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Abstract. How smart can a micron-sized bag of chemicals be? How can
an artificial or real cell make inferences about its environment? From
which kinds of probability distributions can chemical reaction networks
sample? We begin tackling these questions by showing three ways in
which a stochastic chemical reaction network can implement a Boltz-
mann machine, a stochastic neural network model that can generate a
wide range of probability distributions and compute conditional prob-
abilities. The resulting models, and the associated theorems, provide a
road map for constructing chemical reaction networks that exploit their
native stochasticity as a computational resource. Finally, to show the
potential of our models, we simulate a chemical Boltzmann machine to
classify and generate MNIST digits in-silico.

1 Introduction

To carry out complex tasks such as finding and exploiting food sources, avoiding
toxins and predators, and transitioning through critical life-cycle stages, single-
celled organisms and future cell-like artificial systems must make sensible deci-
sions based on information about their environment [1,2]. The small volumes of
cells makes this enterprise inherently probabilistic: environmental signals and the
biochemical networks within the cell are noisy, due to the stochasticity inherent
in the interactions of small, diffusing molecules [3–5]. The small volumes of cells
also raises questions not only about how stochasticity influences circuit function,
but also about how much computational sophistication can be packed into the
limited available space.

Perhaps surprisingly, neural network models provide an attractive architec-
ture for the types of computation, inference, and information processing that cells
must do. Neural networks can perform deterministic computation using circuits
that are smaller and faster than boolean circuits composed of AND, OR, and
NOT gates [6], can robustly perform tasks such as associative recall [7], and can
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Fig. 1. In a micron-scale environment, molecular counts are low and a real (or syn-
thetic) cell will have to respond to internal and environmental cues. Probabilistic infer-
ence using chemical Boltzmann machines provides a framework for how this may be
achieved.

naturally perform Bayesian inference [8]. Furthermore, the structure of biochemi-
cal networks, such as signal transduction cascades [1,9,10] and genetic regulatory
networks [11–15], can map surprisingly well onto neural network architectures.
Chemical implementations of neural networks and related machine learning
models have also been proposed [16–20], and limited examples demonstrated [21–
24], for synthetic biochemical systems.

Most previous work on biochemical neural networks and biochemical infer-
ence invoked models based on continuous concentrations of species representing
neural activities. Such models are limited in their ability to address questions of
biochemical computation in small volumes, where discrete stochastic chemical
reaction network models must be used to account for the low molecular counts.
The nature of biochemical computation changes qualitatively in this context. In
particular, stochasticity has been widely studied in genetic regulatory networks
[25], signaling cascades [26], population level bet hedging in bacteria [27], and
other areas [28,29] – where the stochasticity is usually seen as a challenge limit-
ing correct function, but is occasionally also viewed as a useful resource [30]. Our
work falls squarely in the latter camp: we attempt to exploit the intrinsic stochas-
tic fluctuations of a formal chemical reaction network (CRN) to build natively
stochastic samplers by implementing a stochastic neural network. This links to
efforts to build natively stochastic hardware for Bayesian inference [31,32] and to
the substantial literature attempting to model, and find evidence for, stochastic
neural systems capable of Bayesian inference [33,34].

Specifically, we propose CRNs that implement Boltzmann machines (BMs), a
flexible class of Markov random fields capable of generating diverse distributions
and for which conditioning on data has straightforward physical interpretations
[8,35]. BMs are an established model of probabilistic neural networks due to their
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analytic tractability and connections to spin systems in statistical physics [36]
and Hopfield networks in computer science [7]. These networks have been studied
extensively and used in a wide range of applications including image classification
[37] and video generation [38]. We prove that CRNs can implement BMs and that
this is possible using detailed balanced CRNs. Moreover, we show that many of
the attractive features of BMs can be applied to our CRN constructions such as
inference, a straightforward learning rule and scalability to real-world data sets.
We thereby introduce the idea of a chemical Boltzmann machine (CBM), a chem-
ical system capable of exactly or approximately performing inference using a sto-
chastically sampled high-dimensional state space, and explore some of its possible
forms.

2 Relevant Background

2.1 Boltzmann Machines (BMs)

Boltzmann machines are a class of binary stochastic neural networks, meaning
that each node randomly switches between the values 0 and 1 according to a
specified distribution. They are widely used for unsupervised machine learning
because they can compactly represent and manipulate high-dimensional prob-
ability distributions. Boltzmann machines provide a flexible machine learning
architecture because, as generative models, they can be used for a diverse set of
tasks including data classification, data generation, and data reconstruction.
Additionally, the simplicity of the model makes them analytically tractable.
The use of hidden units (described below) allows Boltzmann machines to repre-
sent high order correlations in data. Together, these features make Boltzmann
machines an excellent starting point for implementing stochastic chemical com-
puters.

Fix a positive integer N ∈ Z>0. An N -node Boltzmann machine (BM) is
specified by a quadratic energy function E : {0, 1}N → R

E(x1, x2, . . . , xN ) = −
∑

i<j

wijxixj −
∑

i

θixi (1)

where θi ∈ R is the bias of node i, and wij = wji ∈ R is the weight of the
unordered pair (i, j) of nodes, with wii = 0. One may specify a BM architec-
ture, or graph topology, by choosing additional weights wij that are to be set to
0. In this paper, we will use N (i) = {j s.t. wij �= 0} to denote the neighborhood
of i. From a physical point of view, we are implicitly using temperature units kBT
for energy, which we will continue to do throughout this paper. A BM describes
a distribution P (x) over state vectors x = (x1, . . . , xN ) ∈ {0, 1}N ,

P (x) =
1
Z

e−E(x) with Z =
∑

x′∈{0,1}N

e−E(x′). (2)

Nodes of a BM are often partitioned into sets V and H of visible and
hidden, respectively. Nodes in V represent data, and auxiliary nodes in H allow
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more complex distributions to be represented in the visible nodes. An imple-
mentation of a BM is a stationary stochastic process that samples from this
distribution in the steady state. A BM can be implemented in silico using the
Gibbs sampling algorithm [39], which induces a discrete time Markov chain
(DTMC) on the state space {0, 1}N in such a way that the stationary distribu-
tion of this Markov chain corresponds to the distribution P (x). In each round,
one node i ∈ {1, . . . , N} is chosen at random for update. For any two adjacent
configurations x and x′ which differ only at node i—i.e., xi = 1−x′

i and xj = x′
j

for all j �= i—we set the transition probabilities Tx→x′ of the DTMC so that

Tx′→x

Tx→x′
=

P (x)
P (x′)

=
e−E(x)

e−E(x′) = e(θi+
∑

j∈N(i) wijxj)(xi−x′
i). (3)

Any function Tx→x′ can be chosen so long as (3) is satisfied. One common choice
is Tx→x′ = 1/(N(1 + eE(x′)−E(x))), where the factor 1/N represents the proba-
bility of choosing node i.

