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Inspired by biology’s most sophisticated computer, the brain, neural networks constitute a profound reformulation
of computational principles.1–3 Remarkably, analogous high-dimensional, highly-interconnected computational
architectures also arise within information-processing molecular systems inside living cells, such as signal trans-
duction cascades and genetic regulatory networks.4–7 Might collective modes analogous to neural computation
be found more broadly in other physical and chemical processes, even those that ostensibly play non-information-
processing roles? Here we examine nucleation during self-assembly of multicomponent structures, showing that
high-dimensional patterns of concentrations can be discriminated and classified in a manner similar to neural
network computation. Specifically, we design a set of 917 DNA tiles that can self-assemble in three alternative
ways such that competitive nucleation depends sensitively on the extent of colocalization of high-concentration
tiles within the three structures. The system was trained in-silico to classify a set of 18 grayscale 30×30 pixel
images into three categories. Experimentally, fluorescence and atomic force microscopy measurements during
and after a 150-hour anneal established that all trained images were correctly classified, while a test set of image
variations probed the robustness of the results. While slow compared to prior biochemical neural networks,
our approach is surprisingly compact, robust, and scalable. Our findings suggest that ubiquitous physical
phenomena, such as nucleation, may hold powerful information processing capabilities when they occur within
high-dimensional multicomponent systems.
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Fig. 1 | Conceptual framework for pattern recognition by nucleation.
When one set of molecules can potentially assemble multiple distinct struc-
tures, the nucleation process that selects between outcomes is responsive
to high-dimensional concentration patterns. Assembly pathways can be
depicted on an energy landscape (schematic shown) as paths from a
basin for unassembled components that proceed through critical nucleation
seeds (barriers) to a basin for each possible final structure. Seeds that
colocalize high concentration components will lower the nucleation barrier
for corresponding assembly pathways. The resulting selectivity of nucle-
ation in high-dimensional self-assembly is sufficiently expressive to perform
complex pattern recognition in a manner analogous to neural computation
(see Extended Data Fig. E1).

The success of life on earth derives from its use of
molecules to carry information, implement algorithms that
control chemistry and respond intelligently to the environ-
ment. Genetic information encodes not only molecules with
structural and chemical functionality, but also biochemical
circuits that in turn process internal and external information
relevant for cellular decision-making. While some biological
systems may, like modern modular engineering, isolate in-
formation processing from the physical subsystems being
controlled,8 other critical decision-making may be embed-
ded within and inseparable from processes such as protein
synthesis, metabolism, self-assembly, and structural recon-
figuration. Understanding such physically-entangled compu-
tation is necessary not only for understanding biology, but
also for engineering autonomous molecular systems such as
artificial cells, where it is essential to pack as much capability
as possible within limited space and energy budgets.

The interplay of structure and computation is particularly
rich in molecular self-assembly. In biological cells, deci-
sions about navigation, chemotaxis, and phagocytosis are
made via structural rearrangements of the cytoskeleton that
integrate mechanical forces and chemical signals,9–12 but
where and how information processing occurs remains elu-
sive. In DNA nanotechnology,13 self-assembly of DNA tiles
has been shown theoretically and experimentally to be ca-
pable of Turing-universal computation through simulation of
cellular automata and Boolean circuits,14–16 but this digital
model of computation lacks a clear analog in biology.

Neural computation is an alternative form of naturally
compact computation with several distinctive hallmarks:1–3

mixed analog/digital decision-making, recognition of high-
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Fig. 2 | A multifarious mixture of 917 molecular species that can assemble into three distinct structures from one set of molecules. a,
42-nucleotide DNA strands self-assemble into two-dimensional (2D) structures by forming bonds with four complementary strands in solution via four 10
or 11 nucleotide domains. The strands can be abstracted as square tiles, each named and shown with distinct binding domains identified by number,
such that e.g. 708 is complementary to 708∗. At nucleation and growth temperatures, attaching by two bonds or more is favorable, while one is insufficient.
b, One pool of 917 tile types assembles into three distinct shapes, H, A and M, through a multitude of pathways. While each tile occurs at most once in
each shape, the shared purple species recur in multiple shapes, in distinct spatial arrangements; e.g., S149 is highlighted in red. c, Annealing an equal
mix of all tiles results in a mixture of fully and partially assembled H, A and M, imaged by atomic force microscope (AFM). This is the same sample
as “SHAM60” in Fig. 6e. Inset illustrates the expected slant of the shapes due to single-stranded tile geometry. d, A typical experiment mixes some
concentration of each tile type into a single tube, with some tiles swapped for fluorophore- and quencher-modified versions. The sample is heated to
remove any preexisting binding, cooled to a temperature slightly above where any growth is observed, then slowly annealed through a small range of
temperatures while fluorescence is measured in a qPCR machine; samples are then imaged by AFM.

dimensional patterns, reliance on the collective influence of
many distributed weak interactions, robustness to noise, and
an inherent ability to learn and generalize. A paradigmatic
neural network model is the Hopfield associative memory,17

which conceptualizes dynamics as a random walk on an
energy landscape that has been sculpted by learning to
contain attractor basins at each memory. Surprisingly, neural
network models map naturally onto models of well-mixed
chemical networks,4,5 genetic regulatory networks,6 and
signal transduction cascades;7 such networks have been
experimentally demonstrated both in cell-free systems and
within living cells.18–21 But these well-mixed approaches still
separate decision making from downstream processes.

Neural information processing principles embedded within
molecular self-assembly have been harder to discern, and
perhaps at first appear as a contradiction in terms. An
early thermodynamic view of how free-energy minimization
in molecular self-assembly could be akin to the Hopfield
model did not lead to concrete realizations.22 However, a
recent kinetic view of multicomponent systems that permit
assembly of many distinct structures using the same compo-
nents (“multifarious self-assembly”)23,24 revealed concrete
connections to Hopfield associative memories17 and models
of hippocampal place cells25 at the level of collective dynam-

ics, even though individual molecules do not explicitly mimic
the mechanistic behavior of individual neurons.

Here, we reformulate this connection as an intrinsic fea-
ture of heterogeneous nucleation kinetics and experimen-
tally demonstrate its power for high-dimensional pattern
recognition using DNA nanotechnology.13 The phenomenon
arises when the same components can form several dis-
tinct assemblies in different geometric arrangements (Fig. 1).
Nucleation proceeds by spontaneous formation of a critical
seed that subsequently grows into a structure.26 Because
the nucleation rate of a seed depends strongly on the bulk
concentrations of components that occur in that seed, and
many distinct seeds and pathways may be viable, the overall
rate of formation of a given structure is a complex function
of the concentration pattern. Further, because components
are shared between structures, competition for resources27

results in a winner-take-all effect that accentuates the dis-
crimination between concentration patterns.

Molecular system design
To explore these principles experimentally, we take advan-

tage of the powerful foundation provided by DNA nanotech-
nology for programming molecular self-assembly. The well-
understood kinetics and thermodynamics of Watson-Crick
base pairing enables systematic sequence design28,29 for
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DNA tiles that reliably self-assemble into periodic, uniquely-
addressed, and algorithmically-patterned structures with
100s to 1000s of distinct tile types.15,16,30–34 These classes
of self-assembly differ in the structures produced and in the
nature of interactions: in periodic and uniquely-addressed
structures, each molecular component typically has a unique
possible binding partner in each direction. For algorithmic
patterns (as for multifarious assembly), some components
have multiple possible binding partners, such that which one
attaches at a given location is decided during self-assembly
based on which forms more bonds with neighboring tiles.

We build on these ideas to create a molecular system
capable of assembling multiple target structures (H, A, and
M in Fig. 2) from a shared set of interacting components
by colocalizing them in different ways. The first stage of
design begins with a set S of shared tiles that do not directly
bind each other; then three sets of interaction mediating-
tiles (also called H, A, and M) are introduced for each of
the respective desired structures. Each interaction tile in,
e.g. H, binds four specific S tiles together in a checkerboard
arrangement that reflects neighborhood constraints between
shared S tiles in structure H. These H interaction tiles are
unique to structure H and do not occur in the assembled A
or M structures.

