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Abstract

Over the last century, the silicon revolution has enabled us to build faster, smaller and more so-

phisticated computers. Today, these computers control phones, cars, satellites, assembly lines,

and other electromechanical devices. Just as electrical wiring controls electromechanical devices,

living organisms employ “chemical wiring” to make decisions about their environment and con-

trol physical processes. Currently, the big difference between these two substrates is that while

we have the abstractions, design principles, verification and fabrication techniques in place for

programming with silicon, we have no comparable understanding or expertise for programming

chemistry.

In this thesis we take a small step towards the goal of learning how to systematically engineer

prescribed non-equilibrium dynamical behaviors in chemical systems. We use the formalism of

chemical reaction networks (CRNs), combined with mass-action kinetics, as our programming

language for specifying dynamical behaviors. Leveraging the tools of nucleic acid nanotechnology

(introduced in Chapter 1), we employ synthetic DNA molecules as our molecular architecture and

toehold-mediated DNA strand displacement as our reaction primitive.

Abstraction, modular design and systematic fabrication can work only with well-understood

and quantitatively characterized tools. Therefore, we embark on a detailed study of the “device

physics” of DNA strand displacement (Chapter 2). We present a unified view of strand displace-

ment biophysics and kinetics by studying the process at multiple levels of detail, using an intu-

itive model of a random walk on a 1-dimensional energy landscape, a secondary structure kinetics

model with single base-pair steps, and a coarse-grained molecular model that incorporates three-

dimensional geometric and steric effects. Further, we experimentally investigate the thermody-

namics of three-way branch migration. Our findings are consistent with previously measured or

inferred rates for hybridization, fraying, and branch migration, and provide a biophysical expla-
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nation of strand displacement kinetics. Our work paves the way for accurate modeling of strand

displacement cascades, which would facilitate the simulation and construction of more complex

molecular systems.

In Chapters 3 and 4, we identify and overcome the crucial experimental challenges involved

in using our general DNA-based technology for engineering dynamical behaviors in the test tube.

In this process, we identify important design rules that inform our choice of molecular motifs and

our algorithms for designing and verifying DNA sequences for our molecular implementation.

We also develop flexible molecular strategies for “tuning” our reaction rates and stoichiometries

in order to compensate for unavoidable non-idealities in the molecular implementation, such as

imperfectly synthesized molecules and spurious “leak” pathways that compete with desired path-

ways.

We successfully implement three distinct autocatalytic reactions, which we then combine into a

de novo chemical oscillator. Unlike biological networks, which use sophisticated evolved molecules

(like proteins) to realize such behavior, our test tube realization is the first to demonstrate that

Watson-Crick base pairing interactions alone suffice for oscillatory dynamics. Since our design

pipeline is general and applicable to any CRN, our experimental demonstration of a de novo chem-

ical oscillator could enable the systematic construction of CRNs with other dynamic behaviors.
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1 Introduction

...But in the real world, it‘s very hard to know which problems are important,

and you never know whether at a given moment in history a problem is solvable...

- Steven Weinberg [1]

1.1 Motivation and context: the molecular programming perspective

Living organisms are fascinating. They start as a single cell, metabolize, grow, and reproduce.

Some of them grow into complex multicellular creatures with precisely reproducible structures

that perform important functions — leaves that carry out photosynthesis, eyes that enable vision,

wings that power flight, and so on.

All this complexity arises from a single cell. Indeed, even the largest tree starts as a single

seed. The seed contains all the information, and given favorable conditions and raw material,

will execute its “developmental program” and grow into a tree. As foreseen by John von Neu-

mann [2], growth and reproduction are essentially information processing tasks. Further, Alan

Turing’s work on chemical morphogenesis [3] was an early insight into the computations involved

in biological growth.

If we1 are to think of development as a program and the genome as software, we must identify

features common to both2. First, software execution is reproducible: two copies of the same pro-

gram in the same environment execute identically. The same is true for developmental programs:

monozygotic twins share an (almost) identical genome and environment and develop nearly iden-

tically. Second, software is sensitive to small changes in crucial places: changing one loop control
1A clarification on the use of “we”: “we”, rather than “I”, is used almost everywhere in this thesis both for stylistic

purposes and to indicate the collaborative nature of the work presented. In some select places, “I” is used to emphasize
the author’s personal opinions or experiences.

2This part of the discussion was inspired by a popular talk given by Paul W. K. Rothemund.
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Figure 1.1: The developmental program, like software, is sensitive to small changes. Mutations in
the Antennapedia (Antp) gene in the fruit fly Drosophila melanogaster can result in a leg growing out
of the head rather than an antenna [4]. Figure adapted from Klug et al. [4], courtesy Paul W. K.
Rothemund.

variable, for example, can make all the difference between a correct program and an incorrect one.

Similarly, relatively small changes in the genetic code can result in dramatic changes in the growth

process (Figure 1.1). Lastly, growth, like any well-written computer program, is intended to halt;

indefinite growth is a serious disorder.

Inspired by the living world, where information directs matter, can we seek to program molec-

ular systems? Maybe we could dream of programming biochemical machines one day, the way

we program electromechanical machines today. In essence, that is the “big picture” vision under-

pinning this thesis. Although programming biochemical machines as complex as living organisms

is a grand challenge with multiple intellectual and technical barriers to overcome, there are three

reasons for cautious optimism.

First, the history of computing teaches us that multiple physical substrates can embody com-

putation, and that learning to compute with a new substrate can revolutionize technology in ways

we can scarcely imagine. Indeed, the earliest devices capable of performing calculations, such

as the Antikythera mechanism [5–7], were fabricated over two thousand years ago and relied on

mechanical components such as gears. Over the last century, we have learned to compute with sil-

icon and replaced gears with diodes and transistors. This silicon revolution has resulted in faster,

smaller, and more sophisticated computers which now control phones, cars, and satellites. It is

quite conceivable that we can learn to compute with yet another substrate and thereby enable a

molecular information technology.
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Figure 1.2: Moore’s law in DNA nanotechnology: the exponential growth in design complexity
of molecular systems that have been experimentally demonstrated over the years. Design com-
plexity (plotted in log scale to the base 10) has been evaluated as the number of nucleotides of
synthetic DNA incorporated in the experimentally demonstrated system. Studies in structural
DNA nanotechnology are indicated by upward-pointing triangles, whereas studies in dynamic
DNA nanotechnology are indicated by downward-pointing triangles. Studies that incorporate
both structural and dynamic aspects are indicated by diamonds. The best fit line, considering all
the points, is plotted in black. This figure is an updated and revised version of an earlier figure by
Erik Winfree. References R1 - R23 are listed in Table 5.1.

Second, over the last thirty years, a diverse group of scientists and engineers have learned to

use synthetic nucleic acids as programmable building blocks for engineering nanoscale structures

and circuits [8–13]. Although this “nucleic acid nanotechnology” is still in its infancy, the com-

plexity of engineered molecular systems has been increasing exponentially, following a growth

trajectory that is reminiscent of Moore’s law [14] (Figure 1.2). For a whirlwind tour of nucleic acid

nanotechnology, see Section 1.4.1.

Third, our ability to synthesize and manipulate biomolecules — both single-stranded DNA

oligonucleotides and genes (and therefore RNAs and proteins) — has been getting better, faster,

and cheaper every year. Indeed, over the last 25 years, productivity of DNA synthesis has in-

creased by nearly 5 orders of magnitude, while the cost of gene synthesis per base has dropped
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Recent work at the J. Craig Venter Institute 
(JCVI; Rockville, MD, USA) has resulted 
in relatively painless assembly of a 580-kb 
microbial genome from 101 pieces of start-
ing material each 5–6 kb in length1. That 
this technique makes use of native recom-
bination mechanisms in yeast suggests that 
it can be implemented in just about any 
laboratory that takes the time to learn the 
recipe. Combined with an existing wide-
spread industry that regularly supplies syn-
thetic DNA fragments of 5–10 kb in length, 
assembly in yeast will put the ability to build 
a wide range of DNA genomes in the hands of 
scientists, entrepreneurs and other interested 
parties worldwide.

Single-step DNA assembly in yeast should 
prove useful as a tool to rapidly assemble 
metabolic pathways from many short DNA 
sequences. Shao and Zhao2 demonstrated 
precisely this sort of application in early 2009 
by assembling functional metabolic pathways 

as these DNA synthesis companies face the 
commoditization of their product, the com-
mercial sector that focuses on assembling 
and engineering genomes (or at least chro-
mosomes) to create novel products for use 
in the medical, energy or industrial sectors 
is likely to become increasingly profitable. 
Demand for synthetic DNA will consequently 
spread around the globe as organizations of 
all sizes exploit biological technologies for 
many different aims. That some of those aims 
may be less appealing than others is already 
prompting calls to regulate synthesis in one 
way or another. But the global proliferation 
of demand is likely to limit the effectiveness 
of regulations implemented on the grounds 
of improving safety and security.

A nascent field
The commercial availability of synthetic 
DNA has clearly found a use in constructing 
ever longer genes and now genomes (Fig. 2). 

Biological technologies come in many 
different guises. For millennia, humans 

have used selection and breeding to direct 
the evolution of organisms in a sort of top-
down approach, a powerful but unpredictable 
means to achieve a desired behavior. At the 
opposite extreme, genes and genomes can 
now be written from chemical precursors, 
a more precise but sometimes less effective 
means of producing a particular biological 
behavior—the design rules for bottom-up 
engineering of biology in the vast majority of 
cases are still poorly understood. In between, 
practicing metabolic engineers use any and 
all tools at hand to herd and cajole organisms 
into producing products with market value in 
the many hundreds of billions of dollars.

At the core of all these approaches to 
biological engineering is the creation of a 
particular genomic sequence that produces 
behaviors according to human desire or need. 
In addition to nearly a century of evolution 
and selection based on early knowledge of 
genetics, we are already four decades into 
the direct manipulation of genomes through 
recombinant DNA technology. Synthetic 
oligonucleotides (oligos) have been avail-
able by mail order for the past 20 years, and 
synthetic genes have been built commercially 
from those oligos for the last ten. In that time, 
the number of bases a single individual can 
synthesize in a day using commercial instru-
ments has increased by five orders of magni-
tude, whereas the per base cost of synthetic 
genes has dropped by nearly three orders of 
magnitude (Fig. 1).

I argue here that in the coming years, syn-
thetic DNA manufacturers will come under 
increasing pressure to reduce costs and 
decrease turnaround times. At the same time 

The changing economics of DNA synthesis
Robert Carlson

How are the economics of synthetic biology likely to develop in the coming years?

Robert Carlson is at Biodesic, Seattle, 
Washington, USA.  
e-mail: rob@biodesic.com
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Figure 1.3: Economics of DNA synthesis. Since 1990, productivity has increased by nearly 5 or-
ders of magnitude, while the cost of gene synthesis per base has dropped by nearly 3 orders of
magnitude. This figure has been reproduced from Carlson [15].

by nearly 3 orders of magnitude [15] (Figure 1.3). In concert with synthesis, techniques to manip-

ulate and visualize matter on the nanoscale have also improved dramatically in this time period.

For example, high-speed atomic force microscopy has enabled striking visualization of dynamic

molecular events [16].

How can we start programming with molecules? First, we will need a suitable programming

language, one that is rich enough to allow interesting programs, yet simple enough and “natural”

enough to permit a smooth molecular implementation. Second, we will need a molecular archi-

tecture to try to implement the programs we write. The living world is a natural place to look for

inspiration, and one may be tempted to look for a language that captures all the rich phenomena

in biology. Information processing happens in very different flavors in the living world; Figure 1.4

presents three distinct examples. Given this diversity, it seems unlikely, at least at the present

time, that a single useful model of computation would meaningfully capture all of these different

flavors of information processing.

In this thesis, we focus on programming chemistry. By this we mean that we attempt to sys-

tematically engineer prescribed dynamical behaviors in well-mixed chemical systems. Although
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the first non-trivial dynamical behavior in a well-mixed chemical system, an oscillator, was dis-

covered as early as 1921 [17], well-mixed solutions were widely considered incapable of exhibiting

interesting dynamics until well into the second half of the twentieth century [18]. Such dynamic

behaviors were considered possible only in inhomogeneous solutions with spatial differences in

concentrations. In Section 1.2, we briefly discuss the historical development of experimental and

theoretical tools to understand non-equilibrium dynamical behaviors in chemical systems.

These pioneering experimental studies led to theoretical studies that explored the class of dy-

namical behaviors that are, in theory, possible within the mathematical framework of “formal

chemical reaction networks”. A formal chemical reaction network (CRN) is a finite set of chemical

reaction equations (with rate constants) between formal species. A brief description of the “lay of

the land” with respect to these theoretical studies is provided in Section 1.3. In this thesis, we will

employ formal CRNs, along with mass-action kinetics, as a programming language for specifying

dynamical behaviors in well-mixed solutions. This approach is described in detail in Chapter 3.

A programming language is not of much use without an implementation architecture. In Sec-

tion 1.4, we will introduce DNA nanotechnology and DNA strand displacement, our molecular

architecture of choice for implementing the CRN programs we write.

Lastly, in Section 1.5, I list my scientific contributions to the work described in this thesis.

1.2 Well-mixed chemical systems with complex dynamical behavior

For much of the twentieth century, most chemists believed that complex temporal dynamics, such

as oscillations, could not possibly occur in well-mixed (“homogenous”) solutions [18, 22–25]. For

multiple accounts of different facets of the fascinating history of modern nonlinear chemical dy-

namics, see Irving Epstein’s and John Pojman’s excellent textbook [24], a couple of interesting

perspectives by Epstein and Showalter [23] and Sagues and Epstein [25], or an article by Anatol

M. Zhabotinsky [22] (of Belousov-Zhabotinsky (B-Z) oscillator fame [26, 27]) where he both re-

counts this history and tries to understand why belief in this impossibility was so pervasive in

the face of significant evidence to the contrary. In addition to these accounts, A. T. Winfree [18]

traces the history of the B-Z oscillator [26, 27], and in the process summarizes for the first time in

English “much that seems common knowledge in Russia about the origins of the cerium/bromate

oscillator”.
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Actually, the cell cycle is even more rapid in early Xenopus embryos
than in somatic cells7. Moreover, mitotic events occur within minutes
of each other in distant parts of the cell. For example, nuclear envelope
breakdown, which occurs in the interior of the fertilized egg, takes
place only a few minutes before the mitotic surface contraction waves
(SCWs; discussed in more detail below) sweep over the cortex of the
egg8. Thus, some mechanism other than simple diffusion of active
Cdk1 must coordinate spatially distant mitotic events.
One possible mechanism is suggested by the systems-level organi-

zation of themitotic trigger circuit, which includes interlinked positive
and double-negative feedback loops (Fig. 1a). Circuits such as this can
show bistability; indeed, experimental studies in Xenopus egg extracts
have shown that the response of Cdk1 to non-degradable cyclin B1 is
hysteretic, with two alternative stable levels of Cdk1 activity possible at
intermediate cyclin B1 concentrations (Fig. 1b)1,2. Bistability could, in
principle, allow Cdk1 activation to propagate rapidly through trigger
waves3,9–11.
To see why bistability can generate rapidly propagating trigger

waves, imagine a long thin tube containing cytoplasm with a uniform
concentration of cyclin B1 and Cdk1, and assume that in some region
of the tube the cytoplasm is in the mitotic, high Cdk1-activity state
(Fig. 1c, red) while the rest of the cytoplasm is in the interphase, low
Cdk1-activity state (Fig. 1c, blue). Within some small distance of the
interface, the cytoplasm will rapidly mix by diffusion, resulting in an
intermediate level of Cdk1 activity. If this activity is above the unstable
steady state (Fig. 1b, white point), this slice of cytoplasm will flip to the
mitotic state. The process of mixing and conversion repeats, and the
mitotic state propagates down the tube at a constant velocity. The pro-
pagation speed can be estimated by Luther’s formula, v< 2(D/t)K,
where D is the diffusion coefficient and t is related to the flipping time

for the bistable system3,12. If we assume D5 10mm2 s21 and t5 10–
100 s, the expected propagation speed would be 40–120mmmin21, and
Cdk1 activity could propagate from the congressed pronuclei to the
animal pole in 2–5min. This would be fast enough to account for the
coordination of nuclear and cortical mitotic events. If Cdk1 activation is
followed byAPC/C activation and cyclin degradation, a wave of mitotic
exitwould follow thewaveofmitotic entry, and if this is followed by new
cyclin synthesis the whole process would repeat.
To explore this idea further, we created a simple partial differential

equation (PDE) model of Cdk1 activation and propagation (Sup-
plementary Materials). We assumed that cyclin B1 was synthesized
at a uniform, constant rate everywhere in the cytoplasm, and that the
mitotic activator Cdc25C was 50% higher in concentration in one
5mm section of the tube than in the rest of it. This inhomogeneity
could represent the centrosome, which, in somatic cells, has a high
concentration of Cdc25C13. As anticipated, the modelled activation of
Cdk1 was found to occur first in this high Cdc25C region, and then to
spread linearly up and down the tube, resulting in a V-shaped front of
Cdk1 activation in the plot of activity as a function of time and position
(Fig. 1d; see also Supplementary Fig. 1). The propagation rate, which is
the slope of the diagonal wave fronts, was approximately 60mmmin21,
compatible with the estimates fromLuther’s formula. Farther from the
centrosomal region, cyclin synthesis reached the threshold for Cdk1
activation before the trigger wave arrived, resulting in a vertical front of
Cdk1 activity. However, with successive cycles, the trigger waves came
to occupy more andmore of the tube. These results support the plaus-
ibility of trigger waves as a mechanism for allowing Cdk1 activation to
spread through an egg in a rapid and orderly manner.
We therefore set out to determine experimentally whether trigger

waves do occur, using cyclingX. laevis egg extracts14. De-membranated
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Figure 2 | Rapid, linear propagation of mitotic
entry and exit throughXenopus cytoplasm. a, An
example of nuclear envelope breakdown and
nuclear envelope reformation in an extract with
added sperm chromatin and GFP–NLS. b, The
timing of mitotic entrance and exit in an
approximately 3mm length of Teflon tubing
submerged in mineral oil. Each data point
represents the time and position at which an
individual nucleus underwent nuclear envelope
breakdown (red points) or nuclear envelope re-
formation (blue points). The pink and blue regions
of the plot denote mitosis and interphase,
respectively. Time is measured relative to when the
extract was warmed to room temperature. The
inset shows frames from the video in montage
form. c, Trigger waves versus phase waves. The
tube was cut under mineral oil at 160min. See also
Supplementary Fig. 2.
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Figure 1.4: Information processing in living systems occurs in many different flavors. a. “Wiring
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the eukaryotic cell cycle, as presented by Tyson et al. [19]. They use the language of chemical ki-
netics (chemical reaction equations and rate constants) to model the system. b. Cartoon of protein
synthesis by the ribosome, which “reads” three nucleotide subsequences, called codons, specified
in the messenger RNA and adds the appropriate amino acid to the peptide being synthesized.
Image from Wikimedia Commons [20]. c. As foreseen by Alan Turing [3], reaction-diffusion is an
important mechanism for chemical patterning in biological systems, particularly in development.
Chang and Ferrell Jr. [21] have recently argued that trigger waves of Cdk1 activation are essential
for the rapid spread of mitotis through the cytoplasm in embryos of the frog Xenopus laevis. This
enables rapid, coordinated mitotic events in distant parts of the large (1.2 mm in diameter) Xenopus
eggs. Top: An example of nuclear breakdown and reformation in an in vitro extract with added
sperm chromatin and GFP-NLS (nuclear localization signal fused to GFP). Bottom: Timing and
position of nuclear breakdown (red points) and reformation (blue points) for individual nucleii at
different locations in a 3 mm Teflon tube. Pink and blue regions of the plot denote mitosis and
interphase, respectively. Inset panel shows frames from a video in montage form.
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Here, I briefly paraphrase the history of nonlinear chemical dynamics. This re-telling is neither

meant to be comprehensive nor detailed, and only intends to give the reader the flavor of the story

and our current understanding of why the story unfolded the way it did.

