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Abstract. We show that a DNA-based chemical system can be con-
structed such that it closely approximates the dynamic behavior of an
arbitrary system of coupled chemical reactions. Using strand displace-
ment reactions as a primitive we explicitly construct reaction cascades
with effectively unimolecular and bimolecular kinetics. Our construction
allows for individual reactions to be coupled in arbitrary ways such that
reactants can participate in multiple reactions simultaneously, correctly
reproducing the desired dynamical properties. Thus arbitrary systems
of chemical equations can be compiled into chemistry. We illustrate our
method on a chaotic Rössler attractor; simulations of the attractor and
of our proposed DNA-based implementation show good agreement.

1 Introduction

Chemical reaction equations and mass action kinetics provide a powerful math-
ematical language for describing and analyzing chemical systems. For well over
a century, mass action kinetics has been used to model chemical experiments, in
order to predict and explain the evolution of the various species over time, and
to elucidate the dynamical properties of the system under investigation. Chem-
istry exhibits complex behavior like oscillations, limit cycles, chaos or pattern
formation, all of which can be explained by the corresponding systems of coupled
chemical reactions [1,2,3]. While the use of mass action kinetics to describe exist-
ing chemical systems is well established, the inverse problem of experimentally
implementing a given set of chemical reactions has not been widely considered.
Many systems of coupled chemical equations appear to not have realizations in
known chemistry.

Here we propose a method for implementing an arbitrary system of coupled
chemical reactions using nucleic acids. We develop an explicit implementation of
unimolecular and bimolecular reactions which can be combined into arbitrarily
coupled reaction networks. In a formal system of chemical reactions such as

A
k1−→ B

A + B
k2−→ C + D

C
k3−→
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a species may need to participate in multiple reactions, both as a reactant and/or
as a product (species A, B or C) and these reactions need to progress at rates
determined by the rate constants (k1, k2 and k3). This imposes onerous con-
straints on the chemical properties of the species participating in these reactions.
For example, it is likely hard to find a physical implementation of the chemical
reaction equations using small molecules, since small molecules have a limited set
of reactivities. Information-bearing biopolymers such as proteins or nucleic acids
provide a more promising physical substrate for implementing arbitrary chemi-
cal reactions. Nucleic acids have the unique advantage that interactions between
different single-stranded species can be programmed since sequence determines
reactivity through Watson-Crick base pairing.

In our DNA implementation, we assign each formal species (e.g., A, B, C, D)
to a set of DNA molecules. In some instances it may be possible to map a formal
species to a single oligonucleotide but more generally a single formal species will
correspond to several DNA species in order to reproduce the correct kinetics.
Effective interactions between the species are mediated by an additional set of
DNA complexes. Since the underlying chemistry involves aqueous-phase nucleic
acid hybridization and strand exchange reactions, arbitrarily large rate constants
and concentrations cannot be attained. However, any system of coupled chem-
ical reactions can be scaled to use smaller rate constants and concentrations
without affecting the kinetics except by a scaling factor (see Section 6). While
our constructions are purely theoretical at this point, they are based on realistic
assumptions and provide a roadmap for future experiments.

In the next section we describe strand displacement reactions that will serve
as the basic building block for our construction. In the following section we
show how to implement arbitrary unimolecular reactions, and then extend our
construction to cover bimolecular reactions. In the final section we give a demon-
stration of our approach by describing the implementation of a system due to
Willamowski and Rössler [4] with 3 species and 7 reactions exhibiting chaotic
concentration fluctuations. Numerical simulations of the original formal system
and our DNA-based chemical reactions using realistic rate constants and con-
centrations are in good agreement.

2 Cascades of Strand Displacement Reactions

We use strand displacement reactions as the basic primitive for our construc-
tions (Fig. 1). Strand displacement has been found to be a flexible method for
designing complex behaviors with nucleic acids including motors, logic gates,
and catalysts [5,6,7,8]. Although a strand displacement reaction involves multi-
ple elementary steps, including a random walk process, it is well modeled as a
second-order process for a wide range of reaction conditions [9,10]. The effective
rate constant of the second-order process is governed by the degree of sequence
complementarity between the toeholds on the single-stranded species and on the
partially double-stranded species [10].