Tiles in a 1:1 stoichiometric mix of S+H, S+A or S+M will
have no promiscuous interactions and will assemble H, A
or M respectively, as with prior work on uniquely address-
able structures.32 But a 1:1:1:1 mix of S+H+A+M, hence-
forth called our SHAM mix, is capable of assembling three
distinct structures. This additive construction of interaction-
mediating tiles is analogous to Hebbian learning of multiple
memories in Hopfield neural networks;17,23 see Extended
Data Fig. E1. Furthermore, the use of interaction-mediating
tiles avoids constraints from Watson-Crick complementar-
ity, allowing almost arbitrary interactions to be engineered
between S tiles. To avoid undesired consequences of the
extensive promiscuous interactions present in the SHAM
mix, later design stages optimized this initial layout using
self-assembly proofreading principles to reduce errors;35,36

see Extended Data Figs. E2 and E3.
The resulting design in Fig. 2b, has 168 tiles shared

across all three shapes, 203 tiles shared across a pair, and
546 tiles unique to a specific shape. Our experimental imple-
mentation used 42-nucleotide single-stranded DNA tiles32

(Fig. 2a) with sequences designed using tools from prior
work16 to reduce unintended interactions and secondary
structure and ensure nearly-uniform binding energies.

To test whether proofreading was sufficient to combat
promiscuity and to test the unbiased yield of different struc-
tures, we annealed all tiles at equal concentration (60 nM)
in solution over 150 hours from 48 ◦C to 45 ◦C. Atomic
force microscopy (AFM) revealed a roughly equal yield of
all three structures (Fig. 2c). Despite being a slow anneal,
this uniform distribution is incompatible with an equilibrium
Boltzmann distribution that would exponentially magnify dif-
ferences in the area and perimeter (and thus free energy) of
H, A and M; but it is compatible with kinetically controlled as-

sembly where nucleation rates are linearly proportional to a
shape’s area, as nucleation could occur anywhere within the
shape. Additionally, we did not observe significant chimeric
structures or uncontrolled aggregation, indicating that proof-
reading was functioning as desired. However, many struc-
tures appeared to be incomplete, often missing tiles from two
specific corners, perhaps due to asymmetric growth kinetics
or lattice curvature,31 or (in the case of A only) exhibited
signs of spiral defect growth (Extended Data Fig. E3).

Colocalization controls nucleation
Understanding nucleation in multicomponent self-

assembly has required extensions of classical nucleation
theory26 that have effectively guided the design of pro-
grammable DNA tile systems with well-defined assembly
pathways.37–40 Building on this work, here we examine
how selection between target structures that differ in colo-
calization of tiles can be determined by nucleation kinet-
ics and controlled by concentration patterns. We model
the free energy of a structure A with B total bonds as
G(A) =

P
i∈A G

i
mc − B Gse − ¸, where ¸ depends on the

choice of reference concentration u0, G i
mc = ¸ − log ci=u0

is the chemical potential (or equivalently, translational en-
tropy) of tile i at concentration ci , and Gse is the energy of
each bond in units of RT . G(A) has competing contributions
that scale with the structure’s area and perimeter, and is
hence maximized for certain partial assemblies called criti-
cal nucleation seeds. The formation of such seeds is often
rate-limiting: once these seeds are assembled, subsequent
growth is faster and mostly ‘downhill’ in free energy. If the
nucleation rate ”shape for a given shape is dominated by a
single critical nucleus As , we could use an Arrhenius-like
approximation ”shape ∼ e−G(As ); in the case that multiple
critical nuclei are significant, we must perform a sum.

When such analyses are applied to homogeneous crys-
tals with uniform concentration ci = c of components, critical
nuclei are simply those with the appropriate balance of size
and perimeter. Heterogeneous concentration patterns re-
quire a more nuanced analysis: critical seeds can now be
arbitrarily shaped, potentially offsetting a larger perimeter
penalty by incorporating tiles with higher bulk concentration.
Therefore, we implemented a stochastic sampling algorithm
to estimate the nucleation rate of a structure with an uneven
pattern of concentrations (Extended Data Fig. E4).

Consider the examples in Fig. 3 where the concentrations
of some shared tiles in the SHAM mix have been enhanced.
These high concentration tiles are colocalized in structure A
but scattered across H and M. Consequently, such a pattern
will lower kinetic barriers for the nucleation of A while main-
taining high barriers for H and M. The typical area K over
which colocalization promotes nucleation can be estimated
from the size of critical seeds predicted by classical nucle-
ation theory and is generally larger at higher temperatures.26

Hence we expect a trade-off between speed and complexity
of pattern recognition (Fig. 3e), with more subtle discrim-
ination at higher temperatures (large K)—at the expense
of slower experiments—and lower discriminatory power at
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Fig. 3 | Theory shows selective nucleation when high concentration tiles are co-localized in one shape more than in others. a, One pattern (“A
flag 9”) enhancing the concentration of shared tiles colocalized in A but relatively dispersed in H and M. b, A flag 9 plotted by tile locations in each
shape, along with example “flag” patterns that have colocalization in H and M. c, For A flag 9, free energies of assemblies along predicted nucleation
pathways for each shape (Extended Data Fig. E4). Several example assemblies are shown; the green and red ones are critical seeds for the A and H
pathways respectively. d, Regions predicted to participate in nucleation by the simulation for three concentration patterns (lighter colors correspond
to higher participation). e, Macrostate free energies for sets of partial assemblies of increasing size (number of tiles) and predicted AFM results at
several temperatures spanning the melting temperature. Small plots show the full size range, thus illustrating the independence of the nucleation barrier
kinetics and the complete assembly thermodynamics. f, For on-target (A, green) and off-target (H, red) shapes, nucleation rates (dashed) and growth
rates (solid) are plotted as a function of temperature, according to the simplified model of Extended Data Fig. E4f. Rates are given relative to the
time to completely consume the lowest-concentration tile; the horizontal dotted line indicates the rate of annealing between the on-target to off-target
nucleation temperatures. Due to the higher nucleation temperature for the on-target shape, when annealing time scales are comparable to or slower
than growth time scales, depletion of shared tiles during a temperature anneal can lead to a winner-take-all (WTA) effect. Slower annealing and faster
growth can increase the WTA effect. g, In this model, WTA leads to higher selectivity (on-target vs. total nucleation) compared to systems with no shared
components; for slower anneals, selectivity increases for systems with shared components, but decreases for systems with no shared components.

lower temperatures (small K).
To experimentally characterize the basis of selectivity, we

systematically tested a series of 37 concentration patterns,
which we call ‘flags’ because each one uses high concen-
trations in a checkerboard localized somewhere in one of
the shapes (three examples are shown in Fig. 3b). We did
not enhance concentrations of tiles unique to shapes, to
avoid additional thermodynamic bias towards any one struc-
ture. We ramped the temperature down slowly, from 48 ◦C
to 46 ◦C (the expected range for nucleation, a few degrees
below the melting temperatures) to provide robustness to
variations in nucleation temperatures among flags in differ-
ent locations and to probe for slow off-target nucleation. To
monitor nucleation and growth in real time, we designed
distinct fluorophore/quencher pairs on adjacent tiles in four
locations on each shape, using tiles not shared between
shapes. Each pair quenches when the local region of that
specific structure assembles (Fig. 4a).

