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PARALLELISM AND TIME IN HIERARCHICAL SELF-ASSEMBLY∗

HO-LIN CHEN† AND DAVID DOTY‡

Abstract. We study the role that parallelism plays in time complexity of variants of Winfree’s
abstract Tile Assembly Model (aTAM), a model of molecular algorithmic self-assembly. In the
“hierarchical” aTAM, two assemblies, both consisting of multiple tiles, are allowed to aggregate
together, whereas in the “seeded” aTAM, tiles attach one at a time to a growing assembly. Adleman
et al. [Running time and program size for self-assembled squares, in Proceedings of the 33rd Annual
ACM Symposium on Theory of Computing (Hersonissos, Greece), ACM, New York, 2001, pp. 740–

748] showed how to assemble an n × n square in O(n) time in the seeded aTAM using O( logn
log log n

)

unique tile types, where both of these parameters are optimal. They asked whether the hierarchical
aTAM could allow a tile system to use the ability to form large assemblies in parallel before they
attach to break the Ω(n) lower bound for assembly time. We show that there is a tile system with

the optimal O( log n
log log n

) tile types that assembles an n× n square using O(log2 n) parallel “stages,”

which are close to the optimal Ω(log n) stages, forming the final n × n square from four n/2 × n/2
squares, which are themselves recursively formed from n/4×n/4 squares, etc. However, despite this
nearly maximal parallelism, the system requires superlinear time to assemble the square. We extend
the definition of partial order tile systems studied by Adleman et al. in a natural way to hierarchical
assembly and show that no hierarchical partial order tile system can build any shape with diameter
D in less than time Ω(D), demonstrating that in this case the hierarchical model affords no speedup
whatsoever over the seeded model. We also strengthen the Ω(D) time lower bound for deterministic
seeded systems of Adleman et al. to nondeterministic seeded systems. Finally, we show that for
infinitely many n, a tile system can assemble an n×n′ rectangle, with n > n′, in time O(n4/5 logn),
breaking the linear-time lower bound that applies to all seeded systems and partial order hierarchical
systems.

Key words. self-assembly, tile complexity, assembly time, parallelism, hierarchical, chemical
kinetics
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1. Introduction. Tile self-assembly is an algorithmically rich model of “pro-
grammable crystal growth.” It is possible to design molecules (square-like “tiles”)
with specific binding sites so that, even subject to the chaotic nature of molecules
floating randomly in a well-mixed chemical soup, they are guaranteed to bind so
as to deterministically form a single target shape. This is despite the number of
different types of tiles possibly being much smaller than the size of the shape and
therefore having only “local information” to guide their attachment. The ability to
control nanoscale structures and machines to atomic-level precision will rely crucially
on sophisticated self-assembling systems that automatically control their own behav-
ior where no top-down externally controlled device could fit.

A practical implementation of self-assembling molecular tiles was proved experi-
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662 HO-LIN CHEN AND DAVID DOTY

mentally feasible in 1982 by Seeman [49] using DNA complexes formed from artificially
synthesized strands. Experimental advances have delivered increasingly reliable as-
sembly of algorithmic DNA tiles with error rates of 10% per tile in 2004 [44], 1.4%
in 2007 [26], 0.13% in 2009 [8], and 0.05% in 2014 [24]. Erik Winfree [55] intro-
duced the abstract Tile Assembly Model (aTAM)—based on a constructive version
of Wang tiling [53, 54]—as a simplified mathematical model of self-assembling DNA
tiles. Winfree demonstrated the computational universality of the aTAM by showing
how to simulate an arbitrary cellular automaton with a tile assembly system. Build-
ing on these connections to computability, Rothemund and Winfree [45] investigated
a self-assembly resource bound known as tile complexity, the minimum number of tile
types needed to assemble a shape. They showed that for most n, the problem of
assembling an n × n square has tile complexity Ω( logn

log logn ), and Adleman et al. [3]
exhibited a construction showing that this lower bound is asymptotically tight. Under
natural generalizations of the model [1, 6, 9, 13, 16, 18, 19, 33, 34, 37, 50, 51], tile
complexity can be reduced for tasks such as square-building and assembly of more
general shapes. See [20, 39, 58] for more background.

The authors of [3] also investigated assembly time for the assembly of n × n
squares in addition to tile complexity. They define a plausible model of assembly
time based (implicitly) on the standard stochastic model of well-mixed chemical ki-
netics [27, 28, 29] and show that under this model, an n× n square can be assembled
in expected time O(n), which is asymptotically optimal, in addition to having optimal
tile complexity O( logn

log log n ). Intuitively, the optimality of the O(n) assembly time for
an n× n square results from the following informal description of self-assembly. The
standard “seeded” aTAM stipulates that one tile type is designated as the seed from
which growth nucleates, and all growth occurs by the accretion of a single tile to the
assembly containing the seed. The set of locations on an assembly α where a tile could
attach is called the frontier. An assembly with a frontier of size k could potentially
have Θ(k) attachment events occur in parallel in the next “unit” of time, meaning
that a speedup due to parallelism is possible in the seeded aTAM. The geometry
of two-dimensional (2D) assembly enforces that any assembly with N points has an
“average frontier size” throughout assembly of size at most O(

√
N).1 Therefore, the

parallelism of the seeded aTAM grows at most linearly with time. To create an n×n
square of size n2, the best parallel speedup that one could hope for would use an
“average frontier size” of O(n), which in O(n) “parallel steps” of time assembles the
entire square. This is precisely the achievement of [3].

A variant of the aTAM known as the hierarchical (a.k.a. two-handed, recursive,
multiple tile, q-tile, aggregation, polyomino) aTAM allows nonseed tiles to aggregate
together into an assembly, allows this assembly to then aggregate to other assem-
blies, and possibly (depending on the model) dispenses completely with the idea of a
seed. Variants of the hierarchical aTAM have recently received extensive theoretical
study [1, 2, 4, 6, 16, 17, 18, 22, 25, 36, 38, 40, 57]. It is intuitively conceivable that by
allowing two large assemblies to form in parallel and combine in one step, it may be
possible to recursively build an n × n square in o(n) time, perhaps even O(log n) or
O(polylog(n)) time. In the terminology of Reif [41], such parallelism is “distributed”
rather than “local.” Determining the optimal time lower bound for uniquely self-
assembling an n× n square in the hierarchical aTAM was stated as an open problem

1For intuition, picture the fastest growing assembly: a single tile type able to bind to itself on all
sides, filling the plane starting from a single copy at the origin. After t “parallel steps,” with high
probability it has a circumference, and hence a frontier size, of O(t), while occupying area O(t2).

D
ow

nl
oa

de
d 

01
/0

7/
23

 to
 9

9.
16

7.
21

0.
1 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PARALLELISM AND TIME IN HIERARCHICAL SELF-ASSEMBLY 663

in [3].
We achieve three main results. We prove that no “partial order hierarchical

system” (defined below) can break the Ω(D) lower bound for assembling any shape of
diameter D. Next, we show that a hierarchical system violating the “partial order”
property is able to assemble a rectangle of diameter D in time o(D). Finally, we show
a highly parallel (but surprisingly, slow) assembly of an n×n square in a hierarchical
system. We now discuss these results in more detail.

Section 3 defines our model of assembly time for hierarchical tile systems. To
obtain a fair comparison between our main result, Theorem 7, and the results for
assembly time in the seeded model [3], it is necessary to introduce a definition of
assembly time applicable to both seeded and hierarchical tile systems. Defining this
concept is nontrivial and constitutes one of the contributions of this paper. We define
such an assembly time model based on chemical kinetics. When applied to seeded
systems, the model results in (nearly) the same definition used in [3], in the limit of
low concentration of seed tiles.2

Section 4 shows our main result, Theorem 7, a linear-time lower bound on a certain
class of hierarchical tile systems. In [3] the authors define a class of deterministic
seeded tile systems known as partial order systems, which intuitively are those systems
that enforce a precedence relationship (in terms of time of attachment) between any
neighboring tiles in the unique terminal assembly that bind with positive strength.
We extend the definition of partial order systems in a natural way to hierarchical
systems, and for this special case of systems, we answer the question of [3] negatively,
showing that Ω(D) time is required to assemble any structure with diameter D. Thus,
for the purpose of speeding up self-assembly of partial order systems, the parallelism
of the hierarchical assembly model is of no use whatsoever.

Section 5 shows that the partial order hypothesis is necessary to obtain a linear-
time lower bound. There, we describe a hierarchical tile system that, according to our
model of assembly time, can assemble a rectangle in time sublinear in its diameter.
More precisely, we show that for infinitely many n, there is a hierarchical tile system
that assembles an n×n′ rectangle, where n > n′, in time O(n4/5 logn). The key idea
is the use of both “assembly parallelism” and “binding parallelism.” By “assembly
parallelism,” we mean the form of parallelism discussed above: the ability of the
hierarchical model to form multiple large assemblies independently in parallel. By
“binding parallelism,” we mean the (much more modest) parallelism already present
in the seeded model: the ability of a single tile or assembly to have multiple potential
binding sites to which to attach on the “main” growing assembly. If there are k such
binding sites, the first such attachment will occur in expected time 1

k times that of the
expected time for any fixed binding site to receive an attachment, a fact exploited in
our tile system to achieve a speedup. We note that Theorem 1 implies that “binding
parallelism” alone—i.e., the seeded model—cannot achieve assembly time sublinear

2Low seed concentration is required to justify the assumption used in [3] of constant concentration
of nonseed tiles, so we are not “cheating” by using this assumption to argue that the models nearly
coincide on seeded systems. The one sense in which the models are different for seeded systems is
that tile concentrations are allowed to deplete in our model. As we argue in section 3.2, this difference
does not account for our time lower bound. Furthermore, this difference makes our model strictly
more realistic than the model of [3]. Tile systems in which this difference would be noticeable are
those in which large assemblies not containing the seed can form, which are assumed away in the
seeded model. Such systems are precisely those for which the assumptions of the seeded model are
not justified. This is the sense in which our model of assembly time coincides with that of [3] when
applied to the seeded model: it coincides with a slightly more realistic generalization of the model
used in [3].
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664 HO-LIN CHEN AND DAVID DOTY

in the diameter of the shape.
Finally, in section 6, we show that in the hierarchical aTAM, it is possible to

assemble an n × n square using nearly maximal “parallelism,” so that the full n× n
square is formed from four n/2× n/2 subsquares, which are themselves each formed
from four n/4 × n/4 subsquares, etc.3 Informally, if tile system T uniquely self-
assembles a shape S, define depthda(T ) to be the worst-case “number of parallel
assembly steps” (depth of the tree that decomposes the final assembly recursively into
the subassemblies that combined to create it) required by the tile system to reach its
final assembly. (A formal definition is given in section 6.) Clearly depthda(T ) ≥ log |S|
if S is the shape assembled by T . Our construction is quadratically close to this bound
in the case of assembling an n× n square Sn, showing that depthda(T ) ≤ O(log2 n).
Furthermore, this is achievable using O( logn

log logn ) tile types, which is asymptotically

optimal.4 That is, not only is it the case that every producible assembly can assemble
into the unique terminal assembly (by the definition of unique assembly), but in fact
every producible assembly is at most O(log2 n) attachment events from becoming the
terminal assembly.

Section 3 is required to understand sections 4 and 5, but sections 4 and 5 can be
read independently of each other. Section 6 can be read independently of sections 3, 4,
and 5.

2. Informal description of the abstract tile assembly model. This section
gives a brief informal sketch of the seeded and hierarchical variants of the abstract
Tile Assembly Model (aTAM). See Appendix A for a formal definition of the aTAM.

A tile type is a unit square with four sides, each consisting of a glue label (often
represented as a finite string) and a nonnegative integer strength. We assume a finite
set T of tile types, but an infinite number of copies of each tile type, each copy referred
to as a tile. An assembly (a.k.a. supertile) is a positioning of tiles on the integer lattice
Z
2, i.e., a partial function α : Z2 ��� T . Write α � β to denote that α is a subassembly

of β, which means that dom α ⊆ dom β and α(p) = β(p) for all points p ∈ dom α. In
this case, say that β is a superassembly of α. We abuse notation and take a tile type
t to be equivalent to the single-tile assembly containing only t (at the origin if not
otherwise specified). Two adjacent tiles in an assembly interact if the glue labels on
their abutting sides are equal and have positive strength. Each assembly induces a
binding graph, a grid graph whose vertices are tiles, with an edge between two tiles if
they interact. The assembly is τ-stable if every cut of its binding graph has strength
at least τ , where the weight of an edge is the strength of the glue it represents. That
is, the assembly is stable if at least energy τ is required to separate the assembly into
two parts. The frontier ∂α ⊆ Z

2 \ dom α of α is the set of empty locations adjacent
to α at which a single tile could bind stably.

A seeded tile assembly system (seeded TAS) is a triple T = (T, σ, τ), where T

3If one were to assume a constant time for any two producible assemblies to bind once each is
produced, this would imply a polylogarithmic time complexity of assembling the final square. But
accounting for the effect of assembly concentrations on binding rates in our assembly time model,
the construction takes superlinear time. This is because some subsquare has concentration at most
Õ(1/n2), so the time for even a single step of hierarchical assembly is at least Ω̃(n2) by standard
models of chemical kinetics. We note, however, that there are other theoretical advantages to the
hierarchical model—for instance, the use of steric hindrance to enable algorithmic fault-tolerance [22].
For this reason, our highly parallel square construction may be of independent interest despite the
fact that the parallelism does not confer a speedup.

4Without any bound on tile complexity, the problem would be trivialized by using a unique tile
type for each position in the shape, each equipped with specially placed strength-1 bonds, similar to
the “interblock” bonds of Figure 7, to ensure a logarithmic-depth assembly tree.
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is a finite set of tile types, σ : Z2 ��� T is a finite, τ -stable seed assembly, and τ is
the temperature. An assembly α is producible if either α = σ or β is a producible
assembly and α can be obtained from β by the stable binding of a single tile. In this
case write β →1 α (α is producible from β by the attachment of one tile), and write
β → α if β →∗

1 α (α is producible from β by the attachment of zero or more tiles).
An assembly is terminal if no tile can be τ -stably attached to it.

A hierarchical tile assembly system (hierarchical TAS) is a pair T = (T, τ), where
T is a finite set of tile types and τ ∈ N is the temperature. An assembly is producible if
either it is a single tile from T , or it is the τ -stable result of translating two producible
assemblies without overlap. An assembly α is terminal if for every producible assembly
β, α and β cannot be τ -stably attached. The restriction on overlap is a model of a
chemical phenomenon known as steric hindrance [52, section 5.11] or, particularly
when employed as a design tool for intentional prevention of unwanted binding in
synthesized molecules, steric protection [30, 31, 32].

In either the seeded or hierarchical model, let A[T ] be the set of producible
assemblies of T , and let A�[T ] ⊆ A[T ] be the set of producible, terminal assemblies
of T . A TAS T is directed (a.k.a., deterministic, confluent) if |A�[T ]| = 1.

3. Time complexity in the hierarchical model. In this section we define a
formal notion of time complexity for hierarchical TASs. The model we use applies to
both the seeded aTAM and the hierarchical aTAM.

For hierarchical systems, our assembly time model may not be completely suit-
able since we make some potentially unrealistic assumptions. In particular, we ignore
diffusion rates of molecules based on size and assume that large assemblies diffuse
as fast as individual tiles. We also assume that the binding energy τ necessary for
a small tile t to attach stably to an assembly α is the same as the binding energy
required for a large assembly β to attach stably to α, even though one would expect
such large assemblies to have a higher reverse rate of detachment (slowing the net
rate of forward growth) if bound with only strength τ . However, from the perspec-
tive of our lower bound on assembly time, Theorem 7, these assumptions have the
effect of making hierarchical self-assembly appear faster. We show that even with
these extra assumptions, the time complexity of hierarchical partial order systems is
still no better than the seeded aTAM. However, caution is warranted in interpreting
the upper bound result, Theorem 8, of a sublinear time assembly of a shape. As we
discuss in section 7, a plausible treatment of diffusion rates—together with our lower
bound techniques based on low concentrations of large assemblies—may yield an ab-
solute linear-time (in terms of diameter) lower bound on assembly time of hierarchical
systems, so that Theorem 8 may owe its truth entirely to the heavily exploited as-
sumption of equally fast diffusion of all assemblies. A reasonable interpretation of
Theorem 8 is that the partial order assumption is necessary to prove Theorem 7 and
that concentration arguments alone do not suffice to establish linear-time time lower
bounds in general hierarchical systems. The techniques that weave together both
“assembly parallelism” and “binding parallelism,” as discussed in sections 1 and 5,
may prove useful in other contexts, even though their attained speedup is modest.

3.1. Definition of time complexity of seeded tile systems. We now re-
view the definition of time complexity of seeded self-assembly proposed in [3]. A
concentrations function on a tile set T is a subprobability measure C : T → [0, 1]
(i.e.,

∑
r∈T C(r) ≤ 1). Each tile type r is assumed to be held at a fixed concen-

D
ow

nl
oa

de
d 

01
/0

7/
23

 to
 9

9.
16

7.
21

0.
1 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

666 HO-LIN CHEN AND DAVID DOTY

tration C(r) throughout the process of assembly.5 The assembly time for a seeded
TAS T = (T, σ, τ) is defined by picking a copy of the seed arbitrarily and mea-
suring the expected time before the seed grows into some terminal assembly, when
assembly proceeds according to the following stochastic model. The assembly process
is described as a continuous-time Markov process in which each state represents a
producible assembly, and the initial state is the seed assembly σ. For each pair of
producible assemblies α, β such that α →1 β via the addition of tile type r, there
is a transition in the Markov process from state α to state β with transition rate
C(r).6 The sink states of the Markov process are precisely the terminal assemblies.
The time to reach some terminal assembly from σ is a random variable TT ,C , and
the assembly time complexity of the seeded TAS T with concentrations C is defined
to be T(T , C) = E [TT ,C ].

The requirement that the tile concentrations function C be a subprobability mea-
sure, rather than an arbitrary measure taking values possibly greater than 1, reflects
a physical principle known as the finite density constraint, which stipulates that a
given unit volume of solution may contain only a bounded number of molecules (if
for no other reason than to avoid forming a black hole). By normalizing so that one
“unit” of volume is the volume required to fit one tile, the total concentration of tiles
(concentration defined as number or mass per unit volume) cannot exceed 1.7

We have the following time complexity lower bound for seeded systems. This
theorem says that even for nondirected systems, a seeded TAS can grow its diameter
only linearly with time. It strengthens and implies Lemma 4.6 of the full version
of [3], which applied only to directed systems.

Let d ∈ Z
+. Let T = (T, σ, τ) be a singly seeded TAS (meaning |σ| = 1), and

let C : T → [0, 1] be a concentrations function. Since it takes only constant time for
the assembly to grow to any constant radius, restricting attention to singly seeded
systems does not asymptotically affect the result for tile systems with a finite seed
assembly of size larger than 1. Assume below that with probability 1, T eventually
places a tile at distance d (in the L1 norm) from the seed. Define D(T , C, d) to be
the random variable representing the time that any tile is first placed at distance d.