A Boltzmann machine is also an inference engine. One can do inference on
P (x) by conditioning on the values of a subset of the nodes. Suppose nonempty
node subsets U and Y form a partition of the nodes {1, 2, . . . , N}, and fix u ∈
{0, 1}U . To obtain samples from P (y | u) where y ∈ {0, 1}Y , one clamps every
node i ∈ U to the state ui while running Gibbs sampling, i.e., one does not allow
these nodes to update. Clamping nodes to an input state is the same as specifying
the input data for a statistical model. Steady state samples y ∈ {0, 1}Y of this
procedure are draws from the distribution P (y | u).

Boltzmann machines can be used to learn a generative model from unlabeled
data. After specifying the architecture, one then proceeds to find the weights,
wij , and biases, θi, that maximize the likelihood of the observed data according
to the model, using gradient descent from a random initial parameterization.
This reduces to a very simple a two-phase Hebbian learning rule where weights
on active edges are strengthened in a “wake phase” during which the network is
clamped to observed data and are weakened in a “sleep phase” during which the
network runs free [8,35]. Given a target distribution Q(x), this gradient descent
corresponds to calculating the gradient of the Kullback-Leibler divergence from
P to Q, DKL(Q ||P ) =

∑
x Q(x) log Q(x)

P (x) , with respect to the parameters θi and
wij :

dθi

dt
= −∂DKL

∂θi
= 〈xi〉Q − 〈xi〉P and

dwij

dt
= −∂DKL

∂wij
= 〈xixj〉Q − 〈xixj〉P (4)

where 〈·〉P and 〈·〉Q denote expected values with respect to the distributions P
and Q respectively. When hidden units are present, the distribution Q (which
is defined on visible units only) is extended to hidden units based on clamping
the visible units according to Q and using the conditional distribution P (y|u) to
determine the hidden units.
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2.2 Chemical Reaction Networks (CRNs)

Fix a finite set S = (S1, S2, . . . , SM ) of M species. A reaction r is a formal
chemical equation

M∑

i=1

μi
rSi →

M∑

i=1

νi
rSi, (5)

abbreviated as r = μr → νr where μr, νr ∈ N
S are the stoichiometric coefficient

vectors for the reactant and product species respectively, and N = Z≥0. A reac-
tion rate constant, kr ∈ R>0, is associated with each reaction. In this paper,
we define a chemical reaction network (CRN) as a triple C = (S,R, k) where
S is a finite set of species, and R is a set of reactions, and k is the associated
set of reaction rate constants.

We will denote chemical species by capital letters, and their counts by lower
case letters; e.g., s1 denotes the number of species S1. Thus the state of a stochas-
tic CRN is described by a vector on a discrete lattice, s = (s1, s2 . . . sM ) ∈ N

S .
The dynamics of a stochastic CRN are as follows [40]. The probability that a
given reaction occurs per unit time, called its propensity, is given by

ρr(s) = kr

M∏

i=1

si!
(si − μi

r)!
if si ≥ μi

r and 0 otherwise. (6)

Each time a reaction fires, state s changes to state s + Δr, where Δr = νr − μr

is called the reaction vector, and the propensity of each reaction may change.
Viewed from a state space perspective, stochastic CRNs are continuous time
Markov chains (CTMCs) with transition rates

Rs→s′ =
∑

r s.t. s′=s+Δr

ρr(s) (7)

and thus their dynamics follow

dP (s, t)
dt

=
∑

s′ �=s

Rs′→sP (s′, t) − Rs→s′P (s, t), (8)

where P (s, t) is the probability of a state with counts s at time t. Equivalently,
they are governed by the chemical master equation,

dP (s, t)
dt

=
∑

r∈R
P (s − Δr, t)ρr(s − Δr) − P (s, t)ρr(s). (9)

A stationary distribution π(s) may be found by solving dP (s,t)
dt = 0 simultane-

ously for all s; in general, it need not be unique, and even may not exist. Given
an initial state s0, π(s) = P (s,∞) is unique if it exists. For that initial state,
the reachability class Ωs0 ⊆ N

M is the maximal subset of the integer lattice
accessible to the CRN via some sequence of reactions in R. We will specify a
CRN and a reachability class given an initial state as a shorthand for specifying
a CRN and a set of initial states with identical reachability classes.
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2.3 Detailed Balanced Chemical Reaction Networks

A CTMC is said to satisfy detailed balance if there exists a well-defined func-
tion of state s, E(s) ∈ R, such that for every pair of states s and s′, the transition
rates Rs→s′ and Rs′→s are either both zero or

Rs→s′

Rs′→s
= eE(s)−E(s′). (10)

If the state space Ω is connected and the partition function Z =
∑

s∈Ω e−E(s) is
finite, then the steady state distribution π(s) = 1

Z e−E(s) is unique, and the net
flux between all states is zero in that steady state.

There is a related but distinct notion of detailed balance for a CRN. An
equilibrium chemical system is constrained by physics to obey detailed balance
at the level of each reaction. In particular, for a dilute equilibrium system, each
species Si ∈ S has an energy G[Si] ∈ R that relates to its intrinsic stability, and

kr+

kr−
= e−∑M

i=1 Δi
r+

G[Si] = e−ΔGr+ , (11)

where Δi
r+ is the ith component of Δr+ = νr+ − μr+ , and we have defined

ΔGr+ =
∑N

i=1 Δi
r+G[Si]. Any CRN for which there exists a function G satisfying

(11) is called a detailed balanced CRN. To see that the CTMC for a detailed
balanced CRN also itself satisfies detailed balance in the sense of (10), let s′ =
s + Δr+ and note that (6) and (11) imply that

ρr+(s)
ρr−(s′)

= eG(s)−G(s′) with G(s) =
M∑

i=1

siG[Si] + log(si!), (12)

for all reactions r+. Here, G(s) is a well-defined function of state s (the free
energy) that can play the role of E in (10). If there are multiple reactions that
bring s to s′, they all satisfy (12), and therefore the ratio Rs→s′/Rs′→s satisfies
(10) and the CTMC satisfies detailed balance.