Experimental results illustrating selective nucleation are
shown in Fig. 4c for three example flag concentration pat-
terns. When the pattern localizes high concentration species
in a structure, e.g., H, the fluorophore in the expected nucle-
ation region of that structure quenched first and rapidly. After
a delay, fluorophore signals from other parts of the same

structure also dropped, indicating growth. Fluorophores on
off-target structures show minimal to no quenching until late
in the experiment. AFM images from samples at the end
of the experiment confirm that fluorophore quenching cor-
responded to selective self-assembly of complete or partial
shapes. Of the 37 flag positions, roughly half exhibited ro-
bust selective nucleation and growth (Fig. 4de), while other
positions were either not selective or did not grow well, for
reasons we have not been able to determine.

In multifarious systems, we expect enhanced selectivity
because of a competitive suppression of nucleation. Using
an annealing protocol that spends sufficient time at temper-
atures where A can nucleate and grow significantly, but H
cannot nucleate (Fig. 3f), we expect a winner-take-all (WTA)
effect in which the assembly of A depletes shared tiles S
and thus actively suppresses nucleation of H. As shown
in Fig. 4f, we see evidence for such a WTA effect in most
experiments. Such a winner-take-all effect can enhance the
effect of small differences in nucleation kinetics.

Pattern recognition by nucleation
Our work thus far shows that the space of all concentra-

tion patterns C = RN , which includes patterns not experi-
mentally tested, consists of regions that result in the selec-
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Fig. 4 | Selective nucleation in experiments with shape-specific localized concentration patterns of shared tiles. a, Pairs of alternative tiles with a
fluorophore and quencher (Fig. 2d) have their fluorescence quenched when incorporated together in an assembly; small assemblies of just a few strands
do not effectively quench (see Extended Data Fig. E5). b, Samples were annealed with a temperature protocol that cooled from 71 ◦C (well above
melting temperature) to 48 ◦C over ∼ 6 hours, cooled to 46 ◦C over 100 hours, and finally cooled to 39.5 ◦C over 3 hours (see Extended Data Fig. E6).
c, Experimental results for the 3 flag patterns shown in Fig. 3. The positions of fluorophore/quencher tile pairs used in each of the four samples are
shown by the inset icons. Points where fluorescence signals dropped by 10% below their maximum (to which signals were normalized) are shown with
colored dots for on-target nucleation and with ⊗ for off-target nucleation. ‘Growth times’ measure the period from ‘10% quenching’ to the end of the
experiment, shown as horizontal bars. Sample AFM images from one of the samples are shown for each flag. d, Total growth times for on-target versus
off-target nucleation are summarized for all 37 flag patterns. Each numbered box indicates the location of the corresponding 5× 5 checkerboard flag;
good performance is indicated by a tall green bar and a short red bar. e, The same data displayed as a ternary plot, with proximity to triangle corners
indicating relative fractions of growth time and circle size indicating overall growth time. f, Average change in quenching (a measure of nucleation) of on-
and off-target structures with flag patterns compared to equimolar SHAM mixes. Each dot represents a single flag pattern (see Extended Data Fig. E7).
For most patterns, increasing shared tile concentrations reduces the absolute off-target nucleation, supporting a winner-take-all effect.

tive assembly of each of H, A and M respectively (Fig. 5a).
These regions together represent a phase diagram for this
self-assembling system23 that reflects the decisions it makes
to classify concentration patterns. While phase boundaries
of traditionally studied physical systems are usually low di-
mensional and not fruitfully interpreted as decision bound-
aries, in multicomponent heterogeneous systems like ours,
the phase diagram is naturally high dimensional. More gen-
erally, phase boundaries in disordered many-body systems
tend to be complex and thus implicitly solve complex pat-
tern recognition problems, a perspective that also underlies
Hopfield’s associative memory in neural networks.17,41

Here, nucleation is solving a particular pattern recog-
nition problem based on which molecules are colocalized
in different structures. Similar colocalization-based deci-
sion boundaries arise in neural place cells studied by the
Mosers24,25,42,43 and are complex enough to solve pattern
recognition problems and permit statistically robust learning.

Having demonstrated that multifarious self-assembly can
solve a specific pattern recognition problem, could different
molecules be designed to solve other tasks such as recog-
nizing or classifying images? Here, the grayscale value of
each pixel position in the 30×30 images is taken to represent
the concentration of a distinct molecule. Instead of synthe-
sizing new molecules with new interactions to solve the
above challenge, we show that the design problem is solv-
able with our existing molecules by an optimized choice of
a pixel-to-tile map „ that specifies which existing tile should
correspond to which pixel position (Fig. 5b). In addition to
saving DNA synthesis costs, this approach helps demon-

strate that a random molecular design can be exploited, ex
post facto, to solve a specific computational problem by mod-
ifying how the problem is mapped onto physical components,
as done in reservoir computing.44

We specified our design problem by picking arbitrary
images as training sets shown in Fig. 5d. Note that im-
ages in one class share no more resemblance than images
across classes, e.g., class H is Hodgkin, Hopfield, Horse
etc, though the number of pixels and grayscale histogram
were standardized across images (see Methods). In this
way, the number of distinct images per class (6 in the ex-
periments presented below) tests the flexibility of decision
surfaces inherent to this self-assembling molecular system
as a classifier.

We then used an optimization algorithm (see Fig. 5c and
Methods) on „ that sought to maximize nucleation of the on-
target structure for the concentration pattern corresponding
to each image while also minimizing off-target nucleation.
That is, our algorithm sought to map high concentration pix-
els in each image (e.g., Mitscherlich) to colocalized tiles in
the corresponding on-target structure (here, M) to enhance
nucleation, while mapping those same pixels to scattered
tiles in undesired structures (here, A and H). Note that this
map „ is simultaneously optimized for all images and not
independently for each image. Hence no map „ might be
able to perfectly satisfy all the above requirements simultane-
ously for all images in all classes; analogous to associative
memory capacity,17,23,41 performance drops as one attempts
to train more patterns (Extended Data Fig. E8).

For pattern recognition experiments, we enhanced con-
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images used to test generalization power.

centrations of tiles in the SHAM mix in accordance to each
of the 18 training images (using the optimized „) and an-
nealed each of the 18 mixes with a 150 h ramp from 48 ◦C
to 45 ◦C. As verified by AFM imaging and real-time fluo-
rescence quenching, we found that the 18 training images
yielded correct nucleation, in the sense that there was more
of the correct shape than any other shape, and in all but 5
cases was highly (more than 80%) selective (Fig. 6).

We also tested 12 degraded images and 6 alternate
handwriting images (Fig. 5e), with the same trained pixel-to-
tile map „. Pattern recognition was successful for random
speckle distortions and all but one partly obscured image.
Generalization, the ability to recognize related images not
present in a training set, is a critical aspect of learning in neu-
ral networks. A given architecture can be naturally robust to
certain families of distortions (e.g., convolutional networks
can handle translation) but not others (e.g., dilation). Since
nucleation is a cooperative process, often dominated by one
or a few critical seeds involving just a handful of tiles, flipping
of random uncorrelated pixels and obscuring parts of an im-
age that do not involve those critical pixel combinations will
not inhibit nucleation – demonstrating robustness. On the
other hand, only 3 of the 6 alternate handwritten digits were
correctly recognized by self-assembly, indicating a lack of
robustness to this type of variation without further training.

Discussion
The phenomena underlying pattern recognition by multi-

farious self-assembly may be exploited by complex evolved
or designed systems (Extended Data Fig. E10). Beyond
self-assembly, molecular folding processes could potentially
recognize patterns in the concentrations of cofactors or sub-
components if folding kinetics can select between distinct

stable states.45 Similarly, the phase boundaries for mul-
ticomponent condensates governing genetic regulation46

may also contain inherent information-processing capabil-
ities. In such cases, the ‘pixel-to-tile’ map would instead
correspond to a layer of phosphorylation or binding circuitry
that activates or deactivates specific components based on
the levels of upstream information-bearing molecular signals.
Within artificial cells,47 multicomponent nucleation may be
an especially compact way to implement decision-making
within the limited space constraints.