We have recently used strand displacement cascades to construct DNA-based
logic circuits [6,8]. Here we use some of the nomenclature and ideas from that
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Fig. 1. Strand displacement reactions. The 3′ end of each strand is indicated by an
arrow. Functional domains are numbered and the star indicates complementarity. We
use the underline notation 1∗ to indicate that this domain may not be completely com-
plementary to domain 1. The reaction between input strand A and gate g is initiated at
the toehold (dashed, domain 1∗). The reaction then proceeds through multiple short-
lived intermediates and leads to the release of an output strand B and the formation
of a chemically inert double-stranded waste product. Kinetically, the overall reaction

is well approximated as being bimolecular, i.e., A + g
k

−→B, where we omit the in-
ert waste product. The value of the rate constant k depends on reaction conditions
(salt, temperature), length and sequence composition of the toehold as well as the de-
gree of complementarity between the toeholds on the strand and gate (domains 1 and
1∗). In practice, toehold domains are typically 2–8 nucleotides long, and the domains
undergoing strand displacement are typically 20–30 nucleotides long.

work. Fig. 2 shows a two-stage strand displacement cascade where an input
single-stranded nucleic acid species (strand) initiates a strand displacement cas-
cade between two complexes (gates) leading to the release of an output strand. In
strand displacement cascades, a strand is functionally inactive before its release
from a gate and becomes active upon becoming completely single-stranded. For
example, intermediate strand o cannot react with translator gate t before it is
released from gate g because its toehold domain 3, which is required for initiating
the reaction with t, is double-stranded. Similarly, output Bs cannot initiate a
downstream strand displacement cascade until it is released from translator gate
t because its toehold domain 4 is double-stranded. However, upon the addition
of free As, intermediate strand o is released through strand displacement, which
then causes the release of output Bs. The release of strand Bs makes it capable
of initiating other strand displacement cascades in turn. Note that the binding
of a toehold domain to its complement is transient unless a strand displacement
reaction can be initiated because the toehold domains are short. Thus, for ex-
ample, the 3 domain of input As does not block the 3∗ domain of translator
gate t.

An input or output strand has two regions: a recognition region which can
participate in a strand displacement reaction, and a history region which cannot.
The sequence of the history region (e.g., domain 7 on strand Bs) is determined
by the translator gate from which the strand was released. All strands with the
same recognition region react equivalently and we do not distinguish between
them. For example, any strand with recognition region 1-2-3 is called As and any
strand with recognition region 4-5-6 is called Bs. Since there are no sequence
constraints (i.e., complementarity or equality) between the recognition region of
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Fig. 2. Two-stage strand displacement cascade. Functional domains are numbered and
all toehold domains are dashed. Different recognition regions are shown in different
color. Input or output strands with identical recognition regions react equivalently
and are therefore grouped into the same species. For example, As is any strand with
recognition region 1-2-3, and Bs is any strand with recognition region 4-5-6, irrespective
of their history regions. The two-stage cascade shown produces Bs with history region
7. Note that the sequences of the recognition regions of input and output strands As
and Bs (1-2-3 and 4-5-6) may be completely unrelated to one another and therefore
such a two-stage strand displacement cascade can link any input with any output
species. a) Input strand As binds to gate g and by a strand displacement reaction
releases the intermediate strand o. b) The intermediate strand o binds translator gate
t and by a strand displacement reaction releases the output Bs.
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Fig. 3. Molecular implementation of the unimolecular reaction A→B + C. Orange
boxes highlight the DNA species As, Bs, and Cs that correspond to the formal species
A, B, and C. Rate constant q1 can be reduced by decreasing the complementarity
between domains 1 and 1∗. The sequences of the recognition regions of input and output
strands As, Bs, and Cs (regions 1-2-3, 4-5-6, and 7-8-9, respectively) may be completely
unrelated to one another. The regime for desired unimolecular kinetics (concentrations
of g, t and rate constants q1, q2) is described in the text. a) Input strand As binds
to gate g and by a strand displacement reaction releases the intermediate strand o.
b) The intermediate o binds translator gate t and by a strand displacement reaction
releases the outputs Bs and Cs.
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the input strand As and the output strand Bs, arbitrary chains of such two-step
cascades can be linked together. This is possible for two-step cascades as shown
(see “full translator” in Ref. [6]); however, a one-step cascade would force a part
of the recognition region of the output strand to have sequence equality with the
input strand, complicating the sequence design process. We call the second gate
a translator gate to emphasize its role in translating the input to the appropriate
output. A two-step strand displacement cascade may output multiple strands if
we attach two outputs to translator gate t and extend the intermediate strand o
using one more distinct history region (as is shown in Fig. 3). Again no sequence
constraints exist between the input and the output strands.

