
Efficient Turing-universal computation with DNA polymers
(extended abstract)

Lulu Qian, David Soloveichik, and Erik Winfree

California Institute of Technology and University of Washington, Seattle

Abstract. Bennett’s proposed chemical Turing machine is one of the most important thought
experiments in the study of the thermodynamics of computation. Yet the sophistication of
molecular engineering required to physically construct Bennett’s hypothetical polymer sub-
strate and enzyme has deterred experimental implementations. Here we propose a chemical
implementation of stack machines — a Turing-universal model of computation similar to Tur-
ing machines — using strand displacement cascades as the underlying chemical primitive. More
specifically, the mechanism described herein is the addition and removal of monomers from the
end of a polymer, controlled by strand displacement logic. We capture the motivating feature of
Bennett’s scheme — that physical reversibility corresponds to logically reversible computation,
and arbitrarily little energy per computation step is required. Further, as a method of embed-
ding logic control into chemical and biological systems, polymer-based chemical computation
is significantly more efficient than geometry-free chemical reaction networks.

1 Introduction

With the birth of molecular biology 70 years ago came the realization that the processes within
biological cells are carried out by molecular machines, and that the most central processes involved
the manipulation of information-bearing polymers. Roughly 30 years ago, Charles Bennett took
that vision one step further by recognizing that arbitrarily complex information processing could be
carried out, in principle, by molecular machines of no greater complexity than those already observed
in nature [4, 5]. Based on the intrinsic reversibility of chemical reactions, Bennett used this insight
to give a thermodynamic argument that there is no fundamental energetic cost to computation —
only a cost to erase data. This conclusion derives from four principles: (1) as Landauer observed [14],
making a logically irreversible decision entails an energetic expenditure of kT ln 2, and thus there is
an unavoidable cost to irreversible logical operations; (2) being logically reversible is not enough to
ensure low-energy computation, since it is possible to implement reversible logic using irreversible
mechanisms; (3) a physically reversible system with an essentially linear state space can be biased
ever-so-slightly forward, in which case progress is made despite involving a Brownian random walk,
with the mean speed being linear in the (arbitrarily near zero) energy expended per step; and (4)
any logically irreversible computation can be recast with a minimal number of extra computational
steps [4, 6] as a logically reversible computation that requires irreversible operations only when
preparing input and output during repeated use. It’s intriguing to ask whether Landauer’s and
Bennett’s principles have any bearing on the remarkable efficiency of living things, but cellular
processes typically use several times more energy than needed for logical irreversibility. On the other
hand modern electrical computers expend many orders of magnitude more energy than required by
logical irreversibility, presenting the challenge of building computers that have the efficiency Bennett
argued is possible.

Direct implementation of Bennett’s hypothetical chemical Turing machine has been hampered
by our inability, as yet, to engineer molecular machinery to spec. Len Adleman’s laboratory demon-
stration of a DNA computing paradigm for solving NP-complete problems [1] ignited renewed in-
terest in the molecular implementation of Turing machines. Early theoretical proposals made use
of existing enzymes but required a series of laboratory manipulations to step the molecular Turing



machines through their operational cycle [19, 2, 21], while later theoretical proposals suggested how
autonomous molecular Turing machines could be built but made use of hypothetical enzymes or DNA
nanostructures [13, 3, 10, 26, 11]. Two-dimensional molecular self-assembly is Turing universal [24],
implementable with DNA tiles [20], and can be physically and logically reversible [25], but it has
the distinct disadvantage of storing the entire history of its computation within a supramolecular
complex — it’s bulky.

Recent work has pointed to an alternative to geometrical organization (in polymers or crystals) as
the basis for Turing-universal molecular computation: abstract chemical reaction networks (CRNs)
with a finite number of species in a well-mixed solution are structurally simple enough (essentially
geometry-free) that in principle arbitrary networks can be implemented with DNA [23], yet they
are (probabilistically) Turing universal [22]. This Turing universal computation using geometry-
free chemical reaction networks is theoretically accurate and reasonably fast (only a polynomial
slowdown), but requires molecular counts (and therefore volumes) that grow exponentially with the
amount of memory used [15, 22]. In contrast, reaction networks using heterogeneous polymers —
the simplest kind of geometrical organization, as in Bennett’s vision — can store all information
as strings within a single polymer, therefore requiring volume that grows only linearly with the
memory usage. Further, geometry-free models are not energy efficient, requiring much more than
Landauer’s energy limit because the computation must be driven irreversibly forward to avoid error.
Here, we combine the advances in geometry-free CRN implementation with a simple DNA polymer
reaction primitive to obtain a plausible DNA implementation of time- and space- and energy-efficient
Turing-universal computation. Our construction requires a small fixed number of polymers, thereby
having the same efficient linear memory/volume tradeoff as Bennett’s hypothetical scheme; it also
has a time complexity nearly as good (only a quadratic slowdown). As in Bennett’s scheme, the
time complexity scales linearly with energy use (for small energies). Both constructions can perform
irreversible computation using the minimum achievable amount of energy per step kT lnm, where m
is the mean number of immediate predecessors to the logical states of the Turing machine simulation.
(This energy bound is 0 for reversible Turing machines).

Our constructions will consist of two parts. First, a geometry-free chemical reaction network, and
secondly, reactions involved in polymer modification. While the polymer modification reactions will
perform the essential job of information storage and retrieval, the geometry-free reaction network will
perform the logic operations. We describe the necessary elements for the implementation of relevant
geometry-free chemical reaction networks in section 2. In the following section 3 we describe the
polymer reactions. Based on these two DNA implementation schemes, section 4 shows how they
can be used to efficiently simulate stack machines. Finally, in section 5 we show how Bennett’s
logically reversible Turing machines can be implemented with physically reversible DNA reactions.
We conclude by evaluating our contributions and pointing out room for further improvement.