It is possible to consider non-equilibrium CRNs that violate (11). Such sys-
tems must be coupled to implicit reservoirs of fuel molecules that can drive the
species of interest into a non-equilibrium steady state [41–43]. Usually – but
not always [44,45] – the resultant Markov chain violates detailed balance. In
Sect. 3.1, we shall consider a system that exhibits detailed balance at the level
of the Markov chain, but is necessarily non-equilibrium and violates detailed
balance at the detailed chemical level.

Given an initial condition s0, a detailed balanced CRN will be confined to
a single reachability class Ωs0 . Moreover, from the form of G(s), the stationary
distribution π(s) on Ωs0 of any detailed balanced CRN exists, is unique, and is
a product of Poisson distributions restricted to the reachability class [46],

π(s) =
1
Z

e−G(s) =
1
Z

M∏

i=1

e−siG[Si]

si!
, (13)
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with the partition function Z =
∑

s′∈Ωs0
e−G(s′) dependent on the reachability

class. Note that this implies that the partition function is always finite, even for
an infinite reachability class.

3 Exact Constructions and Theorems

3.1 Clamping and Conditioning with Detailed Balanced CRNs

In a Boltzmann machine that has been trained to generate a desired probability
distribution when run, inference can be performed by freezing, also known as
clamping, the values of known variables, and running the rest of the network to
obtain a sample; this turns out to exactly generate the conditional probability.
A similar result holds for a subclass of detailed balanced CRNs that generate a
distribution, for an appropriate notion of clamping in a CRN. Imagine a “demon”
that, whenever a reaction results in a change in the counts of one of the clamped
species, will instantaneously change it back to its previous value. If every reaction
is such that either no clamped species change, or else every species that changes
is clamped, then the demon is effectively simply “turning off” those reactions.
More precisely, consider a CRN, C = (S,R, k). We will partition the species into
two disjoint groups Y = Sfree and U = Sclamped, where Sfree will be allowed
to vary and Sclamped will be held fixed. We will define free reactions, Rfree,
as reactions which result in neither a net production nor a net consumption of
any clamped species. Similarly, clamped reactions, Rclamped are reactions which
change the counts of any clamped species. The clamped CRN will be denoted
C|U=u to indicate the the species Ui ∈ U have been clamped to the values ui.
The clamped CRN is defined by C|U=u = (S,Rfree, kfree), that is, the entire set
of species along with the reduced set of reactions and their rate constants. In
the clamped CRN it is apparent that the clamped species will not change from
their initial conditions because no reaction in Rfree can change their count.
However, these clamped species may still affect the free species catalytically. If
the removed reactions, Rclamped, never change counts of non-clamped species,
then C|U=u is equivalent to the action of the “demon” imagined above.

We use Eq. 13 to prove that clamping a detailed balanced CRN is equiva-
lent to calculating a conditional distribution, and to show when the conditional
distributions of a detailed balanced CRN will be independent. Together, these
theorems provide guidelines for devising detailed balanced CRNs with interest-
ing (non-independent) conditional distributions and for obtaining samples from
these distributions via clamping.

We will need one more definition. Let C be a detailed balanced CRN with
reachability class Ωs0 for some initial condition s0 = (u0, y0). Let Γs0 be the
reachability class of the clamped CRN C|U=u0 with species U clamped to u0

and species Y free. We say clamping preserves reachability if ΩY
s0|U=u0

= ΓY
s0

where ΩY
s0|U=u0

= {y s.t. (u0, y) ∈ Ωs0} and ΓY
s0

= {y s.t. (u0, y) ∈ Γs0}. In
other words, clamping preserves reachability if, whenever a state s = (u0, y) is
reachable from s0 by any path in C, then it is also reachable from s0 by some
path in C|U=u0 that never changes u.
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Theorem 1. Consider a detailed balanced CRN C = (S,R, k) with reachabil-
ity class Ωs0 from initial state s0. Partition the species into two disjoint sets
U = {U1, . . . , UMu

} ⊂ S and Y = {Y1, . . . , YMy
} ⊂ S with Mu +My = M = |S|.

Let the projection of s0 onto U and Y be u0 and y0. The conditional distribu-
tion P (y | u) implied by the stationary distribution π of C is equivalent to the
stationary distribution of a clamped CRN, C|U=u starting from initial state s0
with u0 = u, provided that clamping preserves reachability.

Proof. We have G(u, y) =
∑Mu

i=1 uiG[Ui] + log(ui!) +
∑My

i=1 yiG[Yi] + log(yi!).
Let the reachability class of C|U=u be Γs0 , its projection onto Y be ΓY

s0
, and

ΩY
s0|U=u0

= {y s.t. (u0, y) ∈ Ωs0} with ΩY
s0|U=u0

= ΓY
s0

. Then, the conditional
probability distribution of the unclamped CRN is given by

P (y | u) =
π(u, y)∑

y′∈Γ Y
s0

π(u, y′)
=

e−G(u,y)

∑
y′∈Γ Y

s0
e−G(u,y′) . (14)

Simply removing pairs of forward and backward reactions will preserve detailed
balance for unaffected transitions, and hence the clamped system remains a
detailed balanced CRN with the same free energy function. We then readily see
that the clamped CRN’s stationary distribution, πc(y|u) is given by

πc(y|u) =
e−G(u,y)

Zc(u)
with Zc(u) =

∑

y′∈Γ Y
s0

e−G(u,y′) . � (15)

The original CRN and the clamped CRN do not need to have the same initial
conditions as long as the initial conditions have the same reachability classes.
However, even if the two CRNs have the same initial conditions, it is possible
that the clamping process will make some part of ΩY

s0|U=u0
inaccessible to C|U=u,

in which case this theorem will not hold.

