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Abstract. We show that a DNA-based chemical system can be constructed such that it closely ap-
proximates the dynamic behavior of an arbitrary system of coupled chemical reactions. Using strand
displacement reactions as a primitive we explicitly construct reaction cascades with effectively uni-
molecular and bimolecular kinetics. Our construction allows for individual reactions to be coupled in
arbitrary ways such that reactants can participate in multiple reactions simultaneously, correctly repro-
ducing the desired dynamical properties. Thus arbitrary systems of chemical equations can be compiled
into chemistry. We illustrate our method on a chaotic Rossler attractor; simulations of the attractor
and of our proposed DNA-based implementation show good agreement.

1 Introduction

Chemical reaction equations and mass action kinetics provide a powerful mathematical language for describ-
ing and analyzing chemical systems. For well over a century, mass action kinetics has been used to model
chemical experiments, in order to predict and explain the evolution of the various species over time, and to
elucidate the dynamical properties of the system under investigation. Chemistry exhibits complex behavior
like oscillations, limit cycles, chaos or pattern formation, all of which can be explained by the corresponding
systems of coupled chemical reactions [1-3]. While the use of mass action kinetics to describe existing chem-
ical systems is well established, the inverse problem of experimentally implementing a given set of chemical
reactions is typically much harder, and has not been solved in general. Many systems of coupled chemical
equations appear to not have realizations in known chemistry.

Here we propose a method for implementing an arbitrary system of coupled chemical reactions using
nucleic acids. We develop an explicit implementation of unimolecular and bimolecular reactions which can
be combined into arbitrarily coupled reaction networks. In a formal system of chemical reactions such as
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a species may need to participate in multiple reactions, both as a reactant and/or as a product (species A,
B or C') and these reactions need to progress at rates determined by the rate constants (k1, k2 and k3). This
imposes onerous constraints on the chemical properties of the species participating in these reactions. For
example, it is likely hard to find a physical implementation of the chemical reaction equations using small
molecules, since small molecules have a limited set of reactivities. Information-bearing biopolymers such as
proteins or nucleic acids provide a more promising physical substrate for implementing arbitrary chemical
reactions. Nucleic acids have the unique advantage that interactions between different single-stranded species
can be programmed since sequence determines reactivity through Watson-Crick base pairing.

In our DNA implementation, we assign each formal species (e.g., A, B, C, D) to a set of DNA molecules.
In some instances it may be possible to map a formal species to a single oligonucleotide but more generally
a single formal species will correspond to several DNA species in order to reproduce the correct kinetics.
Effective interactions between the species are mediated by an additional set of DNA complexes. Since the
underlying chemistry involves aqueous-phase nucleic acid hybridization and strand exchange reactions, arbi-
trarily large rate constants and concentrations cannot be attained. However, any system of coupled chemical
reactions can be scaled to use smaller rate constants and concentrations without affecting the kinetics except
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Fig. 1: Strand displacement reactions. The 3’ end of each strand is indicated by an arrow. Functional sub-domains
are numbered and the star indicates complementarity. We use the underline notation 1* to indicate that this domain
may not be completely complementary to domain 1. The reaction between input strand A and gate g is initiated
at the toe-hold (dashed, sub-domain 1*). The reaction then proceeds through multiple short-lived intermediates and
leads to the release of an output strand B and the formation of a chemically inert double-stranded waste product.
Kinetically, the overall reaction is well approximated as being bimolecular, i.e., A + gLB, where we omit the
inert waste product. The value of the rate constant k& depends on reaction conditions (salt, temperature), length and
sequence composition of the toe-hold as well as the degree of complementarity between the toe-holds on the strand
and gate (domains 1 and 1%).

by a scaling factor (see Section 6). While our constructions are purely theoretical at this point, they are
based on realistic assumptions and provide a roadmap for future experiments.

In the next section we describe strand displacement reactions which will serve as the basic building block
for our construction. In the following section we show how to implement arbitrary unimolecular reactions,
and then extend our construction to cover bimolecular reactions. In the final section we give a demonstration
of our approach on a system due to Willamowski and Réssler [4] with 3 species and 7 reactions exhibiting
chaotic concentration fluctuations. Numerical simulations of the original formal system and our DNA-based
chemical reactions using realistic rate constants and concentrations are in good agreement.