2 Irreversible and Reversible Chemical Reaction Networks

In this section we discuss the components necessary for the implementation of the geometry-free
chemical reaction network part of our constructions.

Recent work has proposed a DNA implementation of arbitrary (geometry-free) chemical reaction
networks [23], with which we assume the reader is familiar. (Even so, the construction given here is
self-contained.) However, thermodynamic reversibility was not considered. Indeed, reversible reac-
tions would simply correspond to two separate forward and reverse reactions, with both reactions
having to be independently driven irreversibly by chemical potential energy provided by DNA fuels.
This is wasteful for the consumption of both energy and fuel reagents. The construction we develop
in this section is entirely physically reversible in the sense that firing a sequence of forward reactions
and then the reverse sequence of the corresponding reverse reactions brings the chemical system into
the same exact physical state as it was in the beginning, including recovery of fuel reagents and any
energy used.



 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 -
A T 

+
A 

-
B T 

+
B 

waste 

X 

Y 

A 

B 

F1 

I1 

I2 

I3 

I4 

F2 

F3 

waste 

F4 

F5 

F6 

T +
X 

-
X 

T +
Y 

-
Y 

I 

-
B T 

+
X T 

+
Y T 

-
A T 

I T 

I +
X T +

Y T 

+
Y
* +

X
* T

* T
* T

* I
* -

B
* T

* -
A
* T

* 

-
A T 

+
A 

-
B T 

+
B 

I +
Y T 

+
Y
* +

X
* T

* T
* T

* I
* -

B
* T

* -
A
* T

* 

-
A T 

+
A 

-
B T 

+
B 

T +
X 

-
X 

I 

+
Y
* +

X
* T

* T
* T

* I
* -

B
* T

* -
A
* T

* 

-
A T 

+
A 

-
B T 

+
B 

T +
Y 

-
Y 

T +
X 

-
X 

I 

+
Y
* +

X
* T

* T
* T

* I
* -

B
* T

* -
A
* T

* 

-
B T 

+
B 

T +
X 

-
X 

-
A T T +

Y 

-
Y 

+
Y
* +

X
* T

* T
* T

* I
* -

B
* T

* -
A
* T

* 

T +
X 

-
X 

T +
Y 

-
Y 

-
A T -

B T I T 

I 

+
Y
* +

X
* T

* T
* T

* I
* -

B
* T

* -
A
* T

* 

T +
X 

-
X 

T +
Y 

-
Y 

-
B T -

A T 

Fig. 1: The implementation of the formal bimolecular reaction X + Y →A + B using history-free signal
species X, Y, A, B. Each strand displacement reaction is shown, with arrowed thin black lines connected by
diagonal rectangles indicating reactants, products and reversibility. F1 through F6 are fuel species mediating
the formal reaction, and are present in high concentration. F1 is unique to this reaction, while F2 through F6

may be shared with other reactions. I1 through I4 are intermediates of the formal reaction and they are all
unique to this reaction. Domains +X, −X, +Y , −Y , +A, −A, +B, −B are specific to formal species X, Y, A, B
respectively, while domain I is used for the irreversible step in all reactions, and the short toehold domain
T is used universally wherever a toehold is needed. The asterisk indicates Watson-Crick complementary
domains, e.g. +Y ∗ is complementary to +Y .

The major challenge in adapting the scheme of ref. [23] to implement reversible chemical re-
actions in a physically reversible manner, is that the exact DNA strand representing a particular
signal species is a function of not just the signal, but also of the formal reaction that produced it.
Specifically, a “history” domain is present on all signal strands that held the strand in inactive form
before release from a DNA complex. So even if we were to make every strand displacement step
reversible, the reverse reaction of X→Y would only be able to uptake signal species Y that have
the correct history domains for this reaction, rather than the entire population of Y which may have
been generated by other reactions.

In order to solve this problem, we develop a “history-free” implementation of arbitrary chemi-
cal reaction networks. (Cardelli has proposed an elegant and even further reduced scheme [9], but



it appears unsuitable for our polymer reaction construction.) We describe an irreversible scheme,
that with slight modifications can become reversible. In addition to making the reversible scheme
straightforward, the history-free signal strand motif simplifies the correspondence between the ab-
stract CRN and the DNA implementation: each CRN species now corresponds to exactly one DNA
species.

Like ref. [8], but unlike ref. [23], we use stochastic semantics in this paper where reactions
manipulate integer molecular counts of the reacting species, rather than real-valued concentrations.
The applicable kinetic and thermodynamic laws are widely known from the consideration of small-
scale chemical systems. Unlike the quantitative kinetics requirements of ref. [23], in the context of
this paper a successful implementation of an irreversible reaction such as X+Y →A+B must simply
be qualitatively correct by satisfying two conditions: First, there must be some overall irreversible
reaction pathway that first consumes a molecule of X, a molecule of Y , and then produces a molecule
of A and a molecule of B. Second, the reaction pathway must become irreversible at some point
only after X and Y have been consumed. If the pathway were to become irreversible before Y is
consumed, then in the absence of Y , X would still be used up. An implementation of a reversible
reaction X+Y 
A+B must be a reversible reaction pathway that first consumes a molecule of X,
a molecule of Y , and then produces a molecule of A and a molecule of B. While we do not explicitly
address the question of quantitatively correct reaction kinetics, our constructions respect the usual
scaling laws for kinetics of unimolecular, bimolecular, and higher-order reactions; similar techniques
as in ref. [23] could applied to these constructions.

Fig. 1 shows the history-free implementation of the irreversible reaction X + Y →A+B, and
Fig. 2 shows the corresponding implementation of the reversible reaction X + Y 
A+B.