Theorem 1. For each d ∈ Z
+, each singly seeded TAS T , and each concentra-

tions function C : T → [0, 1], E [D(T , C, d)] = Ω(d).

5For singly seeded tile systems in which the seed tile s ∈ T appears only once at the origin, this
assumption is valid in the limit of low seed concentration C(s) compared to all other concentrations
C(r) for r ∈ T \ {s}. This is because the number of terminal assemblies (if each is of size at most
K) will be limited by C(s), implying the percentage change in every other tile type r’s concentration
is at most K · C(s)/C(r); therefore, “low” seed concentration means setting C(s) � C(r)/K for all
r ∈ T \{s}. In fact, to obtain an assembly time asymptotically as fast, one need only ensure that for
all r, C(r) ≥ 2#α̂(r)C(s), where #α̂(r) is the number of times r appears in the terminal assembly α̂.
This guarantees that the concentration of r is always at least half of its start value, which means that
the assembly time, each step of which is proportional to the concentration of the tile type attaching
at that step, is at most doubled compared to the case when the concentrations are held constant.

6That is, the expected time until the next attachment of a tile to α is an exponential random
variable with rate

∑
r∈T

∑
p∈∂rα C(r), where ∂rα is the r-frontier of α, the set of empty locations

at which tile r could stably attach to α. Note that if r could attach at more than one location, then
this corresponds to separate terms in the sum; similarly, if one location p can have multiple tile types
attach to it, these also correspond to separate terms in the sum.

7When our goal is to obtain only an asymptotic result concerning a family of tile systems as-
sembling a family of assemblies of size/diameter D, we may relax the finite density constraint to
the requirement that the concentrations sum to a constant c ∈ R≥0 independent of D, since these
concentrations could be divided by c to sum to 1 while affecting the assembly time results by the
same constant c, leaving the asymptotic results unaffected.
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Proof. The intuition of the proof is as follows. We divide the plane into concentric
“layers,” with layer i being the set of points at L1-distance i from the origin. We
examine the rate at which tiles are added to layer i, noting that such additions can
only happen because of attachment to existing tiles in adjacent layers i− 1 and i+1.
Therefore, the rate of attachment in layer i is proportional to the number of tiles in
layers i− 1 and i+1. This turns out to be a process with the property that the time
at which layer d gets its first tile is Ω(d), which we prove by solving some differential
equations that bound the attachment process.

Since we care only about the first time at which a tile is attached at distance d
(before which there are no tiles at distance d′ for any d′ ≥ d), we can restrict the
assembly process to the region of radius d around the seed. Therefore, we model the
assembly process as if it proceeds normally until the first tile attaches at distance d
from the seed, at which point all growth immediately halts.

Define R≥0 = [0,∞). Given i ∈ {0, . . . , d} and t ∈ R≥0, let Xi(t) be a random
variable denoting the number of tiles attached at locations with distance exactly i
from the seed at time t, under the restriction stated above that all assembly halts the
moment that a tile is placed at distance d. Then for all t ∈ R≥0, the event Xd(t) = 0
(no tile is at distance d by the time t) is equivalent to the event D(T , C, d) > t (the
time of the first attachment at distance d strictly exceeds t).

In a seeded TAS, tiles can attach at a location only when there is another tile
adjacent to the location. Locations at L1-distance i to the seed are only adjacent to
locations at distance either i + 1 or i − 1 to the seed. Off the x- and y-axes, each
location at distance i has two neighbors at distance i−1 and two neighbors at distance
i + 1, and for the four locations at distance i on either axis, every location has one
neighbor at distance i− 1 and three neighbors at distance i+1. Therefore, at time t,
tiles are attachable to at most 2Xi−1(t) + 3Xi+1(t) different locations with distance
i to the seed. Since the total concentration of any single tile type is at most 1, the
rate at which tiles attach at any given location is at most 1. For all i ∈ {0, . . . , d},
define the function fi : R≥0 → R≥0 for all t ∈ R≥0 by fi(t) = E [Xi(t)]. Then for
i ∈ {1, . . . , d− 1} and t ∈ R≥0,

dfi(t)

dt
≤ 2fi−1(t) + 3fi+1(t),

df0(t)

dt
= 0, and

dfd(t)

dt
≤ 2fd−1(t).

The lack of a 3fd+1(t) term in the latter inequality is due to our modification of the
assembly process to immediately halt once the first tile attaches at distance d, which
implies that fd+1(t) = 0 for all t ∈ R≥0 since no tile is ever placed at distance d+ 1.
Since the assembly process always starts with a single seed tile, f0(t) = 1 for all
t ∈ R≥0, and fi(0) = 0 for all i ∈ {1, . . . , d}. For all t ∈ R≥0 and all i ∈ {1, . . . , d},
fi(t) ≤ 4i since there are exactly 4i locations at distance exactly i to the seed.

Let t0 ∈ R≥0 be the unique time at which fd(t0) =
1
2 . This time is unique since

fd is monotonically increasing (since tiles cannot detach). Since E [Xd(t0)] = fd(t0) =
1
2 , by Markov’s inequality, Pr[Xd(t0) ≥ 1] ≤ 1

2 , implying that Pr[Xd(t0) < 1] >
1
2 . Since Xd is integer-valued and nonnegative, this is equivalent to stating that
Pr[Xd(t0) = 0] > 1

2 . Recall that Xd(t0) = 0 ⇐⇒ D(T , C, d) > t0, whence
Pr[D(T , C, d) > t0] > 1

2 . By Markov’s inequality, E [D(T , C, d)] > t0
2 . Thus it
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668 HO-LIN CHEN AND DAVID DOTY

suffices to prove that t0 ≥ Ω(d). To do this, we define a simpler function that is an
upper bound for fd and solve its differential equations.

For all i ∈ {0, . . . , d}, define the function gi : R≥0 → R≥0 (which will serve as an
upper bound for fi) as follows. For all 1 ∈ {1, . . . , d− 1} and t ∈ R≥0,

dgi(t)

dt
= 2gi−1(t) + 3gi+1(t), when gi(t) < 4d,

dgd(t)

dt
= 2gd−1(t), when gd(t) < 4d,

dg0(t)

dt
= 0,

and for all i ∈ {1, . . . , d},

dgi(t)

dt
= 0, when gi(t) = 4d,

with the boundary conditions g0(t) = 1 for all t ∈ R≥0, gi(0) = 0 for all i ∈ {1, . . . , d}.
Other than the inequalities governing fi being changed to equality with gi, the other
difference from fi is that gi is allowed to grow larger than 4i (but no larger than 4d,
which applies also to fi whenever i ≤ d). As a result, gi(t) ≥ fi(t) for all i ∈ {0, . . . , d}
and t ∈ R≥0.

Furthermore, if gi(t0) > gi+1(t0) for all i ∈ {0, . . . , d− 1} at some time t0 ∈ R≥0,
then

dgi(t)

dt
≥ dgi+1(t)

dt
at time t0.

Since gi(0) ≥ gi+1(0) for all i ∈ {0, . . . , d} by definition, the above inequality
implies that gi(t) ≥ gi+1(t) for all i ∈ {0, . . . , d} and all t ∈ R≥0. Using the fact that
gi−1(t) ≥ gi+1(t), we have 2gi−1(t) + 3gi+1(t) ≤ 5gi−1(t). Thus, we can define a set
of functions hi(t) that are upper bounds for gi(t) by the following:

dhi(t)

dt
= 5hi−1(t) for all i ∈ {1, . . . , d}, and

dh0(t)

dt
= 0,

with boundary conditions h0(t) = 1 for all t ∈ R≥0, hi(0) = 0 for all i ∈ {1, . . . , d}.
Solving these differential equations, we obtain hd(t) =

1
d! (5t)

d. Letting t′ = d
10e , by

Stirling’s inequality d! >
√
2πd

(
d
e

)d
e1/(12d+1) >

(
d
e

)d
, we have

fd (t
′) ≤ gd (t

′) ≤ hd (t
′) =

1

d!
· (5t′)d =

1

d!
·
(

d

2e

)d

<
1(
d
e

)d ·
(

d

2e

)d

=
1

2d
.

Since fd is monotonically increasing, fd(t0) =
1
2 by definition, and 1

2d
≤ 1

2 for d ≥ 1,

this implies that t0 ≥ t′ = d
10e .

3.2. Definition of time complexity of hierarchical tile systems.

3.2.1. Issues with defining hierarchical time complexity. To define time
complexity for hierarchical systems, we employ more explicitly the chemical kinetics
that implicitly underlie the time complexity model for seeded systems stated in sec-
tion 3.1. We treat each assembly as a single molecule. If two assemblies α and β can
attach to create an assembly γ, then we model this as a chemical reaction α+β → γ,
in which the rate constant is assumed to be equal for all reactions (and normalized to
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1). In particular, if α and β can be attached in two different ways, this is modeled as
two different reactions, even if both result in the same assembly.8

At an intuitive level, the model we define can be explained as follows. We imagine
dumping all tiles into the solution at once, and at the same time, we grab one partic-
ular tile and dip it into the solution as well, pulling it out of the solution when it has
assembled into a terminal assembly. Under the seeded model, the tile we grab will be
a seed, assumed to be the only copy in solution (thus requiring that it appear only
once in any terminal assembly). In the seeded model, no reactions occur other than
the attachment of individual tiles to the assembly we are holding. In the hierarchical
model, other reactions are allowed to occur in the background (we model this using
the standard mass-action model of chemical kinetics [23]), but only those reactions
with the assembly we are “holding” move it closer to completion. The other back-
ground reactions merely change concentrations of other assemblies (although these
indirectly affect the time it will take our chosen assembly to complete, by changing
the rate of reactions with our chosen assembly).

We now discuss some intuitive justification of our model of assembly time. One
reason for choosing this model is that we would like to analyze the assembly time in
such a way as to facilitate direct comparison with the results of [3]. In particular,
we would like the assembly time model proposed in [3] to be derived as a special
case of the model we propose, when only single-tile reactions with the seed-containing
assembly are allowed.9 With a model such as Gillespie’s algorithm [27, 28, 29] using
finite molecular counts, it is possible that no copy of the terminal assembly forms, so
it is not clear how to sensibly ask how long it takes to form.10 The mass-action model
of kinetics [23] describes concentrations as a dynamical system that evolves contin-
uously over time according to ordinary differential equations derived from reaction
rates. This is an accepted model of kinetics when molecular counts are very large,
which is already an implicit assumption in the standard aTAM. In the mass-action
model, all possible terminal assemblies (assuming there are a finite number of different
terminal assemblies) are guaranteed to form, which solves one issue with the purely
stochastic model. But the solution goes too far: some (infinitesimal) concentrations of
all terminal assemblies form in the first infinitesimal amount of time, making the first
appearance of a terminal assembly a useless measure of the time required to produce
it. A sensible way to handle this may be to measure the time to half-completion (time
required for the concentration of a terminal assembly to exceed half of its steady-state
concentration). But this model is potentially subject to “cheats” such as systems that
“kill” all but the fastest growing assemblies, so as to artificially inflate the average
time to completion of those that successfully assemble into the terminal assembly.
Furthermore, it would not necessarily be fair to directly compare such a deterministic

8The fact that some directed systems may not require at least one of these attachments to happen
in every terminal assembly tree is the reason we impose the partial order requirement when proving
our time complexity lower bound.

9As discussed in section 1, the model of [3] is not exactly a special case of our model, since
we assume tile concentrations deplete. However, the assumption of constant tile concentrations is
itself a simplifying assumption of [3] that is approximated by a more realistic model in which tile
concentrations deplete, but seed tile types have very low concentration compared to other tile types,
implying that nonseed concentrations do not deplete too much. Under this more realistic assumption,
if attachments not involving the seed are disallowed, then our definition of assembly time coincides
with that of [3].

10This problem is easily averted in a seeded system by setting the seed count sufficiently low to
ensure that the terminal assembly is guaranteed to form at least one copy. In a hierarchical system
it is not clear how to avoid this problem.
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model with the stochastic model of [3].
The model of assembly time that we define is a continuous-time, discrete-state

stochastic model similar to that of [3]. However, rather than fixing transition rates at
each time t ∈ R≥0 as constant, we use mass-action kinetics to describe the evolution
over time of the concentration of producible assemblies, including individual tile types,
which in turn determine transition rates. To measure the time to complete a terminal
assembly, we use the same stochastic model as [3], which fixes attention on one partic-
ular tile11 and asks what is the expected time for it to grow into a terminal assembly,
where the rate of attachment events that grow it are time-dependent, governed by the
continuous mass-action evolution of concentration of assemblies that could attach to
it. Unlike the seeded model, we allow the tile concentrations to deplete, since it is no
longer realistic (or desirable for nontrivial hierarchical constructions) to assume that
individual tiles do not react until they encounter an assembly containing the seed.12

3.2.2. Formal definition of hierarchical time complexity. We first formally
define the dynamic evolution of concentrations by mass-action kinetics. Let T = (T, τ)
be a hierarchical TAS, and let C : T → [0, 1] be a concentrations function. Let
R≥0 = [0,∞), and let t ∈ R≥0. For α ∈ A[T ], let [α]C(t) (abbreviated [α](t) when C
is clear from context) denote the concentration of α at time t with respect to initial
concentrations C, defined as follows.13 We often omit explicit mention of C and use
the notation [r](0) to mean C(r) for r ∈ T to emphasize that the concentration of r is
not constant with respect to time. Given two assemblies α and β that can attach to
form γ, we model this event as a chemical reaction R : α+β → γ. Say that a reaction
α+ β → γ is symmetric if α = β. Define the propensity (a.k.a. reaction rate) of R at
time t ∈ R≥0 to be ρR(t) = [α](t) · [β](t) if R is not symmetric, and ρR(t) =

1
2 · [α](t)2

if R is symmetric.14

If α is consumed in reactions α + β1 → γ1, . . . , α + βn → γn and produced
in asymmetric reactions β′

1 + γ′
1 → α, . . . , β′

m + γ′
m → α and symmetric reactions

β′′
1 + β′′

1 → α, . . . , β′′
p + β′′

p → α, then the concentration [α](t) of α at time t is
described by the differential equation

(1)
d[α](t)

dt
=

m∑
i=1

[β′
i](t) · [γ′

i](t) +

p∑
i=1

1

2
· [β′′

i ](t)
2 −

n∑
i=1

[α](t) · [βi](t),

11In the seeded model, the seed tile is the only tile to receive this attention. In our model, the
tile to choose is a parameter of the definition.

12However, this depletion of individual tiles is not the source of our time lower bound. Suppose
that we used a transition rate of 1 for each attachment of an individual tile (which is an upper
bound on the attachment rate even for seeded systems due to the finite density constraint) and
dynamic transition rates only for attachment of larger assemblies. Then the assembly of hierarchical
partial order systems still would proceed asymptotically no faster than if single tile attachments were
the only reactions allowed (as in the seeded assembly case), despite the fact that all the single-tile
reactions at the intersection of the seeded and hierarchical model would be at least as fast in the
modified hierarchical model as in the seeded model.

13More precisely, [α](t) denotes the concentration of the equivalence class of assemblies that are
equivalent to α up to translation. We have defined assemblies to have a fixed position only for
mathematical convenience in some contexts, but for defining concentration, it makes no sense to
allow the concentration of an assembly to be different from one of its translations.

14That is, all reaction rate constants are equal to 1. To the extent that a rate constant models the
“reactivity” of two molecules (the probability that a collision between them results in a reaction), it
seems reasonable to model the rate constants as being equal. To the extent that a rate constant also
models diffusion rates (and therefore rate of collisions), this assumption may not apply; we discuss
the issue in section 7. Since we are concerned mainly with asymptotic results, if rate constants are
assumed equal, it is no harm to normalize them to be 1.
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with boundary conditions [α](0) = C(r) if α is an assembly consisting of a single tile
r, and [α](0) = 0 otherwise. In other words, the propensities of the various reactions
involving α determine its rate of change, negatively if α is consumed, and positively
if α is produced.

The definitions of the propensities of reactions deserve an explanation. Each
propensity is proportional to the average number of collisions between copies of re-
actants per unit volume per unit time. For a symmetric reaction β′′ + β′′ → α, this
collision rate is half that of the collision rate compared to the case where the second
reactant is a distinct type of assembly, assuming it has the same concentration as
the first reactant.15 Therefore, the amount of α produced per unit volume per unit
time is half that of a corresponding asymmetric reaction. The reason that terms of
symmetric reactions α+α → γ that consume α are not corrected by factor 1

2 is that,
although the number of such reactions per unit volume per unit time is half that of a
corresponding asymmetric reaction, each such reaction consumes two copies of α in-
stead of one. This constant 2 cancels out the factor 1

2 that would be added to correct
for the symmetry of the reaction. Therefore, the term [α](t) · [βi](t) representing the
rate of consumption of α is the proper value whether or not α = βi.

This completes the definition of the dynamic evolution of concentrations of pro-
ducible assemblies; it remains to define the time complexity of assembling a terminal
assembly. Although we have distinguished between seeded and hierarchical systems,
for the purpose of defining a model of time complexity in hierarchical systems and
comparing them to the seeded system time complexity model of [3], it is convenient
to introduce a seed-like “timekeeper tile” into the hierarchical system, in order to
stochastically analyze the growth of this tile when it reacts in a solution that is itself
evolving according to the continuous model described above. The seed does not have
the purpose of nucleating growth but is introduced merely to focus attention on a
single molecule that has not yet assembled anything, in order to ask how long it will
take to assemble into a terminal assembly.16 The choice of which tile type to pick will
be a parameter of the definition, so that a system may have different assembly times
depending on the choice of timekeeper tile.

Fix a copy of a tile type s to designate as a “timekeeper seed.” The assembly
of s into some terminal assembly α̂ is described as a time-dependent continuous-time
Markov process in which each state represents a producible assembly containing s,
and the initial state is the size-1 assembly with only s. For each state α representing
a producible assembly with s at the origin, and for each pair of producible assemblies
β, γ such that α+ β → γ (with the translation assumed to happen only to β so that
α stays “fixed” in position), there is a transition in the Markov process from state α

15For intuition, consider finite counts: with n copies of γ and n copies of β �= γ, there are n2

distinct pairs of molecules of respective type γ and β, but with only n copies of γ, there are n(n−1)
2

distinct pairs of molecules of type γ, which approaches 1
2
n2 as n → ∞.

