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Inspired by biology’s most sophisticated computer, the brain, neural networks constitute a profound refor-
mulation of computational principles. Remarkably, analogous high-dimensional, highly-interconnected com-
putational architectures also arise within information-processing molecular systems inside living cells, such
as signal transduction cascades and genetic regulatory networks. Might neuromorphic collective modes be
found more broadly in other physical and chemical processes, even those that ostensibly play non-information-
processing roles such as protein synthesis, metabolism, or structural self-assembly? Here we examine nucle-
ation during self-assembly of multicomponent structures, showing that high-dimensional patterns of concentra-
tions can be discriminated and classified in a manner similar to neural network computation. Specifically, we
design a set of 917 DNA tiles that can self-assemble in three alternative ways such that competitive nucleation
depends sensitively on the extent of co-localization of high-concentration tiles within the three structures. The
system was trained in-silico to classify a set of 18 grayscale 30x30 pixel images into three categories. Experi-
mentally, fluorescence and atomic force microscopy monitoring during and after a 150-hour anneal established
that all trained images were correctly classified, while a test set of image variations probed the robustness of
the results. While slow compared to prior biochemical neural networks, our approach is surprisingly compact,
robust, and scalable. This success suggests that ubiquitous physical phenomena, such as nucleation, may hold
powerful information processing capabilities when scaled up as high-dimensional multicomponent systems.

The success of life on earth derives from its use of
molecules to carry information and implement algorithms
that control chemistry and allow organisms to respond intel-
ligently to their environment. Genetic information encodes
not only molecules with structural and chemical functional-
ity, but also biochemical circuits such as genetic regulatory
networks and signal transduction cascades that in turn pro-
cess internal and external information relevant for cellular
decision-making. While some biological systems may, like
modern modular engineering, isolate information processing
from the physical subsystems being controlled,’ other critical
decision-making may be embedded within and inseparable
from processes such as metabolism, self-assembly, and
structural reconfiguration. Understanding such physically-
entangled computation will be necessary not only for un-
derstanding biology, but also for engineering autonomous
molecular systems such as artificial cells, where it is essen-
tial to pack as much capability as possible within a limited
space and with a limited energy budget.

The interplay of structure and computation is particularly
rich in molecular self-assembly. In biological cells, decisions
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Fig. 1 | Conceptual framework for pattern recognition by nucleation.

When one set of molecules can potentially assemble multiple distinct struc-
tures, the nucleation process that selects between outcomes is responsive
to high-dimensional concentration patterns. Assembly pathways can be
depicted on an energy landscape (schematic shown) as paths from a
basin for unassembled components that proceed through critical nucleation
seeds (barriers) to a basin for each possible final structure. Seeds that
co-localize high concentration components will lower the nucleation barrier
for corresponding assembly pathways. The resulting selectivity of nucle-
ation in high-dimensional self-assembly is sufficiently expressive to perform
complex pattern recognition in a manner analogous to neural computation.

about navigation, chemotaxis, and phagocytosis are made
via structural rearrangements of the cytoskeleton that inte-
grate mechanical forces and chemical signals,?= but where
and how information processing occurs remains elusive. In
DNA nanotechnology,® self-assembly of DNA tiles has been
shown theoretically and experimentally to be capable of
Turing-universal computation through simulation of cellular
automata and Boolean circuits,”® but this digital model of
computation appears brittle and belabored, without a clear



analog in biology.

There is an alternative form of computation that is nat-
urally compact and robust, and very well studied in the
context of a different type of biological information pro-
cessing.®~!"" Neural computation has several distinctive hall-
marks: mixed analog/digital decision-making, recognition of
high-dimensional patterns, reliance on the collective influ-
ence of many distributed weak interactions, robustness to
noise, and an inherent ability to learn and generalize. Sur-
prisingly, neural network models map naturally onto theoreti-
cal models of well-mixed chemical networks, 13 genetic reg-
ulatory networks,'4~'® and signal transduction cascades,'”:'®
helping to characterize the capabilities of these systems and
enabling experimental demonstrations of pattern recognition
and neuromorphic computing both in cell-free biochemical
circuits and within living cells.'®-?" But these well-mixed ap-
proaches still separate decision making from downstream
processes.

Neural information processing principles within molecular
self-assembly have been harder to discern, and perhaps
at first appear as a contradiction in terms. An early ther-
modynamic view of how free-energy minimization in molec-
ular self-assembly could be akin to the Hopfield model of
neural associative memory did not lead to concrete realiza-
tions.?? However, a recent kinetic view of multi-component
systems that permit assembly of many distinct structures us-
ing the same components (“multifarious self-assembly”)2324
revealed concrete connections to Hopfield associative mem-
ories?® and models of hippocampal place cells?® at the level
of collective dynamics, even though individual molecules do
not mimic individual neurons in any obvious way.

Here, we reformulate this connection as an intrinsic fea-
ture of heterogeneous nucleation kinetics and experimen-
tally demonstrate its power for high-dimensional pattern
recognition using DNA nanotechnology.® The phenomenon
arises when the same components can form several dis-
tinct assemblies in different geometric arrangements, or
shapes (Fig. 1). In this case, nucleation proceeds by spon-
taneous formation of a critical seed that subsequently grows
to form an assembly consistent with the arrangement within
the seed. Because the rate of nucleation through a given
pathway depends strongly on the concentrations of the com-
ponents within the seed, and there may be many distinct
pathways possible, the overall rate of formation of a given
shape may be a complex function of the concentration pat-
tern. Furthermore, because components are shared be-
tween the shapes, competition for resources?®’ results in
a winner-take-all effect that accentuates the discrimination
between concentration patterns.

Molecular system design

To explore these principles experimentally, we take advan-
tage of the powerful foundation provided by DNA nanotech-
nology for programming molecular self-assembly. The well-
understood kinetics and thermodynamics of Watson-Crick
base pairing®®2° enables systematic sequence design’ for
DNA tiles that reliably self-assemble into periodic, uniquely-

addressed, and algorithmically-patterned structures with
100s to 1000s of distinct tile types.”2%-2 These classes of
self-assembly differ in final structures produced and in the
nature of interactions: in periodic and uniquely-addressed
structures, each molecular component typically has a unique
possible binding partner in each direction. For algorithmic
patterns (as for multifarious assembly), at least some com-
ponents have multiple possible binding partners, such that
which one attaches must be decided during self-assembly.

We build on these ideas to create a molecular system
capable of assembling multiple target structures (H, A, and
M in Fig. 2) from a shared set of interacting components by
co-localizing them in different ways. The first stage of design
begins with a checkerboard arrangement in which a set S of
shared tiles do not directly bind each other; then three sets
of interaction mediating-tiles (also called H, A, and M) are in-
troduced for each of the respective desired structures. This
design avoids constraints from Watson-Crick complementar-
ity, allowing almost arbitrary interactions to be engineered
between S tiles. Later design stages, described below, opti-
mized this initial layout to reduce assembly errors; Extended
Data Fig. E1 describes the optimization and Extended Data
Fig. E2 compares with the checkerboard design.

