
27.2 The Tall Thin Molecular Programmer

Erik Winfree

California Institute of Technology, Pasadena, CA

Solid-state electronic circuits have grown at an astounding rate since the invention of the
transistor in 1947, with transistor counts roughly doubling every two years and now
exceeding 100 billion on a single chip. One reason this was possible is that computers
are an information technology, which permits engineering methods that manage the
inherent complexity. Biology establishes that chemistry also is an information technology:
all biomolecules are produced according to instructions encoded in DNA, and the
resulting biochemical algorithms guide the self-organization of each organism. The
potential design space of chemical systems includes all of biology as well as other forms
of information-based chemistry that have yet to be explored. Will the engineering of
information-based chemical systems follow in the footsteps of information-based
electronic systems, with the design complexity increasing exponentially for decades?
What lessons do the early years of the computer revolution offer to this field, especially
with respect to how systematic design can help master often bewildering complexity?
Now having accumulated a 40-year history, DNA nanotechnology provides a case study
for these questions.

DNA nanotechnology began as a theoretical vision for how DNA molecules could be
designed that would robustly self-assemble into a crystal with precisely controlled
structure and geometry [1]. Along the way to achieving that goal, it was realized that
sequence-directed molecular self-assembly enables a remarkable range of nanoscale
devices and systems to be systematically designed, including arbitrarily shaped finite
structures that self-assemble in solution, scaffolds for controlled geometric arrangement
of molecules such as proteins and carbon nanotubes, mechanical hinges and motors and
springs, molecule-sensing triggers and logic gates, information processing circuits, and
robotic systems integrating multiple subsystems and modalities [2,3]. Figure 1 gives
examples of self-assembled structures built over the past 40 years, as well as molecules
and systems developed during the past 30 years of DNA computing.

The fundamental design basis for these systems is the simplicity of Watson-Crick base
pairing in DNA and the associated biophysical mechanisms that govern self-assembly
and conformational changes of the molecules. For example, as shown in the bottom left
of Figure 1, if a single-stranded DNA molecule with the directed sequence
‘ATTACCATGAGCTG’ is in solution with ‘GTACCTGCAGCTCA’, the complementary
subsequences will bind to each other when they meet, forming a double-helical region
‘TGAGCTG/CAGCTCA’ that holds the molecules together in an anti-parallel orientation,
‘T’ with ‘A’, ‘G’ with ‘C’, ‘A’ with ‘T’, ‘C’ with ‘G’, etc. Thus, the subsequences serve as
information-bearing ‘barcodes’ that direct self-assembly. Complementary subsequence
within an individual strand (for example, one named ‘d’ and its complement called ‘¬d’)
can direct folding of the strand itself. Designing a set of DNA molecules that self-
assemble into a target shape boils down to designing sequences that are sufficiently
orthogonal to ensure specific interactions. This was the essential insight of Nadrian
Seeman 40 years ago [1]. More sophisticated molecular machines incorporating
structural reconfiguration – moving parts – have been subsequently developed using the
related dynamical processes of branch migration and strand displacement [2,3]. These
processes work naturally in solutions containing no more than water and salt – that is, no
biological enzymes are needed – and the designed sequences can be synthesized as
single-stranded DNA molecules for costs of pennies per nucleotide.

How can we measure the increase of complexity in DNA nanotechnology and DNA
computing? We restrict our attention to systems designed exclusively using DNA, which
we may think of as the information-processing core for programmable molecular systems.
Figure 2 plots the complexity of a selection of landmark publications in DNA
nanotechnology, classified into three groups. (1) The mass of well-defined self-
assembled structures that were produced in a multi-stage process (e.g. first make part A,
then part B, then mix them). This measures our ability to manufacture molecularly
precise objects, by any means available. (2) The sequence design complexity (i.e. the
total length of synthesized DNA strands) for well-defined structures that self-assemble in
a single “one-pot” reaction. This measures our control over how DNA sequence
information autonomously directs the fabrication. (3) The sequence design complexity of
systems whose function is to compute, which imposes more severe design challenges on
molecular function beyond just structural integrity.

In all three cases, the complexity appears to be increasing exponentially, with doubling
times between every two years to every four years. If these trends continue, what can we

predict for the coming 40 years of DNA nanotechnology research? One reference point is
the size of a typical bacterium, such as E. coli, which is about 1 cubic micron. A
nucleotide is about 1 cubic nanometer, so to self-assemble a life-size molecular “statue”
of a bacterium would require 109 nucleotides – which we can expect to be feasible within
15 years. If we want a simple procedure – such as just sending an email to a DNA
synthesis company, mixing the strands in a single test tube at the right temperature, and
waiting for billions of bacterium statues to self-assemble by themselves – then we may
have to wait 30 years. If we want the molecular analog of a cell-scale cuckoo clock
chock-full of moving parts and programmable autonomous logic circuitry (which we might
call a “molecular robot”) then we may have to wait 50 years.