16For our lower bound result, Theorem 7, it will not matter which tile type is selected as the
timekeeper, except in the following sense. We define partial order systems, the class of directed
hierarchical TAS’s to which the bound applies, also with respect to a particular tile type in the
unique terminal assembly. A TAS may be a partial order system with respect to one tile type but
not another, but for all tile types s for which the TAS is a partial order system, the time lower bound
of Theorem 7 applies when s is selected as the timekeeper. The upper bound of Theorem 8 holds
with respect to only a single tile type.
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to state γ with transition rate [β](t).17 Unlike the seeded model, the transition rates
vary over time since the assemblies (including assemblies that are individual tiles)
with which α could interact are themselves being produced and consumed.

We define TT ,C,s to be the random variable representing the time taken for the
copy of s to assemble into a terminal assembly via some sequence of reactions as
defined above. We define the time complexity of a directed hierarchical TAS T with
concentrations C and timekeeper s to be T(T , C, s) = E [TT ,C,s], and the time com-
plexity with respect to s as T(T , s) = minC T(T , C, s).18

We note in particular that our construction of Theorem 17 is composed of ( n
logn )

2

different types ofO(log n)×O(log n) “blocks” that can each grow via only one reaction.

At least one of these blocks β must obey [β](t) ≤ log2 n
n2 for all t ∈ R≥0 (this can be

seen by applying Lemma 6, proven in section 4.3). This implies that the rate of the

slowest such reaction has rate at most log2 n
n2 and hence expected time at least the

inverse of that quantity. Thus our square construction assembles in at least Ω( n2

log2 n
)

time, slower than the optimal seeded time of O(n) [3]. Proving this formally requires
more details that we omit. However, it is simple to modify the system to have a
tile type appearing in exactly one position in the terminal assembly, for example, by
attaching such a tile type only to the block at coordinate (0, 0). It is routine to check
that this would make the system a partial order system with respect to that tile type
as defined in section 4.1. Then Theorem 7 implies a time complexity lower bound of
Ω(n), much slower than the polylogarithmic time one might näıvely expect due to the
polylogarithmic depth of the assembly tree.

4. Time complexity lower bound for hierarchical partial order systems.
In this section we show that the subset of hierarchical TAS’s known as partial order
systems cannot assemble any shape of diameter D in time faster than Ω(D).

4.1. Definition of hierarchical partial order systems. Seeded partial order
systems were first defined by Adleman et al. [3] for the purpose of analyzing the
running time of their optimal square construction. Intuitively, a seeded directed TAS
with unique terminal assembly α̂ is a partial order system if every pair of adjacent
positions p1 and p2 in α̂ that interact with positive strength has the property that
either p1 always receives a tile before p2, or vice versa. We extend the definition of
partial order systems to hierarchical systems in the following way.

Let T = (T, τ) be a hierarchical directed TAS with unique terminal assembly
α̂ ∈ A�[T ]. A terminal assembly tree of α̂ is a full binary tree with |α̂| leaves, in
which each leaf is labeled with an assembly consisting of a single tile, the root is
labeled with α̂, and each internal node is labeled with an assembly producible in

17That is, for the purpose of determining the continuous dynamic evolution of the concentration
of assemblies, including α, in solution at time t, the rate of the reaction α + β → γ at time t is
assumed to be proportional to [α](t)[β](t) (or half this value if the reaction is symmetric). However,
for the purpose of determining the stochastic dynamic evolution of one particular copy of s, the rate
of this reaction at time t is assumed to be proportional only to [β](t). This is because we want to
describe the rate at which this particular copy of α, the one containing the copy of s that we fixed
at time 0, encounters assemblies of type β. This instantaneous rate is independent of the number
of other copies of α at time t (although after ε seconds the rate will change to [β](t + ε), which of
course will depend on [α] over that time interval).

18It is worth noting that this expected value could be infinite. This would happen if some partial
assembly α, in order to complete into a terminal assembly, requires the attachment of some assembly
β whose concentration is depleting quickly.
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one step from the τ -stable attachment of its two child assemblies.19 Let Υ be any
terminal assembly tree of T . Let p ∈ dom α̂, and let s = α̂(p). The assembly sequence
with respect to Υ starting at p is the sequence of assemblies 
αp,Υ = (α1, . . . , αk) that
represent the path from the leaf corresponding to p to the root of Υ, so that α1 is
the single tile s at position p, and αk = α̂.20 An assembly sequence starting at p is an
assembly sequence with respect to Υ starting at p for some valid assembly tree Υ.

An attachment quasiorder with respect to p ∈ dom α̂ is a quasiorder (a reflexive,
transitive relation) � on dom α̂ such that the following hold:

1. For every p1, p2 ∈ dom α̂, p1 � p2 if and only if for every assembly sequence

α = (α1, . . . , αk) starting at p, for all 1 ≤ i ≤ k, αi(p2) is defined =⇒ αi(p1).
In other words, p1 must always have a tile by the time p2 has a tile. (Perhaps
they arrive at the same time, if they are both part of some assembly that
attaches in a single step.)

2. For every pair of adjacent positions p1, p2 ∈ dom α̂, if the tiles at positions
p1 and p2 interact with positive strength in α̂, then p1 � p2 or p2 � p1 (or
both).

If two tiles always arrive at the same time to the assembly containing p, then they
will be in the same equivalence class induced by �. Given an attachment quasiorder
�, we define the attachment partial order ≺ induced by � to be the strict partial
order on the quotient set of equivalence classes induced by �. In other words, if some
subassembly α � α̂ always attaches to the assembly containing p all at once, then
all positions p′ ∈ dom α will be equivalent under �.21 It is these equivalence classes
of positions that are related under ≺. Each attachment partial order ≺ induces a
directed acyclic graph G = (V,E), where V = {β1, . . . , βk}, each βi represents the
subassembly corresponding to some equivalence class (under �) of positions in dom α̂,
and (βi, βj) ∈ E if dom βi ≺ dom βj .

22 Note that the first assembly α1 of the assembly
sequence containing p is always size 1, since by definition p is the only position with
a tile at time 0.

We say that a directed hierarchical TAS T with unique terminal assembly α̂ is a
hierarchical partial order system with respect to p if it has an attachment quasiorder
with respect to p. Given a tile type s ∈ T that appears exactly once in the terminal
assembly α̂ at position p (i.e., α̂(p) = s and (∀q ∈ dom α̂\{p}) α̂(q) �= s), we say that
T is a hierarchical partial order system with respect to s if T is a hierarchical partial
order system with respect to p.

Remark. The condition that s appears exactly once in α̂ allows us to talk in-
terchangeably of a partial order with respect to a position and a partial order with
respect to a tile type. If instead we allowed s to appear in multiple positions in α̂, then

19Note that even a directed hierarchical TAS may have more than one assembly tree of the terminal
assembly α̂.

20That is, �α is like a seeded assembly sequence in that each αi is a subassembly of αi+1 (written
αi � αi+1, meaning dom αi ⊆ dom αi+1 and αi(p) = αi+1(p) for all p ∈ dom αi). The difference is
that αi and αi+1 may differ in size by more than one tile, since dom αi+1 \ dom αi will consist of
all points in the domain of αi’s sibling in Υ.

21More generally, if there is a subset X ⊂ dom α̂ such that all assemblies α attaching to the
assembly containing p have the property that X ∩ dom α �= ∅ =⇒ X ⊆ dom α; i.e., any position
in X attaching implies all positions in X attach with it, then this implies all positions in X are
equivalent under �.

22i.e., if the positions are nodes on a directed graph with an edge from p1 to p2 if p1 � p2,
then each equivalence class is a strongly connected component of the graph, and ≺ describes the
condensation directed acyclic graph obtained by contracting each strongly connected component into
a single vertex.
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the sequence of attachments would nondeterministically choose one of them. Since
the partial order imposed on dom α̂ is different depending on the position chosen
to define the partial order, we would lose the ability to focus on “the” partial order
imposed by s (since there would be more than one possible). It is conceivable that
a tile type s could appear in multiple positions in α̂, and T could be a partial order
with respect to all of these positions. It is an open question whether Theorem 7 would
apply to such a system. Our proof technique relies fundamentally on s appearing in
a single fixed position in α̂ and defining a single partial order on dom α̂ that is then
used to establish the assembly time lower bound. The definition of seeded partial
order systems [3, 5] has a similar requirement—that the seed tile type appear exactly
once in the terminal assembly.

In the case of seeded assembly, in which each attachment is of a “subassembly”
containing a single tile to a subassembly containing the seed, this definition of “partial
order system” is equivalent to the definition of “partial order system” given in [3]. In
the seeded case, since no tiles may attach simultaneously, the attachment quasi order
we have defined induces equivalence classes that are singletons, and the resulting
induced strict partial order is the same as the strict partial order used in [3].

4.2. Repetitious assemblies. This section shows that hierarchical partial or-
der systems are well behaved in a certain technical sense that will be useful in the
proof of Theorem 7.

Definition 2. Two overlapping assemblies α and β are consistent if α(p) = β(p)
for every p ∈ dom α ∩ dom β. If α and β are consistent, define their union α ∪ β to
be the assembly with dom (α ∪ β) = dom α ∪ dom β defined by (α ∪ β)(p) = α(p) if
p ∈ dom α and (α∪ β)(p) = β(p) if p ∈ dom β. Let α∪ β be undefined if α and β are
not consistent.

Definition 3. Let α be a producible assembly, let 
v ∈ Z
2 be a vector, and let α+
v

denote the translation of α by 
v, i.e., an assembly β such that dom β = dom α + 
v
and β(p) = α(p−
v) for all p ∈ dom β. We say that assembly α is repetitious if there
exists a nonzero vector 
v ∈ Z

2 such that dom α ∩ dom (α + 
v) �= ∅ and α and α + 
v
are consistent.

The following theorem shows an important property of hierarchical systems that
will be useful.

Theorem 4 (see [15]). Let T be a hierarchical tile assembly system. If T has a
producible repetitious assembly, then arbitrarily large assemblies are producible in T .

Let α, β be producible assemblies that can attach. Imagine fixing the position of
α so that β must be translated to attach to α. Let Vα,β be the set of all vectors 
v such
that dom α∩ (dom β+
v) = ∅ and α∪ (β+
v) is a stable assembly; i.e., Vα,β describes
the set of all ways to attach β to α. We say that α and β are disjointly attachable if,
for every 
v1, 
v2 ∈ Vα,β such that 
v1 �= 
v2, it holds that dom (β+
v1)∩dom (β+
v2) = ∅;
in other words, no two translations of β that allow it to attach to α overlap each other.

Corollary 5. Let T = (T, τ) be a hierarchical partial order system with respect
to tile type s ∈ T appearing at position p ∈ dom α̂ in the terminal assembly α̂, and
let (α1, . . . , αk) be an assembly sequence starting at p. Then for every i ∈ {1, . . . , k},
every producible assembly β that can attach to αi is disjointly attachable to αi.

Proof. Because s appears only at position p ∈ dom α̂ and α̂ is the unique terminal
assembly, every position relative to the position of s has a fixed tile type appearing
there.
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Suppose for the sake of contradiction that there is some producible assembly β
that is attachable to αi, but not disjointly, so that there are two vectors 
v1 �= 
v2
such that, defining β1 = β + 
v1 and β2 = β + 
v2, we have that α ∪ β1 and α ∪ β2

are both stable assemblies (and dom α ∩ dom β1 = ∅ and dom α ∩ dom β2 = ∅), but
dom β1∩dom β2 �= ∅. Therefore, for every position in the overlap q ∈ dom β1∩dom β2,
β1(q) = β2(q), otherwise this would imply one terminal assembly producible from αi

that has one tile type at position q and another that has a different tile type at position
q. But this is precisely what it means for β to be a repetitious assembly. Theorem 4
then implies that arbitrarily large assemblies are producible in T , contradicting the
fact that it produces a unique terminal assembly.

4.3. Linear time lower bound for partial order systems. Theorem 7 estab-
lishes that hierarchical partial order systems, like their seeded counterparts, cannot
assemble a shape of diameter D in less than Ω(D) time. This is potentially coun-
terintuitive, since an attaching assembly of size K is able to increase the size of the
growing assembly by K tiles in a single attachment step. Intuitively, the time lower
bound is proven using the fact that such an assembly can have concentration at most
1
K by conservation of mass, slowing down its rate of attachment (compared to the rate
of a single tile) by a factor at least K, precisely enough to cancel out the potential
speedup over a single tile due to its size.

This simplistic argument is not quite accurate and must be amortized—using our
Conservation of Mass Lemma (Lemma 6)—over all assemblies that could extend the
growing assembly. The growing assembly may be extended at a single attachment site
by more than one assembly. However, by Lemma 6, these assemblies must collectively
have limited total concentration. Intuitively, the property of having a partial order
on binding subassemblies ensures that the assembly of each path in the partial order
graph proceeds by a series of rate-limiting steps. We prove upper bounds on each of
these rates using this concentration argument.23 Since the rate-limiting steps must
occur in order, we can then use linearity of expectation to bound the total expected
time.

The following is a “Conservation of Mass Lemma” that will be helpful in the proof
of Theorem 7. Note that it applies to any hierarchical system.

Lemma 6 (Conservation of Mass Lemma). Let T = (T, τ) be a hierarchical TAS,
and let C : T → [0, 1] be a concentrations function. Then for all t ∈ R≥0,∑

α∈A[T ]

[α](t) · |α| =
∑
r∈T

C(r) (≤ 1).

Proof. For all t ∈ R≥0, define f(t) =
∑

α∈A[T ][α](t) · |α|. According to our

model, [α](0) = C(r) if α consists of a single tile type r and [α](0) = 0 otherwise, so
f(0) =

∑
r∈T C(r). Therefore, it is sufficient (and necessary) to show that df

dt = 0. For
all α ∈ A[T ] and t ∈ R≥0, define fα(t) = [α](t) · |α|. Then by (1), and recalling from
that equation the definitions of m, n, p, β′

i, β
′′
i , γ

′
i, and βi, annotated as m(α), n(α),

23The same assembly α could attach to many locations p1, . . . , pn. In a TAS that is not a partial
order system, it could be the case that there is not a fixed attachment location that is necessarily
required to complete the assembly. In this case completion of the assembly might be possible even
if only one of p1, . . . , pn receives the attachment of α. Since the minimum of n exponential random
variables with rate 1/K is itself exponential with rate n/K, the very first attachment of α to any
of p1, . . . , pn happens in expected time K/n, as opposed to expected time K for α to attach to a
particular pi. This prevents our technique from applying to such systems, and it is the fundamental
speedup technique in our proof of Theorem 8.
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etc. to show their dependence on α, we have

dfα
dt

= |α| ·

⎛⎝m(α)∑
i=1

[β′
i(α)](t) · [γ′

i(α)](t) +

p(α)∑
i=1

1

2
· [β′′

i (α)](t)
2 −

n(α)∑
i=1

[α](t) · [βi(α)](t)

⎞⎠ .

Then

df

dt
=

d

dt

∑
α∈A[T ]

fα(t) =
∑

α∈A[T ]

dfα
dt

=
∑

α∈A[T ]

⎛⎜⎜⎜⎜⎝
m(α)∑
i=1

|α| · [β′
i(α)](t) · [γ′

i(α)](t) +

p(α)∑
i=1

|α| · 1
2
· [β′′

i (α)](t)
2

−
n(α)∑
i=1

|α| · [α](t) · [βi(α)](t)

⎞⎟⎟⎟⎟⎠ .

Let R denote the set of all attachment reactions of T , writing R(α, β, γ) to denote
the reaction α+β → γ. For each such reaction, |α|+ |β| = |γ|. In particular, if α = β,
then |γ| = 2|α|. Each such asymmetric reaction contributes precisely three unique
terms in the right-hand side above: two negative (of the form −|α| · [α](t) · [β](t) and
−|β|·[α](t)·[β](t)) and one positive (of the form |γ|·[α](t)·[β](t)). Each such symmetric
reaction contributes two unique terms: one negative (of the form −|α| · [α](t)2) and
one positive (of the form |γ| · 1

2 · [α](t)2).
Then we may rewrite the above sum as

df

dt
=

∑
R(α,β,γ)∈R

α �=β

(|γ| · [α](t) · [β](t) − |α| · [α](t) · [β](t) − |β| · [α](t) · [β](t))

+
∑

R(α,α,γ)∈R

(
1

2
|γ| · [α](t)2 − |α| · [α](t)2

)

=
∑

R(α,β,γ)∈R
α �=β

(|γ| − |α| − |β|) · [α](t) · [β](t) +
∑

R(α,α,γ)∈R

(
1

2
|γ| − |α|

)
· [α](t)2

=
∑

R(α,β,γ)∈R
α �=β

0 · [α](t) · [β](t) +
∑

R(α,α,γ)∈R
0 · [α](t)2 = 0.

The following is the main theorem of this paper, and it shows that hierarchical
partial order systems require time linear in the diameter of a shape in order to produce
it.

Theorem 7. Let T = (T, τ) be a hierarchical partial order system with respect to
s ∈ T , with unique terminal assembly α̂ of L1 diameter D. Then T(T , s) = Ω(D).

Proof. Let C : T → [0, 1] be a concentrations function. Let α̂ ∈ A�[T ] be the
unique terminal assembly of T , and let p ∈ dom α̂ be the unique position such that
α̂(p) = s. Let � be the attachment quasi order testifying to the fact that T is a
partial order system with respect to p. Let ≺ be the strict partial order induced by
�. Let G = (V,E) be the directed acyclic graph induced by ≺. Assign weights to the
edges of E by w(αi, αj) = |αj |.

If P ′ = (α′
1, . . . , α

′
l) is any path in G, define the (weighted) length of P to be

w(P ′) =
∑l−1

i=1 w(α
′
i, α

′
i+1). Let q, r ∈ dom α̂ be two points at L1 distance D, which
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must exist since the diameter of dom α̂ is D. The distance d from p to one of these
points—without loss of generality, call it q—in dom α̂ is at least D/2 by the triangle
inequality. Let αn ∈ V be such that q ∈ dom αn, and let P = (α1, . . . , αn) be any
path in G starting with α1 and ending with αn, where α1 is the assembly consisting
just of the tile at position p. The weight of each edge in P is an upper bound on
the diameter of the assembly it represents, and by the triangle inequality, the sum of
these diameters for all αi in P is itself an upper bound on the distance from p to q.
Therefore, w(P ) ≥ D/2.

Let TP be the random variable representing the time taken for the complete path
P to assemble. Since the tiles on P represent a subassembly of α̂, α̂ cannot completely
form until the path P forms. Therefore, TP ≤ TT ,C,p. Since T(T , C, p) = E [TT ,C,p],
it suffices to show that E [TP ] = Ω(w(P )).

Because of the precedence relationship described by ≺, no portion of the path P
can form until its immediate predecessor on P is present. After some amount of time,
some prefix P ′ of the path P has assembled (possibly with some other portions of α̂
not on the path P ). Given t ∈ R≥0, let L(t) be the random variable indicating the
weighted length of this prefix after t units of time.