According to E. N. Harvey’s “A History of Luminescence: From the earliest times until 1900” [28],

the first reported observations of an oscillatory chemical system were made as early as the end of

the seventeenth century by Robert Boyle, who recorded periodic flashes of luminescence while

studying the oxidation of phosphorus. A. M. Zhabotinsky [22] suggests that in those times, os-

cillating chemical systems did not attract much attention because chemical kinetics as a branch of

study did not exist, and therefore there was no commonly accepted expectation for the “normal”

course of a chemical reaction.

In 1828, Fechner [29] reported an electrochemical cell that generated an oscillating current.

Ostwald [30] observed that the rate of dissolution of chromium in acid increased and decreased

periodically. By the beginning of the twentieth century, multiple oscillating systems had been dis-

covered: the periodic dissolution of an iron wire in nitric acid [31] and the periodic decomposition

of hydrogen peroxide on the surface of metallic mercury [32–34].

It is worth noting, at this stage, that all the systems described above are “heterogeneous” or

“not well-mixed” — we shall soon see that this will have important consequences. Theoretical

attempts were soon made to understand these oscillating chemical phenomena. However, hetero-

geneous reactions have notoriously complicated mechanisms, which typically involve both phase

transitions (e.g. solid to liquid) and transport processes. Therefore, understandably, theoretical in-

vestigations started with analysis of reactions in well-mixed solutions. Eventually (fast forwarding

several decades) this line of enquiry led to the development of chemical kinetics.

The belief that oscillatory behavior is impossible in well-mixed closed chemical systmes arose

from two (understandable) mistakes. First, since the first few oscillating chemical systems were all

heterogeneous, it was mistakenly assumed that this was a necessary feature to generate such com-

plex temporal dynamics. Second, and more serious, chemical oscillations were viewed as exactly

analogous to physical oscillations that were, by then, well understood. A chemical oscillation was

understood as the test-tube equivalent of a pendulum, which oscillates around its minimum free

energy state. This had been shown to be impossible in the context of chemical reactions in a closed

well-mixed solution, as it would violate the second law of thermodynamics.

However, a chemical oscillation is a far-from-equilibrium phenomenon, and the oscillation
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occurs on the way to equilibrium rather than around it. Thus, a chemical oscillation is like a slide

rather than a pendulum3 (Figure 1.5).

a

b

Free energy 
minimum

b

Free energy 
minimum

Figure 1.5: a. A pendulum oscillates around its free energy minimum. b. A chemical oscillation
in a closed well-mixed solution is not analogous to the oscillation of a pendulum, but rather like
the motion of the ball on the slide pictured here. The entire dynamic behavior happens far from
equilibrium, but on the way towards it. Free energy decreases monotonically until it attains its
minimum.

Meanwhile, in 1921, William C. Bray described the first homogeneous isothermal chemical

oscillator [17], which involved redox reactions between iodate, iodine, and hydrogen peroxide.

Belief in the impossibility of homogeneous chemical oscillators was so strong and pervasive in the

field that for nearly five decades chemists would attribute Bray’s oscillations to dust or bubbles

(and hence heterogeneity of the reaction mixture) [35]. These objections were raised in spite of the

fact that Bray expected and addressed these possible objections by using meticulously filtered and

slowly stirred solutions at room temperature (with the reaction rate so slow that oxygen diffused

out of the reaction mixture before bubbles could form).

Belousov’s discovery of what is now known as the Belousov-Zhabotinsky (B-Z) oscillator [26,

27] was the next important experimental contribution. Belousov discovered this bromate-citric

acid-cerium oscillator while trying to construct an inorganic version of the Kreb’s cycle, where

citric acid is a crucial intermediate. Belousov tried to publish his results several times, but was re-

jected each time; one editor even claimed that his “supposedly discovered discovery” was impos-

sible [18]. Eventually he did publish a version of his findings in an obscure non-refereed booklet

on radiation medicine [26]. Later, A. M. Zhabotinsky investigated Belousov’s recipe for the oscil-

lator, which was floating around in science departments in Moscow with the source having been
3In Section 1.2, for simplicity, we do not discuss driven systems in any detail. Driven systems are kept out of equilibrium

indefinitely by the constant supply of free energy and/or matter, and are therefore neither like the pendulum nor like the
slide shown in Figure 1.5.
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forgotten, and succeeded in making various improvements and publishing the work in 1964 [27].

A major theoretical breakthrough was achieved by Field, Körös and Noyes when they devel-

oped an elementary-step level chemical reaction mechanism [36] for the B-Z oscillator. Remark-

ably (for that time), they showed that numerically simulating the 20 or so rate equations in their

model with exactly the same laws of chemical kinetics that applied to “regular” reactions led to

chemical oscillation [37].

In contrast to the B-Z oscillator, the mechanism of the Bray oscillator remains only partially

understood even today [38, 39]. This is because the Bray oscillator involves very complicated

hydroxyl radical chemistry. In hindsight, it seems reasonable to speculate that the path towards

understanding non-equilibrium behaviors in chemical systems would likely have been smoother

and faster if the first homogeneous chemical oscillator to be discovered had been the B-Z oscillator.

Once the principles behind non-equilibrium behaviors in chemical systems and the mecha-

nistic details of particular chemical oscillators were both understood, several synthetic oscillators

based on redox chemistries were engineered. Examples include the chlorite-iodate-arsenite oscil-

lator [40], which was the first oscillator engineered intentionally (as opposed to serendipitously

discovered), a hydrogen peroxide-sulfide reaction [41], a cobalt-catalyzed oxidation of benzalde-

hyde [42], and so on.

With the advent of molecular biology, synthetic chemical reaction networks with enzyme-

based reactions have been engineered to exhibit non-equilibrium behaviors both in vitro and in

vivo. These efforts essentially harness the machinery of the central dogma for engineering syn-

thetic chemical reactions, in order to both understand the principles underlying natural cellular

networks and to learn how to modify those networks for applications. For example, following the

genetic toggle switch engineered by Gardner et al. [43] and the synthetic ring oscillator (“repres-

silator”) built by Elowitz and Leibler [44], multiple in vivo genetic oscillators have been demon-

strated [45–47]. However, these genetic circuits are (i) hard to scale up, because of the restricted

number of orthogonal and well-characterized components available (at least as of today), and (ii)

hard to model, because they are constructed in vivo and are therefore necessarily coupled to the

large and complex endogenous genetic network of the organism [48, 49].

Ackermann et al. [50] proposed an in vitro biochemical oscillator using reverse transcriptase

and T7 RNA polymerase. Despite theoretical investigations showing beautiful and sustained os-

cillatory behavior, successful experimental demonstration of the oscillator has not been reported,
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even though partial progress had been made and each desired reaction step had been demon-

strated experimentally [51]. Possibly, this oscillator was overcome by parasitic sequences arising

out of accumulated sequence mutations [52, 53].

Inspired by both the in vivo and partially successful in vitro efforts, Kim et al. [54] proposed

a simpler “genelet” architecture, based only on transcriptional machinery, for creating in vitro

circuits [55]. This architecture, comprising RNA transcripts that regulate their own transcription

from DNA promoters, has been used to experimentally demonstrate a bistable switch [56] and

an oscillator [53]. Restricting the architecture offers two benefits. First, theoretical analysis of its

capabilities is more tractable — Kim et al. [54] show that their genelet architecture is in principle

capable of implementing any Boolean logic circuit or Hopfield neural network [57]. Second, the

resulting in vitro genelet circuits are more accessible to mechanistic quantitative modeling [55, 58].

Montagne et al. [59] proposed another architecture that uses single-stranded DNA templates

rather than genelets. This Polymerase-Exonuclease-Nickase (PEN) DNA tool box [60] has been

used to demonstrate bistability and switchable memory [61], and multiple oscillators [59, 62]. Soft-

ware is also available to automate the design process for engineering user-specified networks with

this toolbox [63, 64]; however, it is currently not known what class of dynamical behaviors can,

in theory, be achieved with this technology. For a more detailed introduction to enzyme-based in

vitro DNA circuits, see reviews by Padirac et al. [65], Genot et al. [66], Franco et al. [67], Weitz and

Simmel [68], and Kim [69].

The history of chemical systems demonstrating complex temporal dynamics raises two natural

questions. First, over the last century we have learned that the mathematical formalism of chem-

ical reaction equations between reacting species, along with mass-action kinetics, can explain a

wide range of dynamic behaviors in chemical systems. What kinds of dynamical behaviors is this

formalism of chemical reaction equations theoretically capable of capturing (possibly beyond the

few behaviors, such as oscillations, that have been experimentally realized)? In other words, what

is the class of dynamical behaviors that “formal” species, reacting with each other with prescribed

rate constants, achieve? This question seeks to investigate the expressiveness of the language we

use to model chemical systems, and is addressed in Section 1.3.

Second, the experimental attempts we have discussed above have either been serendipitous,

or relied on tinkering with known chemistries to achieve a particular desired implementation

of a particular desired behavior. They do not have an automated pipeline across the necessary
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layers of abstraction with theoretical guarantees for each level of approximation, which is the kind

of rigorous approach one observes and expects in other areas of engineering. Can we use the

language of chemical reactions between formal species as a prescription for desired dynamical

behaviors, and, given that prescription, implement it in a general way with a particular molecular

architecture? Different facets of this question are addressed in Sections 1.3, 1.4 and in Chapter 3.

1.3 The language of formal chemical reaction networks

In this section, we present brief glimpses of the vast and diverse literature studying formal chemi-

cal reaction networks from different theoretical perspectives. A formal chemical reaction network

(CRN) is a finite set of chemical reaction equations between formal species with specified rate

constants. An example is provided below.

X + Y k1−→ 2 X (1.1)

X k2−→ φ (1.2)

φ
k3−→ Y (1.3)

Note that “open” systems are allowed - conservation of the number of molecules (“mass”) is not

necessary. A reaction with the appearance or disappearance of molecules should be physically

interpreted as representing flows of matter and free energy that are not modeled by the particular

formal CRN.

Depending on whether the state of the system is represented as a vector of molecular counts

(integers) or as a vector of concentrations (real numbers), we have two distinct classes of formal

CRNs - “discrete” state and “continuous” state, respectively. In either case, we could define a

variety of “rate laws” that determine the rate of a given reaction. For the purposes of this section,

we will restrict ourselves to the multiplicative rate law known as “mass-action”.

In both the discrete and continuous state cases, we could have either “stochastic” or “determin-

istic” behavior. Informally, future states of a stochastic system are not completely determined by

the past and present states - the system is a random, evolving process. In the deterministic case, the

present completely determines the future. In this section, we will focus only on “discrete stochas-

tic” and “continuous deterministic” systems, both with the mass-action rate law. It is worth noting
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that there is also a vast literature on stochastic continuous state systems (e.g. Fokker-Planck and

Langevin chemical equations [70, 71], based on stochastic differential equations) which is outside

the scope of the present discussion.

1.3.1 Discrete stochastic CRNs

1.3.1.1 The model

A discrete stochastic CRN consists of a set of d species and m reactions. A vector x ∈ Nd specifies

molecular counts of each species, and hence the state of the system. Each reaction αi is a tuple

(ri, pi, ki) ∈ Nd × Nd × R+, where ri is the vector of reactant stoichiometries, pi is the vector of

product stoichiometries, and ki is the rate constant for reaction i. For our purposes we restrict

reactions to being either unimolecular or bimolecular only.

A reaction αi = (ri, pi, ki) can occur in state x only if x−ri ≥ 0 (i.e. all coordinates of the vector

are non-negative). If reaction αi does occur, then state x is updated to to x− ri + pi. In some fixed

volume V and starting from initial state x0, the system evolves through a continuous time Poisson

process [72–74], as detailed below.

Let #xS denote the number of molecules of species S in state x. Given the current state x and

a reaction α, we define a propensity function ρ(x, α) as follows.

If α : Si
k−→ . . . is a unimolecular reaction, ρ(x, α) = k·#xSi. Note that the unimolecular propen-

sity is independent of the volume V , as one would expect.

If α : Si + Sj
k−→ . . . is a bimolecular reaction with Si 6= Sj , ρ(x, α) = k · #xSi#xSj

V .

Lastly, the propensity of the bimolecular reaction α : 2 Si
k−→ . . . is ρ(x, α) = k · #xSi(#xSi−1)

2V .

How does the propensity function ρ determine the kinetics of the CRN? From the current state

x, no reactions are possible if ρ(x, α) = 0 for all reactions α in the CRN. Else, the waiting time

until the next reaction occurs is exponentially distributed with the rate parameter
∑
α ρ(x, α). The

probability that a particular αi would be the next reaction is ρ(x, αi)/
∑
α ρ(x, α).

If the volume V and the molecular counts of all species Si are increased such that the concentra-

tion #Si/V stays constant (the “thermodynamic limit”), then the stochastic trajectories converge

to that predicted by the deterministic continuous-state mass action formulation [75, 76].
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1.3.1.2 Computation with discrete stochastic CRNs

A number of formal models of computation that have been studied in theoretical computer science

are closely related to discrete stochastic CRNs. These include Petri nets [77], vector addition sys-

tems [78] and population protocols [79]. The connections between discrete stochastic CRNs and

some of these models of computation are discussed by Cook et al. [80].

What kind of computation are discrete stochastic CRNs capable of? Accommodating a proba-

bility of error ε > 0 (which may be made arbitrarily small), discrete stochastic CRNs are capable of

Turing-universal computation [80, 81]. The proof relies on simulating register machines (which are

known to be Turing-universal [82]) with discrete stochastic CRNs. Essentially, species act as regis-

ters do - by storing non-negative integers in their molecular counts. Reactions, like instructions in

a register machine, are used to increment and decrement the molecular counts of the appropriate

species.

In contrast, for ε = 0, universal computation is provably impossible [80, 81]. Indeed, Angluin

et al. [83] show that the natural formulation of deterministic predicate computation by discrete

stochastic CRNs corresponds exactly to the semilinear predicates, a relatively restricted class.

1.3.2 Continuous deterministic CRNs

In this model, we define the state of the system as a vector of real-valued concentrations rather

than integer-valued molecular counts. Instead of formally specifying the continuous deterministic

CRN model with mass-action kinetics, we simply state that it is the same as “standard” chemical

kinetics [84], along with the mass action rate law. According to the mass-action rate law in this

setting, the instantaneous rate of the general reaction aSi + bSj
k−→ · · · is defined to be k · [Si]a · [Sj ]b.

Given that the dynamics of a continuous deterministic CRN is determined by differential equa-

tions and reaction rates, it might seem that numerically solving the differential equations for the

particular rate constants involved is necessary to answer any questions about the CRN’s dynami-

cal properties. However, it turns out that it is possible to make some deductions about the dynam-

ical properties of a CRN directly from its network topology. (“Network topology” refers to the

structure of a graph whose edges represent reactions and nodes represent complexes of reactants

and products.) These deductions are either (i) true for all non-zero values of the rate constants,

or (ii) there exists a set of non-zero rate constants for which they are true. Some examples of such
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deductions could be: given the topology of a CRN, does it admit a positive equilibrium, where

the concentrations of all species are positive? Does it admit an unstable positive equilibrium?

For a nice introduction to this graphical view of chemical reaction networks and the main results

(including the deficiency zero and deficiency one theorems [85]), see Martin Feinberg’s lecture

notes [86] .

Since for every continuous deterministic CRN with mass-action kinetics there exists a corre-

sponding set of coupled polynomial ODEs that govern its dynamics, it is natural to wonder about

the relationship between the class of ODEs that arise from CRNs and the general class of all poly-

nomial ODEs. Korzuhin [87] and Klonowski [88] show that mass-action CRNs can approximate

arbitrary polynomial ODEs. Given a system of polynomial ODEs with nonnegative integer pow-

ers, they explicitly construct a formal CRN some of whose species will approximate the solution

to the system of ODEs on the positive orthant, up to arbitrary accuracy over any time interval. In

fact, the CRN constructed has particularly nice properties: (i) all reactions follow conservation of

mass, (ii) have at most two reactants and two products, and (iii) no reactions are autocatalytic.

Kerner [89]’s technique of introducing new variables “based on appropriate collectives of vari-

ables and parameters” to convert, without changing the dynamics, a very general ODE into a

polynomial ODE with only quadratic nonlinearities offered a route to generalize these transforma-

tions. Consequently, Kowalski [90] showed how to construct mass action CRNs whose dynamics

approximate the polynomial systems obtained from Kerner [89]’s technique. Wilhelm [91] extends

this approach by showing that (i) a reaction with more than two reactants can be interpreted as

the limit of a sequence of bimolecular steps and (ii) improves Kowalski [90]’s transformation to

show that for any ODE system for which Kerner [89]’s technique applies, one may construct a

mass action CRN with only bimolecular steps that approximates it.