In Fig. 1, fuel DNA species F1, F2, F3, F4, F5 and F6 are initially present in high concentration,
and we assume they remain present in high concentration throughout. Signal DNA species X, Y ,
A and B are present in low amounts relative to the fuel species and indicate meaningful signals.
To make the reaction module composable, all signal DNA species are of the same form, and allow
the coupling of such formal reactions together. (They are also of the same form as signal species in
another DNA strand displacement network architecture [18], which allows even broader couplings.)
All signal species have one short toehold domain in the middle, one long recognition domain “−”
on the 5′ end and another long recognition domain “+” on the 3′ end. The bottom strand of fuel F1

has five long recognition domains connected by five short toehold domains. Initially, the left-most
toehold domain is single-stranded and is thus available for binding, and the other four toeholds are
double-stranded and thus sequestered.

Signal X first binds to fuel F1 by the exposed toehold and branch migration occurs through
domain +X. The top strand F2 will fall off when it’s only held to the bottom strand by the toehold
and leave F1 as intermediate product I1. Compared to F1, the bottom strand of I1 has its first
toehold covered and the second toehold revealed. Signal Y then binds to I1 at the second toehold,
branch migrates to the 3′ end of +Y and kicks off the top strand F3, producing intermediate I2. The
bottom strand of I2 has its third toehold revealed and all the other toeholds covered. Now F4 binds
to I2 at the third toehold, releases signal A and leaves intermediate I3. F5 binds to I3 at the fourth
toehold, releases signal B and leaves intermediate I4. All the above reactions can be reversed by F2,
F3, A and B reacting with I1, I2, I3 and I4 respectively. Finally, F6 binds to I4 at the last toehold
and displaces the last top strand — which has no toehold domain by which to initiate the reverse
reaction. Because of this last irreversible step, the overall reaction is irreversible.

If there is only signal Y but not X, nothing will happen because Y cannot directly react with
any of the fuels. If there is only signal X but not Y , only the first step can happen and the backward
reaction F2 + I1→X + F1 ensures X is not permanently consumed. So, A and B will be produced,
and X and Y consumed, only if both X and Y were initially present.

In Fig. 2, we simply remove domain I from F1 in Fig. 1 to make the formal reaction reversible.
In this case, F6 in Fig. 1 is replaced by a final product of the forward reaction, which also serves as
the first fuel of the backward reaction. Now there are only three intermediates instead of four. Note



 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I3 

X 

Y 

A 

B 

F2 

F3 

F4 

F5 

I1 

I2 

F1 

F6 

T +
X 

-
X 

T +
Y 

-
Y 

-
A T 

-
B T 

+
Y
* +

X
* T

* T
* T

* -
B
* T

* -
A
* T

* 

+
X T +

Y T -
A T 

+
A 

-
B T 

+
B 

+
Y
* +

X
* T

* T
* T

* -
B
* T

* -
A
* T

* 

+
Y T -

A T 

+
A 

-
B T 

+
B 

T +
X 

-
X 

+
Y
* +

X
* T

* T
* T

* -
B
* T

* -
A
* T

* 

-
A T 

+
A 

-
B T 

+
B 

T +
Y 

-
Y 

T +
X 

-
X 

+
Y
* +

X
* T

* T
* T

* -
B
* T

* -
A
* T

* 

-
B T 

+
B 

T +
X 

-
X 

-
A T T +

Y 

-
Y 

+
Y
* +

X
* T

* T
* T

* -
B
* T

* -
A
* T

* 

T +
X 

-
X 

T +
Y 

-
Y 

-
B T -

A T 

-
A T 

+
A 

-
B T 

+
B 

+
X T 

+
Y T 

Fig. 2: The implementation of the formal bimolecular reaction X + Y 
 A + B using history-free signal
species X, Y, A, B. F1 through F6 are fuel species mediating the formal reaction, and are present in high
concentration. F1 and F6 are unique to this reaction, while F2 through F5 may be shared with other reactions.
I1 through I3 are intermediates of the formal reaction and they are all unique to this reaction. Reaction and
domain notation is as in Fig. 1.

also that increasing the concentration of F1 speeds up the forward reaction, while increasing the
concentration of F6 speeds up the backwards reaction — so this reaction can be individually tuned
to be unbiased or biased forward or backward to any desired extent.

In considering the energy use of the reversible stack machine implementation it is important
to verify that we are not cheating when we ignore the entropic contribution of the concentration
changes of the fuels in the process of computation. Luckily, in the limit of large molecular counts
of the fuel species, the contribution of the changing partial pressures of the fuels to the energy
consumed in a reaction occurrence is independent of the history of the previous reaction events, and
can be considered fixed for each reaction. Therefore we can use the fuels to provide a fixed forward
bias for each reaction, or no bias if we start with equilibrium concentrations of the fuels.

Proper functioning of both the irreversible and reversible reaction modules involves a Brownian
exploration of the system’s state space to test if the preconditions for the reaction are met. Neces-
sarily, this exploration must be reversible, in case the preconditions aren’t met. This basic structure
— reversible exploration to determine whether a subsequent step is possible — is used again and
again in our constructions below. Despite the lack of determinism for individual steps, no species
is incorrectly consumed or incorrectly produced — and so long as the system is biased forward (or



unbiased), any species that should be produced will be produced eventually. In this sense, there can
be no errors.

Creating new reactions between a set of signal species only requires the construction of appropri-
ate fuel species and is thus programmable by the choice of fuel species without any alteration of the
signal species themselves. Therefore, to implement a system of reactions, the fuels for each reaction
may be individually constructed, and the union of these fuels correctly implements the full system.

We will consider stochastic dynamics for a small integral number of each signal species (typically
a single copy each) reacting in a volume V in which the concentrations of fuel species are maintained
constant. In a perfect implementation of a bimolecular reaction, the reaction rate should slow down
exactly in proportion to V . It is easy to see that our multistep DNA implementation should have the
same asymptotic scaling for kinetics. Consider the irreversible case. Among all the forward strand
displacement reactions, only the second step (Y displacing F3) is a bimolecular reaction between
two low concentration species (the signal species and their reaction intermediates). The forward rate
of this reaction (the second step) will scale as 1/V . All the other steps are bimolecular reactions
between one high concentration (fuel) species and one low concentration species and thus will be
fast. Further, the backward reactions are either slow or (in the case of F3 + I2→Y + I1) exactly
balanced by a fast reaction (F4 + I2→A + I3) in the forward direction. Thus, the second step is
the rate limiting step for the reaction pathway. (A similar argument holds for both forward and
backward reactions in the reversible scheme.)