The basic design principles are as follows. Each interac-
tion tile in H binds four specific S tiles together in a way that
reflects neighborhood constraints between shared S tiles in
structure H. These H tiles are unique to structure H and do
not occur in the assembled A or M structures. Tiles in a 1:1
stoichiometric mix of S+H, S+A or S+M will have no promis-
cuous interactions and will assemble H, A or M respectively,
as with prior work on uniquely addressable structures.®* But
a 1:1:1:1 mix of S+H+A+M, henceforth called our SHAM
mix, is capable of assembling three distinct structures. This
additive construction of interaction-mediating tiles is analo-
gous to Hebbian learning of multiple memories in Hopfield
neural networks.?32°

Extensive promiscuous interactions present in the SHAM
mix could in principle lead to unplanned chimeric structures
and aggregates (Extended Data Fig. E2). We combine two
kinds of cooperative effects, called “proofreading” because
they lead to rejection of mis-assembled tiles, to prevent
such aggregates. Much like with neural networks,*¢ ran-
dom arrangement of tiles provides a statistical proofread-
ing.2® Further optimization of the tile set (Extended Data
Fig. E1) confers algorithmic proofreading.®”-*8 The resulting
design in Fig. 2b, has 168 tiles shared across all three struc-
tures, 2083 tiles shared across a pair, and 546 tiles unique
to a specific shape. Our experimental implementation used
42-nucleotide single-stranded DNA tiles®* (Fig. 2a) with se-
quences designed using tools from prior work” to reduce
unintended interactions and secondary structure and ensure
nearly-uniform binding energies.

To test whether proofreading was sufficient to combat
promiscuity and to test the unbiased yield of different struc-
tures, we annealed all tiles at equal concentration (60 nM)
in solution over 150 hours from 48°C to 45°C. Atomic
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Fig. 2 | A multifarious mixture of 917 molecular species that can assemble into three distinct structures from one set of molecules. a, 42-
nucleotide DNA strands self-assemble into 2-d structures by forming bonds with four complementary strands in solution via four 10 or 11 nucleotide
domains. The strands can be abstracted as square tiles, each named and shown with distinct binding domains identified by number, such that e.g. 708 is
complementary to 708*. b, One pool of 917 tile types assembles into three distinct shapes, H, A and M, through a multitude of pathways. While each tile
occurs at most once in each shape, the shared purple species recur in multiple shapes, in distinct spatial arrangements. ¢, Annealing an equal mix of all
tiles results in a mixture of fully and partially assembled H, A and M, imaged by atomic force microscope (AFM). Inset illustrates the expected slant of the

shapes due to single-stranded tile geometry.

force microscopy (AFM) revealed a roughly equal yield of
all three structures (Fig. 2c), despite the inequivalent ther-
modynamic energies of H, A, and M due to their different
area-to-perimeter ratios (Fig. 3). These results indicate that
yield is kinetically controlled and no one structure has intrin-
sically favorable kinetic pathways on the timescales probed
here. Additionally, we did not observe significant chimeric
structures or uncontrolled aggregation, indicating that proof-
reading was functioning as desired. A fraction of structures
formed, however, were missing fragments at two specific
corners, which could arise from asymmetric growth kinetics
or lattice curvature.33

Co-localization controls nucleation

To assess how kinetic pathways can be determined
by nucleation and controlled by concentration patterns,
we adapt classical nucleation theory®® to consider target
structures that differ in co-localization of tiles. We model
the free energy of a structure A with B total bonds as
G(A) = X ;caGlhe — BGse — a, where o depends on the
choice of reference concentration vy, G/.. = o — log ¢;/up
is the chemical potential (or equivalently, translational en-
tropy) of tile i at concentration c;, and G, is the energy of
each bond in units of RT. G(A) has competing contributions
that scale with the structure’s area and perimeter, and is
hence maximized for certain partial assemblies called criti-
cal nucleation seeds. The formation of such seeds is often
rate-limiting: once these seeds are assembled, subsequent
growth is faster and mostly ‘downhill’ in free energy. If the

nucleation rate for a given shape is dominated by a single
critical nucleus As, we could use an Arrhenius-like approx-
imation n/,,,. ~ e ¢*); in the case that multiple critical
nuclei are significant, we must perform a sum (Extended
Data Fig. E3).

When such analyses are applied to homogeneous crys-
tals with uniform concentration ¢; = ¢ of components, critical
nuclei are simply those with the appropriate balance of size
and perimeter. Heterogeneous concentration patterns re-
quire a new kind of analysis. Identifying critical seeds is now
more involved since they can be arbitrarily shaped, paying
in perimeter to gain high concentration tiles, and may have
different sizes, with many high concentration tiles in struc-
tures resulting in smaller critical sizes. We implemented a
stochastic sampling algorithm (Extended Data Fig. E3) to
estimate the nucleation rate of a structure with an uneven
pattern of concentrations ¢;, with results in Fig. 3.

We can gain insight into how nucleation performs pat-
tern recognition using the example shown in Fig. 3a, where
the concentrations of some shared tiles in the SHAM mix
have been enhanced. If the high concentration tiles are
co-localized in structure H, such a pattern will lower kinetic
barriers for the nucleation of H while maintaining high barri-
ers for A and M since those same high concentration tiles
are scattered across the structure in A and M. The typical
area K over which co-localization promotes nucleation de-
pends on the temperature and the typical concentration of
high tiles and can be estimated from the size of critical seeds
predicted by classical nucleation theory. The nucleation rate
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Fig. 3 | Theory shows selective nucleation when high concentration tiles are co-localized in one shape more than in others. a, b, A pattern
enhancing the concentration of shared tiles co-localized in H but relatively dispersed in A and M. ¢, Nucleation pathways for H climb a lower nucleation
barrier, with smaller critical nuclei (colored assemblies), as seen from a stochastic nucleation simulation (Supplementary Information and Data Appendix,
Section 1.2). d, Regions predicted to participate in nucleation by the simulation for three concentration patterns (lighter colors correspond to higher
participation). e, Assembly-size macrostate free energies and predicted AFM results at several temperatures. Varying temperature trades off selectivity
for speed due to the size of the critical nucleus (and thus the scale of pattern recognition) changing differently for on-target and off-target shapes. f, As the
dependence of nucleation and growth rates on temperature, shown here for a simple chemical reaction network model (Supplementary Information and
Data Appendix, Section 1.3) favoring H, is shape-specific and changed by the tile concentration pattern, depletion of shared tiles during a temperature
anneal can lead to a winner-take-all (WTA) effect. Changing growth rates, concentration patterns, and annealing rates all impact the amount of WTA. g,
In this model, WTA leads to higher selectivity compared to systems with no shared components; for slower anneals, selectivity increases for systems with
shared components, but decreases for systems with no shared components.

of a structure is high if it contains contiguous regions of
area K with high average (log) concentration, and is low
otherwise. Since the area of critical seeds, and hence K,
is generally larger at high temperatures, we expect a trade-
off between speed and complexity of pattern recognition
(Fig. 3e), with more subtle discrimination at higher tempera-
tures (large K)—at the expense of slower experiments—and
lower discriminatory power at lower temperatures (small K).