So far we have discussed transformations of ODE systems into chemical systems with mass-

action kinetics. A natural related question is whether dynamical systems that correspond to phys-

ical or electrical systems may be approximated by chemical systems with mass-action kinetics. In

Section 1.2, we briefly discussed a key difference between mechanical and chemical oscillators -

some mechanical oscillators (such as a pendulum) oscillate around their minimum free energy

state, whereas chemical oscillation is a non-equilibrium phenomenon that occurs on the way to

the minimum free energy state. Apart from this, another difference is that while position and

velocity in mechanical systems and voltage and current in electrical systems can both be either
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positive or negative, concentrations can only be positive. Despite these differences, Samardzija

et al. [92] provide a link between physical and chemical dynamical systems through a transforma-

tion that converts dynamical systems arising from mechanics or electrical circuits into chemical

systems that exhibit, qualitatively, similar dynamic behavior. They illustrate their scheme with the

harmonic and van der Pol [93, 94] oscillators, the Lorenz [95] and Rössler [96] attractors, and an

RLC-circuit in series.

In Section 1.3.1.2, we noted that discrete stochastic CRNs can implement universal computa-

tion if one allows for an (arbitrary small) margin of error. Can continuous deterministic CRNs

implement computation? Hjelmfelt and colleagues present a theoretical proposal that uses re-

versible catalytic chemical reactions to implement McCulloch-Pitts neurons [97, 98] (linear thresh-

old units with binary output). With multiple neurons communicating with each other through

excitatory and inhibitory catalytic reactions, they provide chemical implementations of Boolean

logic gates [99], binary adders and finite space stack machines [100], associative memories [101]

that are similar to Hopfield networks [57], and argue that, in principle, their techniques can be

used to construct a chemical implementation of an (arbitrarily large) finite-space version of a Tur-

ing machine.

A different way to understand the class of behaviors possible in chemistry is to ask what behav-

iors are learnable by chemical kinetics. By this we mean: given data that arises from experiment or

an (unknown) simulation, can we find out if it was generated by a continuous deterministic CRN

with mass action kinetics? For one precise formulation of this problem, see Hárs and Tóth [102];

for a broad overview of this approach in systems and synthetic biology, see Engl et al. [103].

Lastly, while synthetic biology and nucleic acid nanotechnology have so far largely relied on

implementing computations using the digital abstraction [104–109], analog approaches have re-

cently been demonstrated [53, 59, 65, 110–113]. For a review of the benefits of using analog rather

than digital computation for biomolecular circuits, see Sarpeshkar [114].

1.4 DNA strand displacement as a candidate architecture

1.4.1 Nucleic acid nanotechnology

In one of the early perspectives on “nanotechnology”, Eric Drexler [115] articulated a vision to

enable molecular engineering at the nanoscale. He suggested that one could, in principle, self-
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assemble protein machines that fabricate other molecular machines; his inspiration was the ri-

bosome, which is a self-assembled protein machine that in turn manufactures other molecular

machines. However, this vision remains inaccessible today, partly because the protein folding

problem remains intractable.

With the benefit of hindsight, it is tempting to argue that proteins were simply the wrong

molecules to start with. In contrast to proteins, nucleic acids are simpler and better understood.

(Here, we do not consider other biopolymers like lipids and carbohydrates, although they may

also be viewed with a similar lens [116].) In particular, DNA has well-understood thermody-

namic [117–120] and mechanical properties [121]. The stability of a DNA double-helix can be pre-

dicted from the (independent) contributions of each of its nearest-neighbor base pair stacks [117–

119]. This fact has two immediate consequences. First, the secondary structure description is a

very useful abstraction for the structure of a DNA molecule. Second, for a large class of struc-

tures, fast algorithms and efficient software can be developed for predicting folding from DNA se-

quence [120, 122, 123], and this in turn permits sequence design given a prescribed structure [123–

129]. Moreover, as noted in Section 1.1, DNA synthesis is relatively better, faster, and cheaper.

The study of nucleic acid nanotechnology was initiated by two distinct streams of pioneering

thought. In 1982, Ned Seeman proposed that synthetic DNA molecules could be designed to form

immobile three-armed and four-armed junctions, which could in turn be used to create three-

dimensional lattices [130]. He envisioned using these DNA lattices as scaffolds for facilitating the

crystallographic study of protein structure. Although this particular application requires several

technical challenges to be overcome [131], such as increasing the resolution of the lattice itself,

and designing larger unit cells to incorporate the proteins to be studied, the original idea of self-

assembling structures from synthetic DNA molecules has led to the development of structural

DNA nanotechnology [10, 12, 132–135] and the emerging field of RNA nanotechnology [13, 136–

138].

In addition to forming static structures, the idea that synthetic nucleic acids could be used to

perform computation was first demonstrated by Len Adleman [139], who exploited the massive

parallelism provided by many DNA molecules bumping into each other in a test-tube to solve a

seven-node Hamiltonian path problem. As with Seeman’s original purpose, multiple challenges to

scaling up seriously limit the possibility of using DNA molecules to solve NP-hard problems (at

least in the way that Adleman envisioned it) [140]. However, the insight that DNA molecules
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could be programmed to perform information-rich functions has resulted in much interesting

work: DNA has been taught to play a perfect tic-tac-toe strategy interactively against a human

player [141], implement cellular automata [142], execute enzyme-free logic circuits [105], act as a

catalyst [143], and as a programmable building block for dynamic self-assembly [144]. In partic-

ular, one reaction mechanism called toehold-mediated DNA strand displacement [145–148] has

been a major workhorse of dynamic DNA nanotechnology [8].

1.4.2 DNA strand displacement

In much the same way that complex electrical circuits can be built with simple primitives, a molec-

ular reaction mechanism called DNA strand displacement [145–148] has been leveraged to imple-

ment feedforward Boolean logic circuits [105, 107], catalytic reactions [143, 144, 149], and entropy

driven networks [143]. Indeed, the rapid growth in complexity of these experimental systems has

led to the widespread use of automation and software. For example, Visual DSD [150–152] is a

commonly used custom programming language created for analyzing, verifying, simulating, and

de-bugging strand displacement circuits by enumerating and simulating the corresponding DNA

strand displacement reactions.

Although the experimental systems described above can be modeled and understood using

the CRN formalism, their particular use of strand displacement may not generalize to a strategy

for implementing arbitrary formal CRNs. However, since strand displacement has proven to be

a technology that enables a wide variety of chemical systems to be built experimentally and yet

naturally yields itself to abstract analysis in the form a programming language, it could potentially

be a good general purpose molecular architecture for implementing formal CRNs.

However, for implementing prescribed dynamical behaviors in a test tube, our molecular ar-

chitecture should meet two requirements. First, it should offer a simple and understandable way

for tuning rate constants across a wide dynamical range. This is quite easy to do with DNA strand

displacement: rate constants can be varied over a million-fold range simply by changing the length

of a particular sub-sequence of the reacting DNA species called the “toehold”.

Second, design pipelines work in an engineering process only when the parts and tools being

employed are well-understood and quantitatively characterized. Therefore, in order to have any

hope of succeeding in our endeavor, we need to quantitatively understand the biophysics and

molecular mechanisms underlying DNA strand displacement, so that we can effectively design
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and de-bug our experiments.

1.5 Summary of contributions

The scientific contributions presented in this thesis are summarized below.

Chapter 2 presents our work on the “device physics” of toehold-mediated DNA strand dis-

placement. Even though DNA strand displacement has been a major workhorse of dynamic DNA

nanotechnology, the biophysics and molecular mechanisms underlying strand displacement had

not been studied in detail with a view to explaining strand displacement kinetics. In particular,

state of the art models of strand displacement biophysics predicted a blunt-end strand displace-

ment rate about 3 orders of magnitude faster than experimental measurements. We resolve this

discrepancy and present a unified view of strand displacement biophysics and kinetics by study-

ing the process at multiple levels of detail, using an intuitive model of a random walk on a 1-

dimensional energy landscape, a secondary structure kinetics model with single base-pair steps,

and a coarse-grained molecular model that incorporates three-dimensional geometric and steric

effects. Further, we experimentally investigate the thermodynamics of 3-way branch migration.

Two factors explain the dependence of strand displacement kinetics on toehold length: (i) the

physical process by which a single step of branch migration occurs is significantly slower than the

fraying of a single base pair, and (ii) initiating branch migration incurs a thermodynamic penalty,

not captured by state-of-the-art nearest neighbor models of DNA, due to the additional overhang

it engenders at the junction. Our findings are consistent with previously measured or inferred

rates for hybridization, fraying, and branch migration, and provide a biophysical explanation of

strand displacement kinetics. Our work paves the way for accurate modeling of strand displace-

ment cascades, which would facilitate the simulation and construction of more complex molecular

systems. Chapter 2 is based on our published research manuscript: Srinivas et al. [148]. My own

personal contributions to this work are listed in Chapter 2.

Chapters 3 and 4 present our work on programming dynamical behaviors in chemical systems

using DNA strand displacement. Inspired by living organisms, which employ chemical reaction

networks (CRNs) with complex non-equilibrium dynamics to control physical processes, we seek

to engineer CRNs with similar capabilities. Although relatively simple CRNs exhibiting complex

dynamics, such as the B-Z oscillator, are well known, the systematic design and fabrication of
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CRNs exhibiting prescribed dynamic behavior has proved challenging. Here, we demonstrate a

general DNA-based technology to engineer CRNs with, in principle, any dynamic behavior that

can be specified by a set of chemical reaction equations with prescribed rate constants (up to scal-

ing). We successfully implement three distinct autocatalytic reactions, which we then combine

into a de novo chemical oscillator. Unlike biological networks, which use sophisticated evolved

molecules (like proteins) to realize such behavior, our test tube realization is the first to demon-

strate that Watson-Crick base pairing interactions alone suffice for oscillatory dynamics. Since

our design pipeline is general and applicable to any CRN, our experimental demonstration of a

de novo chemical oscillator could enable the systematic construction of CRNs with other dynamic

behaviors. Chapters 3 and 4 are based on a research article in preparation. My own personal

contributions to this work are listed in Chapter 4.
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2 Understanding the Biophysics and Kinetics of

Toehold-Mediated DNA stand displacement

My dear sir, in this world it is not so easy to settle these plain things.

I have ever found your plain things the knottiest of all.

- Herman Melville, Moby Dick

My investigation into the biophysics, kinetics, and molecular mechanisms involved in toehold-

mediated DNA strand displacement began as a quick (or so we thought) rotation project in Erik

Winfree’s lab. As we went deeper and deeper into the rabbit hole, we realized that understanding

the dependence of strand displacement kinetics on toehold strength was much more complex than

we had originally imagined. Indeed, this was one of those projects where the process of writing

the paper clarified our thoughts greatly and helped us appreciate the nuances and form a coherent

picture in our minds.

When I began my rotation, we had a working problem statement. Joseph Schaeffer had used

the stochastic simulator he developed, Multistrand [153], to run simulations of strand displace-

ment systems whose kinetics had been experimentally characterized by Zhang and Winfree [147].

To his surprise he found that the acceleration in strand displacement rate due to toehold strength

predicted by his simulations was about three orders of magnitude lower than the experimen-

tal value. However, at this time these simulations were preliminary and it was not clear how

sensitively this apparent discrepancy depended on various choices that had to be made (such as

calibration data sets, dangle energy models, and the like). A back-of-the-envelope calculation on

a simplified state space and energy model reproduced the discrepancy. A candidate explanation

was also available: Bernard (Bernie) Yurke had hypothesized that state-of-the-art free energy mod-
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els of strand displacement neglected a crucial “bump” that arises from volume exclusion between

single-stranded DNA overhangs co-localized around a co-axial junction.

Although the following seems naive in hindsight, we expected that a single large thermody-

namic effect of this sort would completely account for the discrepancy, and that we could test for

such a large effect with very simple experiments. After careful investigation it turned out that

the discrepancy is indeed not an artifact, and that it arises from a combination of thermodynamic

and kinetic factors. Pinning down exactly which effects were important and how much of the

discrepancy they accounted for proved to be the challenging part. One of our naive assumptions

did turn out to be true: although the thermodynamic component was not as large as we had an-

ticipated, it was significant and relatively easy to demonstrate experimentally. Indeed, Erik and I

designed the DNA complexes for the temperature-dependent absorbance experiments in one af-

ternoon and they demonstrated the effect quite dramatically (a melting temperature shift of 8◦C)

in the very first experiment I did. This was very satisfying and Bernie’s hypothesis proved to be

right! Our biggest experimental challenge during this project turned out to be instrumentation:

our spectrophotometer kept breaking down.

Our collaborators, Tom Ouldridge, Petr Šulc, Ard Louis and Jon Doye at Oxford University

helped us identify the molecular mechanisms responsible for the thermodynamic and kinetic ef-

fects that we predicted and measured experimentally. These insights arose from simulations based

on their coarse-grained molecular model of DNA, OxDNA [154, 155], which incorporates geomet-

ric and steric effects (unlike the models that myself, Joseph Schaeffer and Erik Winfree contributed,

which were at a higher level of abstraction). Our collaboration with our colleagues at Oxford

greatly contributed to this work and helped us tell a coherent, unified story. This collaboration

arose entirely by chance, when Erik ran into Tom’s poster at a conference and found that Tom’s

molecular model predicted a free energy “bump” consistent with our models and experimental

measurements.

Lastly, I now list my contributions to this work. I came up with the Intuitive Energy Landscape

(IEL) model, with feedback from Joseph and Erik. During the writing phase Tom also provided

important feedback on certain choices in this model. Apart from the preliminary simulations

with Multistrand, which were run by Joseph, I performed all other Multistrand simulations and

analyzed the results, with feedback from Joseph and Erik. Erik and I designed the temperature-

dependent absorbance (UV melt) experiments and I performed all the experiments and analyzed
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the data. I wrote all the sections of the paper except for those based on the coarse-grained molecu-

lar modeling, which were written by Tom. All authors gave valuable feedback on all aspects of the

paper. In particular, Erik and Tom contributed significantly to the introduction, discussion, and

conclusions sections, which should be considered jointly written. This chapter was published as:

Niranjan Srinivas∗, Thomas E. Ouldridge∗, Petr Šulc, Joseph M. Schaeffer, Bernard Yurke, Ard A.

Louis, Jonathan P. K. Doye and Erik Winfree, “On the biophysics and kinetics of toehold-mediated

DNA strand displacement”, Nucleic Acids Research 41 (22): 10641–10658 (2013). ∗ indicates that

those authors contributed equally to this work.

Dynamic DNA nanotechnology often employs toehold-mediated strand displacement for

controlling reaction kinetics. While the dependence of strand displacement kinetics on toehold

length has been experimentally characterized and phenomenologically modeled, detailed bio-

physical understanding has remained elusive. Here, we study strand displacement at multiple

levels of detail, using an intuitive model of a random walk on a 1-dimensional energy land-

scape, a secondary structure kinetics model with single base-pair steps, and a coarse-grained

molecular model that incorporates three-dimensional geometric and steric effects. Further, we

experimentally investigate the thermodynamics of 3-way branch migration. Two factors explain

the dependence of strand displacement kinetics on toehold length: (i) the physical process by

which a single step of branch migration occurs is significantly slower than the fraying of a sin-

gle base pair, and (ii) initiating branch migration incurs a thermodynamic penalty, not captured

by state-of-the-art nearest neighbor models of DNA, due to the additional overhang it engen-

ders at the junction. Our findings are consistent with previously measured or inferred rates for

hybridization, fraying, and branch migration, and provide a biophysical explanation of strand

displacement kinetics. Our work paves the way for accurate modeling of strand displacement

cascades, which would facilitate the simulation and construction of more complex molecular

systems.
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2.1 Introduction

Recent advances in DNA nanotechnology have enabled the construction of two and three-dimensional

nanoscale structures [10, 132, 134, 135, 156–158]. Nucleic acids have predictable double-helical

structure and generally well-understood thermodynamic [117–120] and mechanical [121] proper-

ties, which makes them excellent engineering materials. In addition to static structures, dynamic

nanoscale devices such as circuits [104, 105, 107, 159], catalysts [143, 160], autonomous molecular

motors [145, 161–163], and reconfigurable nanostructures [8, 9, 160, 164] have been engineered us-

ing DNA. Inspired by experimental advances, theoretical schemes have been proposed [110, 111]

to engineer arbitrarily complex chemical dynamics using DNA. If successful, such efforts could

enable dynamic DNA circuits to actively control nanoscale devices.

Unfortunately, the biophysical understanding of key kinetic phenomena remains underdevel-

oped relative to our knowledge of static properties, limiting the development of dynamic DNA

nanotechnology. Here, we study the biophysical basis of a molecular mechanism called toehold-

mediated strand displacement, which is central to many dynamic DNA devices built to date.

Toehold-mediated strand displacement enables control over the kinetics of molecular rearrange-

ment, allowing the engineer to program when and where specific steps take place in a molecular

machine.

Figure 2.1 illustrates strand displacement using domain notation. A domain is a set of contigu-

ous nucleotides designed to be either fully bound or fully unbound in stable configurations. Our

system initially comprises a two-stranded complex (S) and a single-stranded invader (X). S con-

sists of an incumbent strand (Y ) bound to a substrate strand which has a single-stranded overhang

called a toehold. The invader is fully Watson-Crick complementary to the substrate and may bind

reversibly to it using the toehold domain (h). This binding is reversible because the toehold may

fray and eventually dissociate. (We use the term ‘fraying’ to describe the disruption of base pairs

at the end of a duplex; if all base pairs fray, the duplex melts or dissociates. Conversely, ‘zipper-

ing’ refers to when a new base pair forms at the end of an existing duplex.) Once the toehold is

bound, the overhanging branch migration domain (b) of the invader may compete with the incum-

bent for binding with the substrate. As the incumbent and invader exchange base-pairs with the

substrate, the branch point of the three-stranded complex moves back and forth. This three-way

branch migration (henceforth, branch migration) process has previously been modeled as an unbi-
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Figure 2.1: (A) Domain notation. Arrows indicate 3’ ends; * indicates Watson-Crick complementarity. (B)
Toehold h mediates the displacement of the incumbent (Y ) by the invader (X). Dots indicate branch migra-
tion intermediates which are not shown.

ased random walk [147, 165, 166] since each step causes no net change in base pairing. Eventually,

the incumbent may dissociate, completing strand displacement. Overall, displacement is thermo-

dynamically driven forward by the net gain in base pairs due to the toehold.

While it is known that bimolecular rate constants for strand displacement can vary a million-

fold depending on the length of the toehold, little is known about the underlying biophysics or

how to generalize the results to other reaction conditions or molecular modifications. For example,

what are the mechanisms and intermediate states involved in a single step of branch migration?

How do the kinetics of strand displacement depend on the length of the branch migration domain,

or on the temperature and buffer conditions? How different is strand displacement in RNA and

DNA? What is the effect of sequence mismatches at different positions along the branch migra-

tion domain? To begin answering these questions, a fundamental biophysical understanding is

necessary.