In the design of systems of coupled two-step cascades, nucleic acid sequences
need to be constructed to avoid unintended interactions. For instance, we can
first design all recognition regions to have maximally independent sequences, and
then for every translator gate, design maximally independent history regions of
its output strands. Then a gate can react with only one recognition region (g-
type gates) or intermediate strand (translator gates), ensuring the specificity of
interactions. In addition, all sequences must have minimal secondary structure,
such as hairpin loops, because such structure can inhibit the desired interactions.

3 Arbitrary Unimolecular Reactions

As a first step we will implement the basic monomolecular reaction A
k
→B, such

that A and B are single-stranded nucleic acid species with completely inde-
pendent recognition regions. As we will show, the appropriate monomolecular
kinetics can be obtained as a limiting case of the reaction kinetics for a two-step
strand displacement cascade:

A
k

−→B ⇒

{

As + g
q1
−→ o

o + t
q2
−→ Bs

We use the notation As and Bs to mean the implementation of formal species A
and B by DNA strands with recognition regions unique for A and B, respectively.
We do not include inert waste products when writing the chemical reaction
equations. We now discuss the conditions required to make the implementation
valid. First, we assume that all non-designed interactions are negligible. We will
work in a regime where the concentrations [g] and [t] are in large excess of [As]
and [o] so that they remain effectively constant at initial values [g]0 and [t]0
respectively. Then the two-step strand displacement cascade becomes equivalent
to a pair of monomolecular reactions:

As
q1[g]0
−→ o

o
q2[t]0
−→ Bs

By varying the toehold strength of gate g which determines rate constant q1, or
the initial concentration [g]0, we set q1[g]0 equal to the formal rate constant k and



62 D. Soloveichik, G. Seelig, and E. Winfree

attain d[As]/dt = −k[As] as desired. To also ensure that d[Bs]/dt = k[As], we
make q2[t]0 large enough that intermediate strand [o] settles to its quasi-steady-
state value q1[g]0[As]/(q2[t]0) on a much faster time scale than that on which
[As] changes. Then d[Bs]/dt = q2[t]0[o] ≈ q1[g]0[As] = k[As] as desired. To make
the quasi-steady-state approximation hold in this example, we can increase the
relative toehold strength of gate t compared to gate g, or use a much larger
initial concentration [t]0 than [g]0.

While experimentally, it may be useful to vary the degree of toehold comple-
mentarity affecting q1 or concentration of gates [g]0 to tune the effective rate
constant, for simplicity throughout this paper we control reaction kinetics by
tuning toehold strengths, while treating all gates as being present at the same
high concentration ξ. Thus we set q1 equal to k/ξ.