Theorem 2. Assume the reachability class of a detailed balanced CRN can be
expressed as the product of subspaces, Ωs0 =

∏L
j=1 Ωj

s0
. Then the steady-state

distributions of each subspace will be independent for each product space: π(s) =∏L
j=1 πj(sj), where s = (s1, . . . , sL) and πj is the distribution over Ωj

s0
.

Proof. If Ωs0 is decomposable into a product of subspaces Ωj
s0

, with j = 1...L,
then each subspace involves disjoint sets of species Y j = {Sj

1, . . . , S
j
Mj

}. In this
case the steady-state distribution of a detailed balanced CRN can be factorized
due to the simple nature of G(s) given by Eq. (12):

π(s) =
e−G(s)

Z
=

∏L
j=1 e

−G(sj)

∏L
j=1

∑
sj ′∈Ω

j
s0

e−G(sj ′)
=

L∏

j=1

e−G(sj)

∑
sj ′∈Ω

j
s0

e−G(sj ′)
=

L∏

j=1

e−G(sj)

Zj
, (16)

where sj = (sj
1, s

j
2, . . . , s

j
Mj

) is the state of the set of species within subspace j. �
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The product form π(s) means that species from separate subspaces Ωj
s0

are
statistically independent. To develop non-trivial conditional probabilities for the
states of different species, therefore, it is necessary either to use a non-detailed
balanced CRN by driving the system out of equilibrium, or to generate complex
interdependencies through conservation laws that constrain reachability classes
and “entangle” the state spaces for different species. We explore both of these
possibilities in the following sections.

3.2 Direct Implementation of a Chemical Boltzmann Machine
(DCBM)

We first consider the most direct way to implement an N -node Boltzmann
machine with a chemical system. Recall that a BM has a state space ΩBM =
{0, 1}N and an energy function E(x1, x2, . . . , xN ) = −∑

i<j wijxixj − ∑
i θixi.

We use a dual rail representation of each node i by two CRN species XON
i

and XOFF
i and reactions that respect a conservation law, xON

i + xOFF
i = 1.

The species XON
i and XOFF

i could represent activation states of an enzyme.
The CRN has M = 2N species and states s = (xON

1 , xOFF
1 , . . . , xON

N , xOFF
N ).

Although there are 22N states in which each species has a count of at most
one, only 1/2N of these states are reachable due to the conservation laws. Let
ΩDCBM be the states reachable from a valid initial state. There exists a one-to-
one invertible mapping F : ΩBM → ΩDCBM which maps the states x ∈ ΩBM

of a BM to states s = F(x) ∈ ΩDCBM of the CBM, according to xON
i = xi and

xOFF
i = 1 − xi.

Reactions are intended to provide a continuous-time analog of the typical BM
implementations, such as the Gibbs sampling method discussed in Sect. 2.1. In
each reaction r, only the species XON

i and XOFF
i , corresponding to a single node

i, change (νr − μr has two non-zero components). To reproduce the stationary
distribution of a Boltzmann machine with energy function E(x), it is sufficient
to require that the CTMC for the CRN satisfies

s −⇀↽− s′ with
Rs→s′

Rs′→s
=

e−E(s′)

e−E(s)
= eθi+

∑
j∈N(i) wijxON

j (17)

where s is any reachable state with xOFF
i = 1, and s′ has xON

i = 1 but is
otherwise the same. Such a choice would enforce detailed balance of the CTMC,
with the desired steady-state distribution

π(s) =
1
Z

e−E(s) =
1
Z

e−∑i<j wijxON
i xON

j −∑i θix
ON
i . (18)

To implement such a CRN, we define a reaction set R that contains a distinct
pair of reactions for each possible state of the neighbors of i for which wij �= 0.
Let αi ∈ {ON,OFF}|N (i)| denote a state of neighboring species. Then, the
necessary reactions and rate constants are

XON
i +

∑

j∈N (i)

X
αi

j

j

ki−|αi−−−−⇀↽−−−−
ki+|αi

XOFF
i +

∑

j∈N (i)

X
αi

j

j ,
ki+|αi

ki−|αi

= eθi+
∑

j∈N(i) wijxON
j ,

(19)
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X1 X2

X3

X4 X5

w13

w14
w45

w35

w25

X3
ON + X1

ON + X5
ON X3

OFF + X1
ON + X5

ON

X3
ON + X1

OFF + X5
ON X3

OFF + X1
OFF + X5

ON

X3
ON + X1

ON + X5
OFF X3

OFF + X1
ON + X5

OFF

X3
ON + X1

OFF + X5
OFF X3

OFF + X1
OFF + X5

OFF

kβexp(w35)

kβ

kαexp(w13+w35)

kα

kγexp(w13)

kγ

kδ

kδ

θ3 = 0

Fig. 2. The reactions required by the dynamics of a single node using the direct CBM
implementation. We consider a simple network with the illustrated topology, and dis-
play the required reactions for node 3. Since node 3 has degree 2, there are 4 possible
states of its neighbors, and hence four distinct pairs of reactions for the species of node
3. The relative rates of each pair of reactions is set by wij as indicated (where, for
simplicity, we have assumed θ3 = 0).

for each i and every possible state α. In physical terms, the species representing
the neighbors of node i collectively catalyze XOFF

i � XON
i , with a separate pair

of reactions for every possible αi. While this entails a large number of reactions
(2|N (i)|+1 for each node i), it allows the rate constants for each configuration
of neighbors to be distinct, and thus to satisfy the ratio of rate constants given
in (19). For CRN states that satisfy the conservation laws xON

i + xOFF
i = 1,

there will be a unique reaction that can flip any given bit, and thus the CTMC
detailed balance (17) also holds, yielding the correct π(s). The construction is
illustrated by example in Fig. 2 and compared to other constructions in Fig. 3.

The distribution π(s) is identical to that of the BM, both with and with-
out clamping. Reachability is preserved by clamping, as all states satisfying the
conservation laws and clamping can be reached in the clamped CRN. All results
derived for traditional BMs therefore apply, including conditional inference and
the Hebbian learning rule. The construction can be generalized to any graphical
model and indeed to any finite Markov chain defined on a positive integer lattice.