We claim that for all t ∈ R≥0, E [L(t)] ≤ t; this claim is proven below. Assuming
the claim, by Markov’s inequality, Pr[L(t) ≥ 2t] ≤ 1

2 . Letting t = w(P )/2, the
event L(w(P )/2) ≥ w(P ) is equivalent to the event TP ≤ w(P )/2. Thus Pr[TP ≤
w(P )/2] ≤ 1

2 . By Markov’s inequality, E [TP ] ≥ w(P )/4 ≥ D/8 = Ω(D), which
proves the theorem, assuming that E [L(t)] ≤ t.

The remainder of the proof shows the claim that for all t ∈ R≥0, E [L(t)] ≤ t.
Define the function f : R≥0 → R≥0 for all t ∈ R≥0 by f(t) = E [L(t)], noting

that f(0) = 0. Let f ′ = df
dt . Let P ′ = (α1, . . . , αm) be the prefix of P formed after t

seconds. Let β1, β2, . . . , βk, withm+k = n, be the individual subassemblies remaining
on the path, in order, so that P = (α1, . . . , αm, β1, . . . , βk). For all 1 ≤ i ≤ k, let

γi =
⋃i

j=1 βj be the union of the next i such subassemblies on the path (representing
each of the amounts by which P could grow in the next attachment event). Let
si = |γi| be the size of the ith subassembly, and let ci(t) =

∑
α∈Ai(t)

[α](t), where

Ai(t) is the set of subassemblies (possibly containing tiles not on the path P ) at time
t that contain γi but do not contain γi+1. Ai(t) represents the set of all assemblies
that could attach to grow P by exactly the tiles in γi.

However, the set of reactions that could grow P is what matters, but Corollary 5
implies that no assembly extending P ′ could attach via two different reactions that
both intersect P at the location directly succeeding P ′. Thus, summing over assem-
blies is equivalent to summing over reactions. Our argument uses the Conservation
of Mass property (Lemma 6) to show that no matter the concentration of assemblies
in each Ai(t), the rate of growth is at most one tile per unit of time.

For each 1 ≤ i ≤ k, in the next instant dt, with probability cidt the prefix will
extend by total weighted length si by attachment of (a superassembly containing) γi.

This implies that f ′(t) ≤
∑k

i=1 ci(t) · si. Invoking Lemma 6, it follows that for all
t ∈ R≥0,

f ′(t) ≤
k∑

i=1

ci(t) · si ≤
∑

α∈A[T ]

[α](t) · |α| =
∑
r∈T

C(r) ≤ 1.

Since f(0) = 0, this implies that f(t) ≤ t for all t ∈ R≥0, which completes the proof
of the claim that E [L(t)] ≤ t.

Although our assembly time model describes concentrations as evolving accord-
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ing to the standard mass-action kinetic differential equations, Lemma 6 is the only
property of this model that is required for our proof of Theorem 7. Even if concen-
trations of attachable assemblies (and thus their associated attachment rates in the
Markov process defining assembly time) could be magically adjusted throughout the
assembly process so as to minimize the assembly time, so long as the concentrations
obey Lemma 6 at all times, Theorem 7 still holds.

For example, staged assembly [16] is a relaxation of the mass-action model that
obeys Lemma 6, in which certain assemblies are artificially prevented from interacting
by being kept in separate bins before being mixed. Theorem 7 implies that staged
assembly gives no time speedup on partial order systems if the completion time in
each bin is taken into account in measuring the time complexity.

5. Assembly of a shape in time sublinear in its diameter. This section
is devoted to proving the following theorem, which shows that relaxing the partial
order assumption on hierarchical tile systems allows for assembly time sublinear in
the diameter of the shape.

Theorem 8. For infinitely many n ∈ N, there is a (nondirected) hierarchical
TAS T = (T, 2) that strictly self-assembles an n×n′ rectangle, where n′ = o(n), such
that |T | = O(log n) and there is a tile type s ∈ T such that T(T , s) = O(n4/5 log n).

In our proof, n′ ≈ n3/5, but we care only that n′ ≤ n so that the diameter of the
shape is Θ(n). As discussed in section 3, we interpret the upper bound of Theorem 8
more cautiously than the lower bound of Theorem 7, since some of our simplifying
assumptions concerning diffusion rates and binding strength thresholds, discussed in
section 7, may cause the assembly time to appear artificially faster in our model than
in reality. A reasonable conclusion to be drawn from Theorem 8 is that concentration
arguments alone do not suffice to show a linear-time lower bound on assembly time
in the hierarchical model.

Although we use mass-action kinetics to model changing concentrations, we oc-
casionally use discrete language to describe the intuition behind reactions—e.g., “a
copy of A is consumed and two copies of B are produced”—despite the fact that the
concentrations model is continuously evolving real-valued concentrations.

The hierarchical model will permit a speedup over the seeded model. However,
when viewed as a programming language for tile assembly, the hierarchical model is
more unwieldy to program and to analyze. Therefore, we prove a number of lemmas
showing that careful design of hierarchical tiles will cause them to “behave enough
like” seeded tiles to remain tractable for analysis, and to ensure that the assembly
proceeds sufficiently quickly. Much like parallel programming, in which critical regions
are segregated into a few well-characterized parts of the program, we largely employ
“seeded-like assembly” for most subcomponents of the construction, combining them
using hierarchical parallelism at a small number of well-understood points.

5.1. Warm-up: A thin bar. We first “warm up” by analyzing in detail the
assembly time of a simple but nontrivial system. The following lemma, Lemma 9
(more precisely, its corollary, Corollary 10, which assigns concrete concentrations to
the tile types), shows that it is possible to grow a “substantial” concentration of a
“hard-coded thin bar” in quadratic time under the mass-action model. This structure
will be the first subassembly formed in many other subcomponents of the tile system
of Theorem 8. Furthermore, the proof of Lemma 9 will illustrate several techniques
for analyzing hierarchical assembly time (and “programming tricks” to ensure that
this time is fast). Section 5.2 generalizes these techniques to apply to more complex
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tile systems used in the full construction. However, these techniques are easier to
understand by first reading this section with its simple, concrete tile system.

To achieve quadratic time we use “polyomino-safe” tiles that grow a 2 × n bar
in a zig-zag fashion to enforce that no substantial growth nucleates except at the
“seed,” similar to the zig-zag tile set described by Schulman and Winfree [46, 47]
(which prevented spurious nucleation with high probability under the more permissive
kinetic tile assembly model [56], which allows reversible attachments and strength-1
attachments). This enforces that no large overlapping subassemblies grow that would
compete to consume tiles without being able to attach to each other (which happens
with the n tile types required to grow a 1× n bar).24

Lemma 9. Let T = (T, 2) be the hierarchical TAS shown in Figure 1, and let
α̂ be its unique terminal assembly of a 2 × n bar. Let the initial concentrations be
defined by [s1](0) = δ > 0, [ri](0) = 2δ for all i ∈ {1, . . . , n}, and [si](0) = 3δ for all
i ∈ {2, . . . , n}. Then for all t ≥ 4n

δ , [α̂](t) ≥ δ
2 .

Fig. 1. Tile types that grow a 2× n bar. Thick lines represent strength-2 glues, and thin lines
represent strength-1 glues. Glues are not labeled, but each is hard-coded to represent its position in
the final assembly. Zig-zag growth enforces that no overlapping subassemblies larger than size 2 can
occur. All growth other than size-2 dimers (which will attach just as correctly as if they had stayed
monomers) must nucleate from the “seed” labeled s1. Examples are shown of subassemblies αi, βi,
and ρi, as defined in the proof of Lemma 9.

Intuitively, the reason for the choice of concentrations is to approximate the speed
of seeded single-tile addition assembly, by enforcing that the concentrations of individ-
ual tiles (or dimers) other than s1 remain for all time above at least a fixed constant
δ, to keep high their rate of reaction with a larger assembly containing “preceding”
tile types.

Proof. For i ∈ {1, . . . , n}, there are two types of producible assemblies containing
s1: the assembly with exactly 2i tiles, which we call αi (its single frontier location is
where si+1 binds), and the assembly with exactly 2i − 1 tiles, which we call βi (its
single frontier location is where either ri or ρi can bind, where ρi is the assembly
consisting of ri and si+1). Hence β1 contains only s1, and αn = α̂.

For all i ∈ {1, . . . , n− 1}, let ρi denote the dimer (2-tile assembly) consisting of
just ri and si+1. Since βi contains s1, for all t ∈ R≥0, [βi](t) ≤ [s1](0) = δ. Thus at

24Assembling a 1 × n bar provably requires Θ(n logn) time to reach half of its steady-state con-
centration [4], even when all n tile types are allowed to have concentration as high as 1, exceeding
the bound of the finite density constraint. Enforcing the finite density constraint and assigning each
tile type a concentration of 1/n gives a time bound of Θ(n2 logn).
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most δ of the individual ri’s can bind to βi. The remainder must stay unbound or
bind to si+1 to form ρi. For all i ∈ {1, . . . , n − 1} and all t ∈ R≥0, by the fact that
[ri](0) = 2δ,

(2) [ρi](t) + [ri](t) ≥ δ.

Since there is no ρn, we have

(3) [rn](t) ≥ δ

for all t ∈ R≥0 by the same reasoning. By similar reasoning, for i ∈ {2, . . . , n}, since
[si](0) = 3δ, no more than δ of the individual si’s can bind to αi−1 to form βi, and
no more than δ of the remaining can bind to copies of ri−1 that never attach to βi−1.
Thus for all i ∈ {2, . . . , n} and all t ∈ R≥0,

(4) [si](t) ≥ δ.

Let

S(t) =

n∑
i=1

|αi| · [αi](t) +

n∑
i=1

|βi| · [βi](t)

=

n∑
i=1

2i[αi](t) +

n∑
i=1

(2i− 1)[βi](t).

S(t) can be thought of as the total “mass” of tiles that belong to an assembly con-
taining s1 at time t. Observe that

(5) sup
t∈R≥0

S(t) = 2nδ,

with the supremum 2nδ attained only in the limit as t → ∞, when all s1 belong to
terminal assembly αn.

The reactions ri + si+1 → ρi do not change S(t). All other reactions increase
S(t). Each reaction that increases S(t) is of the form αi + si+1 → βi+1, βi + ri → αi

(each of which increases S(t) by 1 per unit concentration of the product produced), or
βi + ρi → βi+1 (which increases S(t) by 2 per unit of product). Therefore, summing
the propensities of all these reactions, we obtain

dS(t)

dt
=

n−1∑
i=1

[αi](t) · [si+1](t) +

n∑
i=1

[βi](t) · [ri](t) +
n−1∑
i=1

2 · [βi](t) · [ρi](t).

Note that for all t ∈ R≥0,

(6) [s1](0) =

n∑
i=1

([αi](t) + [βi](t)) .

Each right-hand side term represents an assembly that could contain a copy of s1.
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Then

dS(t)

dt
=

n−1∑
i=1

[αi](t) · [si+1](t) +

n∑
i=1

[βi](t) · [ri](t) +
n−1∑
i=1

2 · [βi](t) · [ρi](t)

= [βn](t) · [rn](t) +
n−1∑
i=1

[αi](t) · [si+1](t) +

n−1∑
i=1

[βi](t) · ([ri](t) + 2 · [ρi](t))

≥ [βn](t) · [rn](t) +
n−1∑
i=1

[αi](t) · [si+1](t) +

n−1∑
i=1

[βi](t) · ([ri](t) + [ρi](t))

≥ [βn](t) · δ +
n−1∑
i=1

[αi](t) · δ +
n−1∑
i=1

[βi](t) · δ by (2), (3), and (4)

= δ

(
[βn](t) +

n−1∑
i=1

([αi](t) + [βi](t))

)
= δ([s1](0)− [αn](t)) by (6)

= δ2 − δ[αn](t).(7)

Since αn is not a reactant in any reaction, [αn](t) is monotonically increasing. Thus
it suffices to prove that [αn](

4n
δ ) > δ

2 . Suppose for the sake of contradiction that

[αn](
4n
δ ) ≤ δ

2 . Then [αn](t) ≤ δ
2 for all t ≤ 4n

δ by the monotonicity of [αn](t). By

this bound and (7), dS(t)
dt ≥ δ2

2 for all t ≤ 4n
δ . Since S(0) = δ, this means that

S(4nδ ) ≥ δ + δ2

2 · 4n
δ = (2n+ 1)δ, which contradicts (5).

The following corollary shows that if we pick the initial concentrations to be
maximal subject to the finite density constraint and the constraints of Lemma 9, then
quadratic time is sufficient to obtain terminal assembly concentration that is at least
inversely linear. By Lemma 6, any producible assembly α obeys [α](t) ≤ 1

|α| for all

t ∈ R≥0, so this concentration bound is optimal to within a constant factor. The time
bound is asymptotically suboptimal25 but sufficient for our purposes, since we only
use hard-coded thin bars that are logarithmically smaller than the final assembly;
hence their contribution to the assembly time is negligible.

Corollary 10. Let T = (T, 2) be the hierarchical TAS shown in Figure 1, and
let α̂ be its unique terminal assembly of a 2 × n bar. Let the initial concentrations
be defined by [s1](0) = δ = 1

cn for some constant c ∈ R≥0, [ri](0) = 2δ for all
i ∈ {1, . . . , n}, and [si](0) = 3δ for all i ∈ {2, . . . , n}.26 Then for all t ≥ 4cn2,
[α̂](t) ≥ 1

2cn .

The next lemma is a discrete version of Corollary 10, which shows that selecting
s1 as the timekeeper results in quadratic-time assembly of the bar under our stochastic
assembly time model.

25We assign concentrations of Θ( 1
n
) to obey the finite density constraint since there are Θ(n)

distinct tile types. However, only O(
√
n) tile types are required to assemble a 2×n bar [6, Theorem

3.2]. The concentrations of these tile types could be set to Θ( 1√
n
), lowering the half-completion time

from O(n2) to O(n1.5), if our goal in this section were to assemble a 2×n bar as quickly as possible
(which it isn’t). However, since we later use the length-n bar to encode n bits, necessitating that
each tile type on the top row be unique, we could not use O(

√
n) tile types anyway.

26We must choose δ ≤ 1
5n−1

to obey the finite density constraint; hence c ≈ 5.
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Lemma 11. Let T = (T, 2) be the hierarchical TAS shown in Figure 1, and define
a concentrations function C : T → [0, 1] as in the statement of Corollary 10, setting
C(s1) = δ = 1

cn for some constant c ∈ R≥0, C(ri) = 2δ for i ∈ {1, . . . , n}, and
C(si) = 3δ for i ∈ {2, . . . , n}. Then T(T , C, s1) ≤ 2cn2.

Proof. For all j ∈ {1, . . . , 2n − 1}, let tj denote the expected time until the
assembly containing s1 grows by at least one tile, conditioned on the event that
the current assembly is size at least j but less than 2n. By (2), (3), and (4) and
the model of Markov process transition rates we employ to determine T(T , C, s1), it
holds that tj ≤ 1/δ = cn for all j ∈ {1, . . . , 2n − 1}. By linearity of expectation,

T(T , C, s1) � E [TT ,C,s1 ] ≤
∑2n−1

j=1 tj ≤ (2n− 1)cn < 2cn2.

5.2. General techniques for bounding assembly time. Techniques from the
proofs of Lemmas 9 and 11 can be generalized in the following way to ease analysis of
assembly time of well-behaved hierarchical systems. The results of this section will be
our main technical tools used to bound the assembly time of the shape of Theorem 8.
Intuitively, if the tile system is “polyomino-robust” (defined below), in the sense that
the seeded and hierarchical models result in essentially the same producible assemblies
and are well behaved in other ways, then we can bound the hierarchical assembly time
in terms of the size of the structure and the number of tile types needed to assemble
it, if concentrations are set appropriately.

The TAS of Figure 1 has the following useful properties:
1. It is directed.
2. There is a constant q (q = 2 in Figure 1) such that producible assemblies not

containing the “seed” s1 are of size at most q. We term such assemblies polyominos.
For mathematical convenience, we treat individual tile types that are not part of
any polyomino as if they are polyominos of size 1, and we call larger polyominos
nontrivial polyominos.

3. The set of producible assemblies containing s1 is precisely the same in the seeded
model as in the hierarchical model, and furthermore every terminal producible
assembly contains s1. (The tile system is polyomino-safe in the sense defined by
Winfree [57].) In particular this implies that A�[T ] = A�[Ts1 ], where Ts1 =
(T, σ, τ) is the seeded version of T = (T, τ) with σ containing only s1.

4. The polyominos that attach to (an assembly containing) s1 are a “total order
(sub)system with respect to assemblies containing the seed.” More formally, define
a maximal polyomino α to be a polyomino such that it is not attachable to any
assembly not containing s1. For each maximal polyomino α, there is a strict total
order ≺ on dom α such that if p1 ≺ p2, then the tile at position p1 always attaches
to an assembly containing s1 by at least the time that the tile at position p2
attaches.27

5. Every tile type belongs to at most one type of maximal polyomino (which may
appear in multiple locations in the terminal assembly) and appears exactly once in
the polyomino. Here we include maximal polyominos of size 1, which means any
tile type in a polyomino does not appear outside of the polyomino. More formally,
for each maximal polyomino α, |T (α)| = |α|, where T (α) is the set of tile types in
α, and for each pair of maximal polyominos α and β, α �= β =⇒ T (α)∩T (β) = ∅.
Given a tile type r, we write ρ(r) to denote the unique maximal polyomino in

27Each polyomino is a “chain” with a well-defined tile “closest” to s1. Therefore, while p1 and p2
may attach at the same time, because the order is strict (implying p2 �≺ p1) it is always possible for
the tile at p1 to attach strictly sooner. In particular, hierarchical growth is not required for assembly
to proceed.
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which r is contained. This implies in particular that any tile type in a nontrivial
polyomino appears in the terminal assembly equally as often as any other tile type
in the same polyomino.
Say that a tile system (possibly a subset of a larger tile system) that satisfies these

properties is polyomino-robust.28 Most useful seeded tile systems, when analyzed in
the hierarchical model, tend to have these properties or are easily modified to have
them. The two main tile subsystems that we analyze, shown in Figures 3 and 4, can
be verified by inspection to obey these constraints.

The property of polyomino-robustness allows us to reason about the system, in
certain senses, as if it were a seeded system. Properties 2 and 4, in particular, allow
us to set concentrations in such a way that we may assume that the concentration of
individual tiles or polyominos that can extend an intermediate assembly are always
at least a certain value bounded away from 0 (δ in Lemma 9, and δ1 in Lemma 12).
The trick is that tiles “further from the seed” (under the ordering ≺) are always at
least δ greater concentration than tiles “closer to the seed,” so that there will always
be at least a δ excess of them in solution, no matter what combinations of partial
polyominos form before attaching to the seed. Property 2 implies that we may use a
bounded interval of concentrations (from δ to 3δ in Figure 1) to achieve this. Given
a maximal polyomino α and a tile type r in α, define distα(r) to be the distance of
r from the minimal position (under ≺) in the polyomino. (Since the polyomino is a
linear chain, this number is well defined.) In Figure 1, for example, distρi(0, 0) = 0
and distρi(1, 0) = 1, where the polyomino ρi is defined as in the proof of Lemma 9:
a size-2 polyomino containing ri at position (0, 0) (within the polyomino, assuming it
is translated to the lower left corner of the first quadrant) and si at position (1, 0).