The same scheme can be extended to more complex unimolecular reactions.
Reactions with more than one product species (e.g., A→B + C or A→ 2B)
including catalytic (e.g., A→A + B) and autocatalytic reactions (e.g., A→ 2A)
can be constructed using a translator gate t that releases multiple strands as in
Fig. 3. Removing the translator gate altogether allows for unimolecular decay
reactions (e.g., A→). Fractional product stoichiometry (e.g., A→(1/3)B + C)
can be realized using a mixture of translator gates with some fraction having
incomplete output strands. For example, reaction A→(1/3)B + C can be im-
plemented if 2/3 of translator gates t in Fig. 3 are missing the 7-8 domains.
Fractional product stoichiometries are equivalent to multiple reactions in which
the same reactants produce different products, where the products are in integer

stoichiometries. E.g. the two reactions A
2k/3
−→C and A

k/3
−→B + C are kinetically

equivalent to a single reaction A
k

−→(1/3)B + C. Conversely, all reactions with
the same reactants but different products can always be combined into one re-
action with possibly fractional product stoichiometries.

Arbitrary sets of unimolecular reactions can be coupled together by reusing
the same recognition region in multiple reactions. Each reaction corresponds to
a distinct two-step strand displacement cascade. For example, the system

A
k1−→ B + C

B
k2−→ 2B

can be implemented with gate-mediated reactions

A
k1−→B + C ⇒

{

As + g1
k1/ξ
−→ o1

o1 + t1 −→ Bs + Cs

B
k2−→ 2B ⇒

{

Bs + g2
k2/ξ
−→ o2

o2 + t2 −→ 2Bs

where unlabeled rate constants are much larger than k1/ξ and k2/ξ and initial
concentrations [ti]0, [gi]0 = ξ are high enough to remain effectively constant.
The expressions for the DNA gate-mediated reactions in terms of formal rate
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constants are obtained from the above analysis. As described in the previous sec-
tion, the different two-step strand displacement cascades do not have significant
undesired interactions. Thus each reaction should proceed without interference
from the others except through the desired coupling of input and output strands.

4 Arbitrary Bimolecular Reactions

Consider the basic bimolecular reaction A + B
k
→C. Since a reaction between

an input strand and a gate can be viewed as being bimolecular, it provides
a possible implementation of this reaction. As before, A is mapped to strand
As, but now B would have to be mapped to a gate. To emphasize that a gate is
mapped to a formal species B we call the gate Bg. As in the case of unimolecular
reactions, we can use the translator gate t to ensure sequence independence
between recognition regions of As and Cs. The corresponding gate-mediated
reactions therefore are:

A + B
k

−→C ⇒

{

As + Bg
k

−→ o

o + t −→ Cs

We set the unlabeled rate constant to be very large and the initial concentration
of the translator gate [t]0 = ξ to be big enough to remain effectively constant.
Then using the quasi-steady-state approximation for the intermediate strand o as
in Section 3 we obtain the desired effective bimolecular reaction rate k[As][Bg].

Having said that, this naive implementation has severe shortcomings. Since
strand As must directly bind gate Bg, their sequences are not independent.
Thus, gate Bg can react only with input As and cannot participate in reactions
with other strand species. Further, it is not always possible to uniquely assign
reactants to a gate or a strand. One such example is the following system:

A
k1−→ B

A + B
k2−→ C

If we combine the implementation of monomolecular reactions developed in the
previous section with the proposed bimolecular scheme, in the resulting system
species B is mapped to two different forms, a strand Bs and a gate Bg2:

A
k1−→B ⇒

{

As + g1
k1/ξ
−→ o1 (i)

o1 + t1 −→ Bs (ii)

A + B
k2−→C ⇒

{

As + Bg2
k2−→ o2 (iii)

o2 + t2 −→ Cs (iv)