With the DCBM, we have shown that CRNs can express the same distribu-
tions as BMs, and are thus very expressive. However, since each possible state
αi of N (i) is associated with two reactions, the number of reactions of the CRN
is exponentially large in the typical node degree d in the original BM. More-
over, the scheme requires high molecularity reactions in which multiple cata-
lysts effect a single transition (the molecularity grows linearly with d). Physical
implementations are therefore likely to be challenging. We further note that as a
consequence of Theorem 2, the DCBM cannot be detailed balanced at the level
of the underlying chemistry, due to its simple conservation laws. Physically, this
means that the DCBM must use a fuel species to drive each reaction. Details of
this argument are given in the Appendix (A.1).
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Fig. 3. Comparison of the switching of a node in exact constructions for fully-
connected topologies. Black circles indicate ON species (or nodes), and white circles
indicate OFF species. Similarly, black/white rectangles indicate ON/OFF edge species.
Species not involved in the reaction have been grayed out. A. A Boltzmann machine.
Black edges contribute to the energy function. B. The direct implementation of a chem-
ical Boltzmann machine. All species jointly catalyze the conversion of XOFF

1 to XON
1 .

C. The edge species chemical Boltzmann machine. XOFF
1 is converted to ON simulta-

neously with W OFF
14 , W OFF

15 , W OFF
16 and W OFF

17 ; all other node species involved act
as catalysts.

3.3 The Edge Species CBM Construction (ECBM)

Can a detailed balanced CRN also implement a Boltzmann machine, or is it
necessary to break detailed balance at the level of the CRN reactions, as in the
DCBM? Here we show that it is not necessary by introducing a detailed balanced
CRN that uses species to represent both the nodes and edges of a BM. The N
nodes of a BM are converted into N pairs of species, XON

i and XOFF
i , via a

dual rail implementation identical to that used in the DCBM. Similarly, the
edges wij are represented by dual rail edge species WON

ij and WOFF
ij with the

conservation law wON
ij +wOFF

ij = 1 for 1 ≤ j < i ≤ N . Note that we may slightly
abuse notation and let W

αij

ij and W
αij

ji , with αij ∈ {ON,OFF}, represent the
same chemical species.

To have detailed balance, we associate energies to each node species deter-
mined by the bias in a BM, G[XON

i ] = −θi and G[XOFF
i ] = 0. Similarly,

each edge species has an energy determined by the corresponding edge weight
G[WON

ij ] = −wij and G[WOFF
ij ] = 0. Finally, we define a set of catalytic reac-

tions that ensure that the states of edge and node species are consistent, meaning
wON

ij = 1 if and only if xON
i = 1 and xON

j = 1. To achieve this coupling, the
reactions that switch node i are always catalyzed by the species corresponding to
the set of neighboring nodes N (i). Simultaneously, these reactions switch edge
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ij if j ∈ N (i) and xON
j = 1, maintaining xON

i xON
j = wON

ij . The set of reactions
that result from this scheme are

XOFF
i +

∑

j∈N (i)

X
αi

j

j +
∑

j∈N (i), xON
j =1

WOFF
ij � XON

i +
∑

j∈N (i)

X
αi

j

j +
∑

j∈N (i), xON
j =1

WON
ij .

(20)
This reaction scheme is visualized in Fig. 3. Just like in the DCBM, there is a
separate pair of reactions for each node i for each state of its neighbors αi. In
this case, however, the backward reaction in (20) does represent a transition that
is a true chemical inversion of the forward reaction. So the rate constants can
be set to agree with detailed balance (11). Further, given a valid initial state,
clamping any subset of the X

ON/OFF
i species preserves reachability.

Theorem 3. The stationary distribution π(xON , xOFF , wON , wOFF ) of the
ECBM is equivalent to the stationary distribution of a Boltzmann machine, P (x),
provided that the ECBM begins in a valid state obeying wON

ij = xON
i xON

j and
one applies a one-to-one invertible mapping F between BM and ECBM states,
as described below.

Proof. If this CRN begins in a consistent state, then every subsequent reaction
will conserve this condition. The combined conservation laws xON

i + xOFF
i = 1,

wON
ij + wOFF

ij = 1, and wON
ij = xON

i xON
j ensure that the set of values xON

i

uniquely determine the CRN state for the ECBM, and thus—similar to how
the BM and DCBM states were related—we can define a one-to-one invertible
mapping F that sets xON

i = xi and obeys the conservation laws.
The ECBM is detailed balanced and therefore its stationary distribution has

the form (13). Substituting the conservation law wij = xixj and omitting species
with 0 energy results in

π(xON , xOFF , wON , wOFF ) =
1

Zπ
e−∑i�=j G[W ON

ij ]xON
i xON

j −∑i G[XON
i ]xON

i (21)

Comparing this expression to the distribution of a BM, Eq. (2), the above expres-
sions are equivalent provided that their partition functions are equivalent. To see
this is the case, notice that: (1) the partition function is just a sum over the Gibbs
factors across the entire state space. (2) The Gibbs factors take the same form
between the ECBM and BM (as shown above). And (3) the reachable state
spaces spaces are equivalent. Thus a sum over all possible Gibbs factors will be
equal. Therefore, ZBM = Zπ and the theorem is proven. �

Via the ECBM, we have shown that even detailed balanced CRNs can repre-
sent rich distributions and are able to calculate conditional distributions through
clamping as proven in Theorem 1. Due to being detailed balanced, this construc-
tion requires no fuel molecules and performs sampling via the intrinsic equilib-
rium fluctuations of the CRN. Moreover, it is only necessary to tune molecular
energies in this construction, since appropriate relative rate constants follow by
definition. This construction is possible due to the complex set of conservation
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laws that ensure that the reachability classes of all the X
ON/OFF
i species are

tightly coupled via the W
ON/OFF
ij species. One implication is that this construc-

tion does not generalize easily to non-binary species counts. Additionally, issues
related to high molecularity reactions and large number of reactions remain.

4 Approximate Bimolecular Implementations

The DCBM and the ECBM both require reactions of high molecularity. High
molecularity reactions and systems involving many species are physically chal-
lenging to implement and also potentially suffer from long mixing times. In this
section, we discuss an approximation scheme to create CBMs with lower molec-
ularity reactions and thus overcome these issues.