To better understand the information-processing poten-
tial of nucleation, we may treat this physical process as a
machine learning model. A key issue is how the complexity
of decision surfaces, quantified in terms of computational
power or learning capacity, depends on underlying physical
aspects of self-assembly such as the number of molecu-
lar species, binding specificity, and geometry.48,49 Our work
already suggests that temperature mediates a trade-off be-
tween speed, accuracy, and complexity of pattern recogni-
tion; at higher temperatures, nucleation seeds are larger,
allowing discrimination based on higher order correlations
in the concentration patterns, but the physical process is
also correspondingly slower. The trade-off derives from how
computation here exploits the inherently stochastic nature
of nucleation: monomers must make many unsuccessful
attempts at forming a critical seed for both on- and off-target
structures, with repeated disassembly before discovering
the seed for the correct pattern recognition outcome. Re-
lating such backtracking to stochastic search algorithms for
NP-complete problems, as has been done for well-mixed
chemistry,50 might characterize the computational power of
stochastic nucleation.
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Viewing nucleation as a machine learning model raises
the question of whether there is a natural physical implemen-
tation of learning. Here, we trained decision boundaries in
silico using ideas from reservoir computing:44,51 molecules
with a fixed set of interactions could nevertheless solve
an arbitrary problem by changing the mapping between in-
puts and fixed components (see Extended Data Fig. E1).
The analogy between Hopfield associative memories and
multifarious self-assembly, especially those based on ran-
dom colocalization,23–25,42,43 suggests a way to go beyond
fixed components to a scenario where interactions between
components are learned in a Hebbian manner by a natural
physical process. Notably, interactions between shared tiles
in our system are mediated by shape-specific molecules.
If these interaction-mediating tiles could be physically cre-
ated or activated in response to environmental inputs, e.g.,
through proximity-based ligation, molecular systems could
autonomously learn new self-assembling behaviors from
examples52 without the need for computer-based learning.
Alternatively, the natural evolution of hydrophobic residues
to stabilize multi-protein complexes may have the necessary
properties for inducing multifarious pattern recognition.53

The connection between self-assembly and neural net-
work computation raises many questions for further explo-
ration, the broadest being a variant on Anderson’s obser-
vation that ‘more is different’.54 Anderson was referring to
the fact that systems containing many copies of the same
simple component can show emergent phenomena, such
as fluid dynamics, that are best understood at a higher level.
Biology also explores another sense of ‘more is different’:

it often makes use of a few copies of a great many differ-
ent types of components.8 Here, new phenomena naturally
emerge in the ‘large N limit’: robustness, programmability,
and information-processing. These phenomena are best
explored in information-rich model systems devoid of the
distracting complexities of biology. DNA nanotechnology
provides one such platform that already hints at such ‘more
types is different’ phenomena. For example, self-assembled
few-component DNA structures are often sensitive to se-
quence details and molecular purity, thus taking years to
refine experimentally, while DNA origami55 and uniquely-
addressed tile systems32–34 use 100s to 1000s of compo-
nents and usually work on the first try, even with unpurified
strands, imprecise stoichiometry, and no sequence optimiza-
tion. Such observations suggest heterogeneity as a defining
principle for biological self-assembly.56

Our work adds sophisticated information-processing as
a new emergent phenomenon in which self-assembly, in
the multicomponent limit, gains programmable and poten-
tially learnable phase boundaries to solve specific pattern
recognition problems, analogous to earlier results for large
N neural networks.41 This neural network inspired perspec-
tive may help us recognize information processing in high-
dimensional molecular systems that is deeply entangled
within physical processes, whether in biology or in molecular
engineering: multicomponent liquid condensates, multicom-
ponent active matter, and other systems might have similar
programmable and learnable phase boundaries.
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Methods

Multifarious DNA tile system design. Prior theoretical
proposals23,57 for multifarious mixtures require each com-
ponent to accept multiple strongly binding partners at each
binding site. However, in DNA tile assembly, each binding
site can usually only bind its Watson-Crick complement, not
an arbitrary set of other domains. Hence, we used an alter-
nate approach: we laid out three structures made of entirely
unique, abstract tiles, designed a merging algorithm to reuse
tiles in multiple locations if consequences for unintentional
binding between other tiles was minimal, and then designed
DNA sequences reflecting the resulting abstract layout of
tiles.

The three target shapes were drawn on a 24 × 24 single-
stranded tile (SST) molecular canvas,32 at an abstract level
without sequences. Each location in each shape was initially
a unique tile, with four abstract binding sites referred to as
‘glues’ in place of binding domains with sequences: after
sequence design, ‘matching’ glues correspond to domains
with complementary sequences. Edges of the shapes used
a special ‘null glue’ with no valid binding partner. In total,
this initial design had 2,706 glues, and 1,456 tiles.

The three shapes were then processed through a ‘merg-
ing’ algorithm that attempted to reuse the same tiles in
different shapes. Each step of the algorithm randomly chose
two tiles in two different shapes, with null glues on the same
sides of each tile, if any. It then considered a modified set
where the two tiles were identical, by making them use the
same four glues, and propagating the changes in the glues
to all other places they occurred within all shapes, starting
with the neighboring tiles (e.g., Extended Data Fig. E2c).
Such a change could create undesired growth pathways,
for example, allowing chimera of multiple shapes. Thus,
the algorithm then checked the modified set for two crite-
ria taken from algorithmic self-assembly (Extended Data
Fig. E2ab). The self-healing criterion requires that, for any
correct subassembly of any shape, while attachments of
the wrong tile for a particular location may take place by
one bond, only the correct tile can attach by two or more
bonds.58 The second-order sensitivity criterion for proofread-
ing requires that, for any correct subassembly of any shape,
if an incorrect attachment by one bond takes place, the in-
correctly attached tile will not create a neighborhood where
an additional incorrect tile can attach by two bonds, and thus
the initial error will be likely to fall off.35,36 If the modified set
satisfied these two criteria, which are trivially satisfied when
every tile and bond is unique to a particular location, then the
merging algorithm accepted the modified set, and continued
to another step with a different pair of randomly-chosen tiles.
Thus, we ensured that there is at least a minimum barrier to
continued incorrect growth in a regime where tile attachment
by two or more bonds is favorable, and attachment by one
bond is unfavorable, which is the case close to the melting
temperature of most DNA tile assembly systems.59,60

The algorithm repeatedly merged tiles that satisfied the
two criteria until no further acceptable merges were possi-
ble. As each merge could affect the acceptability of later
merges by changing the glues around each tile, in order
to guide the algorithm toward a sequence of merges more
likely to be compatible, the algorithm was initially restricted
to considering pairs of tiles from an alternating ‘checker-
board’ subset, which, apart from edges, were likely to be
merge-able. After exhausting acceptable merges from this
subset, the algorithm attempted merges using all tiles in the
system. After repeating this stochastic algorithm multiple
times, and selecting the system with the smallest number
of tiles, the final resulting system had 698 binding domain
and 917 tiles, with 371 of tiles shared between at least two
shapes (Extended Data Fig. E2d).

After the assignment of abstract binding domains to each
tile by the merging algorithm, the sequences for the binding
domains, and thus tiles themselves, were generated using
the sequence design software of Woods and Doty et al.16

Tiles used a standard SST motif, with alternating 10 and
11 nt binding domains, designed to have similar binding
strengths as predicted using a standard thermodynamic
model.16,29,61 Following Woods and Doty et al,16 we set a
target range of -8.9 to -9.2 kcal/mol for a single domain
at 53 ◦C, which was between the melting temperature and
growth temperature for their system. Null binding domains
on the edges of shapes, not intended to bind to any other
tiles, were assigned poly-T sequences.