The concentrations of strand form Bs and gate form Bg2 are entirely indepen-
dent, and therefore the DNA reactions do not implement the desired formal
chemical system.
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Fig. 4. Molecular implementation of the bimolecular reaction A+B→C. Orange boxes
highlight the DNA species As, Bs, and Cs that correspond to the formal species A, B,
and C. Rate constant q1 can be reduced by decreasing the complementarity between
domains 4 and 4∗. The sequences of the recognition regions of input and output strands
As, Bs, and Cs (regions 1-2-3, 4-5-6, and 7-8-9, respectively) are completely unrelated
to one another. The regime for desired bimolecular kinetics (concentrations of l, b, t
and rate constants q+, q−, q1, q2) is described in the text. a) Input strand Bs reversibly
binds to the linker gate l forming the activated gate Bg, i.e., B + l ⇋ Bg + b. b) Input
strand As binds to the activated gate complex Bg and irreversibly releases intermediate
strand o through strand displacement. c) The intermediate strand o binds translator
gate t and by a strand displacement reaction releases the output Cs.

However, if the two forms of B could be interchanged into one another on a
time scale that is fast compared to the other reactions in the system, the correct
behavior can be restored. We can link the two species Bs and Bg2 through a
fast reversible reaction

Bs
k+

−⇀↽−
k−

Bg2

such that the two species achieve pseudoequilibrium. Then the formal species
B exists in two different forms: B = {Bs, Bg2} and the total concentration of
B is [B] = [Bs] + [Bg2]. Let f(Bg2) = [Bg2]/[B] be the fraction of B in gate
form Bg2. Under the pseudoequilibrium assumption, f(Bg2) = (k+ + k−)/k+

is a constant. Since the second formal reaction can only use the gate form Bg2

as a reactant, and not all of B, we scale the rate constant of reaction (iii) by
1/f(Bg2) so that the new rate constant is k2/f(Bg2). Then the effective rate

of the implementation of A + B
k2−→C is (k2/f(Bg2))[As][Bg2] = k2[A][B] as

desired. We can easily extend this idea to create a pseudoequilibrium between
strand Bs and gates Bgi for multiple reactions i.

We realize the above reaction establishing pseudoequlibrium between Bs and
Bg2 using a linker gate shown in Fig. 4(a). Strand Bs and buffer strand b
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reversibly compete with each other via strand displacement reactions in a toe-
hold exchange process [8]. Thus the reaction establishing pseudoequilibrium is
implemented with gates as follows:

Bs
k+

−⇀↽−
k−

Bg2 ⇒ Bs + l
q+

−⇀↽−
q−

Bg2 + b

For the correct first-order kinetics Bs
k+

−⇀↽−
k−

Bg, the linker gate l and the buffer

strand b must be in excess, such that their concentrations remain effectively
constant. Then k+ = q+[b]0 and k− = q−[l]0 where [b]0 and [l]0 are the initial
concentrations of the buffer and linker strands respectively. For simplicity we
will use [b0] = [l]0 = ξ and q+ = q−.

Lastly, we need to confirm the absence of unintended cross-reactions when
implementing multiple coupled bimolecular reactions. As in the simple strand
displacement cascades described in Section 2, gates can only react with specific
recognition regions or intermediate strands. The exception to this rule is the
reaction of gate Bg with the buffer strand b. Gate form Bg can react with any
strand with accessible domains . . . 3-4. Because without loss of generality we
can assume that there is only one formal reaction A + B → (see discussion of
fractional product coefficients in Section 3), and domains 3 and 4 are unique to
Bs and As respectively, nothing other than the correct buffer strand can react
here.

5 Systematic Construction

In this section we take the ideas developed above and describe a systematic
algorithm for compiling arbitrary unimolecular and bimolecular reactions into
DNA gate-mediated chemistry. This algorithm is used in the next section to
implement a Rössler attractor chaotic chemical system.

Without loss of generality we assume that every reaction has a unique combi-

nation of reactants. For example, the pair of reactions A+B
k1→C and A+B

k2→D

are combined into a single reaction A+B
k1+k2−→ (k1/(k1 +k2))C +(k1/(k1 +k2))D

(see the discussion of fractional product coefficients in Section 3). Let i index
reactions and Xj ∈ {A, B, C, . . . } index species. Let f(Xjs) be the fraction of
Xj in strand form Xjs. Similarly let f(Xjgi) be the fraction of Xj in gate form
Xjgi.