4.1 Taylor Series Chemical Boltzmann Machine (TCBM)

Here, we demonstrate a compact CBM that approximates a BM. It is not
detailed balanced on either the Markov chain or the CRN level, but uses only
2N species and O(N2) unimolecular and bimolecular reactions. The TCBM is
a non-equilibrium CBM of the kind discussed in Sect. 3.1 that uses a dual-rail
representation and single-node transitions to approximately implement a BM.
The reactions are given by:

XOFF
i

k−⇀↽−
k

XON
i

XON
j + XOFF

i

kaij−−−→ XON
j + XON

i

XON
j + XON

i

kbij−−→ XON
j + XOFF

i (22)

which, with appropriate initial conditions, preserve the conservation law that
xON

i + xOFF
i = 1.

This model’s parameters can be taken directly from the weights of a BM, wij .
First, define a symmetric matrix W . Decompose this matrix into the difference
of two positive matrices, W = A − B, where aij ∈ A are all wij > 0 and bij ∈ B
are the absolute values of all wij < 0. Finally, k is an arbitrary overall rate. This
construction can be understood as an approximation of Eq. (17), which dictates
that for two states s and s′ that differ only in bit i with xON

i = 1 in state s′,
the CTMC transition rates must satisfy

Rs→s′

Rs′→s
=

e
∑

j �=i aijxON
j

e
∑

j �=i bijxON
j

=
1 +

∑
j �=i aijx

ON
j + O((

∑
j �=i aijx

ON
j ))2

1 +
∑

j �=i bijxON
j + O((

∑
j �=i bijxON

j ))2
, (23)

The bias θi has been absorbed into wij for notational clarity by assuming there
is some xON

0 = 1 whose weights act as biases. The TCBM is a bimolecular CRN
obeying the same conservation laws as the DCBM in which each species j acts
as an independent catalyst for transitions in i with reaction rates determined
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by aij and bij . The relative propensities of this network are exactly equal to
the linear expansion of the relative propensities shown in the last term in (23).
Specifically, the numerator is the sum of the reaction propensities for reactions
that convert or catalyze XOFF

i → XON
i and the denominator is the sum of

the reaction propensities for XON
i → XOFF

i , in each case plus a constant term
due to the unimolecular reactions. We thus propose the simple scheme in (22)
as an approximate CBM; Fig. 4A depicts this TCBM schematically. This model
bears some resemblance to protein phosphorylation networks where adding or
removing a phosphate group is analogous to turning a species on or off; both are
driven, catalytic processes capable of diverse computation.

4.2 Approximate BCRN Inference

Remarkably, this simple approximate CBM can reasonably approximate the
inferential capabilities of a BM. We demonstrate this by using (22) to con-
vert a BM trained on the MNIST dataset [47] to a TCBM (Fig. 4). We then
compare the BM and the TCBM side by side. Digit classification is shown in

Fig. 4. A. CRN underlying an individual node of the TCBM approximation. In this
case a negative weight, wij < 0 is shown because XON

i catalyzes XON
j → XOFF

j .
B. Network architecture used for simulations is fully connected but only 10 percent
of edges are shown for clarity. C. Average raw classification output of a BM running
with clamped MNIST digits. D. Average max classification output of a BM running
with clamped MNIST digits. E. Digits generated by a BM by clamping individual class
nodes. Small sub-boxes in the bottom corners are plots of the top 85th percentile of
pixels. F. Average raw classification output of a TCBM running with clamped MNIST
digits. G. Average max classification output of a TCBM running with clamped MNIST
digits. H. Digits generated by a TCBM by clamping individual class nodes. Small sub-
boxes in the bottom corners are plots of the top 85th percentile of pixels.
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Fig. 4 panels C and D for a BM and in Fig. 4 panels F and G for a CBM as
confusion heatmaps. Classification is carried out by clamping the image nodes
to MNIST images and averaging the values of the classification nodes. As is
apparent from these plots, the BM does a fairly reasonable job classifying these
digits, but struggles on the number 5. The CBM functions as a very noisy ver-
sion of the BM with nodes in general much more likely to be on. The CBM has
also faithfully inherited the capabilities and limitations of the BM and similarly
struggles to classify the digit 5. Digit generation is shown in Fig. 4E for a BM
and 4H for a CBM. Generation was carried out by clamping a single class node
to 1 and all other class nodes to 0, then averaging the output of the image nodes
after the network had equilibrated. For each generated image, we show the raw
output and the top 85th percentile of nodes, a thresholding which helps visualize
the noisy output. As is apparent from the raw output, the CBM approximation
scheme does not generate images nearly as distinctly as the BM. However, this
approximation does faithfully reproduce plausible digits when filtered for the
top 85th percentile. Additional training and simulation details can be found in
the appendix (A.2).

The overall performance of the CRN is reasonable, given the fact that weights
were simply imported from a BM without re-optimization. The TCBM only
approximates the distribution implied by these weights and, in the absence
of detailed balance, does not have an established formal relationship between
clamping and conditioning.

5 Detailed Balanced CRN Learning Rule

A broad class of detailed balanced chemical reaction networks can be trained
with a Hebbian learning rule between a waking phase (clamped) and sleeping
phase (free) that is reminiscent of the classic gradient descent learning algorithm
for a BM [8,35]. We present the CRN learning rule here.

First we state a simple case of Theorem 4 where we just want a CRN with
stationary distribution π over Ωs0 to learn a target distribution Q also defined
on Ωs0 . Then, the learning rule is given by

dgi

dt
= −∂DKL

∂gi
= 〈si〉Q − 〈si〉π. (24)

Here, 〈si〉π and 〈si〉Q denote the expected count of the species Si with respect to
the probability distributions π and Q, respectively, and gi = G[Si] is the energy
of species Si. Theorem 4 generalizes this procedure to cases with hidden species.