What bottlenecks might prevent future exponential growth of DNA nanotechnology, and
how might we avoid them? Examining the history of the electronics industry may suggest
common principles that could be in play despite the huge differences in technology.
Exponential growth of solid-state circuit technology was not a straightforward process; it
required a series of fundamental innovations and breakthroughs at different times during
its development. What point on this growth curve is most analogous to the current state
of molecular information technology? Self-assembled DNA structures, 40 years from the
design of the first four-way junction, have increased in complexity 105-fold;
microprocessor chips reached 105 transistors around 1982, 35 years after the invention of
a single transistor.

This was about the time of the Mead-Conway VLSI chip design revolution – their book [4]
came out in 1980, walking students through transistor device physics and lithography all
the way to circuit and microprocessor architecture design. The book presented an
integrated view of principles used for managing the complexities of chip design, including
the digital abstraction that enables decoupling of logical design from analog physics, the
design rules for fabrication that facilitate consistently reliable circuit layout, and the
abstraction hierarchy that guides designs from high-level programming languages down
to the physical implementation. Remarkably, these and other design principles simplified
the process enough that a single person – perhaps a student – could understand the
entire flow well enough to do the design from top to bottom using a structured approach.
Carver Mead called that person the “Tall Thin Computer Engineer”.

DNA nanotechnology provides an almost unique corner of chemical engineering where
analogous principles can be put to the test. The past decade has seen efforts to design
biochemical circuits using rigorous application of the digital abstraction (Figure 3) or its
generalization to higher-dimensional discrete restoration by attractor networks (Figure 4),
to explore the consequences of working strictly within design rules that enable scalable
systematic methods for managing complexity (Figure 5), and to demonstrate how layered
abstraction hierarchies can support the design of complex circuits and self-assembling
structures (Figure 6). Computer-aided design software for self-assembled DNA
structures [5] and programming languages that compile down to DNA strand
displacement circuits [6] are now de facto in some branches of DNA nanotechnology
research. These types of efforts, treating molecular engineering as an information
technology where lessons from computer engineering ought to apply, is now often called
“molecular programming”.

In another parallel to the 1980’s, many of the most successful recent advances in
molecular programming have come from individual researchers who personally
encompass the full stack, from characterizing critical molecular biophysics to writing
software that compiles high-level designs into DNA sequences. Following Carver Mead,
we might call such people “Tall Thin Molecular Programmers”. Their role in the
development of DNA nanotechnology is particularly critical right now, as the abstractions
and methods currently used to handle the complexity of molecular systems today should
not be considered optimal or even workable for continued scaling – finding new effective
abstractions and design strategies up and down the stack will require an integrated view
of how the different layers interact with each other.

[1] N. C. Seeman, "Nucleic acid junctions and lattices", Journal of Theoretical Biology, vol
99, pp 237-247, 1982.
[2] H. Ramezani and H. Dietz, “Building machines with DNA molecules”, Nature Reviews
Genetics, vol 21, pp 5-26, 2020.
[3] F. C. Simmel et al, “Principles and applications of nucleic acid strand displacement
reactions”, Chemical Reviews, vol 119, pp 6326-6369, 2019.
[4] C. Mead and L. Conway, "Introduction to VLSI Systems", Addison-Wesley, 1980.
[5] M. Glaser et al, “The art of designing DNA nanostructures with CAD software”,
Molecules, vol 26, 2287, 2021.
[6] M. R. Lakin and A. Phillips, “Domain-specific programming languages for
computational nucleic acid systems”, ACS Synthetic Biology, vol 9, pp 1499-1513, 2020.

Figure 27.2.1: Historical examples of DNA nanotechnology and DNA computing
constructs.

Figure 27.2.2: Scaling of complexity for objects and designs.

Figure 27.2.3: DNA strand displacement circuits that employed the digital
abstraction.

Figure 27.2.4: Neural-network-like restoration for more robust non-binary digital
abstractions.

Figure 27.2.5: Design rules in DNA nanotechnology limit chemical options but
enable effective abstractions.

Figure 27.2.6: Abstraction hierarchies are being prototyped in molecular system
design.