Consider any unimolecular formal reaction i. Write the reaction as X1
k
→α2 ·

X2 + · · ·+ αn ·Xn, where 0 < α ≤ 1. We implement this reaction by a two-step
strand displacement cascade (Fig. 3), modeled by the DNA gate reactions below
(where we omit inert waste products, and combine all strands with the same
recognition regions into a single species).

X1s + gi
k′

−→ oi

oi + ti −→ α2 · X2s + · · · + αn · Xns.
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Product fractions αj are set by preparing translator gate ti with αj fraction of
complete and 1−αj incomplete output strands for Xjs as discussed in Section 3.
Unlabeled rate constants as well as the initial concentrations [gi]0 = [ti]0 = ξ
are as high as possible. Rate constant k′ is set to k

ξf(X1s) by varying the degree

of complementarity of the toehold on gate gi with the toehold on strand X1s.
Note that by following the argument of Section 3, and using the fact that [X1] =
[X1s]/f(X1s), the effective rate of this reaction is k′[X1s]ξ = k[X1] as desired.

Consider any bimolecular formal reaction i. Write the reaction as X1+X2
k
→α3·

X3 + · · ·+αn ·Xn, where 0 < α ≤ 1. We implement this reaction by a linker gate
mechanism combined with the two-step strand displacement cascade (Fig. 4)
and is modeled by the DNA gate reactions below (where we again omit inert
waste products, and combine all strands with the same recognition regions into
a single species).

X1s + li −⇀↽− X1gi + bi

X2s + X1gi
k′

−→ oi

oi + ti −→ α3 · X3s + · · · + αn · Xns

Product fractions αj are set by preparing translator gate ti with αj fraction of
complete and 1−αj incomplete output strands for Xjs as before. Unlabeled rate
constants are as high as possible, with the forward and reverse rates of the first
reaction being equal. Rate constant k′ is set to k

f(X2s)f(X1gi)
by varying the de-

gree of complementarity of the toehold on X1gi with the toehold on strand X2s.
The initial concentrations [li]0 = [bi]0 = [ti]0 = ξ are as high as possible. Fol-
lowing the argument of Section 4, and using the facts that [X2] = [X2s]/f(X2s)
and [X1] = [X1gi]/f(X1gi), we see that the effective rate of this reaction is
k′[X2s][X1gi] = k[X1][X2] as desired.

With the above construction, determining f(Xjs) and f(Xjgi) is easy: for
every i, j, f(Xjs) = f(Xjgi) = 1/(m + 1) where m is the number of bimolecular
reactions in which Xj appears as the first reactant.

The sequences of the DNA components can be designed as follows. First, for all
formal species design maximally independent recognition regions with minimum
secondary structure. Then, for each formal reaction, design the history regions
for all products of that reaction to be maximally independent and have minimum
secondary structure. At this point all auxiliary DNA species are fully specified.
Significant unintended interactions between auxiliary species participating in
different formal reactions cannot occur by the arguments in Sections 2 and 4.
The system is initiated by adding appropriate starting amounts of the formal
species in single-stranded form with arbitrary history regions.