Given assembly β and tile type r ∈ T , define #β(r) = | { p ∈ dom β | β(p) = r } |
as the number of times r appears in β. If β, ζ are assemblies such that β � ζ,
define ζ \ β to be the unique assembly γ such that dom γ = dom ζ \ dom β
and γ � ζ. If β is an assembly and T is a tile set, define T (β) = range β =
{ r ∈ T | (∃p ∈ dom β) β(p) = r } to be the set of tile types in β. For any polyomino-
robust TAS T = (T, τ) and s1 ∈ T , let Ts1 = (T, σ, τ) denote the seeded version of
the hierarchical system T , where σ is the single-tile initial assembly consisting of
only the tile s1. For any producible (in the seeded model) assembly β ∈ A[Ts1 ], let
A[β] = { α ∈ A[Ts1 ] | β � α } denote the set of producible (in the seeded model)
superassemblies of β, and let [A[β]](t) =

∑
α∈A[β][α](t) ·#α(β), where #α(β) denotes

the number of times that β appears as a subassembly of α. That is, [A[β]](t) is the to-
tal concentration of β or of assemblies containing β, where each duplicate appearance
of β in a single superassembly contributes to the concentration separately.29 Note
that, since assemblies can attach but not detach and [A[β]](t) takes into account not
only the assembly β but any superassembly of it, [A[β]](t) is monotonically nonde-
creasing with t: assemblies can attach to create new copies of β, but once formed β
cannot be broken apart.

The next lemma shows conditions under which a partial assembly β grows into a

28Our full tile system assembling a rectangle is not directed; hence it does not satisfy property 1.
However, we will apply the lemmas proven in this section to subsets of the full tile system that are
directed, and in fact that satisfy all of the properties of polyomino-robustness.

29For this definition to make sense, we must weight the sum by the number of times β appears in
α because each time an assembly containing β binds to another assembly containing β, the number
of assemblies containing β decreases by one, even though the total concentration of “completed β’s”
has stayed the same. However, whenever we actually apply this definition, it will be the case that
#α(β) = 1 for any producible α such that β � α.
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superassembly ζ � β. Informally, the lemma says that if we have “substantial” (at
least δ0) concentration of β (and its superassemblies), but the total concentration of
seeds is “small” (at most δs1) compared to tile types that assemble an extension γ
of β (to create a superassembly of β called ζ), and if the concentrations of those tile
types are set to ensure that all individual tile types have “excess” concentration (at
least δ1), then a “substantial” concentration of ζ will assemble in time linear in |γ|.

Lemma 12. Let T = (T, τ) be a polyomino-robust hierarchical TAS with unique
terminal assembly α̂. Let s1 ∈ T . Let β, ζ ∈ A[Ts1 ] such that β � ζ. Let γ = ζ \ β,
and suppose that T (γ) ∩ T (α̂ \ γ) = ∅ (i.e., tile types within γ appear only within γ),
and that all polyominos contained in ζ are completely contained in β or completely
contained in γ. Suppose also that for all α ∈ A[β], #α(β) = 1, and for all α ∈ A[ζ],
#α(ζ) = 1. Suppose that there exist t0, c, δ0, δs1 ∈ R≥0 such that the following hold.

• [s1](0) ≤ δs1 .
• [A[β]](t0) ≥ δ0.
• δs1 ≤ δ0c.

Set initial concentrations of all r ∈ T (γ) as follows. Let δ1 > 0.30 Set [r](0) =
δs1 ·#γ(r) + (distρ(r)(r) + 1) · δ1.

Then for all t ≥ 2|γ|c
δ1

+ t0, [A[ζ]](t) ≥ δ0
2 .

Proof. To prove the lemma, we will first argue that for every producible assembly
containing β and containing a frontier location within γ, the total concentration of
producible assemblies that could attach to this location is at least δ1. This provides a
lower bound on the rate of reactions that grow the assembly into ζ (or a superassembly
of ζ).

Let ρ � γ be a maximal polyomino consisting of tile types r1, r2, . . . , rk at posi-
tions p1, . . . , pk, with p1 ≺ p2 ≺ · · · ≺ pk. Then we have an increasing sequence of
polyominos ρ1 � ρ2 � · · · � ρk = ρ, where each ρi is ρi−1 with the tile ri added at
position pi.

Let j ∈ {1, . . . , k}, and consider the polyominos ρj1 � ρj2 � · · · � ρjk−j+1 ∈ A[T ],

with |ρji | = |ρji−1| + 1, that all have rj at their minimal position under ≺. In other

words, ρji contains exactly the tiles rj , . . . , rj+i−1. In particular, for all i ∈ {1, . . . , k},
ρi = ρ1i . All of these are attachable to some producible assembly containing s1 via
the tile type rj . We allow k = 1 so that ρ11 can also represent any individual tile type
r ∈ T (γ) that is not part of a nontrivial polyomino.

Call such a sequence (ρj1, . . . , ρ
j
k−j+1) a polyomino attachment class. Each such

polyomino ρji is consumed in a reaction in one of only two ways:
1. in a reaction that binds rj to rj−1 (which have concentration at most δs1 ·

#γ(rj−1) + distρ(rj−1) · δ1 = δs1 ·#γ(rj−1) + (j − 1) · δ1, which equals δs1 ·
#γ(rj) + (j − 1) · δ1 by our assumption of equal counts of tiles that are part
of the same polyomino, which is less than [rj ](0) by δ1), or

2. in a reaction producing another member of the same polyomino attachment
class (thus not altering the sum of (8), just shifting its terms). This corre-
sponds to the attachment of tiles “further from β under ≺.”

Therefore, there will always be at least an excess of δ1 concentration of polyominos

30Think of δ1 = 1
|T (γ)| for common usage of the lemma. Intuitively, by our choice of concen-

trations, δ1 excess of each tile type is ensured even after they have been maximally consumed in
attachment events, meaning we can think of δ1 as a lower bound on the concentration of tile types
in the seeded model.
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in the attachment class (ρj1, . . . , ρ
j
k−j+1); i.e., we have the following for all t ∈ R≥0:

(8)

k−j+1∑
i=1

[ρji ](t) ≥ δ1.

In particular, for any producible assembly α containing β, with frontier location
p ∈ dom γ at which some tile type rj can attach in the seeded model, (8) ensures that
the total concentration of polyominos that can attach to position p in the hierarchical
model is at least δ1.

Now we must argue that this lower bound on polyomino concentration implies that
the claimed lower bound on concentration of assemblies contains ζ (i.e., [A[ζ]]). The
next inequality we derive (inequality (9)) places a lower bound on the concentration
of the other reactant that reacts with the polyomino (the other reactant could be any
assembly in the sum on the left side of (9)) of the reactions that increase [A[ζ]].

Recall that for all α ∈ A[β], #α(β) = 1 and for all α ∈ A[ζ], #α(ζ) = 1. Then for
all t ∈ R≥0, [A[β]](t) =

∑
α∈A[β][α](t) and [A[ζ]](t) =

∑
α∈A[ζ][α](t). Since [A[β]](t)

is monotonically increasing, for all t ≥ t0,

[A[β]](t0) =
∑

α∈A[β]

[α](t0)

≤
∑

α∈A[β]

[α](t)

=
∑

α∈A[ζ]

[α](t) +
∑

α∈A[β]\A[ζ]

[α](t)

= [A[ζ]](t) +
∑

α∈A[β]\A[ζ]

[α](t).

Recall that the hypothesis of the lemma supposes that [A[β]](t0) ≥ δ0. Combined
with the previous inequality, this gives us, for all t ≥ t0,

(9)
∑

α∈A[β]\A[ζ]

[α](t) ≥ δ0 − [A[ζ]](t).

For all α ∈ A[Ts1 ], define |α|γ = |dom α ∩ dom γ| to be the number of tiles in α
that are part of γ. For all t ∈ R≥0, define

Sγ
β (t) =

∑
α∈A[β]

|α|γ · [α](t).

Think of Sγ
β(t) as the total “mass within γ” (concentration · (size within dom γ))

of assemblies that contain β, noting that |α|γ ≤ |γ| for all α ∈ A[Ts1 ]. Since β
contains s1, this implies that [A[β]](t) ≤ δs1 for all t ∈ R≥0 by the bound on [s1](0).
Sγ
β(t) is maximized when all seed tiles have been incorporated into ζ or one of its

superassemblies, which implies that
(10)

max
t∈R≥0

Sγ
β (t) = max

t∈R≥0

∑

α∈A[β]

|α|γ · [α](t) ≤ |γ| max
t∈R≥0

∑

α∈A[β]

[α](t) = |γ| max
t∈R≥0

[A[β]](t) ≤ δs1 |γ|.

Since every incomplete (with respect to completing ζ) assembly α ∈ A[β] \ A[ζ]
that contains β can react with at least one polyomino attachment class as defined
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in (8) (in the inequality below, let (ρj,α1 , . . . , ρj,αk−j+1) be the polyomino attachment
class associated to α), increasing the number of tiles occupying dom γ by at least 1,
it follows that for all t ≥ t0,

dSγ
β(t)

dt
≥

∑
α∈A[β]\A[ζ]

(
k−j+1∑
i=1

[ρj,αi ](t)

)
· [α](t)

≥ δ1

⎛⎝ ∑
α∈A[β]\A[ζ]

[α](t)

⎞⎠ by (8)

≥ δ1δ0 − δ1[A[ζ]](t). by (9)(11)

The first inequality above is an equality if there is only a single frontier location
of α within dom γ, to which any polyonimo in (ρj,α1 , . . . , ρj,αk−j+1) could attach, but if

there are multiple frontier locations in dom α, then
dSγ

β (t)

dt would be even larger.

It suffices to show that for t∗ = 2|γ|c
δ1

+ t0, [A[ζ]](t∗) ≥ δ0
2 . (By the monotonicity

of [A[ζ]](t), this will imply [A[ζ]](t) ≥ δ0
2 for all t ≥ t∗ as well.) Suppose for the

sake of contradiction that [A[ζ]](t∗) < δ0
2 . Then by (11), for all t ∈ [t0, t

∗],
dSγ

β
(t)

dt ≥
δ1δ0 − δ1[A[ζ]](t) > δ1δ0

2 . This implies that Sγ
β (t

∗) > δ1δ0
2 (t∗ − t0) = δ1δ0

2
2|γ|c
δ1

=
δ0c|γ| ≥ δs1 |γ|, which contradicts (10).

Intuitively, Lemma 12 shows that one “stage” of assembly (the stage that goes
from β to ζ) is “fast.” The following lemma extends the analysis of Lemma 12 to
the case where we want to analyze multiple stages of assembly (p is the number of
stages in the statement of Lemma 13), where each stage may involve the addition of
tile types of asymptotically different concentrations than the other stages. Intuitively,
this is required to prove fast assembly time because some stages (such as hard-coding
the seed row of a counter with ω(1) tile types) proceed slowly relative to their size
since they require many tile types (hence each tile type has low concentration). This
is not a problem since the size of such stages is small, but it implies that we cannot
apply the “average attachment time per tile” of such a slow stage uniformly across
the entire assembly. Some stages (such as completing a counter with a complete seed
row with O(1) tile types) proceed very quickly, and such stages account for “most”
of the size of the final assembly, so that the total assembly speed is fast despite a few
“bottleneck stages” in which the assembly process slows down for a short time. The
statement of the lemma is quite intricate, but the proof is simple, setting up each
stage of growth to match the hypothesis of Lemma 12 and then applying that lemma
iteratively.

Lemma 13. Let T = (T, τ) be a polyomino-robust hierarchical TAS with unique
terminal assembly α̂. Let β1, β2, . . . , βp ∈ A[Ts1 ] such that βi−1 � βi for all i ≤ p,
where β1 is the assembly with a single seed s1. Let γi = βi+1 \ βi for each i < p,
and suppose that T (γi)∩ T (γj) = ∅ for all i, j < p, and that all polyominos contained
in βp are completely contained in γi for some i (i.e., suppose that each βp and βp+1

satisfy the hypothesis of Lemma 12, where βp+1 in this lemma is interpreted to be ζ in
Lemma 12). Suppose also that δs1 ≤ 1

|βp| . Set initial concentrations of all r ∈ T (γi),

where i ≤ p as [r](0) = δs1 ·#γi(r) + (distρ(r)(r) + 1) · 1
|T (γi)| .

Then for all t ≥
∑p−1

i=1 2i|γi||T (γi)|, [A[βp]](t) ≥ δs1
2p−1 . Furthermore,

∑
r∈T [r](0) ≤

1 + p(q + 1), where q is the maximum size of any polyomino as in the definition of
polyomino-robustness.
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Proof. We will show the statement [A[βm]](t) ≥ δs1
2m−1 for all t ≥

∑m−1
i=1 2i|γi||T (γi)|

is true for all m ≤ p by induction on m.
This statement is trivially true for m = 1 since [A[β1]](t) = [A[s1]](t) = δs1 for

all t.
Assume that the statement is true for m = m0. In other words, at time t =∑m0−1

i=1 2i|γi||T (γi)|, [A[βm0 ]](t) ≥ δs1
2m0−1 . Invoking Lemma 12 with β = βm0 , γ =

γm0 , t0 =
∑m0−1

i=1 2i|γi||T (γi)|, c = 2m0−1, and δ1 = 1
|T (γi)| , we know that [A[βm0+1]](t)

≥ δs1
2m0

at t = t0+2m0 |γm0 ||T (γm0)| =
∑m0

i=1 2
i|γi||T (γi)|. Therefore, the statement

is true for m = m0 + 1.
The total concentration of tiles whose type is in T (βp) is∑
r∈T (βp)

[r](0) =

p∑
i=1

∑
r∈T (γi)

[r](0)

=

p∑
i=1

⎛⎝δs1
∑

r∈T (γi)

#γi(r) +
∑

r∈T (γi)

(distρ(r)(r) + 1) · 1

|T (γi)|

⎞⎠
≤

p∑
i=1

δs1 |γi|+
p∑

i=1

max
r∈T (γi)

[distρ(r)(r) + 1]

≤ δs1 |βp| + p max
r∈T (γi)

[distρ(r)(r) + 1].

Since δs1 ≤ 1
|βp| , and all polyominos have size at most q, the total initial concentration

of all tile types is at most 1 + p(q + 1).

In particular, if the number of stages p and polyomino size bound q are constant
with respect to the size of the terminal assembly (call this parameter n, as in our
diameter Θ(n) rectangle of Theorem 8), then the total initial concentration of all
tile types is constant with respect to n. In particular, we can scale these concentra-
tions to obey the finite density constraint without affecting the asymptotic time and
concentration bounds derived in Lemma 13.

The following is a discrete version of Lemma 12 that can be used to analyze
polyomino-robust systems in the discrete assembly time model.

Lemma 14. Let T = (T, τ) be as in Lemma 12, let α ∈ A[β] be the current state
of the Markov process defining the assembly time of T , and suppose that the current
time is t0 and that β � α. Define Tα,ζ to be the random variable representing the first
time at which α grows into a superassembly of ζ. Define T(α, ζ) = E [Tα,ζ ]. Then

T(α, ζ) ≤ |γ|
δ1

+ t0.

Proof. For all j ∈ {0, . . . , |γ|}, let tj denote the expected time until the assembly
adds at least one more tile to dom γ, conditioned on the event that the current
size of the assembly within dom γ is j. By (8) and the model of Markov process
transition rates we employ to determine T(T , C, s1), it holds that tj ≤ 1/δ1 for all

j ∈ {0, . . . , |γ|−1}. By linearity of expectation, T(α, ζ) � E [Tα,ζ ] ≤ t0+
∑|γ|−1

j=0 tj ≤
t0 +

|γ|
δ1
.

5.3. Construction of a fast-assembling shape. This section describes the
main components of the construction of Theorem 8.

Figure 2 shows an overview of the assembly described in Theorem 8. It consists
of an initial (blue) “vertical bar,” and m copies of another type of (blue) vertical bar,
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688 HO-LIN CHEN AND DAVID DOTY

Fig. 2. High-level overview of interaction of “vertical bars” and “horizontal bars” to create the
rectangle of Theorem 8. Filler tiles fill in the empty regions as shown in Figure 6. If glues overlap
two regions, they represent a formed bond. If glues overlap one region but not another, they are
glues from the former region but are mismatched (and thus “covered and protected”) by the latter
region.

each adjacent pair connected by a pair of (two different types of gray) “horizontal
bars.” The leftmost vertical bar forms, and then the two horizontal bars attach, after
which their right-side single strength glues cooperate to attach a new vertical bar to
the right. This continues until the entire m “stages” are complete. In the meantime,
filler tiles fill in the gaps to complete the rectangle. Figures 3 and 4 show some more
detail of the tile types that create the horizontal and vertical bars, and Lemmas 15
and 16, respectively, show that these subassemblies have “substantial” concentration
“quickly enough” to be useful to prove the time bound of Theorem 8.

Figures 3 and 4 show details of the tile types that assemble the “horizontal bars”
and “vertical bars” of Figure 2, and Lemmas 15 and 16 bound their assembly time.
It may be beneficial for the reader to skim the proof of Theorem 8 prior to examining
Figures 3 and 4 in detail, in order to understand the intuitive purpose of the shape
and outer glue placement of the horizontal and vertical bars.

For all n ∈ Z
+, define log′ n = �logn�+1, the number of bits required to represent

n in binary, so that 2log
′ n is the next power of 2 greater than n.

Lemma 15. Let T = (T, 2) be the “horizontal bar with an arm” hierarchical TAS
shown (by example) in Figure 3, and let α̂ be its unique terminal assembly of an
O(w) × O(logw) horizontal bar with an O(log k) × O(k) “vertical arm” on its left,
where w and k are as in the proof of Theorem 8 (so that w ≥ k in particular). Then
there is an assignment of concentrations obeying

∑
r∈T [r](0) = O(1) (with respect to

k and w) such that for all t ≥ O(w logw), [α̂](t) ≥ Ω( 1
w logw ).
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Fig. 3. “Horizontal bar with a vertical arm” for the construction of a fast-assembling square.
The arm (assembled by a downward-growing counter similar to the horizontal counter, and set up
to grow only after the horizontal counter is complete) is intended to block other horizontal bars
from binding after this one has bound to a vertical bar. The arm has height either k (for type “A”
horizontal bars of Figure 5) or k2 (for type “B” horizontal bars). Since we choose w = k4, in either
case the tile complexity and assembly time are dominated by the horizontal bar. The circles on the
left and right indicate single-strength glues that are used when and after the bar binds hierarchically.
The two west-facing single-strength glues cannot cooperate until the entire assembly is complete, so
in particular the right glue must already be present. The east-facing single-strength glue is designed
to cooperate with a glue from a different horizontal bar to control placement of a vertical bar, as in
Figure 5. The north and south facing single-strength glues are designed to help with filler tiles or
stage-counting as in Figure 6.