Models of nucleation. To model the dependence of the
nucleation rates of the three shapes on patterns of unequal
concentration, we developed a simple nucleation model
based on the stochastic generation of possible nucleation
pathways and critical nuclei. The model estimates nucle-
ation rates by analyzing stochastic paths generated in a
greedy manner by making single-tile additions starting from
a particular monomer in the system. At each step, all fa-
vorable attachments are added and then an unfavorable
attachment is performed with probability weighted by the
relative free-energy differences of the available tile attach-
ment positions. When multiple favorable attachments are
available, the most favorable attachment is made determin-
istically. This procedure is repeated for many paths over all
possible initial positions within the shape considered, and
the barrier (highest free energy state visited in ‘growing’ a
full structure) is recorded for each path. A nucleation rate
is estimated by assuming an equilibrium occupation of this
barrier state (Arrhenius’ approximation26) and summing over
the kinetics of the available attachments from this state. See
Extended Data Fig. E4 and Supplementary Information and
Data Appendix, Section 2.2 for a detailed discussion. The
approximations here could be improved by running fully re-
versible simulations, e.g., using xgrow and the kinetic Tile
Assembly Model59,62 augmented with Forward Flux Sam-
pling.63

10

https://www.dna.caltech.edu/SupplementaryMaterial/MultifariousSST/
https://www.dna.caltech.edu/SupplementaryMaterial/MultifariousSST/


Fluorophore labels and DNA synthesis. Sites for fluo-
rophore and quencher modifications were chosen to avoid
edges, modify only unshared tiles, and provide a reason-
able distribution of locations on each shape. Fluorophores
were chosen for spectral compatibility and temperature sta-
bility.64 ROX, ATTO550, and ATTO647N were paired with
Iowa Black RQ, and FAM was paired with Iowa Black FQ.
Both fluorophore and quencher modifications were made
on the 5’ ends of tiles; to sufficiently colocalize fluorophores
and quenchers, one tile in the label pair used a reversed ori-
entation (Fig. 4a). Fluorophore labels are discussed in detail
in Supplementary Information and Data Appendix, Section
3.

Tiles without fluorophore or quencher modifications were
ordered unpurified (desalted) and normalized to 400 µM
in TE buffer (Integrated DNA Technologies). Tiles with flu-
orophore or quencher modifications were ordered HPLC-
purified and normalized to 100 µM. Given that unpurified
synthetic oligonucleotides typically have less than 40% to
60% of the molecules being full length, it is remarkable
(though consistent with Woods and Doty et al16) that this did
not prevent successful pattern recognition by nucleation.

Experimental overview. The basic workflow for the main
experiments was as follows: For a chosen set of concentra-
tion patterns (flag or image), samples were prepared on a
96-well plate using an acoustic liquid handler to mix strand
stocks in the necessary proportions; vortexed, spun, and
transferred to PCR tubes for the days-long anneal in the
qPCR machine; then samples were deposited on mica for
AFM imaging. Fluorescence from the qPCR machine and
AFM images were subsequently analyzed.

Mixing and growth. Individual tiles were mixed, in the con-
centration patterns used for experiments, using an Echo
525 acoustic liquid handler (Beckman Coulter). Samples
used TEMg buffer (TE buffer with 12.5 mM MgCl2) in a to-
tal volume of ∼ 20 µL. Flag experiments used a 50 nM
base concentration of unenhanced tiles, and an 880 nM
concentration of enhanced concentration tiles, while pat-
tern recognition experiments employed tiles with nominal
concentrations between 16.67 nM to 450 nM, which were
then quantized into ten discrete values to simplify mixing
and conserve material (see Supplementary Information and
Data Appendix, Section 2.8).

For each concentration pattern in the flag experiments
and pattern recognition of trained images, four samples
were prepared, each with the same concentrations pattern
of tiles, but with tiles in different locations replaced by their
fluorophore/quencher-modified alternates: one sample for
each shape with tiles for all four fluorophore labels on only
that shape, to monitor growth of multiple regions on each
shape, and an additional sample with one fluorophore on
each shape: ROX, ATTO550 (‘five’), and ATTO647N (‘six’)
on H, A, and M structures respectively. To reduce the total
number of samples, only the lattermost sample type was

prepared for pattern recognition of test images. Fluorophore
and quencher-modified tile locations always had tiles mixed
at the lowest concentration used in the experiment.

After transferring samples to PCR tubes, samples were
grown in an mx3005p quantitative PCR (qPCR) machine
(Agilent), in order to provide a program of controlled tem-
perature over time while monitoring fluorescence. Growth
protocols began with a ramp from 71 ◦C to 53 ◦C over 40
minutes to ensure any potentially preexisting complexes
were melted, and then a slower ramp from 53 ◦C to an initial
growth temperature at 1 ◦C per hour. At this point, three
different protocols were used. For constant temperature
flag growth experiments, the growth temperature was 47 ◦C,
and this was held for 51 hours. For temperature ramp flag
growth, the initial growth temperature was 48 ◦C, which was
reduced over 100 hours to 46 ◦C. For pattern recognition,
a ramp from 48 ◦C to 45 ◦C over 150 hours was used. For
constant temperature experiments, fluorescence readings
were taken every 12 minutes, and for other experiments,
every 30 minutes. After the growth period, temperature was
lowered to 39 ◦C at 1 ◦C per 26 minutes. See Supplemen-
tary Information and Data Appendix, Sections 5 and 6 for
temperature protocols plotted as a function of time. The ex-
perimental timescales and temperatures were chosen not to
test the potential speed of selective nucleation, but rather to
provide robustness to unknown nucleation temperatures and
to convincingly show that nucleation of incorrect structures
is limited over long timescales. Thus, on-target nucleation
often took place during a comparatively short time and tem-
perature in the experiment, with the remaining time spent
either above the expected nucleation temperature, or waiting
to observe potential off-target nucleation. We also did not try
to optimize the system’s speed: the WTA mechanism sug-
gests that significantly faster timescales are possible, and
smaller assemblies would reduce the time needed for growth
after nucleation. Because of the small sample size and long
experiment duration, great care to avoid evaporation was
necessary. Once protocols were finished, samples were
stored at room temperature until ready for AFM imaging.

Imaging. AFM imaging was performed using a FastScan
AFM (Bruker) in fluid tapping mode directly after annealing
was completed. In contrast to previous studies32–34 where
uniquely-addressed SST shapes were gel purified prior to
imaging, we did not do so here; thus we were able to observe
assembly intermediates. To achieve better images, two
techniques were combined: sample warming to prevent
nonspecific clumping of structures, and washing with Na-
supplemented buffer to prevent smaller material, such as
unbound, single DNA tile strands, from adhering to the mica
surface. Each sample was diluted 50x into TEMg buffer
with an added 100 mM NaCl, then warmed to approximately
40 ◦C for 15 minutes. 50 µL of the sample mix was deposited
on freshly-cleaved mica, then left for two minutes. As much
liquid as possible was pipetted off of the mica and discarded,
then immediately replaced with Na-supplemented buffer
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again, and mixed by pipetting up and down. This washing
process of buffer removal and addition was repeated twice
with added-Na buffer, then once with TEMg buffer to remove
remaining Na, before imaging was performed in TEMg buffer.
As adhesion of DNA to mica is dependent upon the ratio
of monovalent and divalent cations in the imaging buffer,
this process was meant to ensure that unbound tiles were
removed during the washing process where Na and Mg were
present, while imaging itself took place with only Mg, so that
the lattice structures would be more strongly adhered to the
surface, resulting in better image quality.