Unimolecular reactions such as X→A can be implemented analogously with the appropriate
shortening or extension of fuel F1, as can higher order reactions such as X + Y + Z→A+B + C
and asymmetric reactions such asX→A+B. (Similar modifications can be used for reactionsX
A,
X+Y +Z
A+B+C, X
A+B, etc.) Extending our construction to reactions of order n results
in n − 1 forward steps that involve bimolecular reactions between two low concentration species.
Therefore we would encounter a slowdown scaling as 1/V n−1, with the unimolecular implementation
being independent of volume.

3 A Reversible Polymer Addition Primitive

Finite CRNs by definition involve a finite number of possible molecular species, and this limits their
behavioral complexity. Extending CRNs to include polymers allows one to give a finite specification of
a molecular system involving potentially an infinite number of distinguishable species — polymers
of different lengths and with different sequences — that interact according to a finite number of
local rules. A variety of extensions of CRNs to polymers (and other combinatorial structures) have
been considered, differing in the types of local rules (e.g. end-localized reactions, interior-localized
reactions, polymer joining and scission) and the types of polymer structures (e.g. strictly linear,
branched, networks with cycles) that are allowed [12, 7, 10]. All these natural CRN extensions can
efficiently simulate Turing machines (c.f. [10]). However, whereas these extensions were designed
to be general for modeling biochemical systems, our interest here is in a language for specifying
polymer systems that can be implemented with DNA strand displacement reactions — and fully
general modeling languages presently may be too difficult to compile into DNA.

Therefore, we focus on a very limited subset of polymer reactions that simultaneously allows
implementation with DNA and is capable of efficient simulation of Turing machines. Specifically we
make use of a single reversible reaction mechanism that (in the forward direction) appends a desired
subunit onto the polymer while releasing a confirmation signal, and that (in the reverse direction)
upon receipt of a query detaches a subunit from the polymer. In our construction, each polymer has
a fixed end and a growing end. Appending and detaching can only occur on the growing end. All
polymers begin at their fixed ends with a special subunit, ⊥, followed by an arbitrary sequence of
subunits from the finite set Σ. Formally, a polymer with sequence ⊥w, where w ∈ Σ∗, is written
as [⊥w]. The subunits themselves may also exist as free species, x ∈ Σ, as may the special subunit



⊥. The query/confirmation species is called Q. Then the implemented reversible polymer addition
reaction may be written as

[· · · ] + x
 [· · ·x] +Q (1)

where informally [· · · ] represents a polymer with some sequence ⊥w and [· · ·x] represents that same
polymer extended to sequence ⊥wx. Formally, this single polymer reaction schema represents an
infinite family of specific reactions

[⊥w] + x
 [⊥wx] +Q (1a)

for all w ∈ Σ∗ and x ∈ Σ, as well as the base case

[ ]?⊥+⊥
 [⊥] +Q (1b)

that enables detecting that the polymer is a monomer.
Fig. 3 shows the DNA implementation of this polymerization primitive. The formal species Q

and ⊥ and each x ∈ Σ are implemented as finite CRN species using the same history-free motif
described in section 2. The polymer itself is a chain of information-bearing subunits (green) spliced
together by strands using the P and +Q domains. To mediate the desired reactions, a number of
high-concentration fuels are used: F2 and F4 are independent of the monomer type, while a separate
F1,x and F3,x is needed for each x ∈ Σ, as well as F3,⊥.

The reversible and exploratory nature of the DNA implementation’s reactions are essential to its
function. For example, for [· · · ] to react with a specific x that may be present, it may first react with
several different F1,y to produce the intermediate [· · · ]?y that attempts to add y to the polymer —
but so long as y is not present in solution, this attempt fails, and the reaction reverses to recreate
[· · · ] with the help of F2. Eventually, [· · · ] will react with F1,x to produce [· · · ]?x, which can react
with x to proceed to the next step, the [· · · ]!x intermediate. Finally a reaction with F4 brings the
polymer back to its canonical state, [· · ·x], but with the new subunit appended and the confirmation
Q produced. Of course, since all the reactions are reversible, Q can also serve as a query and reverse
[· · ·x] to [· · · ]!x, after which the appropriate F3,x may succeed in detaching x, so that F2 can bring
[· · · ]?x back to [· · · ]. A set of different F3,y make sure the detaching will happen no matter what
subunit is on the growing end of the polymer. For the base case, the reverse can only go as far as
[· · · ]?⊥, which has a special form and thus won’t be able to react with F2. This ensures that ⊥ is
always the first subunit of the polymer.

While the polymer reactions by themselves do nothing more than push and pop subunits back
and forth onto and off of the end of the polymer, these reactions can be controlled and driven by a
simultaneously active finite CRN that interacts with the formal species Q, ⊥, and x ∈ Σ. To append
a subunit to the polymer, the CRN must simply produce the desired species x and then wait for the
confirmation Q. To read a subunit off the polymer, the CRN must simply produce the query Q and
then wait for the arrival of some subunit x ∈ Σ or else ⊥.

Our polymer reaction primitive is also essentially bimolecular, and hence the kinetics also scales
as 1/V .