Proof. Let β1 � β2 � β3 � β4 � β5 respectively represent the assemblies encircled
by dotted lines of Figure 3, so that β1 is just the tile s1, and β5 = α̂. Set the initial
concentrations of tile types in T as in the statement of Lemma 13. Defining γ1, . . . , γ5
as in Lemma 13, note that |T (γ1)| = O(logw), |T (γ2)| = O(1), |T (γ3)| = O(log k),
|T (γ4)| = O(1), |γ1| = O(logw), |γ2| = O(w logw), |γ3| = O(log k), and |γ4| =
O(k log k). Therefore, Lemma 13 tells us that for all t ≥ 2 ·O(log2 w)+4 ·O(w logw)+
8 · O(log2 k) + 16 · O(k log k) = O(w logw) (since w ≥ k), [A[α̂]](t) ≥ δs1/16. Setting
δs1 = 1

2w log′ w satisfies δs1 ≤ 1
|β5| , so that the total concentration of tile types is at

most 1 + p(q + 1), where p = 5 and q = 4 in the tile system of Figure 3, where q is
defined to be the maximum size of any polyomino as in the definition of polyomino-
robustness, giving the required constant concentration bound.

Lemma 16. Let T = (T, 2) be the vertical bar hierarchical TAS shown (by exam-
ple) in Figure 4, and let α̂ be its unique terminal assembly of an O(mk2)× O(log k)
rectangle, where m and k are as in the proof of Theorem 8. α̂ places mk2 single
strength “type B” (as in Figure 5) glues on its left and right (all glues on the left
are identical, and all glues on the right are identical to each other but different from
the left glues), spaced every k vertical rows, and another k “type A” glues (as in Fig-
ure 5) spaced two rows apart on the top left and right. Also, there is an assignment
of concentrations obeying

∑
r∈T [r](0) = O(1) (with respect to k and w), such that for

all t ≥ Ω(mk2 log(mk)), [α̂](t) ≥ Ω( 1
mk2 log(mk) ).

Proof. The tiles are essentially zig-zag counters as described in [45]. Since single-
strength glues must be placed in precise locations as required in Figures 2, 5, and 6,
some modifications of the counter are necessary. There are three embedded counters 1,
2, and 3, counting to k, k, and m, respectively (m = k in our construction). Counter
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690 HO-LIN CHEN AND DAVID DOTY

Fig. 4. Tiles to assemble a “vertical bar” as in Figures 2, 5, and 6 for the fast self-assembly
of a rectangle. There are two types of vertical bars: the leftmost one with no glues on its west side
(not shown), and the other vertical bars with glues each side (shown).

1 bits are shown on the left side of each tile, counter 2 bits are on the right, and
counter 3 bits are omitted. Counter 1 increments each row, and when it rolls over,
it resets, and counter 2 increments once. Similarly, when counter 2 rolls over, it and
counter 1 reset, and counter 3 increments. The values m and k are embedded in the
first two rows and carried through each subsequent row to enable the resets. These
place single-strength glues on each side (the left glues to allow the vertical bar to bind
to two horizontal bars as shown in Figure 5, and the right glues to help the orange
counter in Figure 6 correctly place glues on the right side of the vertical bar once
it has attached). These single-strength glues are the “group B” glues of Figure 5.
Finally, when counter 3 rolls over, a new counter (using new tile types) is initiated to
count to 2k, placing a glue every other row, which are the “group A” glues of Figure 5.
To ensure that the vertical arm of the bottommost horizontal bar does not protrude
below the bottom of the vertical bar, it is necessary to first count k2 rows without
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placing side glues, but for space reasons this is not shown. Also, the first vertical bar
must count an additional logm rows, since each subsequent vertical bar will add this
many rows to the bottom, as shown in Figure 6, when the stage computation counter
must “crawl” below the bottom of the vertical bar in order to place the east-facing
glues needed for the next-stage horizontal bars to bind to the vertical bar.

Let β1 � β2 � β3 respectively represent the assemblies encircled by dotted lines
of Figure 4, so that β1 is just the tile s1, and β3 = α̂. Set the initial concentrations of
tile types in T as in the statement of Lemma 13. Defining γ1, . . . , γ3 as in Lemma 13,
note that |T (γ1)| = O(log k + logm), |T (γ2)| = O(1), |γ1| = O(log k + logm), and
|γ2| = O(mk2(log k + logm)). Therefore, Lemma 13 tells us that for all t ≥ 2 ·
O((log k + logm)2) + 4 ·O(mk2(log k+ logm)) = O(mk2 log(mk)), [A[α̂]](t) ≥ δs1/4.
Setting δs1 = 1

2mk2(logm+2 log k) satisfies δs1 ≤ 1
|β3| and gives a total concentration of

tile types at most 1 + p(q + 1), where p = 3 and q = 3 in the tile system of Figure 3,
where q is defined to be the maximum size of any polyomino, as in the definition of
polyomino-robustness, giving the required constant concentration bound.

We now prove the main theorem of this section, Theorem 8.

Proof of Theorem 8. Based on the primitives introduced in Figures 1, 3, and 4
and their assembly time analysis, Figures 2, 5, and 6 outline the remainder of the
construction.

Intuitively, the construction proceeds as follows. Fix positive integers k, m, and w
to be defined later. The rectangle grows rightward in m “stages,” each stage of width
w and height h = O(mk2). The speedup is obtained by using “binding parallelism”:
the ability of a single (large) assembly β to bind to multiple sites on another assembly
α. Think of α as the structure built so far, with a vertical bar on its right end, and
think of β as one of the horizontal bars shown in Figures 5 and 2. This “binding
parallelism” is in addition to the “assembly parallelism” described in section 6: the
ability for α to assemble in parallel with β so that (a large concentration of) β is ready
to bind as soon as α is assembled. The number k controls the amount of “binding
parallelism”: it is the number of binding sites on α to which β may bind, the first
of which binds in expected time 1

k times that of the expected time before any fixed
binding site binds (since the minimum of k exponential random variables of expected
value t has expected value t

k ). Actually two different versions of β bind to one of two
different regions on α, each with k binding sites. Because assembly may proceed as
soon as each of the two regions has a β bound (so that no individual binding site is
required before assembly can proceed), the system is not a partial order system; in
fact, it is not even directed since different filler tiles will fill in the other k− 1 regions
where copies of β could have gone but did not.

The timekeeper seed is contained in a height-h “vertical bar” with a region of k
pairs of single-strength glues on its top right, and another region of k (more widely
spaced) pairs of single-strength glues on its right below the first region. Within each
pair of glues, the two glues are different (despite being the same color in Figures 5
and 2). However, within the first region, each pair is the same. Within the second
region, each pair of glues is also identical to all other pairs in the second region,
although each is distinct from the pair of glues of the first region. This vertical bar
assembles as in Figure 4, but rotated 90 degrees. The placement of the glues on the
right is simple to calculate from the numbers k and m, which are embedded into the
tile types. The width of the vertical bar is therefore O(log k+ logm) (although most
figures show the vertical bar as “thin,” it is more than one tile wide) and requires
at most O(log k + logm) tile types to encode. The leftmost vertical bar, having no
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692 HO-LIN CHEN AND DAVID DOTY

Fig. 5. “Vertical bars” for the construction of a fast-assembling square, and their interaction
with horizontal bars of Figure 3. “Type B” horizontal bars have a longer vertical arm than “Type
A” since the glues they must block are farther apart.

west-facing glues, has distinct tile types from the other vertical bars, but all other
vertical bars are identical to each other.

The horizontal bar of Figure 3 also has two types, but unlike the vertical bar,
both types appear in each stage: type A to bind in the top region and type B to bind
in the bottom region of the vertical bar, each with different single-strength glues on
each end from the other type. The vertical “arm” on the left side below the bar is
intended to prevent other horizontal bars from binding to another pair of glues in the
same region of a vertical bar. An order of growth is chosen that enforces that the
entire horizontal bar and the arm must be assembled before the two strength-1 glues
on the left are present. This is required for speed; if a horizontal bar could bind to
the right of a vertical bar before the horizontal bar is complete, then it would have
to complete (taking at least time w in the worst case) before growth of the larger
assembly could continue. By ensuring that only complete horizontal bars can attach
to vertical bars (and ensuring that many horizontal bars will be complete by the time
“most” vertical bars require them), the assembly grows rightward quickly. Since the
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Fig. 6. Detailed view of how a single partial vertical bar attaches and completes into a full
vertical bar after attaching to the previous stage’s two horizontal bars. This enables the correct
vertical placement of the two horizontal bars in the next stage. This is needed to communicate which
stage is the current one based on the position of the previous lower horizontal bar, since there is
only one type of vertical bar and it doesn’t “know” the current stage.

right side of a horizontal bar has only a single strength-1 glue, two horizontal bars,
one in each of regions A and B, are required to bind before the next stage’s vertical
bar may attach by using cooperative binding with each of these strength-1 glues.

The following is a key idea in the construction: since there are only two kinds
of horizontal bars, the glues on the right side cannot “communicate” the current
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stage. The natural solution to this, letting single-tile addition propagate the stage
information from left to right along the horizontal bar, defeats the purpose of letting
the horizontal bar attach hierarchically: such a solution would slow down the assembly
process to make it no faster than the seeded model. To enforce that stage i+1 properly
follows stage i (so that we deterministically stop after m stages), the relative position
of the horizontal bars with respect to each other communicates the current stage.
This is the reason that each stage “staggers” the vertical position of the group B
region of k east-facing glues on the vertical bar, depending on the stage.

In more detail, examine the single-strength glues on the left side of the vertical
bar in Figure 6. The group A glues on the top left side of the vertical bar are each
two spaces apart (to make room for their counterpart glues that will be placed on
the right side, which are twice as numerous since they cooperate in adjacent pairs).
The group B glues are each k spaces apart. This ensures that every vertical distance
between a glue from group A and a glue from group B is unique. Note that all
vertical bars except the initial vertical bar have more single-strength glues on the left
than on the right. These allow the vertical bars to bind at any stage. However, by
the distance-uniqueness property just explained, there is only one vertical position in
which the vertical bar can bind, so that the vertical bar will be evenly lined up with
the vertical bar from all the previous stages. Furthermore, it is possible, as shown
in Figure 6, to use a counter to measure the relative height of the bottom horizontal
bar in order to determine the current stage. The counter increments once for each
group of k single-strength glues that it passes (this can be implemented by marking
boundaries between groups of k glues with a special glue).

As Figure 6 shows, once this counter reaches the bottom of the vertical bar and
has value h to indicate that the previous stage was stage m−h, it uses h to determine
where to place pairs of glues on the right side of the vertical bar for the next stage:
they should placed at relative height h − 1. This construction processing of the left
side of the vertical bar to assemble the right side of the vertical bar can be done with
a constant number of tile types. When the value h is calculated to be 0, no right side
of the vertical bar is constructed, since we have reached the final stage. As Figure 6
shows, filler tiles fill in the gaps above and below the horizontal bars after the vertical
bar binds to the right.

We now analyze the assembly time of this construction. Although the TAS we
describe is not directed, the subcomponents are deterministic, so we may apply Lem-
mas 12, 13, and 14 to them.

We choose the timekeeper seed to be the same s1 as shown in Figure 4, for the
alternate (not shown) version of the tiles that create the stage 1 vertical bar, with no
glues on the left side. By our design in Figure 6, the only way a horizontal bar can
attach to any other assembly is to attach to a complete vertical bar to its left that
part of an assembly containing s1.

Let Th-A, Th-B, Tv, and Tv0
be the tile types to create horizontal type A bars,

horizontal type B bars, vertical bars (partial, those colored blue in Figures 5 and 6),
and the leftmost vertical bar, respectively. By the construction, we have |Th-A| =
O(logw+log k), |Th-B| = O(logw+log k), and |Tv| = |Tv0

| = O(logw+log k+logm).
For the general system, we add all four systems Th-A, Th-B, Tv, and Tv0 . We also

add a constant number of counter tile types that wrap around the vertical bar as in
Figure 6, with each tile type having concentration Ω(1) and a constant number of
filler tile types also with total concentration Ω(1). In particular, assign the tile types
concentrations as in the statement of Lemma 12, so that each tile type in the counter
tiles and filler tiles (or polyomino attachment class) is guaranteed to have Ω(1) excess
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concentration by assigning extra concentration to tile types in polyominos. (Although
the details are not shown, it is trivial to implement the stage counter tiles with a
polyomino-robust system, and to implement the filler tiles with no polyominos at all.)
This allows us to apply Lemma 14 to these subsystems with δ1 = Ω(1).

Let s1 denote the seed of the whole tile system. Let δs1 = [s1](0) = 1
2nn′ . For

our choice of k and m, this will mean δs1 = O( 1
k8 ). Let αh-A denote the type A

“horizontal bar with an arm” assembly. Let αh-B denote the type B “horizontal bar
with an arm” assembly. Let αv0

denote the leftmost vertical bar assembly. Let αv

denote the other vertical bar assembly. By Lemma 15, for all t ≥ O(w logw), the
total concentration of type A horizontal bars that have been produced is as least
Ω( 1

w logw ) (although some may be incorporated into assemblies containing the seed,

and similarly for type B vertical bars). Since at most δs1m concentration of each
horizontal bar can be attached to an assembly containing s1, this implies that for all
t ≥ O(w logw), [αh-A](t) ≥ Ω( 1

w logw )− δs1m, which is Ω( 1
w logw ) by our choice of δs1 .

By the same reasoning, for all t ≥ O(w logw), [αh-B](t) ≥ Ω( 1
w logw ). Similarly, by

Lemma 16 and similar reasoning regarding the scarcity of s1-containing assemblies
that could attach to αv, for all t ≥ Ω(mk2 log(mk)), [αv](t) ≥ Ω( 1

mk2 log(mk) ).

Having derived these concentration bounds in the mass-action model, we now
analyze the stochastic assembly time of s1 into a terminal assembly.

By Lemma 14, the leftmost vertical bar’s bottom two rows assemble in expected
time O(log k + logm), using the fact that each tile type in the bottom two rows
can be assigned concentration Ω( 1

log k+logm ), to ensure that δ1 = Ω( 1
log k+logm) in

Lemma 14. Again applying Lemma 14, the expected time to assemble the complete
leftmost vertical bar from its seed row is at most O(mk2 log(mk)), using the fact that
there are O(1) tile types needed to complete the remaining rows, so these tile types
can be assigned concentration Ω(1), and in particular ensuring excess δ1 at least O(1)
in Lemma 14.

Once the leftmost vertical bar completes, and if the current time t = Ω(w logw),
then by our above-derived bound on the concentration of αh-A, the expected time
before a type A horizontal bar attaches to some binding site in the group A glues
on the right side is at most O(w logw)/k. This holds similarly for αh−B, so the
expected time before both attachments happen is also at most O(w logw)/k. Once
two horizontal bars have attached, and if the current time t = Ω(mk2(log k+ logm)),
by our above-derived bound on the concentration of αv, the expected time before
the next vertical bar attaches is at most O(mk2(log k + logm)). Once this occurs,
by Lemma 14, the expected time before the constant-size tile set shown in Figure 6
completes the placement of glues on the east side of the just-attached vertical bar is
at most O(mk2(log k + logm)). At this point the first stage is complete, requiring
time at most O(w logw) +O(mk2(log k+ logm)) (to wait for sufficient concentration
of horizontal and vertical bars) +O(mk2(log k+logm)) (to grow the leftmost vertical
bar) +O(w logw)/k (to attach two horizontal bars) +O(mk2(log k+logm)) (to attach
the second vertical bar) by linearity of expectation. Simplified, this is O(w logw) +
O(mk2(log k + logm)) +O(w logw)/k.

Repeating this analysis for each of the remaining stages, the total time for the
complete “skeleton” of Figure 5 to complete is at most m times the previous bound,
O(w logw) +O(m2k2(log k + logm)) +O(mw logw)/k, by linearity of expectation.

Finally, the filler tiles must tile the 3m empty regions left in the skeleton. Al-
though this assembly process likely begins before the full skeleton is complete, we
analyze it as if no filler tiles attach until the full skeleton is complete, as an upper
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696 HO-LIN CHEN AND DAVID DOTY

bound for the actual assembly time. Each of these regions is a rectangle (minus the
vertical arms of the horizontal bars) of diameter at most O(w+mk2), which is tiled by
a constant-size rectilinear tile set (a tile set in which each tile cooperates using north
and east glues to grow toward the southwest), where each tile type has concentration
Ω(1) at all times. By Theorem 4.4 of [3], the expected time for one of these regions
to be completely tiled is at most O(w + mk2), with an exponentially decaying tail
on the time distribution. Since there are 3m such regions assembling in parallel, and
each has an exponentially decaying tail, the time for all regions to completely fill is
at most O((w +mk2) logm).

Therefore, the entire expected assembly time is at most

O(w logw) +O(m2k2(log k + logm)) +O(mw logw)/k +O((w +mk2) logm).

We choose k = m = n1/5 and w = k4. Simplifying the above expression, this gives an
expected assembly time of O(n4/5 logn).

By using the base-conversion technique of [3] for all counters, the number of tile
types required could be reduced from O(log n) to the information-theoretically opti-
mal O( logn

log logn ). However, this is a now-standard technique for obtaining optimal tile
complexity of structures that “encode” a natural number n. Since the primary contri-
bution of our construction is the bound on assembly time, we have presented a simpler
(but larger than optimal) tile system for illustrative purposes. Unlike Theorem 17,
where the problem of obtaining small assembly depth for a shape S is trivialized by
allowing tile complexity |S|, obtaining fast assembly time is nontrivial whether tile
complexity is large or not. In fact, small tile complexity helps to obtain fast assembly
time, since with fewer tile types, one can distribute to each tile type a greater share of
the O(1) concentration allowed by the finite density constraint, which in turn reduces
the expected time for each tile to attach.

Also, it is possible to shave log factors from the assembly time analysis by using
the “optimal counter” tiles of [3], which grow an n × logn counter in the seeded
model in time O(n), compared to the suboptimal O(n log n) time required by the zig-
zag counters we use. However, our Lemma 12 does not take the “binding parallelism”
of the seeded model into account, but instead implicitly assumes in the worst case
that the frontier is always size 1. A more careful analysis could remove some of these
log factors, but we have allowed the log factors in order to simplify the analysis, since
our main goal is to obtain a sublinear time bound.