To experimentally characterize the basis of selectivity, we
systematically varied the location of a 5 x 5 checkerboard
pattern of high concentration tiles—a ‘flag’—in each of the
three shapes, through 37 total locations (three examples
are shown in Fig. 3b). We enhanced concentrations of only
shared tiles in the SHAM mix, and thus did not create addi-
tional thermodynamic bias towards any one structure. We
ramped the temperature down slowly, from 48 °C to 46°C
(the expected range for nucleation, a few degrees below the
melting temperatures) to provide robustness to variations in
nucleation temperatures among flags in different locations.
To monitor nucleation and growth in real time, we designed
distinct fluorophore/quencher pairs on adjacent tiles in four
locations on each shape, using tiles not shared between
shapes. Each pair quenches when the local region of that
specific structure assembles (Fig. 4b and Extended Data
Fig. E4).

Experimental results for the three example flag concen-
tration patterns are shown in Fig. 4c, and illustrate selective
nucleation (more details in Extended Data Fig. E5). When
the pattern localizes high concentration species in a struc-
ture, e.g., H, the fluorophore in the expected nucleation
region of that structure quenched first and rapidly. After
a delay, fluorophore signals from other parts of the same
structure also dropped, indicating growth. Fluorophores on
off-target structures show minimal to no quenching until very
late in the experiment. AFM images from samples at the end
of the experiment confirm that fluorophore quenching cor-
responded to selective self-assembly of complete or partial
shapes. Of the 37 flag positions, roughly half exhibited ro-
bust selective nucleation and growth (Fig. 4de), while other
positions were either not selective or did not grow well, for
reasons we have not been able to determine.

In multifarious systems, we expect enhanced selectivity
because of a competitive suppression of nucleation. If we
use an annealing protocol that spends a sufficient time in
a temperature range where H can nucleate and grow sig-
nificantly, but A cannot nucleate (Fig. 3f), then we expect a
winner-take-all (WTA) effect in which the assembly of H de-
pletes shared tiles S and thus actively suppress nucleation
of A. As shown in Fig. 4f, we see evidence for such a WTA
effect in most experiments (see also Extended Data Fig. E6).
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Fig. 4 | Selective nucleation in experiments with shape-specific localized concentration patterns of shared tiles. a, Samples were annealed
with a temperature protocol that cooled from 71 °C (well above the melting temperature) to 48 °C over ~ 6 hours, cooled to 46 °C over 100 hours, and
finally was brought to 39.5°C over 3 hours (see Extended Data Fig. E5). b, Fluorescence monitoring was achieved by fluorophore-quencher pairs on the
5" ends of selected shape-specific tile strands. Fluorescence is quenched when both tiles are incorporated within a properly self-assembled local context,
while smaller assemblies involving just a few strands do not effectively quench fluorescence. Four different fluorophore/quencher pairs were designed on
adjacent tiles in four locations on each structure, allowing a given sample to choose one of three locations for each color, as indicated in ¢; quenching of
a label indicates growth of that local region on that structure (see Extended Data Fig. E4). c-e, We prepared 37 different concentration patterns (three
from Fig. 3 shown here) that had 12 or 13 shared tiles of increased concentration (17.6x) in checkerboard pattern in a particular 5 x 5 location in H, A, or
M. Fluorophore quenching in multiple samples, and AFM imaging, showed that many patterns resulted in selective nucleation of the shape with the
checkerboard pattern (c); results for each location are summarized (d) and plotted (e). f, Change in quenching (a measure of nucleation) of on- and
off-target structures with flag patterns relative to their quenching in equimolar SHAM mixes. For most flags, the absolute nucleation rate of off-target
shapes is reduced upon increasing concentrations of shared tiles, supporting a winner-take-all effect (see Extended Data Fig. E6).

Such a winner-take-all effect can enhance the effect of small
differences in nucleation kinetics.

Pattern recognition by nucleation

Our work thus far shows that the space of all concen-
tration patterns C = R" can be composed of regions that
result in the selective assembly of each of H, A and M re-
spectively at a specific temperature; see Fig. 5a. In fact,
these regions together represent the phase diagram of this
self-assembling system.*? Phase boundaries can be seen
as decision boundaries where selectivity is low. Phase
boundaries of traditionally studied physical systems are usu-
ally low dimensional and not fruitfully interpreted as decision
boundaries. However, in multi-component heterogeneous
systems like ours, the phase diagram is naturally high di-
mensional since the concentrations of all 917 components
must be specified. Further, phase boundaries in disordered
many-body systems tend to be complex and thus implicitly
solve complex pattern recognition problems, a perspective
that also underlies Hopfield’s Associative Memory in neural
networks.?>41

In this way, selective nucleation can be seen as solving
a particular pattern recognition problem based on which
molecules are co-localized in the designed structures. Sim-
ilar co-localization-based decision boundaries arise in the
context of neural place cells studied by the Mosers?+42-44
and have been shown to be complex enough to solve pattern
recognition problems and permit statistically robust learning.

Having demonstrated that multifarious self-assembly can
solve a specific pattern recognition problem based on co-

localization, could different molecules be designed to solve
other arbitrarily-given pattern recognition problems, e.g. that
shown in Fig. 5a? Here, the grayscale value of each pixel
position in the 30 x 30 images is taken to represent the con-
centration of a distinct molecule. Instead of synthesizing
new molecules with new interactions to solve the above
challenge, we equivalently show that the design problem is
solvable with our existing molecules by an optimized choice
of a pixel-to-tile map 6, that is by choosing which of our exist-
ing tiles should correspond to which pixel position (Fig. 5b).
In addition to saving DNA synthesis costs, this approach
also helps demonstrate that a random molecular design can
be exploited, ex post facto, to solve a specific computational
problem by modifying how the problem is mapping onto
physical components, as done in reservoir computing.*

We specified our design problem by picking arbitrary
images as training sets shown in Fig. 5d. Note that im-
ages in one class share no more resemblance than images
across classes, e.g., class H is Hodgkin, Hopfield, Horse
etc, though the number of pixels and grayscale histogram
were standardized across images (see Methods). In this
way, the number of distinct images per class (6 in the ex-
periments presented below) tests the flexibility of decision
surfaces inherent to this self-assembling molecular system
as a classifier.

We then used an optimization algorithm (see Fig. 5c and
Methods) on 6 that sought to maximize nucleation of the on-
target structure for the concentration pattern corresponding
to each image while also minimizing off-target nucleation.
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Fig. 5 | Design of self-assembly phase diagrams to solve pattern reco
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controlled self-assembly in different regions of N = 917 dimensional concentration space (2d schematic shown). Each grayscale image represents

a vector of tile concentrations. b, 6 specifies which pixel location corresp
concentration vector by associating the grayscale value of pixel location n wi

onds to which tile. ¢, Given a map 6, any image can be converted to a tile
th the concentration of the corresponding tile i = 6(n). We compute the ‘loss’

for a given pixel-to-tile map 6 using simulations to estimate the nucleation rates of desired and undesired structures for each image and summing over a
training set. Stochastic optimization in 6 space gives a putative optimal 6,,: that we used for experiments. d, Images used for training. e, Additional

images used to test generalization power.

That is, our algorithm sought to map high concentration pix-
els in each image (e.g., Moser) to co-localized tiles in the
corresponding on-target structure (here, M) to enhance nu-
cleation, while mapping those same pixels to scattered tiles
in undesired structures (here, A and H). Note that this map
6 is simultaneously optimized for all images and not inde-
pendently for each image. Hence no map 6 might be able to
perfectly satisfy all the above requirements simultaneously
for all images in all classes; analogous to associative mem-
ory capacity,?32>41 we explore the limits of this classifier in
Extended Data Fig. E7.