2 Cascades of Strand Displacement Reactions

We use strand displacement reactions as the basic primitive for our constructions (Fig. 1). Strand displace-
ment has been found to be a flexible method for designing complex behaviors with nucleic acids including
motors, logic gates, and catalysts [5-8]. Although a strand displacement reaction involves multiple elemen-
tary steps, likely including a random walk process, it is well modeled as a second-order process for a wide
range of reaction conditions [9, 10]. The effective rate constant of the second-order process is governed by the
degree of sequence complementarity between the toeholds on the single-stranded species and on the partially
double-stranded species [10].

We have recently used strand displacement cascades to construct DNA-based logic circuits [6]. Here
we use some of the nomenclature and ideas from that work. Fig. 2 shows a two-stage strand displacement
cascade where an input single-stranded nucleic acid species (strand) initiates a strand displacement cascade
between two complexes (gates) leading to the release of an output strand. In strand displacement cascades,
a strand is functionally inactive before its release from a gate and becomes active upon becoming completely
single-stranded. For example, intermediate strand o cannot react with translator gate ¢ before it is released
from gate g because its toehold domain 3, which is required for initiating the reaction with ¢, is double-
stranded. Similarly, output Bs cannot initiate a downstream strand displacement cascade until it is released
from translator gate ¢ because its toehold domain 4 is double-stranded. However, upon the addition of free
As, intermediate strand o is released through strand displacement, which then causes the release of output
Bs. The release of strand Bs makes it capable of initiating other strand displacement cascades in turn. Note
that the binding of a toehold domain to its complement is transient unless a strand displacement reaction
can be initiated (in practice toehold domains are 2-10 nt long). Thus, for example, the 3 domain of input
As does not block the 3* domain of translator gate ¢.

An input or output strand has two regions: a recognition region which can participate in a strand
displacement reaction, and a history region which cannot. The sequence of the history region (e.g., domain
7 on strand Bs) is determined by the translator gate from which the strand was released. All strands with
the same recognition region react equivalently and we do not distinguish between them. For example, any
strand with recognition domain 1-2-3 is called As and any strand with recognition domain 4-5-6 is called Bs.
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Fig. 2: Two-stage strand displacement cascade. Functional domains are numbered and all toehold domains are dashed.
Different recognition regions are shown in different color. Input or output strands with identical recognition regions
react equivalently and are therefore grouped into the same species. For example, As is any strand with recognition
domain 1-2-3, and Bs is any strand with recognition domain 4-5-6, irrespective of their history domains. The two-
stage cascade shown produces Bs with history domain 7. Note that the sequences of the recognition regions of input
and output strands As and Bs (domains 1-2-3 and 4-5-6) may be completely unrelated to one another and therefore
such a two-stage strand displacement cascade can link any input with any output species. a) Input strand As binds
to gate g and by a strand displacement reaction releases the intermediate strand o. b) The intermediate strand o
binds translator gate ¢ and by a strand displacement reaction releases the output Bs.

Since there are no sequence constraints (i.e., complementarity or equality) between the recognition region
of the input strand As and the output strand Bs, arbitrary chains of such two-step cascades can be linked
together. This is possible for two-step cascades as shown; however, a one-step cascade would force a part
of the recognition region of the output strand to have sequence equality with the input strand (see “full
translator” in Ref. [6]). We call the second gate a translator gate to emphasize its role in translating the
input to the appropriate output. A two-step strand displacement cascade may output multiple strands if we
attach two outputs to translator gate t and extend the intermediate strand o (as is shown in Fig. 3). Again
no sequence constraints exist between the input and the output strands.

In the design of systems of coupled two-step cascades, nucleic acid sequences need to be constructed to
avoid unintended interactions. For instance, we can first design all recognition regions to have maximally
independent sequences, and then for every translator gate, design maximally independent history regions of
its output strands. Then a gate can react with only one recognition domain (g-type gates) or intermediate
strand (translator gates), ensuring the specificity of interactions. In addition, all sequences must have minimal
secondary structure, such as hairpin loops, because such structure can inhibit the desired interactions.