6. Nearly maximally parallel hierarchical assembly of a square with
optimal tile complexity. In this section we show that under the hierarchical model
of tile assembly, it is possible to self-assemble an n× n square, for arbitrary n ∈ Z

+,
using the asymptotically optimal O( log n

log logn ) number of tile types. Furthermore, the
square assembles using nearly the maximum possible parallelism in the hierarchical
model, building the final square out of four assembled subsquares of size n/2 × n/2,
which are themselves each assembled from four subsquares of size n/4×n/4, etc. The
suboptimality stems from the need for us to construct the smallest subsquares of size
O(log n)×O(log n) = O(log2 n) without parallelism.

We formalize the notion of “parallelism through hierarchical assembly” as follows.
Let T = (T, τ) be a directed hierarchical TAS. Let α ∈ A[T ] be a producible

assembly. An assembly tree Υ of α is a full binary tree whose nodes are labeled
by producible assemblies, with α labeling the root, individual tile types labeling the
|α| leaves, and node v having children u1 and u2 with the requirement that u1 and
u2 can attach to assemble v. That is, Υ represents one possible pathway through
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which α could be produced from individual tile types in T . Let Υ(T ) denote the
set of all assembly trees of T . Say that an assembly tree is terminal if its root is
a terminal assembly. Let Υ�(T ) denote the set of all terminal assembly trees of
T . Note that even a directed hierarchical TAS can have multiple terminal assembly
trees that all have the same root terminal assembly. The assembly depth of T is
depthda(T ) = maxΥ∈Υ�(T ) depth(Υ), where depth(Υ) denotes the standard depth of
the tree Υ, the length of the longest path from any leaf to the root.

It is clear by the definition that for any shape S with N points strictly self-
assembled by a tile system T , depthda(T ) ≥ logN . Our construction achieves
depthda(T ) ≤ O(log2 n) in the case of assembling an n× n square Sn, while simulta-
neously obtaining optimal tile complexity O( log n

log logn ).
31 In other words, not only is it

the case that every producible assembly can assemble into the terminal assembly (by
the definition of directed), but in fact every producible assembly is at most O(log2 n)
attachment events from becoming the terminal assembly.

Demaine et al. [16] studied a complexity measure similar to assembly depth called
stage complexity for another variant of the aTAM known as staged assembly. In the
staged assembly model, a hierarchical model of attachment is used, with the added
ability to prepare different assemblies in separate test tubes. The separate test tubes
are allowed to reach a terminal state, after which any produced nonterminal assemblies
(including individual tile) are assumed to be washed away, before combining the tubes.
The stage complexity of a tile system is similarly defined to be the depth of the “mixing
tree” describing the order of test tube mixing steps. Our model is more restrictive
in that it permits only one test tube (“bin complexity 1” in the language of [16]).
In a sense, Theorem 17 “automates” the highly selective mixing that is assumed to
be externally controlled in the staged assembly model, while paying only a quadratic
price in the number of parallel assembly stages required. It naturally pays a price in
tile complexity as well, since unlike the staged model in which both the tile types and
the mixing order can encode information, the construction of Theorem 17 must encode
the size n of the square entirely in the tile types. The primary challenge in achieving a
highly parallel square construction in the hierarchical model—a challenge not present
in the staged assembly model—is the prevention of overlapping subassemblies.32

Theorem 17. For all n ∈ N, there is a hierarchical TAS T = (T, 2) such that T
strictly self-assembles an n×n square, |T | = O( logn

log logn ), and depthda(T ) = O(log2 n).

Proof. A high-level outline of the construction is shown in Figure 7. We assemble a
number of blocks of width O(log n)×O(logn), each of which represents in its tile types
an address indicating its position in the square, and the block binds only to (some
of) its neighboring blocks. The blocks assemble using standard single-tile accretion
(actually we cannot directly enforce this in the model, but each block will nonetheless

31In [6], the authors prove that whenever n ∈ N is algorithmically random, at least
Ω(logn/ log logn) tile types are required to strictly self-assemble an n × n square in the hierar-
chical model. Actually, that paper states only that this holds for the q-tile model, in which some
constant q exists that limits the size of attachable assemblies other than those containing a special
seed tile, and the authors claim that the proof requires the bound q, but in fact their proof does not
use the bound q and works for the general hierarchical model [48]. Thus the tile complexity obtained
in Theorem 17 is asymptotically optimal.

32Adleman [2] showed an Ω(n) lower bound (in a much different and more permissive model of
assembly time than in the present paper; later improved to Ω(n logn) by Adleman et al. [4]) for the
problem of assembling a 1×n line from n distinct tile types t1, . . . , tn. The intuitive reason that the
time is not O(logn) is that if assemblies α1 = ti . . . tj and α2 = ti′ . . . tj′ form, with i < i′ < j < j′,
then α1 can never attach to α2 because they overlap. Staged assembly can be used to control the
overlap directly by permitting only the growth of lines covering dyadic intervals.
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698 HO-LIN CHEN AND DAVID DOTY

Fig. 7. Overview of the hierarchical TAS that assembles an n×n square with O(log2 n) assembly

depth and O( logn
log logn

) tile complexity. Each square in the figure represents a block of width O(logn)

with each side of each block encoding its (x, y)-address in the square. (The encoding scheme is shown
in more detail in Figure 9.) Each of the thin solid lines is a strength-1 glue intended to connect the
block to other blocks. Dotted lines are drawn between those glues that are intended to bind to each
other. The circled subassemblies show the order of growth of one particular block (at coordinates
(3, 2)) into the final square.

assemble the same structure in either model). Since each block is O(log2 n) total
tiles, this is the source of the suboptimal O(log2 n) assembly depth. Once the blocks
are assembled, however, they assemble into the full square using O(log n) assembly
depth. All blocks (x, y) with x even bind to (x+1, y) to create the two-block assembly
(x, y) : (x+1, y), and then all blocks (x, y) : (x+1, y) with y even bind to (x, y+1) :
(x+1, y+1) to create the four-block assembly (x, y) : (x+1, y) : (x, y+1) : (x+1, y+1),
etc.

The construction will actually control the width of the square only to within an
additive logarithmic factor by bringing together blocks of width and length Θ(logn);
standard techniques can be used to make the square precisely n × n. For instance,

D
ow

nl
oa

de
d 

01
/0

7/
23

 to
 9

9.
16

7.
21

0.
1 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PARALLELISM AND TIME IN HIERARCHICAL SELF-ASSEMBLY 699

Fig. 8. Design of block sizes to handle values of n that are not a power of two. There are
always exactly 2k × 2k blocks, where 2k ≤ n < 2k+1. Each block doubles its length along the x-axis
(resp., y-axis) if n− 2k exceeds its x-coordinate (resp., y-coordinate).

we could add O(log n) total filler tiles to the leftmost and bottommost blocks, while
adding only O(log2 n) to the assembly depth and O(log logn) to the tile complexity
since such filler tiles could be assembled from a counter that counts to logn using
O(log logn) tile types. For simplicity we describe the desired width n as the number
of blocks instead of the desired dimensions of the square and omit the details of this
last step of filling in the logarithmic gap.

Figure 7 outlines the construction of a square when the number of blocks n is a
power of two. Figure 8 shows how to modify the blocks so that some of them are double
in width, double in height, or both, to achieve a total square width that is an arbitrary
positive integer. Each block contains the same O( logn

log logn ) tile types that encode n,
and as the block assembles it randomly chooses x- and y-coordinates, which represent
an index in the square. This random choice is implemented through competition
between tile types that share the same “input” glues but represent different bits of x
or y. These are used to determine the block’s own size and to determine what series
of bumps and dents to place on its perimeter to enforce that the only blocks that
can bind are adjacent in Figure 7. The coordinates are also used to determine where
to place strength-1 glues. The same strength-1 glue is used uniformly throughout
Figure 7. The bumps and dents ensure that no two blocks can attach unless they are
adjacent in the figure.

The growth of an individual block is shown in Figure 9. We describe the assembly
as if it grows only by single-tile accretion. There are some strength-2 glues so this is
not completely accurate, but the growth of the block is “polyomino-safe,” to borrow
a term of Winfree [57]. By design, no assembly larger than four can form except by
attachment to the growing block, and even if these assemblies attach at once to the
block rather than by single-tile accretion, the correct operation of the block growth
is unaffected. This is due to the fact that all strength-2 glues are “one-to-one”; no
strength-2 glue is shared as an “output” (in the direction of growth in the seeded
model) by two different tile types. This implies that no partial assembly occurring
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Fig. 9. Assembly of O(logn) × O(logn) size block from O( log n
log logn

) tile types. Every block

starts from the same tile types that encode n − 2k, using exactly k bits; in this example, n = 22,
so k = 4 and n − 2k is 0110 in binary using 4 bits. Thick solid lines represent strength-2 glues.
For clarity, strength-1 glues are shown selectively to help verify that a certain order of growth is
possible to enforce. The tiles encode n − 2k in base b chosen to be a power of two such that

log n
log log n

≤ b < 2 log n
log log n

(labeled “seed” for intuition, although those tiles start unattached). n− 2k

is first converted to binary, and each of its bits is quadrupled to make room for the bumps and dents.
A constant-size set of tile types does the rest. Then x and y coordinates are randomly guessed and
simultaneously compared to n − 2k; if either is smaller, that dimension is doubled in length (in
this example the height is doubled but not the width). At the same time, the values of x and y are
compared as described in the proof of Theorem 17 to determine where to place strength-1 glues.

away from the main “seeded” assembly can grow “backward” and place an incorrect
tile.

To form a square of size n × n “units” (where a unit is O(log n), the width and
height of a small block), we choose the largest power of two 2k ≤ n and assemble
exactly 2k × 2k different types of blocks, doubling the width (resp., height) of the
first n − 2k of them in the x-direction (resp., y-direction), as in Figure 8. The or-
ange (medium-dark in gray scale) tile types and the base-conversion tile types that
attach to them in Figure 9 are the only nonconstant set of tile types. Borrowing a
technique from [3], we will represent n in base b, where b ≈ logn/ log logn, using
≈ logn/ log logn unique tile types, and we use O(log n/ log logn) tile types to con-
vert n− 2k to binary and O(1) tile types to accomplish all the other tasks needed to
assemble the block.

Choose b = 2m to be a power of two such that logn/ log logn ≤ b < 2 logn/ log logn.
Each digit in base b can represent m bits of n − 2k. n − 2k is encoded in exactly
m ·

⌈
k
m

⌉
= O( log n

log logn ) base-b digits. The blue (dark in gray-scale) tile types in Fig-

ure 9 convert n−2k from base b to binary and at the same time represent n−2k with its
“bit-quadrupled” version (e.g., 0110 �→ 0000111111110000), since each bit along the
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edge will eventually require width four to make room to place the bumps properly.33

The set of base-conversion tile types from [3] of cardinality O(log n/ log logn) can be
easily modified to achieve this “bit-quadrupling” without increasing the asymptotic
tile complexity. The potential doubling of height and/or width can be achieved with
a constant set of tile types since the unit width is implicitly encoded in the width of
the block and a constant set of “rotator” tiles similar to those in Figure 9 can be used
to add extra unit-width blocks when needed. The counterclockwise order of growth
ensures that if not all of the bumps and dents are formed, then at least one of the four
strength-1 glues necessary for an attachment event to occur is not yet present in one
of the blocks. To ensure that the TAS is directed, we do not include base-conversion
tiles for any digit d ∈ {0, 1, . . . , b− 1} that does not appear in the base-b expansion of
n− 2k; otherwise those tiles will form unused terminal assemblies. Each glue in a tile
type representing a bit is “marked,” indicating whether it is the most significant bit,
least significant bit, or interior bit, as well as marked with its relative position among
the four copies of the bit.

Once n − 2k is converted to binary, we use nondeterministic attachment of tiles
to the north of this value to randomly guess 2k bits that represent the x- and y-
coordinates of the block, meaning the binary numbers represented on the top and
right, respectively, of each block in Figure 7. To be precise, we must actually choose
each of x and y to be a random bit string that is not all 1’s, since each represents a
connection between two blocks, of which there are 2k − 1 along each dimension. It is
straightforward to encode into the tile types the logic that if the first k bits were 1,
then the final bit must be 0. A number of additional computations are done on these
values (some computations are possible to do as the values are guessed). The results
of these computations will be stored in the rightmost tile type and propagated to all
subsequent tile types. First, each of x and y is compared to n− 2k to determine how
large to make each dimension of the block. In the example of Figure 9, y < n − 2k

and x ≥ n − 2k, so the block is one “unit” wide and two “units” high. Also, the
binary expansions of x and y are themselves compared to determine where to place
strength-1 glues. After x and y are determined, to place bumps and dents on the
left and bottom of the block, the values x − 1 and y − 1 must be computed, which
requires assembling from least significant to most significant, so this is delayed until
after the first 90-degree rotation shown in Figure 9. Once these values are computed,
they are also used to determine placement of glues. The entire block is created by
rotating either counterclockwise (in the case of x even, as shown in the bottom right
of Figure 9) or clockwise (in the case of x odd, not shown, but the exact mirror image
of the bottom right of Figure 9), placing bumps and dents and single-strength glues.
The glues are placed in the order shown by the rotations, so that the last glue to
be (potentially) placed is the top east-facing glue in the case of x even, or the top
west-facing glue in the case of x odd.

By inspection of Figure 7, it is routine to verify that the following rules can be
used to determine placement of strength-1 glues. If x is even, then place two single-
strength glues on the right edge. If x is odd, then place two single-strength glues on
the left edge. For a natural number n, define t(n) to be the number of trailing 1’s in

33The bumps cannot simply be placed with strength-2 glues above a width-1 or even width-2
representation of a bit in the obvious way; otherwise there would be nothing to force the bumps to
be present before the interblock strength-1 glues. If the bumps are allowed to grow in parallel with
the rest of the assembly, then they may not complete quickly enough. Width four is required to
create a “linear assembly path” for the bumps and dents tiles to follow, ensuring that growth of the
block continues only once the path is complete.
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n’s binary expansion. If t(x) ≥ t(y), then place exactly one strength-1 glue on the
top edge. If t(x) ≥ t(y − 1), then place exactly one strength-1 glue on the bottom
edge. If t(x − 1) ≤ t(y) + 1 and x is even, then place exactly one strength-1 glue on
the left edge. If t(x) ≤ t(y) + 1 and x is odd, then place exactly one strength-1 glue
on the right edge.

Each of these computations (for placement of glues and for determining block
dimensions) can be computed by a deterministic finite automaton whose input symbols
represent tuples of bits from n− 2k, x, x− 1, y− 1, and y. These automata can then
be combined in a product construction and embedded into the tile types that accrete
in the row above n− 2k if only x and y are needed, and embedded into tile types that
are placed after the first rotation if x − 1 or y − 1 is needed. Since the decision for
placing glue on the top edge requires only x and y, this ensures that the decision for
each glue placement can be made before the region containing the potential glue site
is assembled.

As shown in Figure 9, some padding with filler tiles is necessary to make the block
a perfect rectangle. Also, some padding is needed in the case of a doubling of height
or width, to ensure that the resulting assembly has height or width precisely twice
that of the nondoubled version.

7. Open questions. There are some interesting questions that remain open.
Say that a tile system T strictly self-assembles a shape S ⊆ Z

2 if all terminal assem-
blies α̂ of T , appropriately translated, satisfy dom α̂ = S.

1. What upper or lower bound can be placed on the quantity depthda(T ) for
T a hierarchical TAS that strictly self-assembles an n × n square with optimal tile
complexity O( logn

log logn ) (or even with nearly optimal tile complexity O(log n))? It is not

obvious how to show either depthda(T ) = o(log2 n) for some such T or depthda(T ) =
ω(logn) for all such T . Obtaining bounds for more general shapes would also be
interesting.

2. What is the complexity of the following decision problems?

HierDirectedAssembly =

{
〈α, T 〉

∣∣∣∣ T is a directed hierarchical TAS with
unique producible terminal assembly α

}
,

HierDirectedShape =

{
〈S, T 〉

∣∣∣∣ T is a directed hierarchical TAS that
strictly self-assembles finite shape S

}
,

HierUniqueShape =

{
〈S, T 〉

∣∣∣∣ T is a hierarchical TAS that
strictly self-assembles finite shape S

}
.

In the case of the seeded aTAM, the seeded variants of these problems are known to
be in P [5] for the first two, and coNP-complete [6] for the last.

For three-dimensional (3D) hierarchical tile systems, HierDirectedAssembly

was shown to be coNP-complete by Cannon et al. [12].34 Furthermore, their proof
shows that the 3D version of HierDirectedShape is coNP-hard.35

34In that paper, the problem is called the Unique Assembly Verification problem.
35Their technique to reduce the complement of SAT to the problem is such that, if the formula

is unsatisfiable, then T has a unique terminal assembly α (hence strictly self-assembles the shape
dom α), and if the formula is satisfiable, then T produces multiple terminal assemblies, and at least
two of them are guaranteed to have different shapes. Therefore, their proof also shows that the
3D version of HierDirectedShape is coNP-hard. The proof that HierDirectedAssembly ∈ coNP
(which applies to any number of dimensions) does not so easily apply to HierDirectedShape, so
the computational complexity of the 2D shape version of the problem is still open.
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See [7] for definitions of complexity classes ΣP
i and ΠP

i , where NP = ΣP
1 and

coNP = ΠP
1 . The “obvious” containments are HierDirectedAssembly ∈ coNP

(proven in [12, Lemma 4.3]),HierUniqueShape ∈ ΠP
2 ,

36 andHierDirectedShape ∈
ΠP

2 .
37 It is open whether HierDirectedAssembly is coNP-hard (in two dimensions)

and whether HierUniqueShape or HierDirectedShape is ΠP
2 -hard. The proof of

HierUniqueShape in the “multiple-tile” model of [6] can be used to show that
HierUniqueShape (in the hierarchical aTAM as defined in this paper) is coNP-
hard [6, 48].

3. What is the complexity of the following decision problems?

HierMinTileSet

=

{
〈S, c〉

∣∣∣∣ (∃T = (T, τ)) T is a hierarchical TAS with
|T | ≤ c and T strictly self-assembles finite shape S

}
,

HierDirectedMinTileSet

=

{
〈S, c〉

∣∣∣∣ (∃T = (T, τ)) T is a directed hierarchical TAS with
|T | ≤ c and T strictly self-assembles finite shape S

}
.

In the case of the seeded aTAM, the seeded variants of these problems are known to
be ΣP

2 -complete [11] and NP-complete [5], respectively.
4. What is the optimal time complexity of strictly self-assembling an n×n square

with a hierarchical TAS? Any shape with diameter n? What if we require the TAS
to be directed?

5. Two asymptotically unrealistic aspects of the model are the assumption of
a constant rate of diffusion of assemblies and a constant binding strength threshold
required to bind two assemblies together. Large assemblies will diffuse more slowly in
a well-mixed solution; some simple models predict that the diffusion rate of a molecule
is inversely proportional to its diameter [10, 42]. It is conceivable that an assembly
model properly accounting for diffusion rates could enforce an absolute lower bound
of Ω(D) on the assembly time required to assemble any shape of diameter D.

