Local Search: Foundations and Applications.
Elsevier, Amsterdam (2004)

Gomes, C.P., Kautz, H., Sabharwal, A., Selman, B.: Satisfiability solvers. Founda-
tions of Artificial Intelligence 3, 89-134 (2008)

Kirschner, M., Mitchison, T.: Beyond self-assembly: from microtubules to morpho-
genesis. Cell 45, 329-342 (1986)

Holy, T.E., Leibler, S.: Dynamic instability of microtubules as an efficient way to
search in space. Proc. Nat. Acad. Sci. 91, 5682-5685 (1994)

Gerhart, J., Kirschner, M.: Cells, Embryos, and Evolution: Toward a Cellular and
Developmental Understanding of Phenotypic Variation and Evolutionary Adapt-
ability. Blackwell Science, Malden (1997)

Kirschner, M., Gerhart, J.: Evolvability. Proc. Nat. Acad. Sci. 95, 8420-8427 (1998)
Cauwenberghs, G.: A fast stochastic error-descent algorithm for supervised learning
and optimization. In: Advances in Neural Information Processing Systems, pp.
244-251 (1993)

Sebastian Seung, H.: Learning in spiking neural networks by reinforcement of
stochastic synaptic transmission. Neuron 40, 1063-1073 (2003)

Hinton, G.E., Nowlan, S.J.: How learning can guide evolution. Complex Syst. 1,
495-502 (1987)

Cook, M., Soloveichik, D., Winfree, E., Bruck, J.: Programmability of chemical
reaction networks. In: Condon, A., Harel, D., Kok, J., Salomaa, A., Winfree, E.
(eds.) Algorithmic Bioprocesses. Natural Computing Series, pp. 543-584. Springer,
Heidelberg (2009)

Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical
kinetics. Proc. Nat. Acad. Sci. 107, 5393-5398 (2010)

Chen, Y.-J.: Programmable chemical controllers made from DNA. Nat. Nanotech-
nol. 8, 755 (2013)

Srinivas, N., Parkin, J., Seelig, G., Winfree, E., Soloveichik, D.: Enzyme-free nucleic
acid dynamical systems. Science 358, eaal2052 (2017)

Gillespie, D.T.: Stochastic simulation of chemical kinetics. Ann. Rev. Phys. Chem.
58, 35-55 (2007)

Anderson, D.F., Cappelletti, D., Koyama, M., Kurtz, T.G.: Non-explosivity of
stochastically modeled reaction networks that are complex balanced. Bull. Math.
Biol. 80, 2561-2579 (2018)


https://doi.org/10.1007/978-3-540-78800-3_24

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Chemical Reaction Networks and Stochastic Local Search 19

Kurtz, T.G.: The relationship between stochastic and deterministic models for
chemical reactions. J. Chem. Phys. 57, 2976-2978 (1972)

Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3,
147-195 (1969)

Johnson, R.F., Dong, Q., Winfree, E.: Verifying chemical reaction network imple-
mentations: a bisimulation approach. Theor. Comput. Sci. 765, 3-46 (2019)
Doty, D., Zhu, S.: Computational complexity of atomic chemical reaction networks.
Natural Comput. 17, 677-691 (2018)

Magnasco, M.O.: Chemical kinetics is turing universal. Phys. Rev. Lett. 78, 1190—
1193 (1997)

Liekens, A.M.L., Fernando, C.T.: Turing complete catalytic particle computers.
In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.)
ECAL 2007. LNCS (LNAI), vol. 4648, pp. 1202-1211. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74913-4_120

Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochas-
tic chemical reaction networks. Nat. Comput. 7, 615-633 (2008)

Chen, H.-L., Doty, D., Soloveichik, D.: Deterministic function computation with
chemical reaction networks. Natural Comput. 13, 517-534 (2014)

Cummings, R., Doty, D., Soloveichik, D.: Probability 1 computation with chemical
reaction networks. Natural Comput. 15, 245-261 (2016)

Napp, N.E., Adams, R.P.: Message passing inference with chemical reaction net-
works. In: Advances in Neural Information Processing Systems, pp. 2247-2255
(2013)

Gopalkrishnan, M.: A scheme for molecular computation of maximum likelihood
estimators for log-linear models. In: Rondelez, Y., Woods, D. (eds.) DNA 2016.
LNCS, vol. 9818, pp. 3-18. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-43994-5_1

Fett, B., Bruck, J., Riedel, M.D.: Synthesizing stochasticity in biochemical systems.
In: Proceedings of the 44th Annual Design Automation Conference, pp. 640—645.
ACM (2007)

Poole, W., et al.: Chemical boltzmann machines. In: Brijder, R., Qian, L. (eds.)
DNA 2017. LNCS, vol. 10467, pp. 210-231. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66799-7_14

Cardelli, L., Kwiatkowska, M., Laurenti, L.: Programming discrete distributions
with chemical reaction networks. Nat. Comput. 17, 131-145 (2018)