In experiments, we then enhanced concentrations of tiles
in the SHAM mix in accordance to each of the 18 training
images (using the optimized #) and annealed each of the 18
mixes with a 150 h ramp from 48 °C to 45°C. We found that
the 18 training images yielded highly selective correct nucle-
ation, as verified by AFM imaging and real-time fluorescence
quenching (Fig. 6 and Extended Data Fig. ES8).

We also tested 12 degraded images and 6 alternate hand-
writing images (Fig. 5e). We find successful pattern recog-
nition for random speckle distortions, and all but one partly
obscured image. The ability to recognize distorted images,
not present in a training set, is a critical aspect of learning
in neural networks since it tests the ability to generalize. A
given neural network architecture can be naturally robust to
certain families of distortions (e.g., convolutional networks
can handle translation) but not others (e.g., dilation). Fur-
thermore, since nucleation is a cooperative process, often
dominated by one or a few critical seeds involving just a
handful of tiles, flipping of random uncorrelated pixels and
obscuring parts of an image that do not involve those crit-
ical pixel combinations will not inhibit nucleation — demon-

strating robustness. On the other hand, only 3 of the 6
alternate handwritten digits were correctly recognized by
self-assembly, indicating a lack of robustness to this type of
variation, with our training protocol.

Discussion

The phenomenon of pattern recognition by multifarious
self-assembly that we demonstrated may be exploited by
complex evolved or designed systems. For example, the
phase boundaries for multi-component condensates govern-
ing genetic regulation*® may also contain similar inherent
information-processing capabilities. In such a case, the
‘pixel-to-tile’ map would instead correspond to a layer of
phosphorylation or binding circuitry that activates or deac-
tivates specific self-assembling components based on the
levels of upstream information-bearing molecular signals.
Within future artificial cell-like molecular robots, nucleation
may be an especially compact way to implement decision-
making within the limited space constraints.

To better understand the information-processing poten-
tial of nucleation, we may treat this physical process as
a machine learning model. A key issue is how the com-
plexity of decision surfaces, quantified, e.g., by the VC di-
mension,® depends on underlying physical aspects of self-
assembly such as concentration, temperature, annealing
speed, non-equilibrium effects such as winner-take-all, num-
ber of molecular species, binding free energies and their
specificity, and the geometry of structures. Our work al-
ready suggests that temperature mediates a trade-off be-
tween speed, accuracy, and complexity of pattern recogni-
tion; at higher temperatures, nucleation seeds are larger,
allowing discrimination based on higher order correlations
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the Stochastic Greedy Model (c). d, Normalized fluorescence over time in hours (one label per shape; other label configurations shown in Extended
Data Fig. E8) during a 150 hour temperature ramp from 48 °C to 45 °C, and final AFM images (with 100 nm scale bars). e, Summary of results for both
fluorescence and AFM for all 36 images, and a uniform 60 nM tile concentration control sample. Above, colors of vertical lines indicate the target shape
for the each pattern, while triangular markings of each color indicate the relative fraction of growth time (on right) or fraction of shapes counted in AFM
images (on left) for the corresponding shape (solid markings indicate target shape). Dashed lines indicate samples with no significant quenching or
observed shapes. Below, ternary plots summarize the same results, with proximity to triangle corners indicating relative fractions of growth time (right) or
counted shapes (left), and circle size indicating overall growth time (right) or total number of shapes (left).

in the concentration patterns, but the physical process is
also correspondingly slower. Indeed, unlike many prior re-
lationships between physics and computation, computation
here exploits the inevitable inherently stochastic nature of
nucleation. Monomers must make many unsuccessful at-
tempts at forming a critical seed for both on- and off-target
structures, with repeated disassembly before discovering the
seed for the correct pattern recognition outcome, much like
the backtracking inherent to stochastic search algorithms.*’
In well-mixed chemical systems, a formal connection be-
tween stochastic chemical kinetics and computational so-
lutions to NP-complete Boolean satisfiability problems has
been established,*® suggesting a possible approach for char-
acterizing the power of stochastic nucleation.

Viewing nucleation as a machine learning model raises
the question of whether there is a natural physical implemen-
tation of learning. In this work, learning was implemented in
a manner reminiscent of reservoir computing:*>4° molecules
with a fixed set of interactions could nevertheless solve an ar-
bitrary problem by simply training, on a computer, for how the
problem is mapped to components of the fixed existing sys-
tem. However, the similarity of the framework here to neural
models of associative memory,?® especially those based on
random co-localization,?44%43 allow the interactions to poten-
tially be learned in a Hebbian manner by a natural physical
process. For example, a fourth or fifth structure can be
added by adding new unique tiles that mediate interactions
needed for such structures. Further, if these interaction-
mediating tiles could be physically created or activated in
response to environmental inputs, e.g., through proximity-

based ligation, molecular systems could autonomously learn
new self-assembling behaviors from examples®°->? without
the need for computer-based learning.

The connection between self-assembly and neural net-
work computation raises a great many questions that will be
productive for further exploration, but perhaps the broadest
one is a variant on Anderson’s observation that ‘more is
different’.>3 Anderson was referring to the fact that when sys-
tems of a great many copies of the same simple component
are considered, as in statistical mechanics or fluid dynamics
to take canonical examples, phenomena that are best un-
derstood at a higher level may emerge. Biology seems to
(also) explore a different sense of ‘more is different’: in many
cases, it makes use of just a few copies of a great many
different types of components.! Here too there may be phe-
nomena that naturally emerge in the ‘large N limit’: robust-
ness, programmability, and information-processing. Such
things are best explored in information-rich model systems
devoid of the distracting complexities of biology, and this is
what is provided by DNA nanotechnology. Indeed, there is
already evidence for ‘more is different’ phenomena that can
occur when scaling up the number of components: whereas
self-assembled few-component DNA structures are often
sensitive to sequence details and molecular purity, thus tak-
ing years to refine experimentally, DNA origami®* uses hun-
dreds of components and usually works on the first try, even
with unpurified strands, imprecise stoichiometry, and no
sequence optimization. Similarly, uniquely-addressed multi-
component single-stranded tile systems®+°5:56 have robustly
scaled up to thousands of components due to the richness



of the molecular information. Our work adds sophisticated
information-processing as a new emergent phenomenon for
self-assembly which gains highly programmable and poten-
tially learnable phase boundaries to solve specific pattern
recognition problems in the multicomponent limit, as found
earlier in large N neural networks.*! Consequently, this neu-
ral network inspired perspective may help recognize and
guide understanding of high-dimensional molecular systems
where information-processing is deeply entangled within
physical processes, whether in biology or in molecular engi-
neering: multicomponent liquid condensates, multicompo-
nent active matter, and other systems might have similar
programmable and learnable phase boundaries.
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Methods

Multifarious DNA tile system design. Prior theoretical
proposals?®®’ for multifarious mixtures require each com-
ponent to accept multiple strongly binding partners at each
binding site. However, in DNA tile assembly, each binding
site can usually only bind its Watson-Crick complement, and
not an arbitrary set of other domains. Hence, we used an
alternate approach: we assumed three structures made of
entirely unique tiles and ran a merging algorithm that at-
tempted to reuse tiles in a roughly checkerboard pattern
across structures. The algorithm accepted merges if conse-
quences for unintentional binding between other tiles were
minimal. After determining the abstracted shared and tile
layout in this way, we designed DNA sequences reflecting
this layout.