4 Irreversible Stack Machine Implementation

4.1 Definition of Stack Machines

The stack machine model of computation intuitively consists of a finite state control together with
memory in the form of a finite number of stacks. Each stack can hold an arbitrary sequence of
symbols but can only be accessed at one end: stack operations include pushing a new symbol onto a
stack, or popping a symbol off a stack, as well as detecting an empty stack. Input is provided as the
initial sequence of symbols in the first stack. While stack machines with only 1 stack are known to



(a) 

 

 

 

 

 

 

 

(b) 

+
x
* P

* T
* T

* T +Q 

 

P T
* 

T +
x 

-
x 

 

[⋯]!x 

[⋯x] = [⋯] 

[⋯x] 

+
x
* P

* T
* T

* T +Q 

 

P T
* 

T +Q* 

 

P T
* 

T +
x 

-
x 

 

[⋯] 
P T

* 

F1,x 

+
x
* P

* T
* T

* T +Q 

 

P T +
x 

 

T 

F2 P T 

[⋯]?x 

+
x
* P

* T
* T

* T +Q 

 

+
x 

 

T P T
* 

x 
T +

x 

-
x 

 

F3,x 
+
x 

 

T 

F4 

T +Q* 

 

P T
* 
T +Q 

 
-Q 

 

Q 
T +Q 

 
-Q 

 

Q 
T +Q 

 
-Q 

 F4 

T +Q* 

 

P T
* 
T +Q 

 
-Q 

 

[] [ ]? 

 

[ ]! 

+* T
* T

* +Q 

 

T +Q* 

 

P T
* 

T + 

- 

 

+* T
* T

* +Q 

 

+ 

 

T 

 T + 

- 

 

F3, 
+ 

 

T 

+* T
* T

* +Q 

 

T + 

- 

Fig. 3: The implementation of the formal polymer reaction [· · · ] + x 
 [· · ·x] + Q. Intuitively, in the forward
direction this reaction adds a new monomer to the end of the polymer, releasing Q to signal completion. In
the backward direction, Q detaches the last monomer from the polymer. (a) The beginning of the polymer
and the strand displacement reactions when the stack is empty, i.e., implementation of reaction (1a). Note
that the first monomer is ⊥ to indicate the end of the stack for the stack machine simulation. (b) The
strand displacement reactions for the monomer addition / removal cycle, i.e., implementation of reaction
(1b). Clockwise: adding a new monomer; counter-clockwise: removing the last monomer. The dark box
indicates the ‘left’ side of the polymer, with an arbitrary number of subunits. The dotted line indicates
conceptually encapsulating the x subunit repeat block within the dark box. Reaction and domain notation
is as in Fig. 1.

be less than Turing universal, 2 stacks are enough for universality. Similarly, while stack machines
with just 1 symbol (also known as counter machines or register machines) are universal [16], they are
exponentially slower than Turning machines, and efficient simulation of Turing machines becomes



1. S#1, Q, [00111]1, []2, []3

2. S#4, Q, [0011]1, []2, []3

3. S#5, Q2, [0011]1, [1]2, []3

4. S#1, Q3, [0011]1, [1]2, [1]3

write 1 

on stack 2

#4

write 0 

on stack 2

#2

write 0 

on stack 3

#3

write 1 

on stack 3

#5

read  

stack 1

#1

#6

0

1



#1 0 1  #2

#1 1 1  #4

#1  1  #6  1

#2  #3 0 2

#3  #1 0 3

#4  #5 1 2

#5  #1 1 3

S#1 + 01  S#2 + Q

S#1 + 11  S#4 + Q

S#1 + 1  S#6 + 1

S#2 + Q  S#3 + 02

S#3 + Q  S#1 + 03

S#4 + Q  S#5 + 12

S#5 + Q  S#1 + 13

Q1  Q

Q2  Q

Q2  Q

[…]1 + 01  […0]1 + Q1

[…]1 + 11  […1]1 + Q1

[…]2 + 02  […0]2 + Q2

[…]2 + 12  […1]2 + Q2

[…]3 + 03  […0]3 + Q3

[…]3 + 13  […1]3 + Q3

1. (#1, 00111, , )

2. (#4, 0011, , )

3. (#5, 0011, 1, )

4. (#1, 0011, 1, 1)

5. (#4, 001, 1, 1)

6. (#5, 001, 11, 1)

7. (#1, 001, 11, 11)

8. (#4, 00, 11, 11)

9. (#5, 00, 111, 11)

10. (#1, 00, 111, 111)

11. (#2, 0, 111, 111)

12. (#3, 0, 1110, 111)

13. (#1, 0, 1110, 1110)

14. (#2, , 1110, 1110)

15. (#3, , 11100, 1110)

16. (#1, , 11100, 11100)

17. (#6, , 11100,11100)

(a) (b)

(c) (d)

(e)

[00111]1

[0011]1 11

Q1 []2

2

Q2 []3

3

Q3

Q

S#1

Q
S#4

[ ]?2 [ ]?3

[0011]1

[001]1 11

Q1 []2 Q2 []3 Q3

Q

12 S#5

S#4

[1]2 Q2

2 3[ ]?2 [ ]?3

[0011]1

[001]1 11

Q1 [1]2

[]2

Q2 []3 Q3

Q

13S#1

S#5

[1]3 Q3

12 3[ ]?3

Fig. 4: Example execution of a stack machine program. (a) Diagrammatic representation of a stack machine
that reads a string on stack 1 and writes a reversed copy onto both stack 2 and stack 3. (b) Transition rules
for the same stack machine. (c) Polymer CRN reactions for the same stack machine. Recall that polymer
reaction schema of form (1) expand to reactions of forms (1a) and (1b). (d) Execution history of stack
machine configurations for computation with input string 00111. (e) Reaction pathways within the polymer
CRN implementation, illustrated for the first three steps going from configuration 1 to configuration 4.
Solid arrowheads indicate the direction of computation that is ratcheted forward by this step’s irreversible
reaction, and blue species represent the canonical endpoint species for each step of the computation. Each
reaction is shown with longer polymer species on top, which is why in some steps reactions go “up” and in
other steps reactions go “down”.

possible only with 2 symbols or more. Consequently, many stacks and many symbols are preferred
for elegance and efficiency. This is what we achieve with our DNA polymer implementation.