Anderson, D.F., Craciun, G., Kurtz, T.G.: Product-form stationary distributions
for deficiency zero chemical reaction networks. Bull. Math. Biol. 72, 1947-1970
(2010)

Cappelletti, D., Ortiz-Munoz, A., Anderson, D., Winfree, E.: Stochastic chemical
reaction networks for robustly approximating arbitrary probability distributions.
arXiv preprint arXiv:1810.02854 (2018)

Braich, R.S., Chelyapov, N., Johnson, C., Rothemund, P.W.K., Adleman, L.: Solu-
tion of a 20-variable 3-SAT problem on a DNA computer. Science 296, 499-502
(2002)

Kirkpatrick, S., Selman, B.: Critical behavior in the satisfiability of random
Boolean expressions. Science 264, 1297-1301 (1994)

Selman, B., Kirkpatrick, S.: Critical behavior in the computational cost of satisfi-
ability testing. Artif. Intell. 81, 273-295 (1996)

Strzebonski, A.: Mathematica SatisfiabilityQ uses MiniSAT 1.14. StackExchange
and personal communication (2016, 2019). https://mathematica.stackexchange.
com/questions /103726 /why-is-satisfiabilitycount-faster-than-satisfiableq


https://doi.org/10.1007/978-3-540-74913-4_120
https://doi.org/10.1007/978-3-319-43994-5_1
https://doi.org/10.1007/978-3-319-43994-5_1
https://doi.org/10.1007/978-3-319-66799-7_14
https://doi.org/10.1007/978-3-319-66799-7_14
http://arxiv.org/abs/1810.02854
https://mathematica.stackexchange.com/questions/103726/why-is-satisfiabilitycount-faster-than-satisfiableq
https://mathematica.stackexchange.com/questions/103726/why-is-satisfiabilitycount-faster-than-satisfiableq

20

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.
58.

59.

60.

E. Winfree

Soloveichik, D.: CRNSimulatorSSA Mathematica Package. Personal Web Site
(2016). http://users.ece.utexas.edu/~soloveichik/crnsimulator.html

Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems
with many species and many channels. J. Phys. Chem. A 104, 1876-1889 (2000)
Mauch, S., Stalzer, M.: Efficient formulations for exact stochastic simulation of
chemical systems. IEEE/ACM Trans. Comput. Biol. Bioinf. 8, 27-35 (2011)
Thanh, V.H., Zunino, R.: Adaptive tree-based search for stochastic simulation
algorithm. Int. J. Comput. Biol. Drug Des. 7, 341-357 (2014)

Condon, A., Hu, A.J., Mafiuch, J., Thachuk, C.: Less haste, less waste: on recycling
and its limits in strand displacement systems. Interface Focus 2, 512-521 (2012)
Thachuk, C., Condon, A.: Space and energy efficient computation with DNA strand
displacement systems. In: Stefanovic, D., Turberfield, A. (eds.) DNA 2012. LNCS,
vol. 7433, pp. 135-149. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32208-2_11

Condon, A., Thachuk, C.: Towards space-and energy-efficient computations. In:
Kempes, C., Grochow, J., Stadler, P., Wolpert, D. (eds.) The Energetics of Com-
puting in Life and Machines, chapter 9, pp. 209-232. The Sante Fe Institute Press,
Sante Fe (2019)

Matthew M Cook. Networks of Relations. PhD thesis, California Institute of Tech-
nology, 2005

Hopfield, J.J.: Neural networks and physical systems with emergent collective com-
putational abilities. Proc. Nat. Acad. Sci. 79, 2554-2558 (1982)

Kitano, H.: Towards a theory of biological robustness. Mol. Syst. Biol. 3, 137 (2007)
Reich, E.S.: Mathematician claims breakthrough in Sudoku puzzle. Nature (2012).
https://doi.org/10.1038 /nature.2012.9751

Karr, J.R., Sanghvi, J.C., Macklin, D.N.,; Arora, A., Covert, M.W.: WholeCellKB
model organism databases for comprehensive whole-cell models. Nucleic Acids Res.
41, D787-D792 (2012)

Winfree, E.: Mathematica Notebooks for CRN SAT Solvers. Personal Web Site
(2019). http://www.dna.caltech.edu/SupplementaryMaterial/ CRNSAT/


http://users.ece.utexas.edu/~soloveichik/crnsimulator.html
https://doi.org/10.1007/978-3-642-32208-2_11
https://doi.org/10.1007/978-3-642-32208-2_11
https://doi.org/10.1038/nature.2012.9751
http://www.dna.caltech.edu/SupplementaryMaterial/CRNSAT/

	Chemical Reaction Networks and Stochastic Local Search
	1 Introduction
	2 Stochastic Chemical Reaction Networks
	3 Evaluating and Satisfying Circuits
	4 Formula Satisfiability
	5 Recognizing and Generating Patterns
	6 Sudoku
	7 Discussion
	References