6 Example

We illustrate our method of using DNA-based chemistry to implement arbi-
trary formal systems of coupled chemical equations on the chaotic system due
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Fig. 5. Rössler attractor example. (a) The formal chemical reaction system to be
implemented. (b) Reactions modeling our DNA implementation. Each bracket im-
plements the formal reaction with the number indicated. Here k1 through k7 are
the original rate constants for reactions 1 through 7 as in (a). Multiplicative fac-
tors fA = 1/f(As) = 1/f(Ag2) = 1/f(Ag5) = 3, fB = 1/f(Bs) = 1/f(Bg3) = 2,
fC = 1/f(Cs) = 1/f(Cg7) = 2. We use initial concentration of the gates and buffer
strands ξ = 10−4. Unlabeled rate constants are 105. (c) Plot of the log-concentrations
of A (solid), B (dashed), C (dotted) for the original system (red), as well as their mod-
eled concentrations (black). (d) Longer time plot showing also the log-concentrations of
gi (blue, decreasing) and bi (blue, increasing). (e,f) Trajectories of the original system
and DNA implementation in the 3-dimensional phase-space (first 5 hours).
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to Willamowsky and Rössler [4]. We start with the following formal reactions,
where the rate constants are from Ref. [11]:

1 : A
30
−→ 2A

2 : 2A
0.5
−→ A

3 : B + A
1

−→ 2B

4 : B
10
−→

5 : A + C
1

−→

6 : C
16.5
−→ 2C

7 : 2C
0.5
−→ C

The strange attractor for the concentrations of A, B, and C is in the range of
about 0–40.

First we scale this system into a regime realistic for DNA-based chemistry
which constrains reaction rates and concentrations. Second order rate constants
for strand displacement reactions can be approximately in the range 0–106/M/s,
with their value determined by the degree of toehold complementarity [10]. Typ-
ical experimental concentrations are on the order of 0–10−3M . Similar to experi-
mental implementations of other dynamical chemical systems, a flow reactor may
be used to replenish the stock of unreacted gates and remove waste to maintain
the appropriate reaction conditions [3]. This may make it possible to use lower
gate concentrations.

Clearly, by scaling all rate constants by the same factor we simply speed up
or slow down the system without affecting the dynamical behavior. We can scale
the concentrations at which the chaotic system operates by scaling the bimolec-
ular rate constants differently from the unimolecular ones. In general if [Xj ](t)
are solutions to differential equations arising from a set of unimolecular and
bimolecular reactions, then α[Xj ](t) are solutions to the differential equations
arising from the same set of reactions but in which we divide all bimolecular rate
constants by α. We first slow down the system by multiplying all rate constants
by 10−3, and then use concentration scaling factor α = 10−8, obtaining the rate
constants in Fig. 5(a).

Applying our construction yields a DNA implementation governed by the equa-
tions in Fig. 5(b). Simulations confirm (Fig. 5(c, d)) that the DNA implementation
behaves very close to the formal system (a) until the depletion of linker gates li
and the buildup of buffer strands bi sufficiently alters the effective rate constants,
gradually decoupling the gate implementation from the target system.

7 Conclusion

We have proposed a method for approximating an arbitrary system of coupled uni-
molecular and bimolecular chemical reactions using DNA-based chemistry. Our
construction takes advantage of cascades of strand displacement reactions [6], and
elementary techniques of approximation in chemical kinetics. Each formal species
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occurring in the system of chemical reactions is represented as a set of strands and
gates. The multiform representation is necessary because it is not always possible
to find a single DNA species that is capable of participating in all reactions in-
volving a given formal species. However, the different forms are constructed to be
in equilibrium with each other and thus participate in kinetics as if they were a
single species, up to a scaling of rate constants.

While we have taken care to provide a systematic algorithm for compiling a set
of chemical reactions into DNA, in practice it may often be possible and prefer-
able to reduce the complexity by optimizing the construction for the particular
system of interest. For example, in many cases complete sequence independence
between strands may not be necessary, possibly allowing one to eliminate some
translator gates. Similarly, pseudoequilibrium linkage is unnecessary if mapping
a species directly to a strand or gate does not cause problems.

For simplicity in our systematic construction rate constants are set by the de-
gree of sequence complementarity between toehold domains. However, there are
many other degrees of freedom available such as the relative concentrations of
linker gate and buffer strand for bimolecular reactions. Probably in practice, toe-
hold domains provide a rough order of magnitude control over formal rate con-
stants, while adjusting concentrations of auxiliary species allows fine-tuning them.
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