The three target shapes were drawn on a 24 x 24 single-
stranded tile (SST) molecular canvas,®* at an abstract level,
with each location in each shape initially a being unique
tile with four abstract binding sites referred to as ‘glues’.
(After sequence design, matching glues will correspond to
binding pairs of complementary sequence domains.) Edges
of the shapes used a special ‘null glue’ that is intended to
have no valid binding partner. In total, this initial design had
2,706 glues, and 1,456 tiles. The three shapes were then
processed through a ‘merging’ algorithm that attempted to
reuse the same tiles in different shapes. Randomly choos-
ing two tiles in two different shapes (with null glues on the
same sides of each tile, if any), each step of the algorithm
attempted to make the two tiles identical by reusing the
same four glues in both, and propagating the changes in the
glues to all places they occurred within all shapes, starting
with the neighboring tiles (e.g., Extended Data Fig. E1a). To
avoid having these changes create undesired growth path-
ways, for example, allowing chimera of multiple shapes, the
modified set was checked after each trial merging step for
two criteria from algorithmic self-assembly (Extended Data
Fig. E1b). The self-healing criterion requires that, for any
correct subassembly of any shape, while attachments of
the wrong tile for a particular location may take place by
one bond, only the correct tile can attach by two or more
bonds.?® The second-order sensitivity criterion requires that,
for any correct subassembly of any shape, if an incorrect at-
tachment by one bond takes place, the incorrectly attached
tile will not create a neighborhood where an additional incor-
rect tile can attach by two bonds, and thus the initial error
will be likely to fall off.2® These two criteria, which are trivially
satisfied when every tile and bond is unique to a particular
location, continue to be satisfied after each merging step.
Thus, we ensure that there is at least a minimum barrier to
continued incorrect growth in a regime where tile attachment
by two or more bonds is favorable, and attachment by one
bond is unfavorable, which is the case close to the melting
temperature of most DNA tile assembly systems.5%:60
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The algorithm repeatedly merged tiles that satisfied the
two criteria until no further acceptable merges were possible.
As each merge could affect the acceptability of later merges
by changing the glues around each tile, in order to guide the
algorithm toward a sequence of merges more likely to be
compatible, the algorithm was initially restricted to consider-
ing an alternating ‘checkerboard’ subset of tiles, which, apart
from edges, were likely to be merge-able. After exhausting
possible merges of these subsets, the algorithm then at-
tempted merges using all tiles in the system. After repeating
this stochastic algorithm multiple times, and selecting the
system with the smallest number of tiles, the final resulting
system had 698 binding domains and 917 tiles, with 371 of
tiles shared between at least two shapes (Extended Data
Fig. E1c).

After the assignment of abstract binding domains to each
tile by the merging algorithm, the sequences for the binding
domains, and thus tiles themselves, were generated using
the sequence design software of Woods and Doty et al.”
Tiles used a standard SST motif, with alternating 10 and
11 nt binding domains, designed to have similar binding
strengths. Following Woods and Doty et al,” we set a target
range of -8.9 to -9.2 kcal/mol for a single domain at 53 °C,
which was between the melting temperature and growth
temperature for their system. Null binding domains on the
edges of shapes, not intended to bind to any other tiles,
were assigned poly-T sequences.

Models of nucleation. To model the dependence of the
nucleation rates of the three shapes on patterns of unequal
concentration, we developed a simple nucleation model
based on the stochastic generation of possible nucleation
pathways and critical nuclei. The model estimates nucle-
ation rates by analyzing stochastic paths generated in a
greedy manner by making single-tile additions starting from
a particular monomer in the system. At each step, all fa-
vorable attachments are added and then an unfavorable
attachment is performed with probability weighted by the
relative free-energy differences of the available tile attach-
ment positions. When multiple favorable attachments are
available, the most favorable attachment is made determin-
istically. This procedure is repeated for many paths over all
possible initial positions within the shape considered, and
the barrier (highest free energy state visited in ‘growing’
a full structure) is recorded for each path. A nucleation
rate is estimated by assuming an equilibrium occupation of
this barrier state (Arrenhius’ approximation®) and summing
over the kinetics of the available attachments from this state.
See Extended Data Fig. E3 and Supplementary Information
and Data Appendix, Section 1.2 for a detailed discussion.
The approximations here could be improved by running fully
reversible simulations, e.g., using Forward Flux Sampling.®’

Fluorophore labels, DNA synthesis, and growth. Sites
for fluorophore and quencher modifications were chosen
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to avoid edges, modify only unshared tiles, and provide a
reasonable distribution of locations on each shape. Fluo-
rophores were chosen for spectral compatibility and tem-
perature stability.? ROX, ATTO550, and ATTO647N were
paired with lowa Black RQ, and FAM was paired with lowa
Black FQ. Both fluorophore and quencher modifications
were made on the 5’ ends of tiles; to sufficiently co-localize
fluorophores and quenchers, one tile in the label pair used
a reversed orientation (Fig. 4a). Fluorophore labels are
discussed in detail in Supplementary Information and Data
Appendix, Section 2.

Tiles without fluorophore or quencher modifications were
ordered unpurified (desalted) and normalized to 400 uM
in TE buffer (Integrated DNA Technologies). Strands
with fluorophore or quencher modifications were ordered
HPLC-purified and normalized to 100 uM. Individual tiles
were mixed, in the concentration patterns used for exper-
iments, using an Echo 525 acoustic liquid handler (Beck-
man Coulter). Samples used TEMg buffer (TE buffer with
12.5 mM MgCl,) in a total volume of ~ 20 pL. Flag experi-
ments used a 50 nM base concentration of unenhanced tiles,
and an 880 nM concentration of enhanced concentration
tiles, while pattern recognition experiments employed tiles
with nominal concentrations between 16.67 nM to 450 nM,
which were then quantized into ten discrete values to simplify
mixing and conserve material (see Supplementary Informa-
tion and Data Appendix, Section 1.7). Fluorophore and
quencher-modified tile locations always had tiles mixed at
the lowest concentration used in the experiment. Given that
unpurified synthetic oligonucleotides typically have less than
40% to 60% of the molecules being full length, it is remark-
able (though consistent with Woods and Doty et al”) that this
did not prevent successful pattern recognition by nucleation.

For flag experiments, and pattern recognition of trained
images, four samples were prepared per concentration pat-
tern: one sample for each shape with all four fluorophore
labels on only that shape, to monitor growth of multiple re-
gions on each shape, and an additional sample with one
fluorophore on each shape: ROX, ATTO550 (‘five’), and
ATTO647N ('six’) on H, A, and M respectively. For pattern
recognition of test images, for experiment size reasons, only
the lattermost sample was prepared.