In this paper we provide a direct molecular implementation of stack machines rather than the
more familiar Turing machines because they are particularly matched to the kind of polymer op-



eration we have available, which accesses the polymer at one end only. Multi-stack multi-symbol
stack machines can simulate multi-stack multi-symbol Turing machines with no slow-down (and
vice versa), so we are losing nothing by this choice.

We allow any finite alphabet of symbols Σ, with an additional symbol λ 6∈ Σ to indicate that the
stack is empty. We specify stack machine transition rules in a somewhat non-standard manner —
one that is better suited to discussing reversibility (see next section). There are 4 types of transition
rules:

1. α x i −→ β y j
2. α x i −→ β
3. α −→ β y j
4. α λ i −→ β λ i

where α, β are states, x, y ∈ Σ are symbols, and i, j ∈ {1, . . . , n} are stacks. A transition rule of
type (1) means: when in state α and the top symbol on stack i is x, pop it off and push symbol y
onto stack j, transitioning to state β. A transition rule of type (2) means: when in state α and the
top symbol on stack i is x, pop it off and transition to state β. A transition rule of type (3) means:
when in state α, push symbol y onto stack j, transitioning to state β. A transition rule of type (4)
means: when in state α and stack i is empty, move to state β. Note that the stack on the left and
right must be the same for rule type (4).

A configuration of a stack machine consists of a state α and the contents of stacks 1, . . . , n.
Computation begins in the designated start state (typically #1) with the input to the computation
on the stacks (typically stack 1 has an input string, and the remaining stacks are empty) and proceeds
by execution of applicable rules until no rule is applicable (typically, the machine will be in a ‘halting
state’ that does not appear in the LHS of any rule). The contents of the stacks after halting may be
considered the output of the machine.

We say that the stack machine is (syntactically) deterministic if for every configuration, there is
at most one applicable transition rule. This can easily be verified by checking that for each state α,
either all rules with α on the LHS read from the same stack with at most one transition per read
symbol, or else there is at most one rule of type (3).

An example stack machine and computation is shown in Fig. 4abd.

4.2 Reactions corresponding to the transition rules

The polymer CRN implementation of an n-stack machine with symbol alphabet Σ will comprise a
finite collection of CRN reactions, one for each transition rule and one for each stack, combined with
a polymer reaction for each stack. We require n distinct types of polymer reactions to implement
the n stacks. We obtain them by generating n independent copies of the polymer reaction primitive
of Fig. 3 wherein every species and domain is subscripted by i to indicate that the domains are
unique to that polymer type (with the exception of the universal toehold T ). Thus the fuels are also
unique to the polymer type. Because of the unique domains and fuels, the reactions steps of Fig. 3
will never result in crosstalk between polymers of different type. Therefore, generating xi or Qi will
result in pushing x onto or popping a symbol off of stack i specifically. Later it will be convenient
to have a single ‘query’ species Q that interconverts with the Qi to (reversibly) read any stack; the
symbol xi that is read indicates which stack it came from, so no information is lost.

In summary, for every stack i ∈ {1, . . . , n} and symbol x ∈ Σ, we have a distinct molecular
species xi. Further, for every stack i we have species ⊥i, the CRN reaction

Q
Qi

and the polymer reaction
[· · · ]i + xi 
 [· · ·x]i +Qi.



If a polymer contains only the symbol ⊥i then the polymer represents stack i being empty, i.e.
having content λ. We start with 1 molecule of the ‘query’ species Q, which rapidly interconverts into
the Qi required for each stack. Our system will respect the conserved property that there is always
either exactly one Q or one Qi molecule for some stack, or else there is exactly one xi molecule
representing some symbol on some stack.

Now, each transition rule 1-4 corresponds to a single reaction as follows:

1. α x i −→ β y j ⇒ Sα + xi → Sβ + yj
2. α x i −→ β ⇒ Sα + xi → Sβ +Q
3. α −→ β y j ⇒ Sα +Q → Sβ + yj
4. α λ i −→ β λ i ⇒ Sα +⊥i → Sβ +⊥i

Illustrative steps for the implementation of the example stack machine are shown in Fig. 4ce.
Note that despite all the reversible reactions, each time an irreversible CRN reaction (corresponding
to a transition rule) occurs, the overall computation ratchets forward.

Run in a reaction volume V , each irreversible step will take average time O(V ) since its rate scales
as O(1/V ). So to simulate a stack machine (or TM) whose computation runs in time t using space s,
our DNA implementation will take time O(tV ). However, the reaction volume must be large enough
to contain the polymers, which will be O(s) subunits long, and hence V = O(s). Taking the worst-
case bound s = O(t), the overall time required by the DNA stack machine implementation is O(t2).
In contrast, because Bennett’s hypothetical polymer-chemistry Turing machine has no bimolecular
reactions between low-concentrations species (all reactions are between a single polymer tape and
high-concentration enzymes), its time requirement is just O(t) — better than ours.

5 Reversible Stack Machine Implementation

Given a stack machine defined as in the preceding section, the set of reverse rules is formed by
switching the left-hand side and the right-hand side of all rules. We say the stack machine is reversible
if the set of reverse rules is deterministic.

To implement a stack machine that can proceed either forward or backward in chemistry we can
use reversible reactions:

1. α x i −→ β y j ⇒ Sα + xi 
 Sβ + yj
2. α x i −→ β ⇒ Sα + xi 
 Sβ +Q
3. α −→ β y j ⇒ Sα +Q 
 Sβ + yj
4. α λ i −→ β λ i ⇒ Sα +⊥i 
 Sβ +⊥i

5.1 Simulating a reversible TM

Most theoretical work on reversible computing uses Turing machines rather than stack machines.
Are there non-trivial reversible stack machines according to the above definition? Are there universal
reversible stack machines according to the above definition?