However, the commonly accepted view of strand displacement biophysics appears at odds

with kinetic measurements [146, 147]. Consider strand displacement with a 1-base toehold and a

20-base branch migration domain. Let us assume that the rate constant for the formation of the

toehold base-pair is on the order of 106 /M/s. (This value for 1-nt association is within a factor

of two of experimental values for 6-mer, 10-mer, 15-mer, and 20-mer hybridization rates [147,
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167], after accounting for the linear length-dependence for short oligonucleotides [168].) Once the

toehold has bound, there are two possibilities: (i) the toehold base pair could dissociate, leading

to the dissociation of the invader, or (ii) the nearest base pair of the substrate-incumbent complex

could fray, allowing the invader to compete to replace that base pair and complete the first step

of branch migration. Assuming, as may seem reasonable, that the rate at which either base pair

frays is similar, process (ii) should be approximately half as fast as process (i). This is because,

once the substrate-incumbent base pair frays, there is a 50% chance of the invader replacing the

frayed base pair, and a 50% chance of returning to the initial step. Once the first step of branch

migration is complete, subsequent forward and backward steps are assumed to occur at the same

rate. Therefore, the probability of successfully completing the remaining steps of branch migration

before going back to the toehold-only-bound state is 1/20, from the gambler’s ruin analysis (see

Section 14.2 of Feller [169]). The lifetime of the three-stranded intermediate should be independent

of concentration. Therefore, at low enough concentrations, the overall reaction can be modeled as

an instantaneous second order process, as reported by Zhang and Winfree [147]. Under these

conditions, the overall effective rate constant (keff) is given by a hybridization rate constant for the

toehold, multiplied by a success probability of displacement once the toehold is bound. Note that,

even though the time spent in the three-stranded intermediate is small, keff depends strongly on

the probability of displacement once bound: keff ≈ 106 × (1/3) × (1/20) = 1.6 × 104 /M/s for a

1-base toehold. This is over three orders of magnitude larger than the 8 /M/s value measured by

Zhang and Winfree [147]. This is a large unexplained discrepancy, despite the approximate nature

of our calculation.

We now summarize the experimental evidence for the exponential acceleration in keff with

toehold length, which was first reported by Yurke and Mills [146]. Zhang and Winfree [147] fur-

ther characterized this exponential acceleration and confirmed that it saturates in the long-toehold

limit. Relevant data from both studies (Figure 2.2A) suggests that the exponential acceleration

in itself is not an artifact of particular sequences, although details may well depend on the ex-

perimental system (sequences, modifications for read-out, etc.) or conditions (salt, temperature,

etc.). The kinetics of zero-toehold (“blunt end”) strand displacement was investigated by Rey-

naldo et al. [170], whose measurement of 3.6 /M/s at 30 ◦C is similar to the 1.4 /M/s at 25 ◦C

reported by Zhang and Winfree [147].

Zhang and Winfree [147] built a phenomenological model for predicting keff from toehold se-
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quence (Figure 2.2B). They modeled branch migration using two macro-states I and J , containing

the first and second half of the isoenergetic branch migration intermediates, respectively, which

are connected by a simple transition with rate constant kb (see Supplementary Figure S1 and Sup-

plementary Section S1 for more details). Their model fits the data, but it is hard to physically

interpret the transition between I and J . Branch migration is generally thought of as a random

walk through many isoenergetic states, rather than a single reversible transition characterized by

a first order rate constant. Without a more nuanced understanding of the process, it is unclear

whether the fitted value of kb = 1.0 /s can be justified on more fundamental biophysical grounds.

In this work, we model branch migration at a more detailed level that explicitly includes inter-

mediates, thereby highlighting important thermodynamic and kinetic features of the process that

are not evident from the phenomenological approach.

First, we analyze a 1-dimensional (single-pathway) model of toehold-mediated strand dis-

placement called the intuitive energy landscape (IEL) model. Systematically exploring the param-

eter space of this simple model suggests that some combination of two factors could explain the

dependence of strand displacement rate on toehold length: (i) the branch migration process is not

isoenergetic and contains a free energy penalty for intermediate states, and (ii) branch migration

is slow relative to fraying of the toehold.

To verify that these factors are not already implicit features of more detailed models of DNA

secondary structure thermodynamics, we simulated the experiments of Zhang and Winfree [147]
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Figure 2.2: (A) Dependence of keff on toehold length, measured by Yurke and Mills [146] (at 20 ◦C, 1 M Na+)
and Zhang and Winfree [147] (at 25 ◦C, 12.5 mM Mg++). Each curve is from a different toehold sequence. (B)
The phenomenological model of Zhang and Winfree [147]. kd is assumed to be very large relative to other
rate constants.
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using a secondary structure kinetics (SSK) simulator called Multistrand [153]. Multistrand in-

corporates extensive thermodynamic information — from state-of-the-art nearest-neighbor (NN)

thermodynamic models of DNA secondary structure [117–120] — combined with a minimally pa-

rameterized rate model. Multistrand predicts that keff would increase by a factor of 103.8 as toehold

length increases from 0 to 15, in contrast to the experimentally observed factor of 106.5. This quan-

titative discrepancy confirms that factors (i) and (ii) suggested by the IEL analysis are not already

implicitly incorporated in more detailed models of DNA secondary structure thermodynamics.

We then experimentally investigate possibility (i) suggested by the IEL, by measuring the rel-

ative stability of complexes which mimic the geometric structure of branch migration intermedi-

ates. Our experiments provide evidence in support of a free energy penalty for branch migration

intermediates that is not predicted by the NN models of DNA.

Finally, we use a recently proposed coarse-grained molecular model of DNA (oxDNA) [154,

155, 171], which incorporates more physical detail, including geometric and steric effects. In addi-

tion to correctly predicting the length-dependence of toehold-mediated strand displacement rates,

oxDNA independently predicts the thermodynamic penalty for branch migration intermediates,

suggesting it arises from local steric effects between single-stranded overhangs around the branch

point. Further, oxDNA predicts that branch migration is indeed slower than fraying of the toehold,

as it is geometrically more complex and necessarily involves more thermodynamically unfavor-

able steps.

2.2 Materials, Methods, and Results

2.2.1 Intuitive Energy Landscape model

Through a simple approximate calculation, we argued that the current view of strand displace-

ment biophysics is at odds with kinetic measurements [146, 147]. We now perform a more rig-

orous intuitive analysis by building a simple single-pathway model called the Intuitive Energy

Landscape (IEL) model. The IEL is simple enough that its kinetic predictions may be analytically

or numerically calculated, for a given parameterization. We systematically explore the IEL’s pa-

rameter space to obtain biophysical intuition and identify key thermodynamic and kinetic features

essential for predictions to match experimental data.

State space. The IEL considers an invading strand and a substrate-incumbent complex con-
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Figure 2.3: Free energy landscape of the IEL at 25 ◦C for a 6-base toehold. States A-F and the sawtooth
amplitude (∆Gs) and plateau height (∆Gp) parameters are described in the text. ∆Gs = 2.6 kcal/mol and
∆Gp = 1.2 kcal/mol are used for illustration.

tained in a virtual box of volume V in solution, which defines a concentration u of 1 molecule

per volume V . The state space of the IEL is illustrated in Figure 2.3. State A corresponds to the

invader being unattached to the substrate-incumbent duplex. State B represents the formation of

a first base pair within the toehold. For each additional toehold base pair that zips up, we define

a new state, with state C indicating the fully-formed toehold. From here, each step of branch mi-

gration involves replacing an incumbent-substrate base pair with an invader-substrate base pair.

We describe the stepping between these intermediates using a simple model in which the system

must pass though a single effective transition state of raised free energy, so each complete branch

migration step is shown as a single tooth of the “sawtooth” pattern between states C and D. This

unknown effective transition state could be potentially as simple as a frayed substrate-incumbent

base pair, but could also be more complex. The final stage of successful displacement involves

the dissociation of the incumbent (state E) followed by the formation of the final base pair be-

tween invader and substrate (state F). Subtleties relating to the zero-toehold case are discussed in

Supplementary Section S2 (see Supplementary Figure S2).

Energy model. The IEL models the free energy of the virtual box (∆Gbox) relative to state A.
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∆Gbox is defined as in Figure 2.3. Initial binding (state A to B) incurs a free energy penalty of

∆Ginit = ∆Gvolume + ∆Gassoc ∼ 9.95 + 1.90 kcal/mol [120] (at concentration u = 50 nM) due to

the reduction in the entropy of the box caused by lost translational and orientational degrees of

freedom. ∆Gassoc is the free energy cost of association at a standard concentration of u0 = 1 M,

and ∆Gvolume = RT ln (u0/u) is a correction for the actual concentration, where R is the universal

gas constant and T is the temperature in Kelvin. Figure 2.3 shows the first base pair of the toehold

adjacent to the helix, where it interacts favorably with the adjacent duplex end. For simplicity,

we neglect sequence-dependent interaction strengths and use the average value ∆Gbp ∼ −1.7

kcal/mol for this and all other base pairs, as taken from the nearest-neighbor (NN) model [117–

119] of DNA secondary structure thermodynamics. Formation of each successive base pair in the

toehold therefore contributes ∆Gbp. Our effective transition states, which are local free energy

maxima along the sawtooth, are raised ∆Gs above the branch migration intermediates with fully-

paired substrate. As the physical details of branch migration steps are not well-understood, the

effective “sawtooth amplitude” (∆Gs) is an adjustable parameter. Changing ∆Gs allows branch

migration and toehold melting rates to be independently modulated; for ∆Gs > |∆Gbp|, branch

migration is slow relative to fraying.

We also introduce a final parameter, a plateau height ∆Gp, which captures how the free energy

of branch migration intermediates could vary with the structure of the branch migration junction.

In particular, there is an asymmetry between state C and all other intermediates of branch migra-

tion: only one single-stranded overhang is present at the junction in state C, whereas an overhang

protrudes from both sides for all other intermediates. We thus introduce a parameter ∆Gp that

accounts for a possible free energy penalty due to the additional overhang, which could conceiv-

ably arise from entropic or electrostatic effects. Henceforth, IEL(∆Gs,∆Gp) denotes a sawtooth

amplitude of ∆Gs and a plateau height of ∆Gp (both in kcal/mol).

In an intuitive model like the IEL, one could indeed consider a range of alternative perturba-

tions to the current biophysical understanding of strand displacement. ∆Gs and ∆Gp, however,

parameterize in a simple way aspects of the branch migration process that are known to be poorly

characterized. Furthermore, as we show later, experiments and more detailed modeling provide

physical justification for the effects that these parameters represent.

Rate model. The system may undergo a transition to either of its neighboring states on the

one-dimensional landscape. To ensure that stochastic simulations will eventually converge to the
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thermodynamic (Boltzmann) equilibrium over the states, transition rates must satisfy detailed

balance, i.e.,
kij
kji

= e−
∆Gbox(j)−∆Gbox(i)

RT . (2.1)

Here kij is the transition rate from i to j. Equation 2.1 only fixes the relative rates; in principle, for

each pair of adjacent states i and j, an independent scaling factor could be chosen. Consequently,

the number of candidate rate models is enormous. In the spirit of minimal parameterization in

order to avoid over-fitting the data, we use only two independent scaling factors: kbi for all bi-

molecular and kuni for all unimolecular transitions.

For unimolecular transitions (all except A � B and D � E in Figure 2.3), we use a model in

which all energetically downhill steps have a constant rate kuni. This is a sensible first approxima-

tion given that these steps involve forming a base pair at the end of a duplex or stepping down

from the transition states of branch migration, which may resemble forming a base pair at the

junction.

In other words, for ∆Gbox(i) > ∆Gbox(j),

kij = kuni (2.2)

and therefore,

kji = kuni e−
∆Gbox(i)−∆Gbox(j)

RT . (2.3)

This model is a continuous-time variant of the Metropolis [172] scheme for calculating thermody-

namic averages.

For bimolecular transitions (A � B or D � E), the IEL assumes that complexes join at the

constant rate kbi × u, and calculates the reverse rate by detailed balance. If i to j is a join step,

kij = kbi u = kbi e−
∆Gvolume

RT u0 (2.4)

and

kji = kbi e−
∆Gbox(i)−∆Gbox(j)+∆Gvolume

RT u0 . (2.5)

We choose kbi to be 3 × 106 /M/s, based on the hybridization rate constant fitted by Zhang and

Winfree [147]. For simplicity, we choose kuni such that the dissociation rate of the last base pair
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Figure 2.4: (A) Predictions of IEL(∆Gs, ∆Gp) for different values of the sawtooth amplitude ∆Gs and
plateau height ∆Gp. ∆Gs+p needs to be as high as 7.3 kcal/mol (> 4 base-pair stacks) to match experi-
ment [147]. (B) Contour plot of orders of magnitude acceleration (A15,0) as a function of (∆Gs, ∆Gp) for
∆Gs ∈ [0, 7.3] kcal/mol and ∆Gp ∈ [0, 7.3] kcal/mol. (C) Scatter plot of A15,0 vs ∆Gs+p using all the data
in (B). The points plotted show almost no vertical spread, meaning that all points lie on a line. This indicates
that ∆Gs+p is the predictive quantity. Inset: IEL(1.3, 0) and IEL(5.0, 5.0) for a 1-base toehold. The bimolec-
ular initial binding step, which is identical in both landscapes, is marked in orange to highlight the contrast
between the landscapes.

of the toehold (state B to A) is approximately equal to the fraying rate for every other base pair

of the toehold (steps from state C towards B). This yields kuni = 7.5 × 107 /s (see Supplementary

Section S2 for details). This choice of kuni, at the very least, ensures that two somewhat similar

processes have similar rates.

Analytic and numerical calculations. We use an analytic formula for calculating absorption

probabilities for a 1-dimensional random walk with absorbing boundaries [173] to calculate keff as

a function of toehold length h for various values ∆Gs and ∆Gp (Figure 2.4(A)). (For details, see

Supplementary Section S2.) To quantify the extent of control provided by toeholds, we define

Ah2,h1 = log10(keff(h1))− log10(keff(h2)) (2.6)

to be the orders of magnitude acceleration in keff as toehold length increases from h1 to h2. We

will be most interested in A15,0, which corresponds to the difference between the leak rate and

the maximal rate measured in Zhang and Winfree [147]. (We choose 15 rather than∞ because the

length-dependence of hybridization rates [168] suggests that experimental values forAh,0 may not

be bounded, but for our purposes there is insignificant change past length 15.) The experimental

results of Zhang and Winfree [147] can be matched by the IEL, but only with surprisingly large

values of ∆Gs and ∆Gp. IEL(2.6, 0), with a plausible value of ∆Gs = 2.6 kcal/mol (∼ 1.5 base-pair
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stacks) and an a priori choice of ∆Gp = 0 kcal/mol, predicts A15,0 = 3.1. This is 3.4 orders of

magnitude smaller than the experimentally observed value of 6.5. Increasing either ∆Gs or ∆Gp
serves to increase the predicted A15,0, as shown by the contour plot in Figure 2.4(B). The slope of

contour lines suggests that ∆Gs+p
def= ∆Gs + ∆Gp is the key quantity. Indeed, a scatter plot of

the dependence on ∆Gs+p (Figure 2.4(C)) using all the data in Figure 2.4(B) produces almost no

vertical spread. ∆Gs+p = 7.3 kcal/mol matches the experimentally observed value ofA15,0 = 6.5.

Other perturbations of the IEL model were unable to match the experiments. For example, we

considered an alternative to the Metropolis method for setting unimolecular rates, the Kawasaki [174]

method, which scales both uphill and downhill transition rates based on the corresponding change

in ∆Gbox. After rescaling kuni so that dissociation of the last toehold base pair still occurs at the

same rate as fraying, the Kawasaki method predicts a value forA15,0 within 10% of the Metropolis

method (see Supplementary Figure S3). Going further, and considering that kbi and kuni may not

be chosen ideally, we first note that logically, a uniform change to both rates will cancel and thus

have no effect on A15,0. In contrast, IEL predictions do depend on the ratio kuni/kbi, which sub-

stantially affects the probabilities that initial contacts lead to successful zippering of the toehold

and to successful branch migration before dissociation (see Supplementary Figure S4 and Supple-

mentary Section S2). However, even implausibly low values of kuni/kbi cannot account for the data

without a large value of ∆Gs+p.

These features of the IEL can be understood through simple analytical approximations. Con-

ceptually, we can split the strand displacement process into an attachment step (A→B), followed

by success or failure of zipping up the toehold, followed by either dissociation of the toehold or

successful displacement. We first treat the case of long toeholds, for which in the IEL model keff

saturates at

keff(∞) ≈ kbi · pzip , (2.7)

with pzip = kuni/(kuni + kbiλ) and λ = e−(|∆Gbp|−∆Gassoc)/RTu0 giving the approximate probabil-

ity that after making the first base pair, the invader does not dissociate and the remaining toe-

hold bases zip up. (For long toeholds successful displacement is guaranteed once the toehold

is formed.) For shorter toeholds that do not saturate keff, the probability of toehold dissociation
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before branch migration dominates, and we can derive

keff(h) ≈ kuni

2b · e
h |∆Gbp|−∆Gs+p−∆Gassoc

RT u0 . (2.8)

for h 6= 0 and, there being two ends where branch migration could start, twice the given value for

h = 0.

We clearly see that the slope in Figure 2.4(A) is governed by ∆Gbp, while the role of b (Supple-

mentary Figure S5) and ∆Gs+p in determining

A15,0 ≈ log10
keff(∞)
keff(0) ≈ 0.9 + log10

(
2b e∆Gs+p/RTλ

kuni/kbi + λ

)
(2.9)

is immediate from their influence on keff(0). The more subtle effect of changing kuni/kbi results

partly from effects on pzip; a slightly more accurate approximation can explain the behavior seen

in Supplementary Figure S4. Details on this and other derivations are given in Supplementary

Section S2.

Matching both strand displacement and branch migration rates. The IEL analysis suggests

that we can reconcile kinetic models of displacement at the base pair level with the experimental

measurements of Zhang and Winfree [147] by incorporating a thermodynamic penalty for initiat-

ing branch migration (∆Gp) and/or slowing down the rate of branch migration through a rela-

tively large sawtooth amplitude (∆Gs) associated with each step of branch migration. Although

∆Gs+p is constrained to be at least 7.3 kcal/mol in order to match the data, the individual contri-

butions of ∆Gs and ∆Gp are not determined by the analysis.