3 Arbitrary Unimolecular Reactions

As a first step we will implement the basic monomolecular reaction A LA B, such that A and B are single-
stranded nucleic acid species with completely independent recognition regions. As we will show, the appro-
priate monomolecular kinetics can be obtained as a limiting case of the reaction kinetics for a two-step strand
displacement cascade:
At p = {As +g % 0
0o+t — Bs

We use the notation As and Bs to mean the implementation of formal species A and B by DNA strands
with recognition regions unique for A and B, respectively. We now discuss the conditions required to make
the implementation valid. First, we will work in a regime where the concentrations [g] and [t] are in large
excess of [As] and [o] so that they remain effectively constant at initial values [g]o and [t]o respectively. Then
the two-step strand displacement cascade becomes equivalent to a pair of monomolecular reactions:

As qﬂo 0

qz2[tlo
0 —>

Bs
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Fig. 3: Molecular implementation of the unimolecular reaction A — B 4+ C. Orange boxes highlight the DNA species
As, Bs, and C's that correspond to the formal species A, B, and C. Rate constant ¢; can be reduced by decreasing
the complementarity between domains 1 and 1*. The sequences of the recognition regions of input and output strands
As, Bs, and Cs (domains 1-2-3, 4-5-6, and 7-8-9, respectively) may be completely unrelated to one another. The
regime for desired unimolecular kinetics (concentrations of g, ¢t and rate constants qi,q2) is described in the text.
a) Input strand As binds to gate g and by a strand displacement reaction releases the intermediate strand o. b) The
intermediate o binds translator gate t and by a strand displacement reaction releases the outputs Bs and C's.

By varying the toehold strength of gate g which determines rate constant ¢;, or the initial concentration
[glo, we set ¢1[g]o equal to the formal rate constant k and attain d[As]/dt = —k[As] as desired. To also
ensure that d[Bs]/dt = k[As], we make gz2[t]o large enough that intermediate strand [o] settles to its quasi-
steady-state value ¢i[g]o[As]/(gz2[t]o) on a much faster time scale than that on which [As] changes. Then
d[Bs]/dt = gz2[t]o[o] = q1[g]o[As] = k[As] as desired. To make the quasi-steady-state approximation hold in
this example, we can increase the relative toehold strength of gate ¢ compared to gate g, or use a much larger
initial concentration [t]p than [g]o.

While experimentally, it may be useful to vary the degree of toehold complementarity affecting g; or
concentration of gates [g]o to tune the effective rate constant, for simplicity throughout this paper we control
reaction kinetics by tuning toehold strengths, while treating all gates as being present at the same high
concentration . Thus we set ¢; equal to k/€.

The same scheme can be extended to more complex unimolecular reactions. Reactions with more than
one product species (e.g., A— B + C or A— 2B) including catalytic (e.g., A— A + B) and autocatalytic
reactions (e.g., A— 2A) can be constructed using a translator gate ¢ that releases multiple strands as in
Fig. 3. Removing the translator gate altogether allows for unimolecular decay reactions (e.g., A —). Fractional
product stoichiometry (e.g., A—(1/3)B + C) can be realized using a mixture of translator gates with some
fraction having incomplete output strands. For example, reaction A —(1/3)B+ C can be implemented if 2/3
of translator gates t in Fig. 3 are missing the 7-8 domains.!

Arbitrary sets of unimolecular reactions can be coupled together by reusing the same recognition region
in multiple reactions. Each reaction corresponds to a distinct two-step strand displacement cascade. For
example, the system

k
A B+C
k
B = 2B
! Fractional product stoichiometries are equivalent to multiple reactions in which the same reactants produce different
. L . . 2k/3 k/3
products, where the products are in integer stoichiometries. E.g. the two reactions A 2%/3 C and A */3 B+ C are

kinetically equivalent to a single reaction A i>(1 /3)B + C. Conversely, all reactions with the same reactants but
different products can always be combined into one reaction with possibly fractional product stoichiometries.



can be implemented with gate-mediated reactions
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where unlabeled rate constants are much larger than k; /¢ and ko/¢ and initial concentrations [t;]o, [gi]o = &
are high enough to remain effectively constant. The expressions for the DNA gate-mediated reactions in
terms of formal rate constants are obtained from the above analysis. As described in the previous section,
the different two-step strand displacement cascades do not have significant undesired interactions. Thus each
reaction proceeds without interference from the others except through the desired coupling of input and
output strands.