We can take the path of showing that reversible stack machines can simulate known reversible
TMs. For simplicity let us consider a binary, reversible TM with 1 tape that is bounded on the left
and is infinite on the right; futher, we require that the TM never tries to read past the left end of
the tape. (For example ref. [17] describes such a TM that is universal, although it is slow; multi-
tape reversible TMs are faster, and can be similarly implemented.) We can consider three types of
transition rules, using Bennett’s notation [4]:

1. α x −→ β y
2. α / −→ β−
3. α / −→ β+



where α, β are states, and x, y ∈ {0, 1} are symbols. The first rule means that when in state α with
the head reading symbol x, transition to state β overwriting x with y. The second and third rules
indicate that when in state α move left or right respectively, without reading from or writing to the
tape. The reverse of rule α x−→β y is β y−→α x. The reverse of rule α /−→β− is β /−→α+
and vice versa.

We represent the tape using two stacks. Everything to the left of the head is on stack 1 with the
current symbol on top. Everything to the right of the head is on stack 2 with the symbol to the right
of the head on top. The infinity of 0’s past the rightmost 1 on the TM tape is implicitly represented
such that the topmost symbol on stack 2 can only be 1, if the stack is not empty. We convert TM
transition rules to stack machine transition rules as follows, where x, y ∈ {0, 1}:
1. α x−→β y ⇒

α x 1 −→ β y 1
2. α /−→β− ⇒

α 0 1 −→ σ1 0 1
α 1 1 −→ β 1 2
σ1 λ 2 −→ σ2 λ 2
σ1 0 2 −→ σ4 0 2
σ1 1 2 −→ σ4 1 2
σ2 0 1 −→ σ3

σ3 λ 2 −→ β λ 2
σ4 0 1 −→ β 0 2

3. α /−→β+ ⇒
α 0 2 −→ σ4 0 1
α 1 2 −→ β 1 1
α λ 2 −→ σ3 λ 2
σ4 0 2 −→ σ1 0 2
σ4 1 2 −→ σ1 1 2
σ3 −→ σ2 0 1
σ2 λ 2 −→ σ1 λ 2
σ1 0 1 −→ β 0 1

where σ1 — σ4 are states unique to the given TM transition rule. Note that (3) is the reverse of
(2). The hard work involved in moving left and right comes from the requirement to maintain a
consistent and unique implicit representation of the infinite background of zeros on the right.

It is enough to prove two things: that the forward direction is deterministic, and that the forward
direction correctly simulates the TM transitions. Then no point can have multiple predecessors
because simulating the reverse TM transition crosses that point in the opposite direction. (The fact
that the forward and backward stack machine paths within a single TM transition must be the same
follows from the fact that for the reverse path we could have just applied the forward rules in reverse
order.)

Forward determinism follows because in any stack machine state we are reading at most one
stack. It is also easy to verify that (2) and (3) correctly simulate the TM transition in the forward
direction by following all the branches. For that, note that (2) guarantees that the bottom symbol
in stack 2, if any, is a 1. (I.e.: no unnecessary “blanks”. We also assume this is true of the initial
state.) Thus in (3), stack 2 cannot be empty when we get to state σ4.

More efficient reversible TMs with multiple tapes and large alphabets can be simulated in a
similar manner, as a straightforward generalization of the given construction. This is important be-
cause whereas 1-tape, 2-symbol reversible TMs are indeed universal, multitape TMs are essential for
Bennett’s theorems showing that the time and space requirements for logically reversible TM com-
putation are no more than slightly worse than linear with respect to irreversible TM computation [4,
6].



6 Conclusions

Our paper contributes to the art of designing molecular interactions using strand displacement cas-
cades by proposing a direct implementation of arbitrary coupled reversible reactions, as well as a way
to add and remove end monomers to and from a DNA polymer. The new construction for reversible
reactions is more efficient than implementing them as two separate irreversible reactions [23], both in
terms of the complexity of the scheme as well as the amounts of fuel reagents required. By adjusting
and maintaining fuel concentrations, reactions can be biased forward or backward or balanced arbi-
trarily close to equilibrium. Based on these reaction mechanisms, we developed a novel method of
embedding computation in biochemical and biological systems by showing an efficient autonomous
stack machine simulation. This simulation can be made reversible to attain low energy consumption.

Different architectures for molecular computing such as algorithmic self-assembly, circuits imple-
mented with CRNs, Turing machines implemented with CRNs, and polymer CRNs embody different
tradeoffs between time, volume, energy and uniformity. Our construction is exponentially more ef-
ficient in terms of the required molecular counts and volume than geometry-free Turing-universal
computation using strand displacement reactions (combination of refs. [23] and [22]), and also poly-
nomially faster. Moreover, unlike the geometry-free computation of ref. [22], our polymer CRN
construction in theory yields the correct computation output with probability 1.

Lastly, using our implementation of reversible CRNs, we proposed a logically-reversible stack
machine construction that maintains error-free computation using physically reversible reactions.
We showed that these reversible stack machines can reversibly simulate a reversible Turing machine,
establishing their Turing universality and the applicability of results in the existing literature. Our
constructions can be viewed as steps toward a DNA implementation of Bennett’s thought exper-
iment [5] in which computation was shown to require arbitrarily little thermodynamic energy per
step.

There is still room for improvement in our constructions. First, the fact that the machine state
is stored within multiple free-floating molecules results in the requirement for slow bimolecular
reactions, unlike Bennett’s hypothetical scheme. A second drawback of our scheme is that preparing
reactions with a single copy of each state-bearing molecule would be difficult experimentally. Further,
unlike Bennett’s scheme, ours cannot run an arbitrary number of parallel machines in the same
reaction chamber. This limitation prevents the use of our construction for fast solutions to parallel
search problems [1].