To compare the inferences of the IEL analysis with experimental measurements, we need to

account for the increase in initial binding rate (A→B) with toehold length, as observed for short

oligonucleotide hybridization [168]. (For simplicity, the IEL assumes that the initial binding rate

is independent of toehold length.) To this end, we also explored a variant of the IEL, called the

Augmented Energy Landscape (AEL) model, that includes the linear increase in the formation

rate of the first base pair (see Supplementary Section S3). For the AEL, we find that a smaller

value of ∆Gs+p = 5.6 kcal/mol is required due to the contribution of the binding rate to the

overall acceleration. A good fit to the experimental data shown in Figure 2.4 is obtained for kbi =

3.3× 105 /M/s and kuni = 8.2× 106 /s (Supplementary Table S1).
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We have not yet presented evidence to suggest that the plateau height ∆Gp is non-zero. How-

ever, if ∆Gp = 0, a sawtooth amplitude of 7.3 kcal/mol (5.6 for the AEL) would be required to

account for the data, which implies an average branch migration step time of ∼ 3.0 ms (∼ 1.6 ms

for the AEL). This is much slower than experimentally inferred step times on the order of 12 - 20

µs [165, 166]. Therefore, simultaneously matching both measured branch migration and strand

displacement rates requires a significant thermodynamic penalty to initiating branch migration.

The IEL analysis raises two important questions. First, could the necessary values of ∆Gs
and ∆Gp represent features missing in the IEL’s simplified thermodynamic landscape that are

implicitly already present in more detailed models? If this is not the case, are ∆Gs and ∆Gp
purely phenomenological parameters used to fit the data, or do they represent real physical effects

that arise from the molecular properties of DNA?

2.2.2 Secondary structure kinetics model

A B

0 5 10 15

0

2

4

6

8

Toehold length

lo
g

1
0
(k

e
ff
)

!"#$%&'$()

*+,)&-)%.(/

kij

kji

kil kli
kim

kmi

i j

l m

...

kin

kni

kiq

kqi

n

q

Figure 2.5: (A) Example states and elementary steps in Multistrand [153], a secondary structure kinetics
(SSK) simulator. States illustrated are each adjacent to state i, as they differ from i by only one base pair.
Transition rates are chosen to obey detailed balance. Dots and arrows at the top indicate other possible
elementary steps from state i (not shown). (B) Multistrand predictions of experimentally measured [147]
strand displacement rates as a function of toehold length. Experimental data points and error bars are from
Zhang and Winfree [147]; the fitted line is their phenomenological model. Standard errors for Multistrand
simulations are under 1% (not shown).

As a first step towards answering these questions, we use a secondary structure kinetics (SSK)

simulator called Multistrand [153] to study strand displacement as a random walk on a more com-

plex energy landscape, the NN secondary structure model [117–120], that incorporates a wealth

of existing thermodynamic knowledge. Multistrand extends the Kinfold simulator [175] from

single-strand landscapes to landscapes for multiple interacting nucleic acid molecules. Code im-

plementing the Multistrand model is available for public download (see Supplementary Section S4
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for details).

State space. Multistrand considers a set of strands in a virtual box of volume V in solution,

which defines a concentration u of 1 molecule per volume V . The state space consists of all possible

sets of Watson-Crick base pairs (such as states in Figure 2.5(A)), with two restrictions: (i) no base

can have more than one pairing interaction and (ii) secondary structures containing pseudo-knots

are not allowed. Structures without pseudo-knots are tree-like and have nested base pairing [120].

The size of Multistrand’s state space grows exponentially in the number of bases [120].

Energy model. Let ∆Gbox(i) be the free energy of the virtual box in state i, relative to a com-

pletely unstructured state with no base pairs. ∆Gbox(i) is the sum of free energies of each iso-

lated complex c, ∆G(c), in state i. The free energy of each complex is estimated using the NN

model [117–119], which has been extended to multiple interacting nucleic acid strands [120]. NN

parameters were measured [118, 119] in 1 M Na+, which is roughly thermodynamically equivalent

to the 12.5 mM Mg++ used by Zhang and Winfree [147], according to salt corrections [176, 177] to

the NN model. The NN model assumes that the free energy contribution of each base pair is de-

pendent only on the identity and orientation (5’ or 3’) of its nearest neighbors on either side, and

calculates ∆G(c) by summing contributions from each sub-structure (“loop”) closed by a base-

paired section where

∆G(c) = (L− 1)∆Ginit +
∑

loop ∈ c

∆G(loop). (2.10)

L is the number of strands in complex c and ∆Ginit = ∆Gassoc + ∆Gvolume is, like in the IEL, the

free energy cost of bringing two separate strands together. Stabilizing contributions to ∆G(loop)

mainly arise from base-pair stacks, and destabilizing contributions from the entropic cost of clos-

ing loops. At duplex ends in either interior or exterior loops, the first overhanging nucleotide

contributes a dangle energy term [178]. When two duplex ends abut, as at a nick, the duplexes are

known to coaxially stack onto each other [179–182], thereby stabilizing the structure; this interac-

tion is not explicitly incorporated into Multistrand, although in some cases dangle energy terms

partially account for it. Multistrand’s energy model is identical to that used in NUPACK [123] and

is thus very similar to those in Vienna RNA [183] and Mfold [184].

Rate model. Multistrand allows transitions between states i and j if they differ by a single base

pair. The rate models we have explored for Multistrand are identical to the IEL, except for scaling

factors. Like the IEL, Multistrand’s predictions are not particularly sensitive to the choice between
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standard unimolecular rate models: The predicted orders of magnitude acceleration in keff be-

tween toeholds 0 and 15 differ by less than 3% between Metropolis and Kawasaki (Supplementary

Figure S6(B)). For Metropolis, kbi = 1.26 × 106/M/s and kuni = 4.4 × 108/s were calibrated [153]

by fitting Multistrand simulations to experimentally measured DNA-DNA hybridization [167]

and zippering [168] rates, respectively. Given the rate model, energy model, and current state, the

choice and timing of the next transition is determined using a Gillespie algorithm [73]. Note that

Multistrand allows any initial first pair of nucleotides to interact, each at the standard bimolecular

rate, resulting in an increase in hybridization rates with increasing toehold lengths.

In principle, each i to j transition could have both forward and reverse rates scaled arbitrarily

but equally, thus obtaining a distinct kinetic model that still satisfies detailed balance. However,

doing so would amount to treating the microscopic barriers that impede transitions between the

states of the NN model as different in every case. In the absence of additional information justify-

ing such differences, the Metropolis approach constitutes a minimally parameterized rate model

in which microscopic barriers associated with downhill processes (which typically involve base-

pair formation) are assumed to be uniform, and their effects incorporated in the value of kuni. As

such, the Metropolis approach allows us to ask whether the free-energy landscape given by the

NN model is sufficiently accurate and precise that it captures the factors that determine relative

kinetics, and that finer details are only important in setting an overall rate constant kuni.

Comparing Multistrand predictions to data. We simulated the “average strength toehold”

experiments of Zhang and Winfree [147] and calculated keff as a function of toehold length. For

technical details regarding the simulations, see Supplementary Section S4 and Supplementary Ta-

ble S2. Multistrand captures the qualitative dependence of keff on toehold length, despite its min-

imally parameterized rate model. However, Multistrand predictions quantitatively diverge from

experiment in two ways (Figure 2.5(B)): (i) the saturation value of keff for toeholds longer than 5

bases is roughly 20 times larger and (ii) increasing toehold length from 0 to 15 increases keff by a

factor of 103.8, in contrast to 106.5 observed in experiment.

The first issue could be addressed by uniformly decreasing both kuni and kbi, which would

shift the predicted curve down to match the data for toeholds longer than 5 bases. Indeed, this re-

scaling is also physically reasonable, as there is considerable variation among hybridization and

fraying rates in the literature for nucleic acids [167, 168, 185–190].

Scaling kuni and kbi uniformly would not resolve the second challenge. However, like the IEL,
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Multistrand is particularly sensitive to the ratio kuni/kbi. Decreasing kuni slows down all unimolec-

ular transitions - which brings the branch migration rate closer to experimentally inferred values,

but makes fraying too slow. Two parameters, kuni and kbi, are simply not enough [153] to simul-

taneously match the four distinct time scales involved: rates of hybridization, fraying, branch

migration, and branch migration initiation. Therefore, even unrealistically low choices of kuni/kbi

are unable to match observed acceleration in strand displacement rates due to toehold length (see

Supplementary Figure S7).

The SSK analysis confirms that understanding what the IEL’s ∆Gs and ∆Gp represent requires

examining features not present in the NN model. Multistrand models branch migration as a

fray–and–replace process and interprets the IEL’s sawtooth transition state as one in which the

substrate-incumbent base pair at the junction is frayed. This choice, when coupled with a kuni

calibrated to match fraying rates [168], results in a branch migration rate that is much faster than

experimentally inferred step times [165, 166].

Indeed, the thermodynamics of the branch migration junction, e.g. states i and j in Fig-

ure 2.5(A), is not well characterized in the standard nearest-neighbor secondary structure model,

as it involves overhangs, dangles, and coaxial stacking. Reflecting the lack of consensus, tools like

NUPACK [123], Vienna RNA [183] and Mfold [184] offer several ways of treating dangle contribu-

tions; however, none of the three “dangle options" in the NUPACK energy model [120] improved

Multistrand predictions (Supplementary Figure S6(A)).

2.2.3 Measuring relative stability of branch migration intermediates

For the IEL to match measured hybridization, fraying and branch migration rates, and hence

strand displacement rates, a non-zero plateau height (∆Gp) was necessary. We hypothesized that

the initiation of branch migration incurs a thermodynamic cost due to the second overhang it en-

genders at the junction, even though the nearest neighbor model for DNA secondary structure

thermodynamics predicts no such effect. We now present experimental evidence in support of

this hypothesis by investigating the free energy landscape of branch migration. The biggest exper-

imental challenge in measuring the relative stability of branch migration intermediates is that they

cannot be easily isolated. Indeed, they are interchangeable as branch migration proceeds back and

forth, with individual step times just tens of microseconds [165, 166].

System description. To overcome this issue, we designed immobile complexes Xi:Yj com-
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prising hairpin Xi and strand Yj (Figure 2.6). Xi and Yj have poly-T overhangs of length i and

j respectively. Varying (i, j) from (20, 0) to (0, 20) with i + j = 20 yields complexes which are

“frozen snapshots” of branch migration, with no expected branch migration possible. X20:Y00

mimics the binding of the invader by the toehold, while X19:Y01 represents the displacement of

1 base, and so on. X10:Y10 represents the “half way stage” of branch migration, while X00:Y20

captures nearly successful displacement. Measuring the relative stability of these frozen snapshots

is expected to be indicative of the relative free energies of branch migration intermediates. Exper-

iments involving these complexes will henceforth be referred to as the strand displacement snapshot

study. To investigate the consequences of short overhangs at the junction, we designed complexes

Xi:Yi (for i = 0, 1, 2, 5 and 10). These experiments will be referred to as the local overhang study. All

our complexes have the same base pairs at the junction and poly-T overhangs, while branch mi-

gration typically involves different bases at each step. We can therefore study the thermodynamic

consequences of junction geometry, without the complication of sequence dependence.

Temperature dependent absorbance experiments. We measure the UV absorbance (at 260 nm)

of each complex between 20 ◦C and 90 ◦C, at four different concentrations. Since the absorbance

of single-stranded DNA (ssDNA) is higher than that of double-stranded DNA (dsDNA), and the

fraction of ssDNA is dependent on the temperature, a temperature-dependent absorbance curve is

obtained at each concentration (Supplementary Figure S8). Each complex Xi:Yj exhibits two tran-

sitions: the bimolecular, lower temperature transition and the unimolecular, higher temperature

transition due to the hairpin in Xi closing or opening. The unimolecular transition was identified

both by it being independent of concentration and by control melts involving the hairpins only

(data not shown). At the concentrations chosen, the bimolecular and unimolecular transitions are

distinct.

For each complex, we infer the enthalpy (∆H◦) and entropy (∆S◦) of formation by fitting the

smoothed and normalized temperature-dependent absorbance curves (Figure 2.7) to a two-state

Domain Sequence Length
d CCTCATCATACTACG 15
e CTCCATGTCACTTC 14

Table 2.1: Sequences for domains from Figure 2.6, listed 5’ - 3’.
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Figure 2.6: (A) Complex Xi:Yj comprises hairpin Xi and strand Yj, with poly-T overhangs of length i and j
respectively. Domains d and e are designed to be orthogonal to each other and the overhangs (sequences in
Table 2.1). (B) Varying (i, j) from (20, 00) to (00, 20) with i + j = 20 mimics the geometry branch migration
intermediates (X20:Y00 (start), X10:Y10 (middle) and X00:Y20 (end) respectively). No branch migration is
intended in these complexes.

model [191]:
[Xi : Yj ]
[Xi][Yj ]

= e−(∆H◦−T∆S◦)/RT (2.11)

where ∆H◦ and ∆S◦ are assumed to be temperature independent. We perform this fitting using a

Bayesian analysis and confirm our findings using a simpler descriptive “leave-one-concentration-

out” approach. Details are provided in Supplementary Section S5; see Supplementary Figure S9

and Supplementary Tables S3, S4 and S5.

From ∆H◦ and ∆S◦ we can calculate the free energy of formation, ∆G◦(T ) = ∆H◦ − T∆S◦.

By comparing the free energies of different complexes, we infer the contribution of the poly-T

overhangs. Our two-state assumption means that ∆G◦(T ) is assumed to be linear in T – deviations

from linearity limit the accuracy of extrapolation from values around the melting temperature of

the complexes. Values of ∆G◦ at 55 ◦C, which is closer to the melting temperature, are plotted in

Supplementary Figure S10.

Second overhang causes de-stabilization due to a local effect. Unlike the predictions of

NN thermodynamic models [118, 120] of DNA, the immobile complexes we designed are not

all of equal free energy; a second overhang at the junction causes a thermodynamic penalty (Fig-

ure 2.8A). At 25 ◦C, we infer a free energy penalty of ∼ 2.0 kcal/mol (3.4 RT) as branch migration
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proceeds from 0 to 10 steps (X20:Y00 vs. X10:Y10), with the majority (∼ 1.5 kcal/mol) arising from

the first step (X20:Y00 vs. X19:Y01). An approximately symmetric decrease is inferred for steps 11

to 20 (X10:Y10 vs. X00:Y20).

Since the de-stabilization due to an additional overhang plateaus so quickly, we suspect that

the penalty is due to local effects at the junction, which is supported by the local overhang study

(Figure 2.8B). Two 1-base overhangs on either side of the junction (X01:Y01) result in a penalty

of ∼ 1.4 kcal/mol relative to no-overhangs (X00:Y00). Lengthening the overhangs increases this

penalty, but each additional base contributes progressively less, with an overall penalty of 3.0

kcal/mol and 3.2 kcal/mol respectively for 5-base (X05:Y05) and 10-base (X10:Y10) overhangs.

Our experiments suggest that current NN models of DNA do not capture the free energy land-

scape of strand displacement accurately enough to capture the kinetics of branch migration. This

explains in part the inability of SSK models like Multistrand to match experimentally observed

toehold-mediated acceleration.
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Figure 2.7: Smoothed and normalized UV absorbance data while annealing (at 200 nM). The lower tem-
perature transition is the (bimolecular) formation of the complex, while the higher temperature transition
is the (unimolecular) formation of the hairpin. The mean absorbance between 20 ◦C and 35 ◦C is normal-
ized to 0 and that between 64 ◦C and 66 ◦C (indicated by vertical lines) to 1. The temperature range whose
mean absorbance is normalized to 1 is concentration-dependent (Supplementary Table S3). Data acquired by
annealing and melting are essentially superimposable. The dashed line indicates the halfway point of the
bimolecular transition.



41

0 1 2 5 10 15 181920
Number of strand displacement steps completed

 G
25

 (k
ca

l/m
ol

)

Bayesian analysis
Leave one concentration out
NUPACK (Dangles = None)
NUPACK (Dangles = Some)

0 1 2 5 10
Length of tails at the junction

Bayesian analysis
Leave one concentration out
NUPACK (Dangles = None)
NUPACK (Dangles = Some)

A B
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2.2.4 Coarse-grained molecular modelling

A 3-dimensional model of DNA at the nucleotide level. Although it is possible to tune the IEL

to agree with experimental data, and, moreover, the observed destabilisation of duplexes by ss-

Figure 2.9: A 12-bp DNA duplex as represented by oxDNA. The enlarged section shows two rigid nu-
cleotides, highlighting the backbone and base parts. The planarity of bases is captured through the orienta-
tional dependence of interactions. Image reproduced from Ouldridge et al. [192].
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DNA overhangs appears to support a plateau during displacement, a physical explanation of the

parameters required is important. Atomically detailed or coarse-grained molecular models have

the potential to provide this kind of insight [193]. Here, we consider a recently proposed coarse-

grained molecular model of DNA (oxDNA) [154, 155, 171], specifically the parameterization of

Ouldridge [154]. Code implementing the model is available for public download (see Supple-

mentary Section S6). In this model, illustrated in Figure 2.9, each nucleotide is a 3-dimensional

rigid body, so that the state space of N model nucleotides has 6N spatial dimensions and 6N mo-

menta. Pairs of nucleotides interact through a number of pairwise effective interactions (shown in

Supplementary Figure S11), representing chain connectivity, excluded volume, hydrogen-bonding

and stacking interactions between bases. The combination of nearest-neighbour stacking within a

strand and hydrogen-bonding between complementary bases drives the formation of helical du-

plexes. We note here that oxDNA explicitly considers stacking interactions between pairs of bases.

This is distinct from the base-pair stacks and coaxial stacks that appear in typical NN models,

which involve four bases (two from each strand). Multiple interactions in oxDNA then contribute

to the effective strength of base-pair and coaxial stacking, when the model is compared to NN

descriptions.

OxDNA captures the thermodynamic and mechanical changes associated with the formation

of duplexes from single strands, under high salt conditions. Specifically, it quantitatively repro-

duces the oligomer length-dependence of melting temperatures for the duplex transition, the

widths of transitions, the elastic moduli of duplexes and the short persistence length of single

strands. OxDNA includes the Watson-Crick rules of complementary base-pairing, but no further

sequence dependence. Duplex formation was therefore fitted to the behaviour of SantaLucia’s

NN model [119] when averaged over sequence, and we can only compare directly to the average-

strength toehold data of Zhang and Winfree [147]. OxDNA was fitted at 0.5 M [Na+], where elec-

trostatic interactions are strongly screened – the repulsion of phosphates is therefore incorporated

into the backbone excluded volume for simplicity. The experiments of Zhang and Winfree [147]

were performed in a buffer of 12.5 mM [Mg2+], which is known to result in similar duplex forma-

tion thermodynamics to high monovalent salt buffers [119]. It is plausible that kinetics of strand

displacement might be significantly different in these two buffers – the migration of Holliday junc-

tions, for example, is known to vary between magnesium and sodium buffers [194, 195]. Given

that oxDNA was fitted only to the duplex formation thermodynamics, however, there is no reason
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Figure 2.10: Rate of displacement, as a function of toehold length, observed in simulations (crosses, left axis).
Details on the measurement errors of these values are provided in Supplementary Section S6. Also shown
(squares, right axis) are the experimental data for the bimolecular rate constant of strand displacement for
an average-strength toehold of varying length, taken from Figure 3(b) of Zhang and Winfree [147]. The
logarithmic scales of both axes are identical up to a constant normalizing offset.

to assume that its kinetics and the representation of transition intermediates are more suited to

one buffer than the other.