Fluorescence and AFM data analysis. Fluorophore sig-
nals are known to be affected by extraneous factors such as
temperature, pH, secondary structure, and the local base
sequence near the fluorophore,64 which complicates quan-
titative interpretation of absolute fluorescence levels. Our
own control experiments also illustrated effects due to partial
assembly intermediates as well as due to the total amount
of single stranded DNA in solution (Supplementary Infor-
mation and Data Appendix, Section 3). For this reason,
the fluorescence of each fluorophore was normalized to the
maximum raw fluorescence value of that fluorophore in that
particular sample, and the time at which the fluorescence
signal decreased by 10% was then used as a measure of
the extent of nucleation that appears less sensitive to these
artifacts (Extended Data Fig. E5). The duration between the
point of 10% quenching and the end of the growth segment
of the experiment was defined as the ‘growth time’ for that
fluorophore label; the growth time was defined as 0 in the
event of quenching never reaching 10%. For concentration
patterns with four samples with different fluorophore arrange-
ments, the total growth time of a shape was defined as the
average of the growth time of the five total fluorophore labels
on the shape across the four samples (four in the shape-
specific sample, and one in the each-shape sample), while
for concentration patterns with only one sample, the growth
time of the corresponding fluorophore label was used. As
the position of the fluorophore within the shape, relative
to where nucleation occurs, has a substantial influence on
growth time measurements, the considerable variability in
these measurements relative to the true nucleation kinetics
must be acknowledged.

For flag experiments, AFM imaging was done only for
qualitative confirmation of the selective nucleation and
growth indicated by fluorescence results. For pattern
recognition and equal-concentration experiments, however,
shapes in AFM images were uniformly quantified. At least
one sample of each of the patterns had three 5 × 5 µm
images taken under comparable conditions. The sample
corresponding with each image was blinded, and structures
were counted independently by each of the four authors,
classifying structures as either “nearly complete” or “clearly
identifiable” examples of each of the three shapes. For the
purposes of analysing pattern-dependent nucleation and
growth, no clear distinction between the number of nearly

complete and clearly identifiable shapes was found, and
so the two categories were summed. Counts were aver-
aged across the three images, then averaged across the
counts of the four authors, to obtain a count per shape per
25 µm2 region for each pattern. Each author used their own,
subjective, interpretation of “nearly complete” and “clearly
identifiable” structures, and the total number of structures
counted in each image differed by up to ±50% for different
authors. However, the ratios of different shapes in each im-
age counted by each author remained within 5% of the mean
ratios for most images, and across all images, no author
had a bias of more than ±4% toward identifying a particular
shape more or less often than average. Results are detailed
in Supplementary Information and Data Appendix, Section
6.3.

To measure the selectivity of patterns, the fraction of on-
target shape growth time, and AFM counts, compared to the
sum of shape growth times and AFM counts, was used. The
total growth times, and total AFM counts, of the on-target
shapes were used to measure overall shape growth.

Pattern recognition training. Images for pattern recog-
nition were selected from several sources, rescaled to 30
× 30, discretized to 10 grayscale values, and adjusted so
that the number of pixels with each value was consistent
across all images (see Supplementary Information and Data
Appendix, Section 2.7 for details). Each pixel’s grayscale
value, 0 ≤ pn ≤ 1, was converted to the concentration ci
for the corresponding tile ti using an exponential formula,
ci = ce3 pn ln 3, where the base concentration is c = 16:67 nM.
The intention of the numbers used was to make the average
tile concentration 60 nM for each image. As each image had
900 pixels and there are 917 tiles in the system, 17 tiles did
not have their concentrations set by any pixel; these tile con-
centrations were uniformly set to the lowest concentration,
and the assignment of these tiles was used to ensure that
fluorophore label locations did not vary in concentration.

The tile-pixel assignment was optimized through a sim-
ple hill-climbing algorithm, starting from a random assign-
ment, where random modifications to the assignment map
are attempted at each step and accepted if the move in-
creases the efficacy of the map. This efficacy was quantified
through a heuristic function that accounts for relative nu-
cleation rates, location of nucleation sites (with preference
given to locations that succeeded in the flag experiments
shown in Fig. 4d), and satisfaction of constraints related to
the fluorescent reporters. Because the nucleation algorithm
described above is costly, a simplistic model of nucleation
based upon the Boltzmann-weighted sum of concentrations
over a k × k window swept over each structure (similar to
the model employed in Zhong et al24) was used to evaluate
relative nucleation rates for a majority of the optimization
steps. The more detailed but computationally costly model
described above was then employed for an additional sev-
eral hours in hopes of improving the mapping. The window-
based nucleation model (along with all constraints about
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nucleation location and fluorescent reporters) is also em-
ployed to explore the capacity of this map training procedure
in Extended Data Fig. E8. Details of the pattern recognition
training and the window-based nucleation model are dis-
cussed in Supplementary Information and Data Appendix,
Sections 2.4 and 2.5.

Data availability. AFM images, fluorescence tra-
jectories, DNA sequences, and simulation results
are available at https://www.dna.caltech.edu/
SupplementaryMaterial/MultifariousSST/.