4 Arbitrary Bimolecular Reactions

Consider the basic bimolecular reaction A+ B % C. Since a reaction between an input strand and a gate can
be viewed as being bimolecular, it provides a possible implementation of this reaction. As before, A is mapped
to strand As, but now B would have to be mapped to a gate. To emphasize that a gate is mapped to a formal
species B we call the gate Bg. As in the case of unimolecular reactions, we can use the translator gate ¢ to
ensure sequence independence between recognition regions of As and C's. The corresponding gate-mediated
reactions therefore are:

k
A+BE o = JAs+Bg—o
o+t—Cs

We set the unlabeled rate constant to be very large and the initial concentration of the translator gate
[t]o = £ to be big enough to remain effectively constant. Then using the quasi-steady-state approximation for
the intermediate strand o as in Section 3 we obtain the desired effective bimolecular reaction rate k[As][Byg].

Having said that, this naive implementation has severe shortcomings. Since strand As must directly bind
gate Bg, their sequences are not independent. Gate Bg can react only with input As and cannot participate
in reactions with other strand species. Further, it is not always possible to uniquely assign reactants to a
gate or a strand. One such example is the following system:

AXFL B

A+BE
If we combine the implementation of monomolecular reactions developed in the previous section with the

proposed bimolecular scheme, in the resulting system species B is mapped to two different forms, a strand
Bs and a gate Bga:

ki/€ .
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The concentrations of strand form Bs and gate form Bgs are entirely independent, and therefore the DNA
reactions do not implement the desired formal chemical system.

However, if the two forms of B could be interchanged into one another on a time scale that is fast
compared to the other reactions in the system, the correct behavior can be restored. We can link the two
species Bs and Bgsy through a fast reversible reaction

Kt
Bs = DBg>
—



such that the two species achieve pseudoequilibrium. Then the formal species B exists in two different forms:
B = {Bs,Bga} and the total concentration of B is [B] = [Bs] + [Bygz]. Let f(Bg2) = [Bga]/[B] be the
fraction of B in gate form Bgy. Under the pseudoequilibrium assumption, f(Bg2) = (kT + k7)/kT is a
constant. Since the second formal reaction can only use the gate form Bgs as a reactant, and not all of B,
we scale the rate constant of reaction (iii) by 1/f(Bgz) so that the new rate constant is ko/ f(Bgz). Then the

effective rate of the implementation of A+ B £, 0 i (k2/f(Bg2))[As][Bgz2] = k2[A][B] as desired. We can
easily extend this idea to create a pseudoequilibrium between strand Bs and gates Bg; for multiple reactions
7.

We realize the above reaction establishing pseudoequlibrium between Bs and Bgs via a linker gate shown
in Fig. 4 (top). Strand Bs and buffer strand b reversibly compete with each other via strand displacement
reactions in a toehold exchange process [8]. The mechanism corresponds to the following DNA reactions:

Kt q+
Bs=Bg» = Bs+l+=—DBg2+0
k— q-

+
For the correct first-order kinetics Bs =By, the linker gate [ and the buffer strand b must be in excess,

such that their concentrations remain effectively constant. Then k* = ¢*[b]o and k= = ¢~ [l]o where [b]o
and [l] are the initial concentrations of the buffer and linker strands respectively. For simplicity we will use
[bo] = [lJo =& and ¢* = ¢~

Lastly, we need to confirm the absence of unintended cross-reactions when implementing multiple coupled
bimolecular reactions. As in the simple strand displacement cascades described in Section 2, gates can only
react with specific recognition domains or intermediate strands. The exception to this rule is the reaction
of gate Bg with the buffer strand b. Gate form Bg can react with any strand with accessible domains ... 3-
4. Because without loss of generality we can assume that there is only one formal reaction A + B — (see
Footnote 1), and domains 3 and 4 are unique to Bs and As respectively, nothing other than the correct
buffer strand can react here.

5 Systematic Construction

In this section we take the ideas developed above and describe a systematic algorithm for compiling arbitrary
unimolecular and bimolecular reactions into DNA gate-mediated chemistry. This algorithm is used in the
next section to implement a Rossler attractor chaotic chemical system.