Although oxDNA contains many parameters, none were adjusted from those presented pre-

viously [154] for the purposes of this particular study. The parameter values employed have

been seen to produce physically reasonable behaviour for a range of systems. Such systems in-

clude DNA tweezers [154], a DNA walker [196] and the interaction of kissing hairpins [197] and

overstretching of DNA under tension [198]. Two of these systems, the tweezers and the walker,

depend upon strand displacement and so oxDNA has previously been shown to reproduce this

phenomenon. Furthermore, a barrier to initiating branch migration was predicted when studying

the tweezers [154], although it was not studied in great detail.

Simulation techniques. We provide a concise summary of our simulation techniques here;

for details, see Supplementary Section S6. We use two algorithms to simulate oxDNA: the ‘Virtual

Move Monte Carlo’ algorithm (VMMC) of Whitelam et al. [199, 200] and the rigid-body Langevin

Dynamics (LD) algorithm of Davidchack et al [201]. The first approach randomly attempts and

accepts moves of clusters of nucleotides (illustrated in Supplementary Figure S12) in a manner

that ensures the system samples from a Boltzmann distribution. The second incorporates noise
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and damping terms into Newton’s equations in a self-consistent manner, thereby generating states

drawn from the canonical ensemble. The sampling of states is more efficient with VMMC and so it

is used for all thermodynamic averages. Langevin algorithms, however, are explicitly dynamical,

so they naturally give kinetic information that is harder to infer from VMMC. Consequently, all

kinetic results quoted in this work use the LD algorithm.

Processes like strand displacement are computationally demanding to simulate, and thus re-

quire enhanced sampling techniques. We use umbrella sampling [202] to improve equilibration

of thermodynamic averages in VMMC simulations. This method involves applying an artificial

bias to lower free-energy barriers, thereby accelerating the transitions between (meta)stable states.

For LD simulations of kinetics, we use forward flux sampling (FFS) [203, 204] to obtain accurate

estimates of the relative rates of strand displacement for different lengths of toehold, as shown in

Supplementary Figure S13.

OxDNA’s energy, mass and length scales imply a time scale. Results in this Section are quoted

in terms of this time scale for completeness. As we are using a coarse-grained model with an

approximate model of dynamics, however, the absolute times and rates reported should not be

over-interpreted. We focus on relative rates, which should be affected in a similar manner by the

approximations in oxDNA and the algorithms used to simulate it.

Kinetic simulations of displacement. We consider a slightly truncated system (Supplemen-

tary Table S6) based on that used by Zhang and Winfree [147]. For computational simplicity,

we removed the majority of the tail of the incumbent strand, which was used to interact with

a reporter. Further, to simplify the order parameter for displacement, we use an approach in

which only the expected (native) base pairs between the incumbent and the substrate or the in-

vading strand and the substrate are given a non-zero binding strength. This simplification is rea-

sonable because the sequences were designed to exhibit minimal secondary structure and cross-

interactions when single-stranded. Additional simulations of toehold association were also per-

formed to explore the consequences of this simplification: for further details, see Supplemen-

tary Section S6. Simulations of the three strands were performed in a periodic cell of volume

1.67 × 10−20 L for toehold lengths between 0 and 7 bases. We initialized the system at 25 ◦C with

the incumbent fully bound to the substrate and the invading strand separate, and measured the

overall rate of displacement using FFS. Order parameters and detailed results are given in Ta-

bles S7, S8, S9 and S10.
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Figure 2.11: Free energy profile of displacement for a 4-base toehold. The red crosses show the free energy
as a function of the index of the most advanced base pair between the invading strand and the substrate (base
pair 1 is the base pair in the toehold furthest from the incumbent). These macrostates can be subdivided into
those that involve coaxial stacking at the branch point (blue squares) and those that do not (green stars).
The definition of which states are defined as stacked and which as unstacked is given in Supplementary
Section S6. The simulation snapshots illustrate typical configurations of the macrostates indicated. In each of
these images, the blue strand is the substrate, the red the incumbent and the green the invading strand.

Figure 2.10 reports the measured relative rates of displacement for different toehold lengths

in simulation [147]. OxDNA agrees remarkably well with the experimental data: in particular,

it shows the same exponential dependence on toehold length for short toeholds followed by a

plateau for longer ones. The overall acceleration from 0-base to 7-base toehold is 106.56, close to

the experimental value of 106.28. It would be unwise to put excessive emphasis on this agreement,

but the base-pairing energies of oxDNA are fitted to the same secondary-structure free energies

underlying the thermodynamics of Multistrand and the IEL, and therefore the predictions of these

discrete models should be equally applicable to oxDNA as to real DNA. By analyzing oxDNA’s

representation of displacement, we now aim to physically justify the parameters used in the IEL.

Free-energy profile of displacement. We measure the free-energy profile of displacement to

see whether oxDNA reproduces the experimental tendency of two ssDNA overhangs to destabi-

lize a branch point and provides a physical explanation for it. We show the free energy of the three-

stranded displacement complex as a function of the progress of branch migration, as measured by

the identity of the base pair between invading and substrate strands closest to the 3′ end of the

substrate, in Figure 2.11. We observe an increase in free energy of around 1.3 kcal/mol as branch

migration is initiated, similar to the plateau height introduced to improve the IEL. Furthermore, as
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Figure 2.12: Typical branch migration steps as represented by oxDNA, for a toehold length of 3 bases.
In each case, the nucleotide coloured black displaces the nucleotide coloured gold. A) Displacement via
invasion: a base from the invading strand enters the incumbent/substrate duplex and competes with a base
from the incumbent for base pairing. A.i) Initial state, with the gold-colored base on the incumbent bound
to the substrate and the black-colored base on the invading strand unbound. A.ii) Metastable intermediate
with both the gold and black bases competing for base pairing with the substrate. A.iii) Final state, with the
black base bound to the substrate and the gold base unbound. B) Displacement via sequential disruption and
formation of bonds: a base pair in the incumbent/substrate duplex breaks and the substrate base unstacks
and moves across to the invading/substrate duplex. B.i) Coaxially unstacked initial state, with the gold-
colored base on the incumbent bound to the substrate and the black-colored base on the invading strand
unbound. B.ii) Metastable intermediate state, in which the base pair involving the gold base has broken,
and the base from the substrate strand has unstacked. B.iii) Final state, with the substrate base now bound
to the black base in the invading strand. Labelled distances between hydrogen-bonding sites are used as
coordinates to monitor branch migration steps in detail later in Figure 2.13.

suggested by our strand displacement snapshot experiment, this barrier appears to saturate quite

quickly: once a second ssDNA overhang of three or four bases has been created, there is negligible

further increase in the destabilization. When the invading strand’s single-stranded overhang is

reduced to a few bases towards the end of branch migration, the free-energy penalty decreases (as

in experiment).

The fact that the penalty saturates after around 4 bases suggests that the cause is local to the

branch point. From looking at the branch migration intermediate in Figure 2.11 in which the he-

lices are coaxially stacked at the junction, one can see that the branch point is densely packed
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Figure 2.13: A) The free-energy landscape of the first branch migration step (for a 3-base toehold) as a
function of the separation of hydrogen-bonding sites involved, obtained from umbrella sampling simula-
tions. The distances HB1 and HB2 between hydrogen-bonding sites of nucleotides are illustrated in Figure
2.12 (A.i). In essence, they are distances of the competing bases in the invading (HB2) and incumbent (HB1)
from their complement in the substrate. In these figures the black rectangles and squares highlight the same
regions in each graph, roughly corresponding to the initial, final and intermediate states involved in branch
migration. Free energy landscapes are measured in bins of 0.255 nm – the labels indicate the values of HB1
and HB2 at the center of the bins. The arbitrary offset of G is chosen so that the most probable bin has a
free energy Gmin = −6.37 kcal/mol. All bins with a free energy greater than zero on this scale are shown
in light green. B) An equivalent landscape to (A), but obtained at a later stage (step 11) of migration when
branch migration via sequential disruption and formation of bonds is more common. C) An example trajec-
tory showing the first step of branch migration occurring via invasion. D) An example trajectory from the
11th step showing branch migration via sequential disruption and formation of bonds.
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Duplex T / ◦C m n δGm,n
length (kcal/mol)

10 0 1.46 [1.2]
6 25 0 10 1.38 [1.0]

10 10 2.72 [3.2]
10 0 0.87 [0.60]

8 55 0 10 0.94 [0.78]
10 10 1.65 [1.79]

Table 2.2: Destabilizing δGm,n due to dangling ssDNA sections, as found in simulations. m is the length of
the excess ssDNA attached to the hairpin, and n the length attached to the shorter strand. Values for ∆Gm,n,
the free energy of formation of the duplex, are extracted from simulations. The reported value, δGm,n, is
given by δGm,n = ∆Gm,n − ∆G0,0. δGm,n is then the destabilization of the duplex due to the ssDNA
overhangs. The values in square brackets correspond to values inferred from our experimental studies for
the closest equivalent lengths of dangling ssDNA. Note that δG10,0 and δG0,10 found here are compared to
δG0,20 and δG20,0 from experiment – the local nature of the destabilisation makes this reasonable.

with nucleotides. In order to maintain coaxial stacking of helices at the junction, the two single-

stranded overhangs must both take evasive action, unstacking and bending away from each other.

The system can also reduce the overcrowding by breaking the coaxial stacking at the branch point,

as in the coaxially unstacked image in Figure 2.11, but this carries a penalty itself. This overcrowd-

ing is worse with two ssDNA overhangs than one, resulting in a free-energy penalty for initiating

branch migration and creating a second overhang.

Figure 2.11 also shows separate free-energy profiles for systems restricted to coaxially stacked

or unstacked states (definitions of these states are provided in Supplementary Section S6). The

existence of the overcrowding penalty makes the coaxially unstacked state (which is initially un-

favourable, but involves minimal overcrowding) relatively more probable at later stages of branch

migration. In the absence of coaxial stacking the plateau height is minimal, consistent with our

diagnosis of overcrowding.

To complete the comparison between simulation and experiment, we have estimated the desta-

bilizing effect of single-stranded overhangs on duplex formation within oxDNA. The systems are

analogous to those used in our experimental studies and illustrated in Figure 2.6, but the hairpins

have shorter stems of length 12 base pairs. Furthermore, to make comparisons at 25 ◦C and 55 ◦C

for the chosen simulated concentration, we use complementary lengths for interstrand binding of

6 and 8 bases respectively (∆G◦ can be inferred most accurately from experiments at ∼ 55 ◦C,

where the complexes melt, but we are most interested in the value at ∼ 25 ◦C). The contribution

of the single-stranded overhangs to the free energy of association ∆G◦ is expected to be indepen-
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dent of the length of the duplexes, however, allowing a direct comparison of this property to be

made. The sequences used are given in Supplementary Table S11 and further details are provided

in Supplementary Section S6.

The results of the hybridization simulations are reported in table 2.2. The presence of two

long ssDNA overhangs is destabilizing by ∼ 1.3 kcal/mol and ∼ 0.75 kcal/mol at 25 ◦C and 55 ◦C

respectively, relative to the case with one single-stranded overhang. We conclude that oxDNA

has a plateau height comparable to (but slightly smaller than) that found in experiment, with the

caveat that we have not measured sequence-dependent effects at the branch point.

Figure 2.14: An example of melting for a 2-base toehold. As before, the blue strand is the substrate, the
red the incumbent and the green the invading strand. A) Both base pairs of the toehold (shown in gold)
are formed. B) one base pair (shown in black) is broken, one (gold) remains. C) Both base pairs (black) are
broken. D) Plots of hydrogen-bonding and stacking site separation during this detachment, demonstrating
the relatively minor disruption of interstrand stacking (only the stacking between incumbent and invading
strand is disrupted) and rearrangement of structure necessary, and the proximity of the transition state to the
fully bound state. The relevant distances for the stacking interactions are shown in A, and for the hydrogen-
bonding in B. A, B and C correspond to times of 175 ps, 204 ps and 210 ps on the trajectory shown in D.
Note that in this case, the system first breaks the intrastrand stack ST4, followed by base pairs HB1 and HB2.
Trajectories with different orders are also observed.

Kinetics of branch migration and fraying. Here, we examine oxDNA’s representation of the

mechanism of branch migration in detail. Consistent with the literature [165, 166, 168], oxDNA

predicts that branch migration is slow compared to the rate at which base pairs in the toehold fray,

and provides a mechanistic explanation for this difference.

Typical branch migration steps observed in oxDNA are shown in Figure 2.12. Two types of

process occur most commonly:

1. Invading and incumbent duplexes remain coaxially stacked at the branch point, and a single-

stranded base from the invading strand enters the duplex region, competes for base-pairing
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to the substrate with a base from the incumbent, and eventually displaces it. This process is

illustrated in Figure 2.12 (A). We refer to this process as branch migration via invasion.

2. Invading and incumbent duplexes coaxially unstack at the branch point, and a base in the

substrate is transferred from one duplex to the other. In this process, one base pair must fully

break before the other forms some time later. An example of such a step is shown in Figure

2.12 (B). We refer to this process as branch migration via sequential disruption and formation of

bonds.

Invasion is dominant at the start of branch migration, when the majority of systems are coaxially

stacked. Branch migration via sequential disruption and formation of bonds becomes more rele-

vant at intermediate stages, when coaxial stacking is less prevalent. The two mechanisms differ

in whether or not the duplexes are coaxially stacked during branch migration, and whether the

displacing base invades the duplex prior to disruption of the initial base-pairing. Invasion is geo-

metrically infeasible from an unstacked state. However, the substrate strand could remain stacked

at the branch point whilst ‘flipping out’ a base from the incumbent and only then replacing it with

a base from the invader. This third type of process is rarer than the alternatives in oxDNA, but can-

not be ruled out for real DNA. Importantly, all three processes require the disruption of favourable

stacking interactions between neighbouring bases and considerable structural rearrangement, for

each step of branch migration.

We also note that the branch migration pathways have relatively long-lived metastable inter-

mediates (states represented by Figure 2.12 (A).ii and (B).ii). These intermediates can be clearly

identified on free-energy landscapes for individual steps of the branch migration process that

are plotted in Figure 2.13 (A) and (B). Typical trajectories of branch migration are shown in Fig-

ure 2.13 (C) and (D). Figure 2.13 (C), taken from the start of branch migration, clearly shows the

system moving from one base-pairing configuration to another via a metastable intermediate in

which both invading and incumbent bases are close to the substrate base (branch migration via

invasion). Figure 2.13 (D), taken from a later stage of branch migration, shows a change in base-

pairing occurring via the diffuse metastable intermediate in which both invading and incumbent

bases are distant from the substrate base (branch migration via sequential disruption and forma-

tion of bonds). Note that trajectories of both types are possible at each stage, but that invasion is

particularly dominant for the first step of branch migration. The fact that the intermediates are
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metastable, despite their high free energy, indicates that they are not easily accessible from the

typical configurations of the system.

By contrast, the fraying of a few base pairs in the toehold and the subsequent detachment

of the invading strand can occur relatively easily. As illustrated in Figure 2.14 (A)-(C), it is not

necessary to disrupt at least one stacking interaction for every base pair that is broken (as it is in

branch migration). Further, transition states in fraying are much closer in configuration space to

the typical states of the system than they are for branch migration, making them easier to access.

This finding is corroborated by Figure 2.14 (D), which shows that the coordinates of the system

do not have to deviate far from their typical values before detachment occurs. For comparison

with Figure 2.13, Figure 2.15 (A) shows a free-energy landscape as a function of the separation of

the base pairs in a two base-pair toehold. The minimum in the bottom left corresponds to the

fully bound state, and the trajectory shown in Figure 2.15 (B) is the same as that in Figure 2.14,

illustrating both base pairs breaking in quick succession and the system leaving the bound state.

Although the fine details of branch migration processes will be sensitive to detailed chem-

istry neglected by oxDNA, the conclusion that each step of branch migration necessarily involves

the breaking of more stacking interactions and a greater structural rearrangement than fraying of

base pairs in the toehold is likely to be a robust one. As a result, if toehold melting and branch

migration are to be simultaneously characterised by the IEL, the sawtooth amplitude of branch

migration should be larger than the cost of fraying a base pair. We have not directly attempted to

infer rates or transition free energies for processes that would correspond to elementary steps in

the IEL with oxDNA. As we have discussed, such elementary processes can be relatively complex

in oxDNA, involving effects that cannot be captured at the secondary structure level, making the

precise definition of rate constants difficult. Nonetheless, understanding the process at an effec-

tive secondary structure level is helpful: oxDNA then justifies tuning the IEL to use an effective

sawtooth amplitude significantly larger than the free energy of a single base-pair stack to slow the

rate of branch migration.

2.3 Discussion

We have argued that the kinetics of strand displacement can be explained by the destabilizing

effect of single-stranded overhangs at the branch migration junction, and the relative slowness of

branch migration compared to the fraying of a base pair in the toehold. How consistent are our
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Figure 2.15: (A) Free-energy landscape of a system with a two base-pair toehold, with the system prevented
from forming other base pairs between invader and substrate and also prevented from having either base
pair separation exceed 3.7 nm. HB1 and HB2 are the base-pair separations defined in Figure 2.14 (B). Free
energy landscapes are measured in bins of 0.255 nm; the labels indicate the values of HB1 and HB2 at the
center of the bins. The arbitrary offset of G is chosen so that the most probable bin has a free energy Gmin =
−6.37 kcal/mol. All bins with a free energy greater than zero on this scale are shown in light green. (B) The
melting trajectory from Figure 2.14 projected onto the HB1, HB2 space.

findings and interpretations with the literature?