Theorem 4. Let C = (S,R, k) be a detailed balanced chemical reaction network
with stationary distribution π(s) on Ωs0 . Consider a partition (V,H) of the set
S of species into visible and hidden species such that π(s) = π(v, h). Require
that for all visible states v, the clamped CRN C|V =v preserves reachability. Let
Q(v) > 0 for all v ∈ ΩV

s0
= {v s.t. (v, h) ∈ Ωs0} be a target distribution defined

on the projection of Ωs0 onto V . Furthermore, let πQ(v, h) = Q(v)π(h | v)
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be the weighted mixture of stationary distributions of the clamped CRNs C|V =v

with v drawn from the distribution Q. Then, the gradient of the Kullback-Leibler
divergence from πV to Q with respect to the energy, gi = G[Si], of the species Si

is given by
∂DKL(Q||πV )

∂gi
= 〈si〉π − 〈si〉πQ

(25)

where πV (v) =
∑

h∈ΩH
s0

π(v, h) is the marginal π(v, h) over hidden species H.

Proof. Applying Theorem 1, the clamped CRN ensemble πQ(s) may be written

πQ(s) = πQ(v, h) = Q(v)π(h | v) = Q(v)
π(v, h)∑

h∈ΩH
s0

π(v, h)
= Q(v)

π(v, h)
πV (v)

. (26)

Additionally we will need the partial derivative of a Gibbs factor and the parti-
tion function with respect to gi,

∂e−G(s)

∂gi
= −sie−G(s) and

∂Z

∂gi
= −Z〈si〉π. (27)

Using these results, the partial derivative of any detailed balanced CRN’s dis-
tribution at a particular state s, with respect to an energy gi, is

∂π(s)
∂gi

=
∂

∂gi

1
Z

e−G(s) = 〈si〉ππ(s) − siπ(s). (28)

Noting that Q has no dependence on gi, the gradient of the Kullback-Leibler
divergence can then be written,

∂DKL(Q||πV )
∂gi

=
∂

∂gi

∑

v∈ΩV
s0

Q(v) log
Q(v)
πV (v)

=
∑

v∈ΩV
s0

− Q(v)
πV (v)

∂πV (v)
∂gi

= −
∑

v∈ΩV
s0

∑

h∈ΩH
s0

Q(v)
πV (v)

π(v, h)〈si〉π − Q(v)
πV (v)

π(v, h)si

= −
∑

(v,h)∈Ωs0

πQ(v, h)〈si〉π − πQ(v, h)si = −〈si〉π + 〈si〉πQ

�

In the special case where there are no hidden species, which is to say the target
distribution Q is defined over the whole reachability class Ωs0 , then πV (v) = π(s)
and πQ(s) = Q(s) and the gradient has the simple form shown in Eq. (24).

Applying gradient descent via dgi

dt = −∂DKL

∂gi
, we thus have a simple in silico

training algorithm to train any detailed balanced CRN such that it minimizes the
Kullback-Leibler divergence from πV to Q. If H = ∅, simulate the CRN freely to
estimate the average counts 〈si〉 under π(s). Then compare to the average counts
under the target Q(s) and update the species’ energies accordingly. If H �= ∅,
clamp the visible species to some v ∈ ΩV

s0
with probability Q(v) and simulate the
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dynamics of the hidden units. Repeat to sample an ensemble of clamped CRNs
C|V =q. Because clamping v preserves reachability, Gillespie simulations of the
CRN with the V species clamped to the data values v will sample appropriately.
This gives the average counts under πQ.

This CBM learning rule is more general than the classical Boltzmann machine
learning rule, as it applies to arbitrary detailed balanced CRNs, including those
with arbitrary conservation laws and arbitrarily large species counts (but still
subject to the constraint that reachability under clamping must be preserved).
That said, at first glance the CBM learning rule appears weaker than the classi-
cal Boltzmann machine learning rule, as it depends exclusively on mean values
〈si〉, whereas the Boltzmann machine learning rule relies primarily on second-
order correlations 〈xixj〉. In fact, though, conservation laws within the CRN
can effectively transform mean values into higher-order correlations. A case in
point would be to apply the CBM learning rule to the ECBM network: For
gi = G[XON

i ] = −θi, dθi

dt = −dgi

dt = 〈xON
i 〉πQ

− 〈xON
i 〉π, and for gi = G[WON

ij ] =
−wij ,

dwij

dt = −dgi

dt = 〈wON
ij 〉πQ

− 〈wON
ij 〉π = 〈xON

i xON
j 〉πQ

− 〈xON
i xON

j 〉π, which
exactly matches the classical Boltzmann machine learning rule if we assert that
the energies of OFF species are fixed at zero.

6 Discussion

We have given one approximate and two exact constructions that allow CRNs
to function as Boltzmann machines. BMs are a “gold standard” generative
model capable of performing numerous computational tasks and approximat-
ing a wide range of distributions. Our constructions demonstrate that CRNs
have the same computational power as a BM. In particular, CRNs can produce
the same class of distributions and can compute conditional probabilities via the
clamping process. Moreover, the TCBM construction appears similar in archi-
tecture to protein phosphorylation networks. Both models are non-equilibrium
(i.e., require a fuel source) and make use of molecules that have an on/off (e.g.,
phosphorylated/unphosphorylated) state. Additionally, there are clear similari-
ties between our exact schemes and combinatorial regulation of genetic networks
by transcription factors. In this case, both models make use of combinatoric net-
works of detailed-balanced interactions (e.g., binding/unbinding) to catalyze a
state change in a molecule (e.g., by turning a gene on/off). We note that our
constructions differ from some biological counterparts in requiring binary mole-
cular counts. However, in some cases we believe that biology may make use of
conservation laws (such as having only a single copy of a gene) to allow for
chemical networks to perform low-cost computations. In the future, we plan to
examine these cases in a biological setting as well as generalize our models to
higher counts.

Developing these CBMs leads us to an important distinction between equi-
librium, detailed-balanced CRNs with steady state distributions determined by
molecular energies, and CRNs that do not obey detailed balance in the under-
lying chemistry. The second category includes those that nonetheless appear
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detailed balanced at the Markov chain level. Physically, this distinction is espe-
cially important: a non-detailed balanced CRN will always require some kind
of implicit fuel molecule (maintained by a chemostat) to run and the steady
state will not be an equilibrium steady state due to the continuous driving from
the fuel molecules. A detailed balanced CRN (at the chemical level) requires
no fuel molecules: and thus the chemical circuit can act as a sampler without
fuel cost. Despite this advantage, working with detailed balanced CRNs presents
additional challenges: to ensure that chemical species do not have independent
distributions, species counts must be carefully coupled via conservation laws.