Without loss of generality we assume that every reaction has a unique combination of reactants (see
Footnote 1). Let ¢ index reactions and X; € {A, B,C,...} index species. Let f(X;s) be the fraction of X;
in strand form X;s. Similarly let f(X,g;) be the fraction of X; in gate form Xg;.

Consider any unimolecular formal reaction ¢. Write the reaction as X; *, as - Xo+ -+ ay - X, where
a < 1. We implement this reaction by a two-step strand displacement cascade (Fig. 3), modeled by the DNA
gate reactions below (where we omit inert waste products, and combine all strands with the same recognition
domains into a single species).

X18+gik—>0i
0+t — ag- Xos+ -+ ay - Xps.

Product fractions o are set by preparing translator gate t; with o; fraction of complete and 1 — «; in-
complete output strands for X;s as discussed in Section 3. Unlabeled rate constants as well as the initial
concentrations [g;]o = [t;]o = £ are as high as possible. Rate constant &’ is set to fj(les) by varying the
degree of complementarity of the toehold on gate g; with the toehold on strand Xis. Note that by following
the argument of Section 3, and using the fact that [X1] = [X1s]/f(X1s), the effective rate of this reaction is
E'[X15]€ = k[X1] as desired.

Consider any bimolecular formal reaction i. Write the reaction as X; + Xo ﬁ’OZg - Xs+ o+ ay - Xy,
where a < 1. We implement this reaction by a linker gate mechanism combined with the two-step strand
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Fig. 4: Molecular implementation of the bimolecular reaction A + B — C'. Orange boxes highlight the DNA species
As, Bs, and C's that correspond to the formal species A, B, and C. Rate constant ¢; can be reduced by decreasing
the complementarity between domains 4 and 4*. The sequences of the recognition regions of input and output strands
As, Bs, and Cs (domains 1-2-3, 4-5-6, and 7-8-9, respectively) are completely unrelated to one another. The regime
for desired bimolecular kinetics (concentrations of I, b, t and rate constants ¢, ¢, q1, g2) is described in the text. a)
Input strand Bs reversibly binds to the linker gate [ forming the activated gate By, i.e., B+ 1= Bg+ b. b) Input
strand As binds to the activated gate complex Bg and irreversibly releases intermediate strand o through strand
displacement. ¢) The intermediate strand o binds translator gate ¢ and by a strand displacement reaction releases
the output C's.

displacement cascade (Fig. 4) and is modeled by the DNA gate reactions below (where we again omit inert
waste products, and combine all strands with the same recognition domains into a single species).

X18+Q — Xlgi'i‘bi
XQS"’Xlg»L' L/) 0;
0; + 1 — as - Xss+ -+ a, - Xps

Product fractions «; are set by preparing translator gate ¢; with a; fraction of complete and 1—a; incomplete
output strands for X;s as discussed in Section 3. Unlabeled rate constants are as high as possible, with
the forward and reverse rates of the first reaction being equal. Rate constant &’ is set to m by
varying the degree of complementarity of the toehold on X;g; with the toehold on strand Xsos. The initial
concentrations [l;]o = [biJo = [ti]Jo = £ are as high as possible. Note that by following the argument of
Section 4, and using the facts that [Xs] = [Xas]/f(X2s) and [X1] = [X1g:]/f(X19:) the effective rate of this
reaction is k'[X2s][X1g;] = k[X1][X2] as desired.

With the above construction, determining f(X;s) and f(X;g;) is easy: for every i, j, f(X;s) = f(X;9:) =
1/(m + 1) where m is the number of bimolecular reactions in which X; appears as the first reactant.