Code availability. Algorithms for tile set design, sequence
design, nucleation rate prediction, pixel-to-tile map optimiza-
tion are available at https://www.dna.caltech.edu/
SupplementaryMaterial/MultifariousSST/.
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Fig. E1 | Parallels and differences between neural network models and self-assembly models as exemplars of collective behavior. In this rough
metaphor, a neuron corresponds to a tile. While Hopfield networks allow full connectivity, multifarious self-assembly (like place cell networks) restricts
connectivity to a superposition of grids with different unit permutations. The state of a Hopfield network consists of the set of active neurons, while the
state of an assembly consists of the set of tiles present and their arrangement, which is restricted to be connected. We use xi ∈ {−1;+1} for the activity
of neuron i , and x ip ∈ {0; 1} for the occupancy of tile i in position p. The energy of a state is a quadratic function governed by synaptic weights wi ;j and
biases bi for neural activities, or for assemblies, by directional binding energies J‹i;j for tiles i and j at positions p and p′ that are neighbors in direction ‹,
along with (inverted) tile chemical potentials Θi . An environment presents a sequence of outside influences driving system state, either stimulating
neural activity or spatially organizing tiles. Learning in Hopfield networks occurs any time neurons are simultaneously active. For self-assembly, learning
an interaction requires tiles i ,j to be located next to each other; we envision a hypothetical proximity-based ligation process65,66 that creates interaction
mediating glues i j for molecules i ,j that spend time together in spatial proximity. Qualitative system behaviors depend on the number of memories
being stored and the operating temperature, including phases where system state randomizes (paramagnetic / disoriented / dissolved), gets locked
in a spurious local minimum (spin glass / random aggregation), or successfully retrieves learned memories. Due in large part to the restrictions on
connectivity, the capacity of place cell networks and multifarious self-assembly is less than for the Hopfield model. See Supplementary Information and
Data Appendix, Section 1 for details and discussion.
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Fig. E2 | Proofreading tile set design and tile assignment map. Extensive promiscuous interactions present in the SHAM mix could in principle
lead to unintended chimeric structures and other malformed assemblies. To reduce or prevent such behaviors, our design incorporates self-assembly
proofreading principles, so called because they enhance quick rejection of mis-assembled tiles. Much like with neural networks,67 random arrangement
of tiles (such as the initial checkerboard layout in the first stage of our design process) provides a statistical proofreading23 in the sense that problematic
interactions are unlikely to arise. Further optimization of the tile set (in our second stage) ensures that two types of problematic interactions do not occur,
thereby conferring algorithmic proofreading35 and self-healing properties.58 This tile set optimization is derived from prior work.36 a, Our systems are
designed to grow in a regime where a tile attaching by at least two bonds is favorable, but a tile attaching by one bond is not (‘threshold 2’). Motivated by
self-healing tile systems,58 we seek a tile set where no correct partial assembly should ever allow an undesired tile to attach by two or more bonds,
though undesired attachments by one bond are allowed, such that any favorable attachment to a partial assembly will be correct. b, In addition to tiles
attaching favorably by 2 bonds to growing facets, new facets in the system will only be created by tiles attaching unfavorably by one bond, and then being
stabilized by further, favorable growth. At a site where tile T would correctly attach by one bond, a tile U might be able to attach incorrectly by the same
bond. T would correctly be stabilized by the subsequent attachment of V by two bonds, but U might be stabilized as well if there is a tile W that can
attach to it and shares the same glue as V . Thus, if for every pair of tiles that can bind to each other (e.g., T + V ), there is no other pair of binding tiles
(e.g., U +W ) that share two glues on the same edges of the tiles, then any tile that attaches by one bond to an assembly will either be the correct tile, or
will not allow a subsequent stable attachment, and will likely detach quickly. This is equivalent to ‘second-order sensitivity’ with all directions treated as
inputs, functioning as a form of self-assembly proofreading.35,36 c, We created a multifarious tile system by first starting with three shapes constructed
entirely of unique tiles, then repeatedly attempting to ‘merge’ tiles in different shapes by constraining the sequences of their domains to be identical, and
checking whether each merge of two tiles results in a tile system that does not have any tile pairs violating criteria in a and b. d, From multiple trials
of the merging process, each initially favoring a checkerboard arrangement before attempting more general merges, we selected the smallest result
containing 917 tiles. DNA sequences for tiles in the system were designed with the single-stranded tile (SST) motif,31 with two alternating tiles motifs of
10 nt and 11 nt domains (full shape layouts and tile sequences are shown in Supplementary Information and Data Appendix, Sections 3.3 and 4.1).
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and an edge-guarded checkerboard in which we additionally enforce inert bonds around each shape’s perimeter (a, bottom). For each tile set, we
performed kinetic growth simulations, starting from a pre-formed 5× 5 seed taken from a location within H. Simulations were performed using the kinetic
Tile Assembly Model as implemented by xgrow (with chunk fission)62 with uniform tile concentrations corresponding to 62 nM and parameters estimated
in Supplementary Information and Data Appendix, Section 2.1. b, Schematic illustrates various desired and undesired growth pathways for A, along with
representative AFM images taken from the A flag 1 experiment (Supplementary Information and Data Appendix, Section 5.3.13). Two distinct kinds of
chimeric structures were seen in simulation as the result of promiscuous interactions: chimeric structures can grow either before full assembly of the
target structure (e.g., part-A, part-M) or emerge spontaneously from the edge of a properly formed structure (e.g. full-A, part-H). Chimeras like those
illustrated along the lower path are held together by just a few bonds and sometimes can quickly break apart (tiles with unintended bonds are shown in
red); these result in sharp drops in simulated assembly size, as the simulation discards one subassembly when disconnected. Note that chimeric growth
was not observed experimentally, possibly as a result of effective experimental system design; however, many observed structures failed to complete
the upper right and/or lower left corners, or appeared to have suffered a spiral growth defect. A possible explanation for the missing corners, which is
also seen in H and M, is supported by coarse-grained molecular dynamics simulations of SST lattice curvature (Supplementary Information and Data
Appendix, Section 3.4). Spiral defects were not seen in H or M and are presumably due to the interior hole in A. c–e, The size of the assembly (in units of
the size of the fully formed H) is shown as a function of time. For higher temperature 48.9 ◦C (c), no chimeras are observed on the simulated timescales
for any tile set. For intermediate temperature 47.2 ◦C (d), all 6 checkerboard trajectories still result in chimeras, while no errors are observed on the
timescale probed for the guarded checkerboard or experimentally-implemented proofreading tile set. For lower temperature 45.5 ◦C (e), chimeras are
seen in all runs for checkerboard structures (red traces), 4 of the 6 runs for guarded checkerboard structures (green traces) and 1 of the 6 runs for
proofreading structures.
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Fig. E4 | Stochastic Greedy Model of nucleation, based on repeated stochastic simulations. a, The frequently-used kinetic Tile Assembly Model
(kTAM)59,60 has rates for tile attachment and detachment events based on tile and assembly diffusion and total binding strength of correct attachments a
tile can make at a lattice site. Here u0 = 1 M. b, These rates can be used to derive a free energy for any tile assembly in a system, and, assuming
fixed monomer concentrations, an equilibrium concentration for any assembly. Schulman & Winfree37 showed that the equilibrium concentration of the
highest-energy assembly along a nucleation trajectory under this assumption provides an upper bound for nucleation rate through that trajectory, with or
without fixed monomer concentrations. However, in a large system, considering all possible intermediate assemblies and all pathways, including many
that are extremely unlikely, would be infeasible. Thus, we developed the Stochastic Greedy Model (SGM) to generate stochastically-chosen paths of tile
attachments. c, Starting from a single tile (chosen with probability proportional to relative concentration), whenever the assembly is in a state Astable

where there is no tile attachment that would be favorable (have ∆G < 0), one of the possible unfavorable (with ∆G ≥ 0) attachments is stochastically
chosen, resulting in a higher-G state Aunstable. Then, all subsequent possible ∆G < 0 attachments are made, resulting in the next A′

stable state; for our
system of unique tiles for each site in the lattice, this sequence of favorable steps has a unique resulting assembly. d, The process repeats until all tiles
in a shape are attached, which results in a trajectory with a maximum-G assembly that can be used to bound the rate of nucleation, ”, through that
particular trajectory. e, By using this process to collect many trajectories, and then repeating the entire process for each of the three shapes in the
system, we can estimate nucleation rates dependent upon temperature, with the assumption that tile monomer concentrations do not deplete, and
that the trajectories found are a reasonable representation of likely trajectories. For comparison between model predictions and experimental data in
Extended Data Fig. E6d and E9b, we determined the temperature at which the model predicted the nucleation rate exceeded a threshold (orange line), to
compare with when fluorescence quenching exceeded a threshold. For details on the SGM model, see Supplementary Information and Data Appendix,
Section 2.2. f, To study the winner-take-all effect, we use a simplified chemical reaction network (CRN) model for the case of systems with shared tiles
(shown here) and a similar model for systems without shared tiles (described in Supplementary Information and Data Appendix, Section 2.3). Here, cHn
represent tiles in the flag area of shape H, which have initially higher concentrations; cAn are the corresponding tiles in the flag area of shape A, which
have normal concentrations; and cg represent tiles involved in growth from the nucleated seed Hnuc to the almost-complete structure Hmid ; and similarly
for structure A. A more detailed model based on (but simpler than) the SGM gives qualitatively similar results, as detailed in Supplementary Information
and Data Appendix, Section 2.3.
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Fig. E5 | Fluorophore quenching as a measure of nucleation and growth. a, Fluorescent labels used a fluorophore-quencher pair placed on the 5′

