
How do biological systems process informa-
tion? Such computations occur at multiple 
scales, involving molecules, cells, tissues, 
organs and beyond. For example, computa-
tional circuits are embedded in molecular 
pathways1 and formed by the neurons of the 
brain2, and the immune system computes 
immune responses by processing a vast array 
of molecular inputs3. Understanding such 
information processing could unlock strat-
egies for treating disease and identify funda-
mental engineering principles of biology.

In human-engineered systems, compu-
tations typically take place in dedicated 
processing units. By contrast, the computa-
tions involved in biological processes such 
as protein synthesis, molecular self-assem-
bly and cell navigation are often embedded 
directly in biophysical processes. Under-
standing such biophysically embedded com-
putations remains a key challenge. On page 
500, Evans et al.4 report an investigation of 
biophysical computations in which a sys-
tem of self-assembling DNA tiles was used to 
recognize patterns.

The authors’ work builds on the field of 
DNA nanotechnology5, which uses DNA to 
construct sophisticated nanostructures for 
a broad range of applications. It takes advan-
tage of the fact that single strands of DNA can 
be designed to self-assemble in solution by 
binding to DNA molecules with complemen-
tary sequences. One strategy is to assemble 
structures from DNA building blocks in the 
form of square tiles, which are designed so 
that tile edges with complementary sequences 
bind to each other. Such self-assembling tile 
systems have been engineered to implement 
a broad range of digital algorithms6, but other 
sophisticated computations, such as pattern 
recognition, have not been explored with 
these systems.

To implement complex pattern-recognition 
computations, Evans et al. designed a set of 
square DNA tiles to self-assemble into three 
distinct shapes: the letters H, A and M (Fig. 1a). 
Some of the tiles were used in the assembly of 

only one of the shapes; others were used in two 
or three shapes. The tile set was designed so 
that the three shapes formed in similar quan-
tities when the different tiles were present in 
solution in equal concentrations. By contrast, 
different concentrations of each type of tile 
resulted in the formation of one dominant 
shape, which depended on the concentrations.

The full tile system was designed 

computationally, in a process that started with 
each of the three shapes composed entirely 
of tiles unique to that shape, each tile having 
a distinct set of edges. A merging algorithm 
then progressively identified tiles that could 
be used in more than one shape. Each step of 
the algorithm randomly picked two tiles from 
two different shapes and tried to find one tile 
that could replace them both, altering the 
neighbouring edges accordingly. A replace-
ment was accepted only if the resulting system 
satisfied certain conditions, to prevent the sys-
tem from getting ‘stuck’ in incorrect assem-
blies. The conditions assume that tiles bound 
on a single edge readily fall off the self-assem-
bling shape, whereas those bound on multiple 
edges are stable. When the conditions are met, 
incorrect tiles can bind to the system only on 
a single edge; if an incorrect tile does bind, a 
subsequent incorrect tile can also bind only on 
a single edge. After multiple iterations of the 
algorithm, an optimized system was obtained, 
consisting of 917 tiles — 371 of which are used in 
more than one shape — with 698 distinct edges.

The next challenge was to identify groups 
of the tiles that co-locate in only one of the 
three assembled shapes to form the core of 
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Self-assembling DNA can process information, but the 
computations have been limited to digital algorithms. 
A self-assembling DNA system has now been designed to 
perform complex pattern recognition. See p.500 

Figure 1 | Pattern recognition by self-assembling DNA tiles.  a, Evans et al.4 report a set of 917 DNA tiles 
that can self-assemble in solution to form three shapes: H, A and M. Some tiles (red, yellow and blue) are used 
in only one of the shapes, whereas others (grey) are used in two or three shapes. When the concentrations 
of each tile in solution are equal, all three shapes form in similar quantities. b, To demonstrate the pattern-
recognition ability of the tile system, each pixel in 18 greyscale images (only three are shown) was assigned 
to one of the tiles, using the same assignment for all images. The intensity of the pixels determined the 
concentration of the associated tile to be used in solution: bright pixels correspond to high concentrations. 
The system was designed so that the tiles self-assemble predominantly into one shape that depends on the 
specific combination of tile concentrations defined by the images. High-concentration tiles are situated 
close together in the dominant shape (red circles), but not in the other shapes (not shown). This promotes 
the initial assembly of the high-concentration tiles, accelerating the formation of the dominant shape. 
Adapted from Fig. 5 in ref. 4; Magnolia: David C. Richardson.
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The interfaces that form between living tissues 
and biomedical materials, often referred to as 
biointerfaces, greatly influence the ability to 
detect and treat disease. Unfortunately, the 
development of biomedical devices has his-
torically involved a trade-off between using 
materials that can be fabricated easily into the 
devices and using those that adhere to tissues 
at the cellular level. Reporting in Nature Chem-
ical Engineering, Shi et al.1 present a clever, 
yet simple, strategy to make materials that 
combine easy handling with robust interface 

formation. The authors show that hydrogels 
— water-rich networks of polymers — embed-
ded with tiny starch granules form dynamic 
biointerfaces that ‘evolve’ over time, and have 
many potential uses across biomedicine, from 
tissue regeneration to sensing.