After transferring 20 pL to PCR tubes, samples were
grown in an mx3005p quantitative PCR (qgPCR) machine
(Agilent), in order to provide a program of controlled tem-
perature over time while monitoring fluorescence. Growth
protocols began with a ramp from 71°C to 53°C over 40
minutes to ensure any potentially preexisting complexes
were melted, and then a slower ramp from 53 °C to an initial
growth temperature at 1°C per hour. At this point, three
different protocols were used. For constant temperature
flag growth experiments, the growth temperature was 47 °C,
and this was held for 51 hours. For temperature ramp flag
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growth, the initial growth temperature was 48 °C, which was
reduced over 100 hours to 46 °C. For pattern recognition,
a ramp from 48°C to 45°C over 150 hours was used. For
constant temperature experiments, fluorescence readings
were taken every 12 minutes, and for other experiments,
every 30 minutes. After the growth period, temperature was
lowered to 39°C at 1°C per 26 minutes. See Supplemen-
tary Information and Data Appendix, Sections 4 and 5 for
temperature protocols plotted as a function of time. Because
of the small sample size and long experiment duration, great
care to avoid evaporation was necessary. Once protocols
were finished, samples were stored at room temperature
until ready for AFM imaging.

AFM imaging was performed using a FastScan AFM
(Bruker) in fluid tapping mode. To achieve better images,
two techniques were combined: sample warming to prevent
nonspecific clumping of structures, and washing with Na-
supplemented buffer to prevent smaller material, such as
unbound, single DNA tile strands, from adhering to the mica
surface. Each sample was diluted 50x into TEMg buffer
with an added 100 mM NaCl, then warmed to approximately
40°C for 15 minutes. 50 pL of the sample mix was deposited
on freshly-cleaved mica, then left for two minutes. As much
liquid as possible was pipetted off of the mica and discarded,
then immediately replaced with Na-supplemented buffer
again, and mixed by pipetting up and down. This washing
process of buffer removal and addition was repeated twice
with added-Na buffer, then once with TEMg buffer to remove
remaining Na, before imaging was performed in TEMg buffer.
As adhesion of DNA to mica is dependent upon the ratio of
monovalent and divalent cations in the imaging buffer, this
process was meant to ensure that unbound tiles were re-
moved during the washing process where Na and Mg were
present, while imaging itself took place with only Mg, so that
the lattice structures would be more strongly adhered to the
surface, resulting in better image quality.

Fluorescence and AFM data analysis. Fluorophore sig-
nals are known to be affected by extraneous factors such as
temperature, pH, secondary structure, and the local base
sequence near the fluorophore,®? which complicates quan-
titative interpretation of absolute fluorescence levels. Our
own control experiments also illustrated effects due to partial
assembly intermediates as well as due to the total amount
of single stranded DNA in solution (Supplementary Infor-
mation and Data Appendix, Section 2). For this reason,
the fluorescence of each fluorophore was normalized to the
maximum raw fluorescence value of that fluorophore in that
particular sample, and the time at which the fluorescence
signal decreased by 10% was then used as a measure of
the extent of nucleation that appears less sensitive to these
artifacts (Extended Data Fig. E4). The duration between the
point of 10% quenching and the end of the growth segment
of the experiment was defined as the ‘growth time’ for that
fluorophore label; the growth time was defined as 0 in the
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event of quenching never reaching 10%. For concentration
patterns with four samples with different fluorophore arrange-
ments, the total growth time of a shape was defined as the
average of the growth time of the five total fluorophore labels
on the shape across the four samples (four in the shape-
specific sample, and one in the each-shape sample), while
for concentration patterns with only one sample, the growth
time of the corresponding fluorophore label was used. As
the position of the fluorophore within the shape, relative
to where nucleation occurs, has a substantial influence on
growth time measurements, the considerable variability in
these measurements relative to the true nucleation kinetics
must be acknowledged.

For flag experiments, AFM imaging was done only for
qualitative confirmation of the selective nucleation and
growth indicated by fluorescence results. For pattern
recognition and equal-concentration experiments, however,
shapes in AFM images were uniformly quantified. At least
one sample of each of the patterns had three 5 x 5 pm
images taken under comparable conditions. The sample
corresponding with each image was blinded, and structures
were counted independently by each of the four authors,
classifying structures as either “nearly complete” or “clearly
identifiable” examples of each of the three shapes. For the
purposes of analysing pattern-dependent nucleation and
growth, no clear distinction between the number of nearly
complete and clearly identifiable shapes was found, and
so the two categories were summed. Counts were aver-
aged across the three images, then averaged across the
counts of the four authors, to obtain a count per shape per
25 um? region for each pattern. Each author used their own,
subjective, interpretation of “nearly complete” and “clearly
identifiable” structures, and the total number of structures
counted in each image differed by up to =50% for different
authors. However, the ratios of different shapes in each
image counted by each author remained within 5% of the
mean ratios for most images, and across all images, no
author had a bias of more than +4% toward identifying a
particular shape more or less often than average.

To measure the selectivity of patterns, the fraction of on-
target shape growth time, and AFM counts, compared to the
sum of shape growth times and AFM counts, was used. The
total growth times, and total AFM counts, of the on-target
shapes were used to measure overall shape growth.

Pattern recognition training. Images for pattern recogni-
tion were selected from several sources, rescaled to 30
x 30, discretized to 10 grayscale values, and adjusted so
that the number of pixels with each value was consistent
across all images (see Supplementary Information and Data
Appendix, Section 1.6 for details). Each pixel’s grayscale
value, 0 < p, < 1, was converted to the concentration ¢;
for the corresponding tile t; using an exponential formula,
¢; = ce3Prn3 where the base concentration is ¢ = 16.67 nM.

12

The intention of the numbers used was to make the average
tile concentration 60 nM for each image. As each image had
900 pixels and there are 917 tiles in the system, 17 tiles did
not have their concentrations set by any pixel; these tile con-
centrations were uniformly set to the lowest concentration,
and the assignment of these tiles was used to ensure that
fluorophore label locations did not vary in concentration.