The binding strength threshold of the seeded aTAM is a simplified model of
a more complicated approximation in the kinetic tile assembly model (kTAM, [55]).
Tiles in reality will occasionally detach, but so long as their concentration is sufficient,
another tile will reattach after not too much time. While our model accounts directly
for concentrations of large assemblies, it only accounts for this concentration up to
the moment of first binding. A more realistic model might require a larger binding

36The producibility of α is decidable in polynomial time [21]. For k ∈ N, let A[T ]≤k = {α ∈
A[T ] | |α| ≤ k}. Then 〈S,T 〉 ∈ HierUniqueShape if and only if for all α ∈ A[T ]≤2|S|

• |α| ≤ |S| (if this is verified for all α ∈ A[T ]≤2|S|, then no assembly larger than 2|S| is
producible either),

• if |α| < |S|, then there exists γ ∈ A[T ]≤|S| attachable to α (so α �∈ A�[T ]), and
• if |α| = |S| (so α ∈ A�[T ] since nothing larger than S is producible), then S = dom α.

The second condition is a ∀∃ quantifier that makes the problem in ΠP
2 ; the other conditions have only

one ∃ or ∀. Note that the second check guarantees no assembly strictly smaller than |S| is terminal,
and the first check guarantees that no assembly strictly larger than |S| is producible. Therefore,
there must be at least one α ∈ A�[T ] with |α| = |S| (and the third check guarantees that it has
shape S).

37Using similar reasoning as above, we have 〈S, T 〉 ∈ HierDirectedShape if and only if for all
α ∈ A[T ]≤2|S|

• |α| ≤ |S|,
• if |α| < |S|, then there exists γ ∈ A[T ]≤|S| attachable to α (so α �∈ A�[T ]), and
• for all β ∈ A[T ]≤|S|, if |α| = |β| = |S| (so α, β ∈ A�[T ]), then α = β and S = dom α.
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strength threshold to balance the fact that, if a large assembly detaches, it may take a
long time to reattach. In particular, the seeded aTAM is justifiable as a model, despite
its lack of reverse reactions or modeling of strength-1 attachments (which happen in
reality but have a higher reverse rate than higher strength attachments), in part
due to Winfree’s proof [55, 56] that under suitable conditions (in particular setting
concentrations and binding energies such that the rate of forward attachments is just
barely larger than the rate of backward detachments of strength-2-bound tiles), the
kTAM “simulates the aTAM with high probability.” It is an open question whether
there is any similar theorem that can be proven in the hierarchical aTAM, showing
that detachment reactions may be safely ignored under certain conditions.

Incorporating these and other physical phenomena into the hierarchical assembly
model would be an interesting challenge.

Appendix A. Formal definition of abstract Tile Assembly Model. This
section gives a succinct definition of the abstract Tile Assembly Model (aTAM [55]).
This is not a tutorial; for readers unfamiliar with the aTAM, [45] gives an excellent
introduction to the model.

Fix an alphabet Σ. Σ∗ is the set of finite strings over Σ. Given a discrete object O,
〈O〉 denotes a standard encoding of O as an element of Σ∗. Z, Z+, N, R+ denote the
set of integers, positive integers, nonnegative integers, and nonnegative real numbers,
respectively. For a set A, P(A) denotes the power set of A. Given A ⊆ Z

2, the
full grid graph of A is the undirected graph Gf

A = (V,E), where V = A, and for all
u, v ∈ V , {u, v} ∈ E ⇐⇒ ‖u − v‖2 = 1, i.e., if and only if u and v are adjacent on
the integer Cartesian plane. A shape is a set S ⊆ Z

2 such that Gf
S is connected.

A tile type is a tuple t ∈ (Σ∗ × N)4, i.e., a unit square with four sides listed in
some standardized order, each side having a glue label (a.k.a. glue) � ∈ Σ∗ and a
nonnegative integer strength. For a set of tile types T , let Λ(T ) ⊂ Σ∗ denote the set
of all glue labels of tile types in T . Let {N, S,E,W} denote the directions consisting
of unit vectors {(0, 1), (0,−1), (1, 0), (−1, 0)}. Given a tile type t and a direction
d ∈ {N, S,E,W}, t(d) ∈ Λ(T ) denotes the glue label on t in direction d. We assume a
finite set T of tile types, but an infinite number of copies of each tile type, each copy
referred to as a tile. An assembly is a nonempty connected arrangement of tiles on the
integer lattice Z

2, i.e., a partial function α : Z2 ��� T such that Gf
dom α is connected

and dom α �= ∅. The shape of α is dom α. Write |α| to denote |dom α|. Given two
assemblies α, β : Z2 ��� T , we say α is a subassembly of β, and we write α � β, if
dom α ⊆ dom β and, for all points p ∈ dom α, α(p) = β(p).

Given two assemblies α and β, we say α and β are equivalent up to translation,
written α � β, if there is a vector 
x ∈ Z

2 such that dom α = dom β + 
z (where for
A ⊆ Z

2, A+ 
z is defined to be { p+ 
z | p ∈ A }) and for all p ∈ dom β, α(p + 
z) =
β(p). In this case we say that β is a translation of α. Given a shape S ⊆ Z

2, we
say that S is canonical if S ⊆ N

2, (x, 0) ∈ S for some x ∈ N, and (0, y) ∈ S for
some y ∈ N. In other words, S is located entirely in the first quadrant, but as far
to the left and down as possible. We say an assembly α is canonical if dom α is
canonical. For each finite assembly α, there is exactly one canonical assembly α̃ such
that α � α̃. Given such a finite α, we say α̃ is the canonical assembly of α. For
brevity and clarity, we will tend to abuse notation and speak of assemblies equivalent
up to translation as if they are the same object, often taking α to mean α̃, particularly
when discussing concentrations. We have fixed assemblies at certain positions on Z

2

only for mathematical convenience in some contexts, but of course real assemblies
float freely in solution and do not have a fixed position.

D
ow

nl
oa

de
d 

01
/0

7/
23

 to
 9

9.
16

7.
21

0.
1 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PARALLELISM AND TIME IN HIERARCHICAL SELF-ASSEMBLY 705

Let α be an assembly, and let p ∈ dom α and d ∈ {N, S,E,W} such that p +
d ∈ dom α. Let t = α(p) and t′ = α(p + d). We say that the tiles t and t′ at
positions p and p + d interact if t(d) = t′(−d) and g(t(d)) > 0, i.e., if the glue
labels on their abutting sides are equal and have positive strength. Each assembly
α induces a binding graph Gb

α, a grid graph G = (Vα, Eα), where Vα = dom α, and
{p1, p2} ∈ Eα ⇐⇒ α(p1) interacts with α(p2).

38 Given τ ∈ Z
+, α is τ-stable if every

cut of Gb
α has weight at least τ , where the weight of an edge is the strength of the

glue it represents. That is, α is τ -stable if at least energy τ is required to separate α
into two parts. When τ is clear from the context, we say α is stable.

A.1. Seeded aTAM. A seeded tile assembly system (seeded TAS) is a triple
T = (T, σ, τ), where T is a finite set of tile types, σ : Z

2 ��� T is the finite, τ -
stable seed assembly, and τ ∈ Z

+ is the temperature. Given two τ -stable assemblies
α, β : Z2 ��� T , we write α →T

1 β if α � β and |dom β \ dom α| = 1. In this case we
say α T -produces β in one step.39 If α →T

1 β, dom β \dom α = {p}, and t = β(p), we
write β = α+ (p �→ t). The T -frontier of α is the set ∂T α =

⋃
α→T

1 β dom β \ dom α,

the set of empty locations at which a tile could stably attach to α.
A sequence of k ∈ Z

+∪{∞} assemblies 
α = (α0, α1, . . .) is a T -assembly sequence
if, for all 1 ≤ i < k, αi−1 →T

1 αi. We write α →T β, and we say α T -produces
β (in 0 or more steps) if there is a T -assembly sequence 
α = (α0, α1, . . .) of length
k = |dom β \ dom α| + 1 such that (1) α = α0, (2) dom β =

⋃
0≤i<k dom αi, and

(3) for all 0 ≤ i < k, αi � β. In this case, we say that β is the result of 
α, written
β = res(
α). If k is finite, then it is routine to verify that res(
α) = αk−1.

40 We say
α is T -producible if σ →T α, and we write A[T ] to denote the set of T -producible
canonical assemblies. The relation →T is a partial order on A[T ] [35, 43].41 A T -
assembly sequence α0, α1, . . . is fair if, for all i and all p ∈ ∂T αi, there exists j such
that αj(p) is defined; i.e., no frontier location is “starved.”

An assembly α is T -terminal if α is τ -stable and ∂T α = ∅. It is easy to check that
an assembly sequence 
α is fair if and only if res(
α) is terminal. We writeA�[T ] ⊆ A[T ]
to denote the set of T -producible, T -terminal canonical assemblies.

A seeded TAS T is directed (a.k.a. deterministic, confluent) if the poset
(A[T ],→T ) is directed, i.e., if for each α, β ∈ A[T ], there exists γ ∈ A[T ] such
that α →T γ and β →T γ.42 We say that a TAS T strictly self-assembles a shape
S ⊆ Z

2 if, for all α ∈ A�[T ], dom α = S, i.e., if every terminal assembly produced
by T has shape S. If T strictly self-assembles some shape S, we say that T is strict.
Note that the implication “T is directed =⇒ T is strict” holds, but the converse

38For Gf
dom α = (Vdom α, Edom α) and Gb

α = (Vα, Eα), Gb
α is a spanning subgraph of Gf

dom α:
Vα = Vdom α and Eα ⊆ Edom α.

39Intuitively α →T
1 β means that α can grow into β by the addition of a single tile; the fact that

we require both α and β to be τ -stable implies in particular that the new tile is able to bind to α
with strength at least τ . It is easy to check that had we instead required only α to be τ -stable, and
required that the cut of β separating α from the new tile have strength at least τ , then this implies
that β is also τ -stable.

40If we had defined the relation →T based on only finite assembly sequences, then →T would be
simply the reflexive, transitive closure (→T

1 )∗ of →T
1 . But this would mean that no infinite assembly

could be produced from a finite assembly, even though there is a well-defined, unique “limit assembly”
of every infinite assembly sequence.

41In fact, it is a partial order on the set of τ -stable assemblies, including even those that are not
T -producible.

42The following two convenient characterizations of “directed” are routine to verify. T is directed if
and only if |A�[T ]| = 1. T is not directed if and only if there exist α, β ∈ A[T ] and p ∈ dom α∩dom β
such that α(p) �= β(p).
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does not hold.

A.2. Hierarchical aTAM. A hierarchical tile assembly system (hierarchical
TAS) is a pair T = (T, τ), where T is a finite set of tile types, and τ ∈ Z

+ is the
temperature. Let α, β : Z2 ��� T be two (possibly noncanonical) assemblies. Say that
α and β are nonoverlapping if dom α ∩ dom β = ∅. If α and β are nonoverlapping
assemblies, define α∪β to be the assembly γ defined by γ(p) = α(p) for all p ∈ dom α,
γ(p) = β(p) for all p ∈ dom β, and γ(p) is undefined for all p ∈ Z

2 \ (dom α∪dom β).
An assembly γ is singular if γ(p) = t for some p ∈ Z

2 and some t ∈ T and γ(p′) is
undefined for all p′ ∈ Z

2 \ {p}. Given a hierarchical TAS T = (T, τ), an assembly γ is
T -producible if either (1) γ is singular, or (2) there exist producible nonoverlapping
assemblies α and β such that γ = α ∪ β and γ is τ -stable. In the latter case, write
α + β → γ. An assembly α is T -terminal if for every producible assembly β such
that α and β are nonoverlapping, α ∪ β is not τ -stable.43 Define A[T ] to be the
set of all T -producible canonical assemblies. Define A�[T ] ⊆ A[T ] to be the set of
all T -producible, T -terminal canonical assemblies. A hierarchical TAS T is directed
(a.k.a. deterministic, confluent) if |A�[T ]| = 1. We say that a TAS T strictly self-
assembles a shape S ⊆ Z

2 if, for all α ∈ A�[T ], dom α = S, i.e., if every terminal
assembly produced by T has shape S.

Let T be a hierarchical TAS, and let α ∈ A[T ] be a T -producible assembly. An
assembly tree Υ of α̂ is a full binary tree with |α̂| leaves, whose nodes are labeled
by T -producible assemblies, with α̂ labeling the root, singular assemblies labeling the
leaves, and node u labeled with γ having children u1 labeled with α and u2 labeled
with β, with the requirement that α + β → γ. That is, Υ represents one possible
pathway through which α̂ could be produced from individual tile types in T . Let Υ(T )
denote the set of all assembly trees of T . Say that an assembly tree is T -terminal if its
root is a T -terminal assembly. Let Υ�(T ) denote the set of all T -terminal assembly
trees of T . Note that even a directed hierarchical TAS can have multiple terminal
assembly trees that all have the same root terminal assembly.

When T is clear from context, we may omit T from the notation above and instead
write →1, →, ∂α, frontier, assembly sequence, produces, producible, and terminal. We
also assume without loss of generality that every positive-strength glue occurring in
some tile type in some direction also occurs in some tile type in the opposite direction,
i.e., there are no “effectively null” positive-strength glues.
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43The restriction on overlap is a model of a chemical phenomenon known as steric hindrance [52,
section 5.11] or, particularly when employed as a design tool for intentional prevention of unwanted
binding in synthesized molecules, steric protection [30, 31, 32].
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[37] J. Maňuch, L. Stacho, and C. Stoll, Step-assembly with a constant number of tile types,
in Proceedings of the 20th International Symposium on Algorithms and Computation,
Springer, Berlin, Heidelberg, 2009, pp. 954–963.

[38] J. E. Padilla, W. Liu, and N. C. Seeman, Programmed hierarchical self-assembly of a
quasiperiodic tiling pattern, in Proceedings of the 8th Annual Conference on Foundations
of Nanoscience: Self-Assembled Architectures and Devices (Snowbird, UT, 2011), Science
Technica, Washington, DC, 2011, pp. 49–50.

[39] M. J. Patitz, An introduction to tile-based self-assembly and a survey of recent results, Natural
Comput., 13 (2014), pp. 195–224.

[40] M. J. Patitz and S. M. Summers, Identifying shapes using self-assembly, Algorithmica, 64
(2012), pp. 481–510.

[41] J. H. Reif, Local parallel biomolecular computation, in DNA Based Computers III (Philadel-
phia, 1997), DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 48, AMS, Providence,
RI, 1999, pp. 217–254.

[42] J. Riseman and J. G. Kirkwood, The intrinsic viscosity, translational and rotatory diffusion
constants of rod-like macromolecules in solution, J. Chem. Phys., 18 (1950), pp. 512–516.

[43] P. W. K. Rothemund, Theory and Experiments in Algorithmic Self-Assembly, Ph.D. thesis,
University of Southern California, Los Angeles, CA, 2001.

[44] P. W. K. Rothemund, N. Papadakis, and E. Winfree, Algorithmic self-assembly of DNA
Sierpinski triangles, PLoS Biol., 2 (2004), pp. 2041–2053.

[45] P. W. K. Rothemund and E. Winfree, The program-size complexity of self-assembled squares
(extended abstract), in Proceedings of the 32nd Annual ACM Symposium on Theory of
Computing, ACM, New York, 2000, pp. 459–468.

D
ow

nl
oa

de
d 

01
/0

7/
23

 to
 9

9.
16

7.
21

0.
1 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PARALLELISM AND TIME IN HIERARCHICAL SELF-ASSEMBLY 709

[46] R. Schulman and E. Winfree, Synthesis of crystals with a programmable kinetic barrier to
nucleation, Proc. Natl. Acad. Sci. USA, 104 (2007), pp. 15236–15241.

[47] R. Schulman and E. Winfree, Programmable control of nucleation for algorithmic
self-assembly, SIAM J. Comput., 39 (2009), pp. 1581–1616, https://doi.org/10.1137/
070680266.

[48] R. Schweller, personal communication, 2016.
[49] N. C. Seeman, Nucleic-acid junctions and lattices, J. Theoret. Biol., 99 (1982), pp. 237–247.
[50] D. Soloveichik and E. Winfree, Complexity of self-assembled shapes, SIAM J. Comput., 36

(2007), pp. 1544–1569, https://doi.org/10.1137/S0097539704446712.
[51] S. M. Summers, Reducing tile complexity for the self-assembly of scaled shapes through tem-

perature programming, Algorithmica, 63 (2012), pp. 117–136.
[52] L. G. Wade, Organic Chemistry, 2nd ed., Prentice Hall, Englewood Cliffs, NJ, 1991.
[53] H. Wang, Proving theorems by pattern recognition – II, Bell Labs Tech. J., 40 (1961), pp. 1–41.
[54] H. Wang, Dominoes and the AEA case of the decision problem, in Proceedings of the Sym-

posium on Mathematical Theory of Automata (New York, 1962), Polytechnic Press of
Polytechnic Inst. of Brooklyn, New York, 1963, pp. 23–55.

[55] E. Winfree, Algorithmic Self-Assembly of DNA, Ph.D. thesis, California Institute of Technol-
ogy, Pasadena, CA, 1998.

[56] E. Winfree, Simulations of Computing by Self-Assembly, Technical report CaltechC-
STR:1998.22, California Institute of Technology, Pasadena, CA, 1998.

[57] E. Winfree, Self-healing tile sets, in Nanotechnology: Science and Computation, Natural
Computing Series, J. Chen, N. Jonoska, and G. Rozenberg, eds., Springer, Berlin, 2006,
pp. 55–78.

[58] A. Winslow, A brief tour of theoretical tile self-assembly, in International Workshop on Cel-
lular Automata and Discrete Complex Systems, Springer, Berlin, 2016, pp. 26–31.

D
ow

nl
oa

de
d 

01
/0

7/
23

 to
 9

9.
16

7.
21

0.
1 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/070680266
https://doi.org/10.1137/070680266
https://doi.org/10.1137/S0097539704446712

	Introduction
	Informal description of the abstract tile assembly model
	Time complexity in the hierarchical model
	Definition of time complexity of seeded tile systems
	Definition of time complexity of hierarchical tile systems
	Issues with defining hierarchical time complexity
	Formal definition of hierarchical time complexity


	Time complexity lower bound for hierarchical partial order systems
	Definition of hierarchical partial order systems
	Repetitious assemblies
	Linear time lower bound for partial order systems

	Assembly of a shape in time sublinear in its diameter
	Warm-up: A thin bar
	General techniques for bounding assembly time
	Construction of a fast-assembling shape

	Nearly maximally parallel hierarchical assembly of a square with optimal tile complexity
	Open questions
	Appendix A. Formal definition of abstract Tile Assembly Model
	Seeded aTAM
	Hierarchical aTAM

	Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