Materials that are intended to help repair 
damaged tissues must provide a tight bio
interface to promote cell–material inter
actions, and have a porous or degradable 
matrix to allow for cellular growth2. Typically, 
macroscopic patches are used to promote such 
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Materials that adhere tightly to human tissues can promote 
healing and boost the sensitivity of biomedical diagnostic 
devices. An ‘evolving’ gel has been made that synergizes two 
strategies for forming interfaces with tissue.

that shape. When one of these cores forms in 
solution, it is called a nucleation seed, and the 
assembly of the rest of the shape is acceler-
ated at the expense of the other two shapes — a 
‘winner take all’ outcome. This means that the 
shape that self-assembles from the full set of 
tiles can be controlled by choosing a particular 
combination of tile concentrations, called a 
concentration pattern, that promotes the for-
mation of the nucleation seed for that shape.

Evans et al. used an algorithm to estimate 
the self-assembly rates of shapes from differ-
ent concentration patterns, and thereby iden-
tified 37 nucleation seeds. The corresponding 
concentration patterns were then tested 
experimentally, using a 150-hour annealing 
process in which the tiles were slowly cooled 
in solution to allow them to self-assemble. 
The authors used fluorescent labels to mon-
itor the assembly of each shape, and atomic 
force microscopy to image the shapes. Of 
the 37 proposed nucleation seeds, roughly 
half resulted in selective self-assembly of 
the desired shapes; the others did not, for 
unknown reasons.

To demonstrate the information-processing 
capabilities of their system, the authors used it 
to classify 18 greyscale images of 30 × 30 pixels 
on the basis of the shades (greyscale values) of 
the pixels in the image (Fig. 1b). The idea was 
to represent the greyscale value of each pixel 
in each image by the concentration of one of 
the tiles, so that the resulting concentration 
pattern of tiles promotes the assembly of a 
designated shape (H, A or M). The assignment 
of pixels to tiles was done computationally to 
maximize the self-assembly of the designated 
shape, while minimizing self-assembly of com-
peting shapes. Crucially, this assignment was 
simultaneously optimized for all images, rather 
than independently for each one.

When the authors tested the concentration 
patterns for the 18 images experimentally, 
they observed that the desired shape did 
indeed assemble more often than any other, 
with greater than 80% selectivity for 13 of the 
images. In other words, the tile system recog-
nized the different concentration patterns, 
and therefore the corresponding images, by 
assembling into the designated shapes. Cru-
cially, the system also coped with 12 degraded 
versions of the images. For example, when 
the greyscale values of some of the pixels of a 
horse image were altered at random, thereby 
corrupting the corresponding concentration 
pattern, the system still reliably formed an H 
shape in preference to an A or an M, correctly 
classifying the image.

One of the main limitations of this work is 
the trade-off between the speed, accuracy and 
complexity of pattern recognition. In particu-
lar, the timescales of the experiments were 
chosen conservatively to minimize the forma-
tion of incorrect structures. The winner-take-
all outcomes indicate that these timescales 

could be shortened substantially; the use of 
smaller assemblies consisting of fewer tiles 
could also speed things up. Because such DNA 
systems will probably find biological applica-
tions, rather than becoming replacements for 
silicon-based computations, speed consider-
ations might be less important than having 
the ability to embed computations directly in 
biophysical processes at the nanoscale.

Overall, the latest findings demonstrate 
how computations needed for complex 
pattern recognition can be encoded at the 
molecular level in the biophysical process of 
self-assembly. The study also illustrates how 
previous theoretical7 and experimental work6 
on DNA-tile assembly can support the design 
of sophisticated new experiments. Further-
more, it demonstrates how the programma-
bility of DNA and the well-understood kinetics 
and thermodynamics of DNA base pairing can 
enable the design of a self-assembling system 
with more than 900 distinct components to 
carry out complicated computations.

From a computational perspective, a prom-
ising direction for future work is to further 
explore the connections between pattern 
recognition in self-assembling systems and 
other forms of neural computation. Evans et al. 
identify parallels between their tile system and 
neural network models known as Hopfield 
associative memories8, and with the networks 
of place cells in the brain that store spatial 
memories, building on previous work8,9. 
Further exploration of the opportunities and 
limitations of embedding neural computation 

in biophysical processes would be valuable.
From an experimental perspective, as 

scientists’ ability to design protein-based 
systems and predict their biophysical inter-
actions continues to improve, the approaches 
outlined by Evans et al. could be used to 
design self-assembling protein structures 
that process information. For example, dif-
ferent protein complexes with distinct func-
tions could self-assemble depending on the 
concentrations of their building blocks. More 
generally, this work also provides a conceptual 
and experimental framework for the future 
design of compact, robust and scalable com-
putations embedded in biophysical processes.
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