The tile-pixel assignment was optimized through a simple
hill-climbing algorithm, starting from a random assignment,
where random modifications to the assignment map are at-
tempted at each step and accepted if the move increases the
efficacy of the map. This efficacy was quantified through a
heuristic function that accounts for relative nucleation rates,
location of nucleation sites (with emphasis given to locations
that succeeded in the flag experiments shown in Fig. 4d),
and satisfaction of constraints related to the fluorescent re-
porters. Because the nucleation algorithm described above
is costly, a simplistic model of nucleation based upon the
Boltzmann-weighted sum of concentrations over a k x k
window swept over each structure (similar to the model em-
ployed in Zhong et al**) was used to evaluate relative nucle-
ation rates for a majority of the optimization steps. The more
detailed but computationally costly model described above
was then employed for an additional several hours in hopes
of improving the mapping. The window-based nucleation
model (along with all constraints about nucleation location
and fluorescent reporters) is also employed to explore the
capacity of this map training procedure in Extended Data
Fig. E7. Details of the pattern recognition training and the
window-based nucleation model are discussed in Supple-
mentary Information and Data Appendix, Sections 1.4 and
1.5.
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Fig. E1 | Proofreading tile set design and tile assignment map. a, Our systems are designed to grow in a regime where a tile attaching by at least
two bonds is favorable, but a tile attaching by one bond is not (‘threshold 2’). Motivated by self-healing tile systems,?® we seek a tile set where no correct
partial assembly should ever allow an undesired tile to attach by two or more bonds, though undesired attachments by one bond are allowed, such that
any favorable attachment to a partial assembly will be correct. b, In addition to tiles attaching favorably by 2 bonds to growing facets, new facets in the
system will only be created by tiles attaching unfavorably by one bond, and then being stabilized by further, favorable growth. At a site where tile T
would correctly attach by one bond, a tile U might be able to attach incorrectly by the same bond. T would correctly be stabilized by the subsequent
attachment of V by two bonds, but U might be able to be stabilized as well if there is a tile W that can attach to it and shares the same glue as V.
Thus, if for every pair of tiles that can bind to each other (e.g., T + V), there is no other pair of binding tiles (e.g., U + W) that share two glues on the
same edges of the tiles, then any tile that attaches by one bond to an assembly will either be the correct tile, or will not allow a subsequent attachment,
and will likely detach. This is equivalent to ‘second-order sensitivity’ with all directions treated as inputs, functioning as a form of ‘proofreading’.37-38
¢, We created a multifarious tile system by first starting with three shapes constructed entirely of unique tiles, then repeatedly attempting to ‘merge’
tiles in different shapes by constraining the sequences of their domains to be identical, and checking whether each merge of two tiles results in a tile
system that does not have any tile pairs violating criteria in a and b. d, From multiple trials of the merging process, each initially favoring a checkerboard
arrangement before attempting more general merges, we selected the smallest result containing 917 tiles. Tiles in the system were designed with
the single-stranded tile (SST) motif,3% with two alternating tiles motifs of 11 nt and 12 nt domains (tile sequences and full shape layouts are shown in
Supplementary Information and Data Appendix, Section 3).
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Fig. E2 | Suppression of chimeric growth through tile set design. a, We use simulations to contrast assembly errors in three distinct tile sets: the
proofreading tile set with an inert boundary used in experiments, described in Fig. 2 (a, top); a simple checkerboard tile set with a strictly alternating
shared and unique tile pattern for each shape, where unique tiles can be seen as mediating different interactions between shared tiles (a, middle);
and an edge-guarded checkerboard in which we additionally enforce inert bonds around each shape’s perimeter (a, bottom). For each tile set, we
performed kinetic growth simulations, starting from a pre-formed 5 x 5 seed taken from a location within H. Simulations were performed using the
kinetic Tile Assembly Model as implemented by XGrow (with chunk fission)®3 with uniform tile concentrations corresponding to 62 nM and parameters
estimated in Supplementary Information and Data Appendix, Section 1.1. b, Schematic shows the two distinct kinds of chimeric structures (e.g., part-H,
part-A) seen in simulation due to promiscuous interactions; chimeric structures can grow either before full assembly of the target structure or emerge
spontaneously from the edge of a properly formed structure. Chimeras like those illustrated along the lower path are held together by just a few bonds
and sometimes can quickly break apart (tiles with unintended bonds are shown in red): these result in sharp drops in simulated assembly size, as
the simulation discards one subassembly when disconnected. c—e, The size of the assembly (in units of the size of the fully formed H) is shown as a
function of time. For higher temperature 48.9°C (c), no chimeras are observed on the simulated timescales for any tile set. For intermediate temperature
47.2 °C (d), all 6 checkerboard trajectories still result in chimeras, while no errors are observed on the timescale probed for the guarded checkerboard or
experimentally-implemented proofreading tile set. For lower temperature 45.5°C (e), chimeras are seen in all runs for checkerboard structures (red
traces), 4 of the 6 runs for guarded checkerboard structures (green traces) and 1 of the 6 runs for proofreading structures.
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Fig. E3 | Stochastic Greedy Nucleation Model, based on repeated stochastic simulations. a, The frequently-used kinetic Tile Assembly Model
(KTAM)39:60 has rates for tile attachment and detachment events based on tile and assembly diffusion and total binding strength of correct attachments a
tile can make at a lattice site. Here up = 1 M. b, These rates can be used to derive a free energy for any tile assembly in a system, and, assuming
fixed monomer concentrations, an equilibrium concentration for any assembly. Schulman & Winfree®* showed that the equilibrium concentration of the
highest-energy assembly along a nucleation trajectory under this assumption provides an upper bound for nucleation rate through that trajectory, with
or without fixed monomer concentrations. However, in a large system, considering all possible intermediate assemblies and all pathways, including
many that are extremely unlikely, would be infeasible. Thus, we developed the Stochastic Greedy Nucleation Model to generate stochastically-chosen
paths of tile attachments. ¢, Starting from a single tile (chosen with probability proportional to relative concentration), whenever the assembly is in a
state Aqable Where there is no tile attachment that would be favorable (have AG < 0), one of the possible unfavorable (with AG > 0) attachments is
stochastically chosen, resulting in a higher-G state Aunstable. Then, all subsequent possible AG < 0 attachments are made, resulting in the next A,
state; for our system of unique tiles for each site in the lattice, this sequence of favorable steps has a unique resulting assembly. d, The process repeats
until all tiles in a shape are attached, which results in a trajectory with a maximum-G assembly that can be used to bound the rate of nucleation, n*,
through that particular trajectory. e, By using this process to collect many trajectories, and then repeating the entire process for each of the three shapes
in the system, we can estimate nucleation rates dependent upon temperature, with the assumption that tile monomer concentrations do not deplete,
and that the trajectories found are a reasonable representation of likely trajectories. For comparison between model predictions and experimental data
in Extended Data Fig. E5d and E8b, we determined the temperature at which the model predicted the nucleation rate exceeded a threshold (orange
line), to compare with when fluorescence quenching exceeded a threshold. For more details on the model, see Supplementary Information and Data
Appendix, Section 1.2.
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Fig. E4 | Fluorophore quenching as a measure of nucleation and growth. a, Fluorescent labels used a fluorophore-quencher pair placed on the 5
ends of two modified tiles unique to one shape, where they were co-located, but had no complementary binding domains, ensuring that dimers could
not form, and trimers would not closely co-locate the fluorophore and quencher. To constrain the pair to be close enough to quench in a well-formed
lattice, one of the two tiles had its orientation and crossover position swapped compared to the unmodified tile for the location. b, Positions and types of
all fluorophore/quencher pairs available for use. For one sample, one position for each of four types of fluorophores could be chosen, and tile pairs
for those locations replaced by their modified counterparts. Thus different samples could probe different arrangements of up to four locations; four
arrangements were used in experiments (e.g., in e). ¢, Expected behavior of fluorophore labels on shapes as one shape nucleates and grows. d,
Fluorescence data for non-quenching (fluorophore tile only, orange) and quenching (5 x 5 lattice around fluorophore and quencher tiles, blue) controls for
the ATTOB47N fluorophore/quencher pair on A. Here, the temperature ramps linearly from 49 °C to 35 °C at a rate of 0.1 °C/min, with all tiles at 50 nM,
and each sample has its fluorescence normalized to its maximum value independently. e, An example of fluorescence growth time measurements
(Mockingbird; see Supplementary Information and Data Appendix, Section 5.4.9). Each fluorophore signal, in each sample, is independently normalized
to its maximum value during the experiment, and the time between the point where the signal goes below 0.9 (“10% quenching”) and the end of the
experiment is measured (“growth time”). These times are then summed for all fluorophores, in all four samples, on each shape, resulting in a growth
time for each shape, and, when normalized to the sum of all growth times, a relative growth time for each shape. See Methods and Supplementary
Information and Data Appendix, Section 2 for design and characterization of fluorophore readout.
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Fig. E5 | Nucleation and growth with ‘flag’ patterns of enhanced concentration. a—c, 36 different concentration patterns with enhanced concen-
trations of shared tiles in 5 x 5 regions were prepared, each with four different standard sets of fluorophores in four samples, and grown using two
temperature protocols (a): a ramp focusing on 48 °C to 46 °C over 100 hours, and a hold at 47 °C. Using growth times as described in Extended Data
Fig. E4, fluorescence data for many samples in both experiments showed preference for the desired shapes (b, ¢), but with considerable variation in
selectivity and total amount of growth. d, No statistically significant correlation was found between the nucleation model prediction for temperature of
on-target nucleation and the time of on-target shape quenching in the temperature ramp experiment. e—g, Details of three patterns, with concentration
patterns (1), weighted critical nucleus free energy starting from particular tiles (2), nucleation-model-estimated nucleation rates (3), temperature hold (4)
and temperature ramp (5) experiment fluorescence results, and (6) AFM images from the temperature hold experiments. Information for all individual flag
patterns is available in the Supplementary Information and Data Appendix, Section 4.