Our experiments infer two de-stabilizations: one due to the first ssDNA overhang at the junc-

tion (X20:Y00 vs. X00:Y00; ∼ 1.2 kcal/mol at 25 ◦C) and another due to the addition of the sec-

ond overhang (X10:Y10 vs. X20:Y00; ∼ 2.0 kcal/mol). We have not investigated the sequence-

dependence of these effects. Vasiliskov et al. [182] have measured the destabilization due to a sin-

gle base overhang (analogous to X01:Y00 vs X00:Y00, which we did not measure) by immobilizing

DNA oligonucleotides in 3-D polyacrylamide gel microchips. Most of their sequence-dependent

values lie between 0.5 and 1.0 kcal/mol at 37 ◦C, which is similar to our temperature-extrapolated

destabilization of 0.9 kcal/mol for X20:Y00 relative to X00:Y00. Note that we would expect the

destabilization to be slightly less for X01:Y00 than X20:Y00 from the intuition derived from our

experimental studies of two overhangs, which indicate that the destabilization is not fully satu-

rated by a single-base overhang.

OxDNA suggests that the destabilization due to overhangs arises from steric interference,

which can be relieved by breaking coaxial stacking at the junction. This suggests that ∆Gp (and,

in fact, the free energy cost of introducing two overhangs to an overhang-free system) should not

be significantly larger than the ∆G associated with the coaxial stacking transition in a nicked du-
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plex. Several attempts to measure this quantity [180, 182, 205] have inferred values of |∆G| ∼

0.2− 2.3 kcal/mol at 37 ◦C and [Na+]= 1 to 15 mM. Increasing [Na+] to 100 mM was observed to

increase stability of coaxial stacks by approximately 0.4 kcal/mol. We therefore conclude that our

temperature-extrapolated destabilization of 2.8 kcal/mol between X10:Y10 and X00:Y00 at 37 ◦C

(and in high salt conditions) is not inconsistent with these data.

What do our findings imply for RNA? Walter et al. [206] have measured de-stabilization due

to a single base overhang at a junction of duplexes as well as two single base overhangs on either

side of a junction for RNA. They report a 2.8 kcal/mol de-stabilization for their analog of X01:Y01

vs X00:Y00 at 37 ◦C, which is much higher than our extrapolation of 1.4 kcal/mol for DNA. Since

the geometry (A-form helix) and thermodynamics of RNA are significantly different from that of

DNA, we would indeed not expect analogous measurements for RNA to be quantitatively similar.

For DNA, we find that X20:Y01 is significantly less stable than X01:Y01, and if this holds true for

RNA we would expect ∆Gp for RNA to be significantly higher than the 2.0 kcal/mol at 25 ◦C we

infer for DNA. However, efn2, a NN thermodynamics model for RNA that has been expanded

to include experimentally-measured terms for coaxial stacking and 1-nt and 2-nt overhangs at

junctions [207, 208], does not predict a free energy penalty similar to that which we infer for DNA

strand displacement (see Supplementary Section S7 and Supplementary Figure S14), possibly due

to incorporating these terms only in ‘interior loops’.

Is the IEL’s inferred value of ∆Gs consistent with measured branch migration rates? Using

the experimentally measured plateau height ∆Gp = 2.0 kcal/mol and the corresponding inferred

values of ∆Gs = 5.3 kcal/mol for the IEL and ∆Gs = 3.6 kcal/mol for the AEL, these models pre-

dict branch migration step times of ∼ 103 µs and ∼ 53 µs respectively. These values are now more

in line with previous experimental measurements: Radding et al. [165] report an average branch

migration step time of 12 µs at 37 ◦C in 10 mM Na+, while Green and Tibbetts [166] estimate an

upper limit of 20 µs at 65 ◦C in 0.3 M Na+. Our estimates are therefore somewhat larger, although

it would be expected that the low temperature, high salt conditions of Zhang and Winfree [147],

which stabilize helices, would reduce branch migration rates. Indeed, such an effect is reported by

Radding et al. [165]. Finally, we note that Zhang and Winfree [147] infer a branch migration step

time of around 2.5 ms from their phenomenological model, about 12 to 24 times larger still than

our estimates. We attribute this difference to the absence in their model of a free energy penalty

for initiating branch migration, i.e. what we here call ∆Gp.
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Are the IEL’s values for kuni and ∆Gbp compatible with measured fraying rates? Wetmur and

Davidson [168] have inferred fraying rates from temperature-jump experiments. They predict

0.04 µs for fraying of a base pair at 25 ◦C, which is faster than our values (0.2 µs for the IEL, 2 µs for

AEL) and consistent with fraying being at least an order of magnitude faster than branch migration

steps. We note, however, that these reported values were not directly measured in experiments,

and required modeling to extract. Futhermore, related measurements of the kinetics of RNA base

pair fluctuations found significantly slower rates, with fraying times on the order of microseconds

at 25 ◦C [185–187]. We therefore conclude that our parameterization is not inconsistent with well-

established kinetic properties of nucleic acids.

We argue that the slowness of branch migration initiation relative to fraying is a key aspect

in understanding strand displacement. In contrast, Reynaldo et al. [170] explained the low rate

constant of zero-toehold displacement by positing that a certain number of base pairs, n = 3 or

4, are necessary to form a stable duplex, and thus shorter duplexes can be ignored or assumed

to detach instantly. Our models differ by assigning favorable and increasingly strong thermody-

namic energies for toeholds attaching by 1, 2, or more base pairs; there is no penalty for short

duplexes. Instead, we can reinterpret their n as the value for which the rate of fraying n base pairs

(kunie−n|∆Gbp|/RT ) equals that of initiating branch migration (kunie−∆Gs+p/RT ), which for the IEL

gives n = 4.3. A similar calculation for the AEL gives n = 3.8.

2.4 Conclusions

We explain the dependence of strand displacement kinetics on toehold length using two factors:

(i) the physical process by which a single step of branch migration occurs is significantly slower

than the fraying of a single base pair and (ii) initiating branch migration incurs a thermodynamic

penalty not captured by state-of-the-art nearest neighbor models of DNA, due to the additional

overhang it engenders at the junction. The slowness of branch migration relative to fraying is

captured in the IEL by a sawtooth amplitude ∆Gs = 5.3 kcal/mol, which is significantly larger

than a single base-pair stack (|∆Gbp| = 1.7 kcal/mol). OxDNA provides physical justification

for this by suggesting that branch migration steps are slower than fraying as each stage neces-

sarily involves greater structural rearrangement and disruption of favorable stacking interactions.

Initiating branch migration is slower than the average branch migration step because of the free
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energy penalty (∆Gp) incurred; our experiments infer ∆Gp ∼ 2.0 kcal/mol. OxDNA reproduces

this penalty and suggests that it arises from steric interference of the single strands and duplexes at

the branch migration junction. Specifically, the presence of an extra single-stranded overhang after

the first step of branch migration causes additional disruption of (coaxial) stacking and reduction

of conformational freedom as the strands are forced to bend away from each other.

Our work shows that toehold-mediated strand displacement involves four distinct time scales—

rates of hybridization, fraying, branch migration, and branch migration initiation—coupled with

the energetics of base pairing in the toehold. The IEL model captures these rates via the parameters

kbi, kuni, ∆Gs, ∆Gp, and ∆Gbp. Presuming that these rates and energies are the essential determi-

nants of strand displacement kinetics, the IEL analysis provides a framework for making kinetic

predictions about different strand displacement-based systems. For example, the IEL predicts

that for short toeholds, keff scales as approximately 1/b, where b is the branch migration domain

length (see Supplementary Section S2 and Supplementary Figure S15). However, the dependence

of kbi, kuni, ∆Gs, ∆Gp, and ∆Gbp on reaction conditions (e.g. salt concentrations and temperature)

are only partially understood, impeding quantitative predictions for differing reaction conditions.

Nonetheless, our current understanding does suggest that determining just those five parameters

should be sufficient to predict toehold-mediated strand displacement under new conditions.

We expect that the IEL framework is also suitable for describing other nucleic acids. Toehold-

mediated strand displacement has been demonstrated with RNA [209, 210], but the dependence

of kinetics on toehold length has not been characterized. Although several experimental studies

have reported hybridization and fraying rates for RNA that are within the range observed for

DNA [185, 187, 211–213], branch migration and branch migration initiation rates are not well un-

derstood. There is, however, some evidence that with 1-nt toeholds, strand displacement rates for

RNA are considerably slower than those for DNA [214], while the average base pairing energy is

stronger [207]; these observations are enough to predict that a plot of log10 keff(h) for RNA would

have a lower y-intercept but higher initial slope than that for DNA. Broadly, then, we would ex-

pect the qualitative features of RNA strand displacement kinetics to be similar to that of DNA;

quantitative understanding will require further experiments.

Similarly, the effect of structural variations of toehold-mediated strand displacement, such

as associative and remote toeholds [215, 216], or initial mismatches in the branch migration do-

main [217] could be understood in terms of their effects on the fundamental rates and energies.
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These particular variants are likely to slow down branch migration initiation, and hence increase

A15,0, which could in turn permit greater design flexibility while engineering nucleic acid devices

and systems.

Although the IEL provides a simple framework for understanding strand displacement, it does

not predict or explain the underlying biophysical mechanisms, nor can it easily be adapted to han-

dle more complex structural variants or explain sequence-dependent behavior in larger strand

displacement cascades and dynamic DNA nanotechnology [8], where the kinetics of both on- and

off-pathway reactions (such as “leak” reactions analogous to zero-toehold strand displacement)

are of great current interest. OxDNA is well suited to studying the underlying biophysical mecha-

nisms and behaviors of structural variants, but it is computationally expensive for larger systems.

Efficient, quantitative simulation of sequence-dependent kinetics for both desired and spuri-

ous strand displacement pathways would facilitate design and optimization of large systems in

silico. SSK models based on NN thermodynamics, such as Multistrand, would be well-suited for

such purposes, but as found here, current implementations require adjustment to match critical

thermodynamic and kinetic features. Thermodynamically, accurate coaxial stacking terms and

penalties for overhanging single-stranded sections of DNA at junctions should be incorporated

into the model. Incorporating the relative rates of fraying and branch migration within the Multi-

strand model faces several challenges. Because every secondary structure state has a well-defined

free energy, branch migration intermediates at the ‘top of the sawtooth’ (frayed junctions with

two tails) cannot simply be pushed to higher energies, as was done for the IEL using ∆Gs. More-

over, Multistrand currently incorporates only one of the two possible branch migration mecha-

nisms suggested by oxDNA (sequential disruption and formation of bonds). Three independent

approaches could conceivably be pursued to better capture branch migration kinetics. First, an ad-

ditional unimolecular rate constant parameter could be used for transitions local to the junction.

Second, new transitions, such as shift moves in Kinfold [175, 218], could be incorporated to model

alternative branch migration pathways. Third, Multistrand’s state space could be augmented,

possibly by including features such as non-base-pair stacking interactions.

Supplementary Information. Supplementary Tables S1-S10, Supplementary Figures S1-S16

and Supplementary References [192, 219–221] are available in the appendix.
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3 Adventures in programming and debugging

molecular reaction networks

As soon as we started programming, we found to our surprise that it wasn’t as easy to get programs right

as we had thought. Debugging had to be discovered. I can remember the exact instant when I realized that

a large part of my life from then on was going to be spent in finding mistakes in my own programs.

- Maurice Wilkes discovers debugging, 1949

I began working on engineering dynamic chemical reaction networks in July 2010, effectively

right after I joined Erik Winfree’s lab. This was a collaboration with David Soloveichik and Georg

Seelig at the University of Washington. The foundation for this project was an earlier theoretical

proposal by David, Georg and Erik to “translate” arbitrary chemical reaction networks (CRNs)

to DNA [110]. Their proposal is essentially an algorithm which, given a set of chemical reaction

equations and rate constants, provides a molecular DNA-based implementation with reactions

being mediated through DNA strand displacement cascades.

The basic idea of the project was to investigate the experimental challenges involved in im-

plementing chemical reaction networks with this theoretical proposal. If those experimental chal-

lenges could be identified, understood, and overcome, our work could open the door towards

engineering essentially any dynamical behavior in a test tube. David, Georg, and Erik had already

been working on the initial stages of this project when I started.

Personally, my own excitement about this project stems from two observations. First, since the

scheme is completely general, it can be used to build not just one interesting dynamical behavior,

but essentially any behavior. Therefore, any understanding we gain about overcoming experimen-

tal challenges specific to the scheme could be used to build a systematic “pipeline” for engineering

arbitrary CRNs. Second, if we can learn how to engineer CRNs with prescribed dynamic behavior,
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we could in principle use that knowledge to engineer chemical control modules for nucleic acid

nanostructures, in much the same way we write computer programs to control electromechanical

machines.

Since our goal was to learn how to program dynamical behaviors in chemical systems, we

picked a challenging test case: a chemical oscillator. If we succeeded, this would be the first

chemical oscillator consisting only of DNA, without the use of any complex, evolved molecules

whose mechanisms of action we do not understand as well (such as proteins). Indeed, prior to

our attempt, it was unclear whether the relatively simple DNA-DNA interactions based only on

Watson-Crick complementarity would suffice to engineer oscillatory dynamics.

Although my investigation into the biophysics and kinetics of toehold-mediated DNA strand

displacement (Chapter 2) began completely independently, there proved to be significant syn-

ergy between the two projects. What we learned about the biophysics and molecular mechanisms

underlying strand displacement proved very helpful while de-bugging our experiments and re-

designing our sequences.

Before we can hope to program molecular reaction networks, we need both a programming

language and an implementation architecture. Section 3.1 introduces “formal” CRNs, our pro-

gramming language of choice. Section 3.2 details the DNA strand displacement architecture we

use to implement our CRN programs. Sections 3.4 to 3.8 discuss the multiple DNA sequence de-

signs (which are particular instances of the DNA strand displacement architecture in section 3.2)

whose performance we investigated experimentally. In essence, those sections summarize our ad-

ventures while de-bugging molecular reaction networks. A summary of my contributions to this

effort is provided in the first part of Chapter 4.

3.1 The programming language: formal chemical reaction networks

For an introduction to formal chemical reaction networks and the diverse viewpoints with which

they have been studied, see Section 1.3.

Chemical reaction equations, coupled with mass action kinetics, have been used to model and

predict the dynamical behavior of well-mixed chemical systems for about a hundred and fifty

years. Indeed, chemical systems that exhibit complex dynamical behavior, such as oscillations,

feedback control and regulation, memory, logic, and chaos, can be accurately described using a
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Figure 3.1: Examples of formal CRNs exhibiting different dynamical behaviors in the mass action
setting (based on numerical solutions to mass action ODEs). This figure was inspired by one of
David Soloveichik’s slides introducing CRNs.

set of coupled chemical reactions with rate constants [19, 24, 222, 223]. This language of chemical

reaction networks (CRNs) is thus a powerful descriptive tool.

In this section, instead of defining a CRN rigorously, we will loosely define a CRN as a finite set

of chemical reaction equations (with rate constants) between (formal) species. For our purposes,

we will assume that the dynamical behavior of our CRNs are specified by mass action kinetics,

although, as described in Section 1.3, this is not the only choice. Figure 3.1 shows some example

CRNs exhibiting different dynamical behaviors. Note that formal CRNs include open systems,

and that there is no restriction for the number of molecules (“mass”) to be conserved. Physically, a

reaction with the appearance or disappearance of molecules should be interpreted as representing

flows of matter and free energy that are not modeled by the particular formal CRN.

In this thesis, we think of CRNs as a prescriptive programming language rather than a descrip-

tive modeling language. This approach was pioneered by Soloveichik et al. [110], who asked the
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following “inverse” question: given a finite set of formal chemical reaction equations (with speci-

fied rate constants) between formal species X1, X2, ..., Xn, can we design a set of “real” molecules

M1,M2, ...,Mp that interact in a well-mixed solution to approximate the mass-action kinetics spec-

ified by the formal system?

Of course, this question regarding a general strategy for implementing arbitrary formal CRNs

is interesting only if CRNs are capable of exhibiting a wide range of dynamical behaviors. This

is indeed the case: given a system of polynomial ODEs with nonnegative integer powers, one

may explicitly construct a formal CRN some of whose species will approximate the solution to the

system of ODEs on the positive orthant, up to arbitrary accuracy over any time interval [87, 88].

In fact, the CRN constructed has particularly nice properties: (i) all reactions follow conservation

of mass, (ii) have at most two reactants and two products, and (iii) no reactions are autocatalytic.

Soloveichik et al. [110] show that, given a formal CRN, it is indeed possible to engineer a

molecular implementation that will, assuming certain “fuel” species are in large excess, approxi-

mate the mass action kinetics specified by the formal CRN (up to scaling rate constants). Indeed,

they provide a construction which “compiles” any set of formal chemical reactions into a set of

DNA strand displacement reactions, which approximate the prescribed dynamics up to arbitrary

accuracy. The “DNA implementation” of the formal CRN has a larger set of interacting molecules,

some of which represent the formal species of the formal CRN and approximate their dynamics,

while the others are auxiliary species that mediate the desired reactions. Following this theoret-

ical advance, other such CRN-to-DNA compilation schemes have been proposed [111, 224–226].

We describe our DNA strand displacement architecture, adapted from Soloveichik et al. [110], in

Section 3.2.

3.2 DNA strand displacement architecture

As described in Section 1.4, DNA strand displacement is an excellent candidate architecture for

implementing chemical reaction networks in a systematic way. Recently, Chen et al. [112] have

experimentally demonstrated a CRN-to-DNA compilation scheme [111] to engineer several chem-

ical reaction networks, from simple catalytic and auto-catalytic reactions to a distributed control

algorithm (“approximate majority”) for achieving consensus between multiple agents. However,

despite this significant advance, the attractive goal of engineering the full spectrum of dynamic
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each other. Signal strands with the same logical unit (e.g. Br and Bs) represent the same formal
species (B) and are designed to behave identically in solution.

behavior that CRNs are capable of (such as oscillations, chaos, etc.), rather than just the steady

state end point, remains elusive.

We now describe our attempt to exploit a modified version of Soloveichik et al. [110]’s CRN-to-

DNA scheme to engineer prescribed dynamical behaviors in chemical systems. Figure 3.2 provides

a pictorial overview of our efforts.

Figure 3.3 illustrates the single-stranded representation of formal species employed by our

scheme. Each formal species (e.g. B) is represented by single strands that contain a history domain

(in black, e.g. hBr) followed by 3 logical domains: a first toehold (e.g. fB), a branch migration

domain (e.g. mB) and a second toehold (e.g. sB). Strands that have identical logical domains (e.g.

Br and Bs) are designed to behave identically in solution, as they both represent formal species B,

regardless of their history domain. The reason for this will become clear once the mechanism for

implementing reactions is illustrated.