Finally, our construction lacks the attractive feature of material recycling: taking any irreversible
Turing machine, applying the transform described in ref. [4] to make it reversible, and implementing
it with Bennett’s hypothesized molecular construction, yields a molecular computation that recycles
all material requirements except for the molecules used in writing out the output. However, in
our scheme, different fuel molecules would be used in the “compute” and “retrace” phases of the
transformed Turing machine computation, and would not be regenerated. Indeed, every computation
converts fuels of forward reactions to the fuels of reverse reactions in an amount proportional to the
length of the computation.

The polymer reactions we introduce are likely instances of a wider class of polymer modification
reactions that can be implemented with strand displacement. It would be exciting to implement a
polymer reaction class capable of exhibiting the richness of cytoskeletal networks that are responsible
for cellular reorganization and coordinated movement.

Acknowledgments

We thank Ho-Lin Chen for insight discussions and suggestions. Our development of the history-free
CRN scheme grew out of extensive discussions with Luca Cardelli, who proposed several elegant and
similar schemes. We thank Anne Condon for clarifying discussions. This work was supported by the
Molecular Programming Project under NSF grant 0832824 and an NSF CIFellows Award to DS.



References

1. Adleman, L. Molecular Computation of Solutions to Combinatorial Problems. Science 266, 5187
(1994), 1021–1024.

2. Beaver, D. A Universal Molecular Computer. In DNA based computers: proceedings of a DIMACS
workshop, April 4, 1995, Princeton University (1996), R. Lipton and E. Baum, Eds., American Mathe-
matical Society, pp. 29–36.

3. Benenson, Y., and Shapiro, E. Molecular computing machines. Encyclopedia of Nanoscience and
Nanotechnology (2004), 2043–2056.

4. Bennett, C. Logical reversibility of computation. IBM Journal of Research and Development 17, 6
(1973), 525–532.

5. Bennett, C. The thermodynamics of computation – a review. International Journal of Theoretical
Physics 21, 12 (1982), 905–940.

6. Bennett, C. Time/space trade-offs for reversible computation. SIAM Journal on Computing 18 (1989),
766–776.

7. Blinov, M., Faeder, J., Goldstein, B., and Hlavacek, W. BioNetGen: software for rule-based
modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20, 17
(2004), 3289–3291.

8. Cardelli, L. Strand algebras for DNA computing. In 15th International Conference on DNA Com-
puting (2009), vol. LNCS 5877 of DNA Computing 15, Springer, pp. 12–24.

9. Cardelli, L. Two-Domain DNA Strand Displacement. In Developments in Computational Models
(DCM) (2010).

10. Cardelli, L., and Zavattaro, G. On the computational power of biochemistry, vol. 5147 of Lecture
Notes in Computer Science. Springer, 2008, pp. 65–80.

11. Chen, H., De, A., and Goel, A. Towards Programmable Molecular Machines. FNANO (2008).
12. Danos, V., Feret, J., Fontana, W., Harmer, R., and Krivine, J. Rule-based modelling of cellular

signalling, vol. 4703 of Lecture Notes in Computer Science. Springer, 2007, pp. 17–41.
13. Kurtz, S., Mahaney, S., Royer, J., and Simon, J. Biological computing. Complexity theory retro-

spective II (1997), 179–195.
14. Landauer, R. Irreversibility and heat generation in the computing process. IBM Journal of Research

and Development 5, 3 (1961), 183–191.
15. Liekens, A. M. L., and Fernando, C. T. Turing complete catalytic particle computers, vol. 4648 of

Lecture Notes in Computer Science. Springer, 2007, pp. 1202–1211.
16. Minsky, M. L. Computation: finite and infinite machines. Prentice Hall, 1967.
17. Morita, K., Shirasaki, A., and Gono, Y. A 1-tape 2-symbol reversible Turing machine. The

Transactions of the IEICE E 72, 3 (1989), 223–228.
18. Qian, L., and Winfree, E. A simple DNA gate motif for synthesizing large-scale circuits. In 14th

International Conference on DNA Computing (2009), vol. LNCS 5347 of DNA Computing 14, Springer,
pp. 70–89.

19. Rothemund, P. A DNA and restriction enzyme implementation of Turing machines. In DNA based
computers: proceedings of a DIMACS workshop, April 4, 1995, Princeton University (1996), R. Lipton
and E. Baum, Eds., vol. 27, American Mathematical Society, pp. 75–119.

20. Rothemund, P., Papadakis, N., and Winfree, E. Algorithmic self-assembly of DNA sierpinski
triangles. PLoS Biology 2, 12 (2004), e424.

21. Smith, W. DNA computers in vitro and vivo. In DNA based computers: proceedings of a DIMACS
workshop, April 4, 1995, Princeton University (1996), R. Lipton and E. Baum, Eds., vol. 27, American
Mathematical Society, pp. 121–185.

22. Soloveichik, D., Cook, M., Winfree, E., and Bruck, J. Computation with finite stochastic chem-
ical reaction networks. Natural Computing 7, 4 (2008), 615–633.

23. Soloveichik, D., Seelig, G., and Winfree, E. DNA as a universal substrate for chemical kinetics.
Proceedings of the National Academy of Science 107, 12 (2010), 5393–5398.

24. Winfree, E. On the computational power of DNA annealing and ligation. In DNA based computers:
proceedings of a DIMACS workshop, April 4, 1995, Princeton University (1996), R. Lipton and E. Baum,
Eds., vol. 27, American Mathematical Society, pp. 199–221.

25. Winfree, E. Simulations of computing by self-assembly. Tech. Rep. CS-TR:1998.22, Caltech, 1998.
26. Yin, P., Turberfield, A., Sahu, S., and Reif, J. Design of an autonomous DNA nanomechanical

device capable of universal computation and universal translational motion, vol. 3384 of Lecture Notes
in Computer Science. Springer, 2005, pp. 426–444.