18


https://www.dna.caltech.edu/SupplementaryMaterial/MultifariousSST/

Tile concentrations: A flag 12 m50nM 0880 nM Tile concentrations: uniform concentration (no flag)

(b) Temperature ramp fluorescence over time, p = A flag 12 Temperature ramp fluorescence over time, p = no flag
x x
g10 g
@ 3
[$] o
Sos 3
g § no flag.3,Fam = 0.91
.HA iz : =
> il 3
w 0.6 r S 1 r ! ry L w 0 r | y 1 y|
0 25 50 75 1000 25 50 75 1000 25 50 75 1000 25 50 75 100 50 75 1000 25 50 75 1000 25 50 75 100
Time (h) Time (h) Time (h) Time (h) Time (h) Time (h) Time (h) Time (h)
on target fluorophores circled (for A)
1-F f ' ontarget __ l off target 1
Mpysvf = — B MP B 5 prs,f Mp Bt = 1_0 Z Z Fp.s,f
1-— Fno flag,s,f s€{H,A,M,3} fintarget s€{H,A,M,3} f off target
© &
<
® Hflag 1 » Aflag8
* Hflag2a » Aflag9
3 * Hflag3 Aflag 10
sV H flag 4 e Aflag 11
A Hflags @ Aflag12
2 v < Hflage @ Mflag1
3 < Hflag7 M flag 2
8- * < * » Hflag8 * Mflag3
] N . < g Hflag 9 M flag 4
bl ° < ° Hflag10 A Mflag5
5 a >
i < % X e Hflagil < Mflag6
S < z ® Hflag12 <« Mflag7
[ ] Aflag 1 M flag 8
A * Aflag2 » Mflag9
% From (a),(b) Aflag3 =+ Mflag 10
q R A Aflagd o Mflag11
© Winner A Aflags @ Milag12
Take All < Aflag6 M flag 13
ake Aflag 7
.
'025x 05x  1.0x 2.0x - 4.0x
on target
Mp

Fig. E6 | Evidence of winner-take-all in flag experiments. a, An example flag pattern (A flag 12), and uniform 50 nM concentration ‘no flag’ pattern.
b, Fluorescence normalized to maximum readings, from the temperature ramp experiment (Extended Data Fig. E5 and Supplementary Information and
Data Appendix, Section 4). The fluorescence at the end of the experiment, F s ¢, of fluorophore f in sample s of pattern p is used along with the value
for the corresponding fluorescence value for the no flag pattern, Foiag,s,7, t0 calculate the ratio M, s . This ratio corresponds to the relative amount of
quenching for that fluorophore in the flag pattern compared to the no flag pattern. The ratios are averaged across the 5 on-target fluorophores (circled in
b) in samples for the flag pattern to obtain an average on-target ratio, and across the 10 off-target fluorophores to obtain an average off-target ratio. ¢,
The on- and off-target ratios are plotted for each flag pattern. For winner take all behavior, on-target quenching is expected to be higher with a flag
pattern than with no flag, resulting in F5" " > 1, while off-target quenching is expected to be reduced, resulting in F,‘,’frtarget <1
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(a) Concentrations for 1 image per shape, k=4 (b) Concentrations for 6 images per shape, k=4
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(c) Concentrations for 18 images per shape, k = 4 (d)
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Fig. E7 | Pattern recognition capacity. To analyze the pattern-recognition capabilities of the designed tile set, the map-training algorithm (see
Supplementary Information and Data Appendix, Section 1.4) was run for increasingly larger sets of random images. a-¢, Example images mapped to
concentration patterns for sets with 1, 12, and 18 trained images per shape, with the intended target shape for each image indicated. Following the
same procedure as used for the experimental system, with the same weighting of locations, 30 x 30 images with 10 possible grayscale values and
matching histograms were mapped exponentially to tile concentrations in the 917 tile system; however, all images were generated randomly. Training
was done using only the Window Nucleation Model with a window size k of either 2, 4, or 6, with a limit of 400,000 steps (Supplementary Information
and Data Appendix, Section 1.5). For each number of images per shape considered, ten repetitions of training (starting from random assignments)
were performed (to account for variability of the training algorithm) for each of three different sets of images (to account for variability in sets of images).
d, As the number of images in the set increases, the performance of the training algorithm decreases. For larger k, the pixel-tile map can exploit
higher-order correlations and can thus accommodate more images. For each system, nucleation rates were calculated using the Stochastic Greedy
Model, described in Supplementary Information and Data Appendix, Section 1.2, at Gs = 5.4, which roughly corresponds to a temperature of 48.6 °C,
and with concentrations comparable to the experimental system. Specificity was calculated as the nucleation rate of the target shape for each image
divided by the total nucleation rate of all three shapes for that image, averaged over all images in the system, and over all 30 systems (10 repetitions for
each of 3 sets of images) for each point, with 90% confidence intervals shown. Star shows specificity calculated from nucleation model results for the
experimentally-implemented system. e, As the number of images increases, pattern recognition must increasingly rely on patterns of concentrations of
shared tiles, rather than choosing a pixel-to-tile map that places high-concentration pixels on tiles unique to the target shape. Histograms show average
concentrations of tiles in different shapes or combinations of shape (including the average across tile categories) for images in training cases a-c, and
the experimental system. The change can also be seen in the concentration maps of a—c, with the sharp checkerboard of high concentration tiles in
target shapes in a becoming less apparent in b and c.
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Fig. E8 | Classification of images viewed as concentration patterns. 36 different concentration patterns, derived from a mapping of 36 grayscale
images, were run using a ramp between 48 °C to 45 °C over approximately 150 hours. a, Three pattern examples, with source image, concentration
pattern, nucleation model nucleation rate starting from particular tiles, nucleation model nucleation rates, fluorescence results, and AFM images. b,
Across all patterns there was some correlation between the on-target nucleation temperature predicted by the nucleation model and on-target shape
quenching time. ¢, Total AFM shape counts for each sample. Information for all patterns is available in the Supplementary Information and Data
Appendix, Section 5.
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