ends of two modified tiles unique to one shape, where they were colocated, but had no complementary binding domains, ensuring that dimers could not
form, and trimers would not closely colocate the fluorophore and quencher. To constrain the pair to be close enough to quench in a well-formed lattice,
one of the two tiles had its orientation and crossover position swapped compared to the unmodified tile for the location. b, Positions and types of all
fluorophore/quencher pairs available for use. For one sample, one position for each of four types of fluorophores could be chosen, and tile pairs for those
locations replaced by their modified counterparts. Thus different samples could probe different arrangements of up to four locations; four arrangements
were used in experiments (e.g., in e). c, Expected behavior of fluorophore labels on shapes as one shape nucleates and grows. d, Fluorescence data for
non-quenching (fluorophore tile only, orange) and quenching (5 × 5 lattice around fluorophore and quencher tiles, blue) controls for the ATTO647N
fluorophore/quencher pair on A. Here, the temperature ramps linearly from 49 ◦C to 35 ◦C at a rate of 0:1 ◦C=min, with all tiles at 50 nM, and each sample
has its fluorescence normalized to its maximum value independently. e, An example of fluorescence growth time measurements (Mockingbird; see
Supplementary Information and Data Appendix, Section 6.4.9). Each fluorophore signal, in each sample, is independently normalized to its maximum
value during the experiment, and the time between the point where the signal goes below 0.9 (“10% quenching”) and the end of the experiment is
measured (“growth time”). These times are then summed for all fluorophores, in all four samples, on each shape, resulting in a growth time for each
shape, and, when normalized to the sum of all growth times, a relative growth time for each shape. See Methods and Supplementary Information and
Data Appendix, Section 3 for design and characterization of the fluorescence readout method, as well as an estimate of the melting temperature of H.
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Fig. E6 | Nucleation and growth with ‘flag’ patterns of enhanced concentration. a–c, 37 different concentration patterns with enhanced concentrations
of shared tiles in 5× 5 regions were prepared, each with four different standard sets of fluorophores in four samples, and grown using two temperature
protocols (a): a ramp focusing on 48 ◦C to 46 ◦C over 100 hours, and a hold at 47 ◦C. Using growth times as described in Extended Data Fig. E5,
fluorescence data for many samples in both experiments showed preference for the desired shapes (b, c), but with considerable variation in selectivity
and total amount of growth. d, No statistically significant correlation was found between the nucleation model prediction for temperature of on-target
nucleation and the time of on-target shape quenching in the temperature ramp experiment. Although the nucleation model overestimates the nucleation
temperature and its nucleation rate estimates may be far off, our interest here is in the qualitative features and difference between the shapes. e–g, Details
of three patterns, with concentration patterns (1), weighted critical nucleus free energy starting from particular tiles (2), nucleation-model-estimated
nucleation rates (3), temperature hold (4) and temperature ramp (5) experiment fluorescence results, and (6) AFM images from the temperature hold
experiments. Information for all individual flag patterns is available in the Supplementary Information and Data Appendix, Section 5.
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Fig. E7 | Evidence of winner-take-all in flag experiments. a, An example flag pattern (A flag 12), and uniform 50 nM concentration ‘no flag’ pattern.
b, Fluorescence normalized to maximum readings, from the temperature ramp experiment (Extended Data Fig. E6 and Supplementary Information
and Data Appendix, Section 5). The fluorescence at the end of the experiment, Fp;s;f , of fluorophore f in sample s of pattern p is used along with
the corresponding fluorescence value for the no flag pattern, Fno flag;s;f , to calculate the ratio Mp;s;f . This ratio corresponds to the relative amount of
quenching for that fluorophore in the flag pattern compared to the no flag pattern. The ratios are averaged across the 5 on-target fluorophores (circled in
b) in samples for the flag pattern to obtain an average on-target ratio, and across the 10 off-target fluorophores to obtain an average off-target ratio. c,
The on- and off-target ratios are plotted for each flag pattern. For winner-take-all behavior, on-target quenching is expected to be higher with a flag
pattern than with no flag, resulting in Mon target

p > 1, while off-target quenching is expected to be reduced, resulting in Moff target
p < 1.
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Fig. E8 | Pattern recognition capacity. To analyze the pattern-recognition capabilities of the designed tile set, the map-training algorithm (see
Supplementary Information and Data Appendix, Section 2.4) was run for increasingly larger sets of random images. a-c, Example images mapped to
concentration patterns for sets with 1, 12, and 18 trained images per shape, with the intended target shape for each image indicated. Following the
same procedure as used for the experimental system, with the same weighting of locations, 30 × 30 images with 10 possible grayscale values and
matching histograms were mapped exponentially to tile concentrations in the 917 tile system; however, all images were generated randomly. Training
was done using only the Window Nucleation Model with a window size k of either 2, 4, or 6, with a limit of 400,000 steps (Supplementary Information and
Data Appendix, Section 2.5). For each number of images per shape considered, ten repetitions of training (starting from random assignments) were
performed (to account for variability of the training algorithm) for each of three different sets of images (to account for variability in sets of images). d, As
the number of images in the set increases, the selectivity of nucleation using the trained map decreases. For larger k, the pixel-tile map can exploit
higher-order correlations and can thus accommodate more images. For each fully-trained system, nucleation rates were calculated using the Stochastic
Greedy Model, described in Supplementary Information and Data Appendix, Section 2.2, at Gse = 5:4, which roughly corresponds to a temperature
of 48.6 ◦C, and with concentrations comparable to the experimental system. Selectivity was calculated as the nucleation rate of the target shape for
each image divided by the total nucleation rate of all three shapes for that image, averaged over all images in the system, and over all 30 systems
(10 repetitions for each of 3 sets of images) for each point, with 90% confidence intervals shown. Star shows selectivity calculated from nucleation
model results for the experimentally-implemented system. Alternatively, dashed lines show results (at Gse = 5:5) for maps constructed by a simpler
training method that assigns the highest w2 previously-unassigned pixels in each training image to a unique w ×w region in the target shape, detailed in
Supplementary Information and Data Appendix, Section 2.6. These maps have at least as much capacity as the model-trained maps within the time
constraints of these tests, suggesting a robustness to training method. e, As the number of images increases, pattern recognition must increasingly rely
on patterns of concentrations of shared tiles, rather than choosing a pixel-to-tile map that places high-concentration pixels on tiles unique to the target
shape. Histograms show average concentrations of tiles in different shapes or combinations of shape (including the average across tile categories) for
images in training cases a–c, and the experimental system. The change can also be seen in the concentration maps of a–c, with the sharp checkerboard
of high concentration tiles in target shapes in a becoming less apparent in b and c.
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Fig. E9 | Classification of images viewed as concentration patterns. 36 different concentration patterns, derived from a mapping of 36 grayscale
images, were run using a ramp between 48 ◦C to 45 ◦C over approximately 150 hours. a, Three pattern examples, with source image, concentration
pattern, nucleation model nucleation rate starting from particular tiles, nucleation model nucleation rates, fluorescence results, and AFM images. b,
Across all patterns there was some correlation between the on-target nucleation temperature predicted by the nucleation model and on-target shape
quenching time. c, Total AFM shape counts for each sample. Information for all patterns is available in the Supplementary Information and Data
Appendix, Section 6.
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Fig. E10 | Parallels and differences between pattern recognition in our synthetic approach and in potential biological systems. While we
studied pattern recognition using a specific set of molecules (DNA) in an in vitro system, the concepts behind our work have potential relevance to
biological systems built out of molecules of different nature and in different conditions. a, Pattern recognition was triggered in our system by lowering
temperature over time which drives the self-assembly process forward. Instead, in the cell, concentrations of molecular components can rise over time
(e.g., through gene expression), leading to nucleation and self-assembly and thus pattern recognition. b, Timescale of pattern recognition is controlled by
system-specific aspects and also general trends. System specific: DNA-specific processes such as tile attachment, detachment and restructuring set
the timescale of nucleation and growth. Living systems can use active mechanisms to control nucleation timescales in addition to the concentration
effects described here. Broader trends: our theoretical work supports a general relationship between the speed of pattern recognition (e.g., by working
at a lower temperature), the size of critical nuclei and thus the complexity of pattern recognition. c, The winner-take-all effect in our work enhanced
selectivity by exploiting the depletion of shared components. Biomolecular systems, such as macromolecular complexes56 and multicomponent phase
condensates46 are thought to share components as well, potentially enabling a winner-take-all effect in cells. d, In the biological context, the inputs could
represent physiological or environmental signals encoded in the relative concentrations of many species of molecules. Some patterns of enhanced
concentration may not lead to self-assembly or phase condensation if those components with enhanced concentration are not colocalized on a structure
or reinforce a nucleation pathway for a condensate; but an alternative pattern of high concentrations could lead to assembly of one of several assemblies
or condensates. e, Such sensitivity of kinetic pathways to concentration patterns can be exploited for complex decision-making in numerous aspects of
cellular physiology, or may provide compact and robust control mechanisms for cell-scale molecular robots. See also Supplementary Information and
Data Appendix, Section 1.5 for how a pixel-to-tile map could be physically incarnated.
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