Table 1. The complexity and underlying properties of our constructions for reproduc-
ing a BM with N nodes of degree d. Detailed balance describes whether the construction
is detailed balanced at the CRN level, at the CTMC level, or neither.

Model Species Reactions Molecularity Detailed balance

Direct CBM 2N N2d+1 d + 1 CTMC

Edge CBM 2N + dN N2d+1 ≤ 2d + 1 CRN and CTMC

Taylor CBM 2N 2N + 2dN ≤ 2 Neither

Our constructions also highlight important complexity issues underlying
CBM design. The number of species, the number of reactions, and the reac-
tion molecularity needed to implement a particular BM are relevant. Trade-offs
appear to arise between these different factors and the thermodynamic require-
ments of a given design. A breakdown of the main features of each CBM is
given in Table 1. Summarizing, the TCBM is by far the simplest construction,
using O(N) species, at most O(N2) reactions, with molecularity ≤ 2. However,
this happens at the expense of not being an exact recreation of a BM, and the
requirement of a continuous consumption of fuel molecules. The DCBM is the
next simplest in complexity terms, using O(N) species, O(N2N ) reactions, and
molecularity of at most N . Like the TCBM, the DCBM requires fuel molecules
because it is not detailed balanced at the CRN level. The ECBM is considerably
more complex than the DCBM, using quadratically more species, O(N2), the
same number of reactions, O(N2N ) and double the reaction molecularity. The
ECBM makes up for this increased complexity by being detailed balanced at
the CRN level, meaning that it functions in equilibrium without implicit fuel
species.

Finally, we have shown that a broad class of detailed balanced CRNs can
be trained using a Hebbian learning rule between a waking phase (clamped)
and sleeping phase (free) reminiscent of the gradient descent algorithm for a
BM. This exciting finding allows for straightforward optimization of detailed
balanced CRNs’ distributions.

This work provides a foundation for future investigations of probabilistic mole-
cular computation. In particular, how more general restrictions on reachability
classes can generate other “interesting” distributions in detailed balanced CRNs
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remains an exciting question. We also wonder if the learning rule algorithm can be
generalized to certain classes non-detailed balanced CRNs, and whether our exact
CBM constructions can be generalized to non-binary molecular counts. From a
physical standpoint, plausible implementations of the clamping process and the
energetic and thermodynamic constraints require investigation. Indeed, a more
realistic understanding of how a CBM might be implemented physically will help
us identify when these kinds of inferential computations are being performed in
real biological systems and could lead to building a synthetic CBM.
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A Appendix

A.1 Application of Theorem 2: The Direct CBM Must Use
Implicit Fuel Species

Here, we use Theorem 2 to analyze the direct implementation of a CBM and
show that it cannot be detailed balanced and thereby requires implicit fuel mole-
cules. First, notice that the the conservation laws used in this construction are
of a simple form. The states accessible by (XON

i ,XOFF
i ) are independent of

(XON
j ,XOFF

j ) for i �= j, and therefore the reachability class is a product over
the subspaces of each individual node. As a consequence, by Theorem 2, the sys-
tem must be out of equilibrium and violate detailed balance at the level of the
CRN because, by construction, this system is equivalent to a BM and has corre-
lations between nodes i and j whenever wij �= 0. In physical terms, the presence
of catalysts cannot influence the equilibrium yield of a species, and therefore a
circuit which uses catalysis to bias distributions of species must be powered by
a supply of chemical fuel molecules [41–43]. It is also worth noting that, as a
consequence, this scheme cannot be implemented by tuning of (free) energies; it
is fundamentally necessary to carefully tune all of the rate constants individually
(via implicit fuel molecules) to ensure that detailed balance is maintained at the
level of the Markov chain for the species of interest.

A.2 BM Training and TCBM Simulation Details

We trained a BM using stochastic gradient descent on the MNIST dataset, down
sampled to be 10 pixels by 10 pixels [47]. The BM has 100 visible image units
(representing a 10× 10 image), 10 visible class nodes, and 40 hidden nodes as
depicted in Fig. 4B. Our training data consisted of the concatenation of down
sampled MNIST images and their classes projected onto the 10 class nodes. The
weights and biases of the trained BM were converted to reaction rates for a CBM
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using the Taylor series approximation. This CBM consists of 300 species, 300
unimolecular reactions and 22350 bimolecular reactions. The resulting CBM was
then compared side-by-side with the trained BM on image classification and gen-
eration. The BM was simulated using custom Gibbs sampling written in Python.
The CRN was simulated on a custom Stochastic Simulation Algorithm (SSA) [40]
algorithm written in Cython. All simulations, including network training, were
run locally on a notebook or on a single high performance Amazon Cloud server.

Classification was carried out on all 10000 MNIST validation images using
both the BM and the CBM. Each 10 by 10 gray-scale image was converted to a
binary sample image by comparing the gray-scale image’s pixels (which are repre-
sented as real numbers between 0 and 1) to a uniform distribution over the same
range. The network’s image units were then clamped to the binary sample and the
hidden units and class units were allowed to reach steady state. This process was
carried out 3 times for each MNIST validation image, resulting in 30000 sample
images being classified. Raw classification scores were computed by averaging the
class nodes’ outputs for 20000 simulation steps after 20000 steps of burn-in (Gibbs
sampling for the BM, SSA for the CBM). Max classification was computed by
taking the most probable class from the raw classification output. Raw classifica-
tion and max classification confusion heatmaps, showing the average classification
across all sample images as a function of the true label are shown in Fig. 4 panels
C and D for a BM and in Fig. 4 panels F and G for a CBM.

Image generation was carried out by clamping the class nodes with a single
class, 0...9, taking the value of 1 and all other classes being 0, and then allowing
the network to reach steady state. Generated images were computed by averaging
the image nodes over 50000 simulation steps (Gibbs sampling for the BM, SSA
for the CBM) after 25000 steps of burn-in. Generation results are shown in
Fig. 4E for a BM and Fig. 4H for a CBM.
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