The sequences of the DNA components can be designed as follows. First, for all formal species design
maximally independent recognition regions with minimum secondary structure. Then, for each formal re-
action, design the history regions for all products of that reaction to be maximally independent and have
minimum secondary structure. At this point all auxiliary DNA species are fully specified. Significant unin-
tended interactions between auxiliary species participating in different formal reactions cannot occur by the
arguments in Sections 2 and 4. The system is initiated by adding appropriate starting amounts of the formal
species in single-stranded form with arbitrary history domains.
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Fig. 5: Rossler attractor example. (a) The formal chemical reaction system to be implemented. (b) Reactions modeling
our DNA implementation. Each bracket implements the formal reaction with the number indicated. Here k1 through
k7 are the original rate constants for reactions 1 through 7 as in (a). Multiplicative factors fa = 1/f(As) = 1/f(Agz) =
1/f(Ags) =3, fs = 1/f(Bs) = 1/f(Bgs) = 2, fc = 1/f(Cs) = 1/f(Cgr) = 2. We use initial concentration of the
gates and buffer strands ¢ = 107, Unlabeled rate constants are 10°. (c) Plot of the log-concentrations of A (solid),
B (dashed), C' (dotted) for the original system (red), as well as their modeled concentrations (black). (d) Longer
time plot showing also the log-concentrations of g; (blue, decreasing) and b; (blue, increasing). (e,f) Trajectories of
the original system and DNA implementation in the 3-dimensional phase-space (first 5 hours).



6 Example

We illustrate our method of using DNA-based chemistry to implement arbitrary formal systems of coupled
chemical equations on the chaotic system due to Willamowsky and Réssler [4]. We start with the following
formal reactions, where the rate constants are from Ref. [11]:

A2% 94
24 25 4
B+A-%92B
B

cA+C L

o 5390
20 25 ¢
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The strange attractor for the concentrations of A, B, and C is in the range of about 0-40.

First we scale this system into a regime realistic for DNA-based chemistry which constrains reaction rates
and concentrations. Second order rate constants for strand displacement reactions can be approximately in
the range 0-10°/M /s, with their value determined by the degree of toehold complementarity [10]. Typical
experimental concentrations are on the order of 0-1073M. Similar to experimental implementations of other
dynamical chemical systems, a flow reactor may be used to replenish the stock of unreacted gates and
remove waste to maintain the appropriate reaction conditions [3]. This may make it possible to use lower
gate concentrations.

Clearly, by scaling all rate constants by the same factor we simply speed up or slow down the system
without affecting the dynamical behavior. We can scale the concentrations at which the chaotic system
operates by scaling the bimolecular rate constants differently from the unimolecular ones. In general if
[X;](t) are solutions to differential equations arising from a set of unimolecular and bimolecular reactions,
then a[X;](¢) are solutions to the differential equations arising from the same set of reactions but in which we
divide all bimolecular rate constants by a. We first slow down the system by multiplying all rate constants
by 1073, and then use concentration scaling factor a = 1078, obtaining the rate constants in Fig. 5(a).

Applying our construction yields a DNA implementation governed by the equations in Fig. 5(b). Sim-
ulations confirm (Fig. 5(c, d)) that the DNA implementation behaves very close to the formal system (a)
until the depletion of linker gates l; and the buildup of buffer strands b; sufficiently alters the effective rate
constants to destroy the chaotic behavior at around 8 hours (see (d)).

7 Conclusion

We have proposed a method for approximating an arbitrary system of coupled unimolecular and bimolecular
chemical reactions using DNA-based chemistry. Our construction takes advantage of cascades of strand
displacement reactions [6], and elementary techniques of approximation in chemical kinetics. Each formal
species occurring in the system of chemical reactions is represented as a set of strands and gates. The
multiform representation is necessary because it is not always possible to find a single DNA species that is
capable of participating in all reactions involving a given formal species. However, the different forms are
constructed to be in equilibrium with each other and thus participate in kinetics as if they were a single
species, up to a scaling of rate constants.

While we have taken care to provide a systematic algorithm for compiling a set of chemical reactions into
DNA, in practice it may often be possible and preferable to reduce the complexity by optimizing the con-
struction for the particular system of interest. For example, in many cases complete sequence independence
between strands may not be necessary, possibly allowing one to eliminate some translator gates. Similarly,
pseudoequilibrium linkage is unnecessary if mapping a species directly to a strand or gate does not cause
problems.

For simplicity in our systematic construction rate constants are set by the degree of sequence comple-
mentarity between toehold domains. However, there are many other degrees of freedom available such as
the relative concentrations of linker gate and buffer strand for bimolecular reactions. Probably in practice,



toehold domains provide a rough order of magnitude control over formal rate constants, while adjusting
concentrations of auxiliary species allows fine-tuning them.
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