Strands representing formal species (“signal strands”) are designed to have orthogonal do-

mains — they are not supposed to interact with each other directly. Desired reactions between

signal strands are mediated by auxiliary species. Some of those auxiliary species are fuel species,

which are present in large excess at the beginning of the reaction and perform the dual functions

of both encoding the logical flow of the desired reactions and providing the required free energy

to drive the intended reactions. This design principle ensures that (i) signal strands do not have

any sequence inter-dependence and (ii) if a formal CRN, say CRN1, is extended to CRN2, then the

DNA implementation of CRN1 may also be extended to a DNA implementation of CRN2 merely



64

by adding to the test tube fuel species necessary for the additional reactions in CRN2.

Figure 3.4 illustrates how a general bimolecular reaction of the form B + A→ X + Y would

be implemented. Logically, the DNA implementation is performed in two steps. First, the “re-

act” step consumes reactants B and A and releases FluxABi — if and only if both reactants are

present. If one or both of the reactants are absent, no irreversible reactions occur. Next, FluxABi

gets consumed in the “produce” step and releases both outputs X and Y. Therefore, taking both

react and produce steps together, the reactants B and A have been consumed and the products X

and Y have been released. For completeness, we also illustrate how the general unimolecular re-

action (B→ X), degradation reaction (B→ φ), and production reaction (φ→ X) are implemented

(Figures 3.5, 3.6 and 3.7).

The naming scheme we use for the species involved in the reaction pathways in our CRN-to-

DNA scheme is both precise and general. By this we mean that, given an arbitrary formal CRN, the

naming scheme allows the user to write down the names and molecular specifications for all the

species involved in the DNA strand displacement reactions needed to implement the given formal

CRN. Moreover, given just the name, the associated molecule can be immediately constructed at

the domain level. Essentially, our naming scheme is consistent with a compiler that could be used

to generate the DNA implementation for any specified formal CRN.
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3.3 Test case: engineering a strand displacement oscillator

Oscillators have long been an important test of our ability to engineer CRNs with prescribed dy-

namical behavior (Section 1.2). Therefore, as a challenging test of our CRN-to-DNA technology,

we chose to build an oscillator based on DNA strand displacement.

Our target oscillator is the one described in Fig 3.1 (b) (up to scaling rate constants). This

oscillator has been widely studied [227–232] and is known as the “rock-paper-scissors” oscillator,

“3-way” oscillator, or as the “cyclic Lotka-Volterra” oscillator. In particular, this oscillator has been

investigated in the context of ecology, as each species can be thought of as both “predator” and

“prey”.

Reichenbach et al. [229] study this oscillator in both the deterministic and stochastic regimes.

They also present a neat proof that this CRN is indeed an oscillator. The sum of the species A + B

+ C is trivially conserved. It turns out that, if the rate constants for the three autocatalytic reactions

are identical, the product A× B× C is also conserved. Therefore the dynamics is constrained to be

on the intersection of the plane A + B + C = constant and the curve A× B× C = constant, but there

is no equilibrium on that intersection, resulting in characteristic triangle-like orbits (see Figure 3 of

Reichenbach et al. [229]). The same proof is also presented in Lachmann and Sella [227]. Blossey

[232] investigates the stability of this oscillator.

We chose this oscillator due to its symmetric, modular nature and its (relatively) small size.

It consists of three autocatalytic reactions, each of which may be thought of as a module that

can be tested independently. Our molecular implementation of the three autocatalytic modules,

B + A→ 2B, C + B→ 2C, and A + C→ 2A are illustrated in Figures 3.8, 3.9, and 3.10, respec-

tively.
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3.3.1 Modeling the DNA implementation

Fig 3.11 shows simulations from a simple model of the DNA implementation of our oscillatory

CRN. Each strand displacement and toehold exchange reaction has been modeled as an effective

bimolecular reaction with a rate constant of ksd = 2 × 105 /M /s. For clarity, equations 3.1 - 3.4

specify the chemical reaction equations in the strand-displacement level model for the autocat-

alytic module B + A→ 2B. The model comprises those equations and similar equations for the

other two autocatalytic modules. This model assumes that unimolecular reactions (including dis-

sociation of toeholds and branch migration) are effectively instantaneous. All fuel molecules have

an initial concentration of 300 nM and are not replenished.

B + ReactBABr
ksd←−→
ksd

ReactIntBABr + BackBA (3.1)

ReactIntBABr + A ksd−−→ FluxABr + WasteBA (3.2)

FluxABr + ProduceABrBs
ksd←−→
ksd

B + ProduceIntABrBs (3.3)

ProduceIntABrBs + HelperBBs
ksd−−→ B + WasteABrBs (3.4)

This simple model shows that the signal strands A, B, and C in the DNA implementation

demonstrate oscillatory behavior before the fuel species (which power the reactions) get depleted

significantly. Therefore, even in ‘batch reactor’ mode where the fuel species are not being replen-

ished, we should in principle be able to engineer oscillatory dynamics which lasts as long as the

fuel species are in significant excess.

3.3.2 Non-idealities in the DNA implementation

The simple model presented above does not include any non-idealities in the DNA implemen-

tation. These non-idealities could be of several different kinds, ranging from different strand

displacement reactions having very different rate constants to spurious “leak” reactions which

compete with desired reaction pathways.

Broadly, there are two classes of non-idealities. The first class refers to those that are a conse-

quence of imperfect molecules, e.g. errors in DNA synthesis or mis-folded complexes. The second

class comprises non-idealities that are unavoidable in our CRN-to-DNA scheme even with per-
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Figure 3.11: Modeling the DNA implementation of the oscillator at the level of individual strand
displacement and toehold exchange reactions. Equations 3.1 to 3.4, along with similar equations
for the other two modules, specify the model. The fuel species are present at an initial concentra-
tion of 300 nM and are not replenished. a. Concentrations of Produce molecules (dashed lines;
ProduceCApAq in red, ProduceBCjCk in blue, ProduceABrBs in orange) and signal strands as a func-
tion of time starting with an initial concentration of ([A], [B], [C])0 = (30, 10, 10) nM. b. The plot
in (a), zoomed in so that the oscillatory dynamics of the signal strands are visible. c. The plot in
(b) with an initial concentration of ([A], [B], [C])0 = (60, 10, 10) nM, all other parameters being the
same.
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fect molecules, since they arise from the domain-level specification of the molecules or reaction

pathways. In particular, leak reactions that arise from “blunt end” (zero-base toehold) strand

displacement are good examples of this class (see Figure 3.12). These leak reactions are a direct

consequence of the fact that blunt end strand displacement occurs at a non-zero rate.

These non-idealities have consequences for our experiments. First, our initial conditions are

imperfect because some fraction of our fuel species are “bad” — they may be mis-folded com-

plexes or DNA strands with synthesis errors on them. One particular manifestation of these im-

perfect initial conditions is what we measure experimentally as “initial leak” — some fraction of

our fuel species release their outputs even when their inputs are not present. Therefore, our ini-

tial conditions may involve a smaller concentration of “good” fuel species than we expect, some

leaked signal strands or Flux molecules, and some spurious products.

Second, spurious products that form due to leak pathways may be capable of undergoing cer-

tain reactions that are legitimate steps in a desired reaction pathway. Figure 3.13 illustrates some

reactions of this kind in the case of spurious products that arose from the gradual leak pathways

shown in Figure 3.12. Therefore leak reactions may affect dynamical behavior in ways that are

more complex than merely the unexpected release of signal strands or Flux strands.

In particular, spurious products can affect reaction stoichiometries. For example, Leaked-

ReactCBr consumes one molecule of Cj and releases no other signal strand; Leaked-ProduceBCjCk

consumes one molecule of FluxBCj and releases only one molecule of C, since Ck had already

“leaked” out (see Figure 3.13). Indeed, this type of mechanism could conceivably explain “incom-

pletion” effects we observe in our experiments - where triggering a particular fuel species (say

ProduceBCjCk) with its input(s) (FluxBCj) produces sub-stoichiometric amounts of the output (C).

If we can account for the initial amounts of such leaked products and correspondingly de-

plete the fuel concentrations (say by fitting those leaked amounts to the data), and include in our

model the set of expected reactions in which spurious products may participate, we may be able

to mechanistically account for our experiments without any additional assumptions that are fun-

damentally different from the idealized model. The reactions we may need to include would be of

the form outlined below (where L is short for “Leaked”).
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Figure 3.12: Illustrative examples of spurious “leak” pathways that arise due to blunt-end (zero
base toehold) strand displacement. These pathways are illustrated in the case of the autocatalytic
module C + B→ 2C but can occur with the other modules as well. Locations of invasion are
indicated by numbered dashed arrows. a. The second input (here, Br) can invade at locations 1
(the junction) and 2 (the end of the helix) in the React species. Once strand displacement finishes,
the Flux molecule may be released and a spurious species can be formed. b. A similar reaction can
happen between the Helper species and the Produce species, releasing the second output of the
Produce molecule (here, Ck) and resulting in a spurious species. c. Spontaneous fraying due to
thermal fluctuations at the end of the helix in the React molecule may enable the Produce molecule
to invade at at location 5. Strand displacement can then result in the release of the first output of the
produce gate (here, Cj) and the formation of a spurious species. Notice that all of these spurious
species shown here are capable of participating in some reactions that are also a legitimate part of
desired reaction pathways (see Figure 3.13).
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Figure 3.13: Spurious products that are formed due to leak pathways may undergo reactions that
are legitimate steps in desired reaction pathways. Therefore leak reactions may affect dynamical
behavior in ways that are more complex than merely the unexpected release of signal strands or
Flux strands.
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L-ReactCBr +C −−→WasteCjBr + BackCB (3.5)

L-ProduceBCjCk +FluxBCj −−→WasteBCjCk + C (3.6)

L-ReactCBCj ProduceBCjCk + HelperCCk −−→ C + L-ReactCBCj ProduceBCjCkHelperCCk (3.7)

We have explored different augmented versions of the model described in Section 3.3.1 that

include some of the non-idealities discussed in this section. We have omitted that exploration

in the interest of brevity. However, a rigorous analysis of sensitivity to parameters was not per-

formed. Based on our modeling, we learned that the DNA implementation of our oscillator can

tolerate significant variation in individual strand displacement rate constants (factor of 3-10, and

possibly more, depending on how ideal other parameters, such as gradual leak rates, are) and bi-

molecular rate constants for gradual leak pathways (of the kind described in Figure 3.12) as high

as 50 - 80 /M /s.

3.3.3 Sequence design challenges

So far, we have discussed the reaction pathways in our molecular implementation in terms of do-

mains (for a definition of “domain”, see Figure 3.2). Implicit in the domain level description is

the assumption that only complementary domains interact — domains that are designed to be

orthogonal are assumed to not interact significantly. Therefore, the ability to engineer strand dis-

placement systems in the lab hinges crucially on sequence design. Sequence design is essentially

the process of finding DNA sequences for the domains such that the resulting molecular system

stays as faithful to the domain abstraction as possible. While that is a primary requirement, usu-

ally there are several other additional requirements, depending on the particular purpose. We now

examine our desired criteria and the sequence design challenges towards satisfying those criteria.

First, our strand displacement oscillator presents quite a large sequence design problem. We

need to design a total of 177 distinct bases, which presents, naively, 4177 possible candidate se-

quences to choose from. This is a very large number — much larger than the total number of

positions possible in chess [233]. A large design space presents a serious search challenge: even

if we had a working definition for what a “good sequence design” would be, how would we find

one?
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Second, since we are interested in programming dynamic behavior, we need to be able to con-

trol reaction kinetics. We need to ensure that desired strand displacement and toehold exchange

rates meet two requirements. First, they need to be as fast as possible relative to the gradual leak

pathways, such as blunt end strand displacement rates. Second, they need to be as similar as possi-

ble to each other. However, “kinetic sequence design” is an unsolved problem, essentially because

the problem of predicting DNA hybridization, branch migration, fraying, and dissociation kinetics

from DNA sequence itself is a challenge [148, 153, 192].

We tackle the first requirement by trying to reduce gradual leak rates as much as possible, by a

combination of domain-level and sequence-level design. It is worth noting here that digital logic

signal restoration methods, which have proved immensely useful in the design of feedforward

logic circuits [107], will not apply in our case. Essentially, these methods involve thresholding the

leaked products and amplifying the desired products at each layer of the designed circuit. Since

our goal is analog dynamic behavior, we cannot co-opt those methods for our purposes.

We address the second requirement by trying our best to control kinetics through thermo-

dynamic proxies, such as toehold strength (Figure 2.2). Therefore, we need our six toeholds

(fA, fB, fC, sA, sB, sC) to be roughly equally strong. How strong should they optimally be? For

two reasons, we tried to choose toehold energies such that strand displacement rates with those

toeholds are in the saturation regime. First, such strong toeholds result in fast strand displacement

rates relative to gradual leak rates. Second, if we are in the saturation regime, small variations in

toehold energy do not result in a large variation in (relative) strand displacement rates.

Yet, strong toeholds are not without drawbacks. Our toeholds need to be weak enough to

ensure that toehold dissociation rates are fast. Fast toehold dissociation rates ensure that (i) uni-

molecular toehold dissociation reactions will not be rate limiting for desired toehold exchange

pathways and (ii) complexes that are not designed to interact with each other but have comple-

mentary toehold regions will not be co-localized significantly (see Figure 3.14).

Given this trade-off between strong toeholds for fast kinetics and weak toeholds for fast disso-

ciation of toehold-interactions, it is not clear what the optimal choice is, and this could vary with

the desired CRN or dynamical behavior.

Third, several species (the signal strands, Flux, Back, and Helper strands) need to be almost

completely single-stranded, with no intra-molecular base pairing, most of the time. This is impor-

tant because these strands are involved in strand displacement reactions, and secondary structure



80

ProduceBCjCk

s*
B

fC

mC

sC

f*
C

hCj

hCj
*

hCk

sC

mC

fC

f*
C hCk

*

+

ReactCBCj

sCmC fB

s*
C

sBmB

f*
B

s*
B

m*
B

m*
C

f*
C

hCj

BackAC

sAmA fC

HelperCCk

hCkfC fC+

ReactCBCj

sCmC fB

s*
C

sBmB

f*
B

s*
B

m*
B

m*
C

f*
C

hCj

+

sCmC fB

s*
C

sBmB

f*
B

s*
B

m*
B

m*
Cf*

C

hCjhCk

fC

fC

sCmC fB

s*
C

sBmB

f*
B

s*
B

m*
B

m*
C

f*
C

hCj

mA

fCSA

BackBA

sBmB fA sB
mB

s*
B

fC

mC

sC

f*
C

hCj

hCj
*

hCk

sC

mC

fC

f*
C hCk

*

fA

Figure 3.14: Illustrative (but not exhaustive) examples of toehold-only interactions in the molecu-
lar implementation of our oscillator. Note that all these interactions (but not all interactions) are
between fuel species at high concentration. There are interactions within the same autocatalytic
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is known to slowdown strand displacement rates [126, 148, 153].

We now recount our journey through multiple sequence designs, focusing on what we learned

at each stage and how that informed our design process for subsequent attempts. We would like

to stress here that, in particular, our understanding of (i) the challenges described in this sub-

section and (ii) our journey through sequence space which is to follow have benefitted greatly

from hindsight.

For reasons that will soon become clear, the first and second sequence designs have opposite

5’-3’ orientation for all the strands and multi-stranded complexes relative to later designs and all

the domain-level diagrams presented in Chapters 3 and 4.

3.4 Sequence design 1

First, we chose all our “top” strands (signal strands, Flux, Back, and Helper strands) to have

sequences from the ‘ACT’ alphabet (no ‘G’s). This is standard practice in dynamic DNA nan-

otechnology in order to avoid unintended intramolecular secondary structure in strands that are

supposed to be almost entirely single-stranded with no intramolecular base-pairing.

By designing toeholds to have the same number of C-G base pairs, we tried to ensure sim-

ilar toehold energies. In particular, we chose to do this by designing all toeholds to be of the

form “WWWSSSW” where W stands for a “weak” base (A or T) and S stands for a “strong base”

(C or G). This rule, combined with the ‘ACT’ alphabet for top strands, forces all toeholds in the

top strands to be “WWWCCCW” and all toeholds in the complementary “bottom” strands to be

“WWWGGGW”.

To mitigate cross-talk, we designed domains intended for branch migration (mA,mB,mC, and

history domains) to be as different as possible at each end. This criterion was enforced because

these were the locations where branch migration could initiate, and we wanted to ensure that fleet-

ing binding between toeholds that are not supposed to interact would not result in the initiation

of branch migration. In addition, the first and last base of every branch migration domain was

constrained to be a strong base, in order to reduce fraying of the helices at the ends. Sequences in

the middle of branch migration regions were essentially randomly generated. We call this design

“Design 1-PRE”, where “PRE” stands for preliminary.

Design 1-PRE was verified by eye with the NUPACK web interface [123] to ensure that the
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desired multi-stranded complexes and intermediates were well-formed and that the top strands

were (mostly) free of secondary structure.

In our experiments, we encountered two kinds of leak reactions: “initial” and “gradual” leak.

These are illustrated in Figure 3.15. Initial leaks involve spontaneous and nearly instantaneous

release of the outputs of fuel complexes (such as React and Produce molecules) when a fluorescent

reporter for their outputs is present. The fluorescent signal would proceed to completion in as

little as 15 minutes.

We found that the initial leak amount scales proportionally with the concentration of the fuel

complex but not with the concentration of the reporter for the output (experiments not shown) and

this suggested that the initial leak arises due to a fraction of “bad” fuel complexes. At this stage,

we did not have a hypothesis for what causes some fraction of the fuel complexes to be “bad”.

For Design 1-PRE, we measured initial leak to be between 8% and 15% for different auxiliary com-

plexes. Despite our best efforts at purification of complexes, which included use of PAGE-purified

strands, ultramers, modified annealing and gel-purification protocols, we could not reduce this

initial leak to much less than 10%.

In contrast to initial leaks, gradual leaks are the slow release of output over the course of the

experiment (several hours). They are thought to occur through blunt end strand displacement, or

strand displacement which begins by invasion at a junction (see Figure 3.12). After preliminary

experiments where we observed high gradual leaks, we added 2-nucleotide clamps to the React

and Produce molecules (see Figure 3.16) to mitigate some of the pathways shown in Figure 3.12,

such as the React-Produce gradual leak pathway in panel (c). We call this design, augmented with

2-nucleotide clamps, Design 1. The clamps did reduce gradual leak, but not substantially. They did

not change initial leak. They are included in Design 1 and all subsequent sequence designs, even

if they may sometimes not be indicated in domain level diagrams (for convenience). Sequences

that comprise Design 1 are provided in Section 5.3.3.

Even with the 2-nucleotide clamps, we observed Produce-Helper gradual leak rates as high as

150 /M /s and React-second input gradual leak rates as high as 50 /M /s in Design 1. A necessary

disclaimer about these gradual leak measurements: the leak process that leads to release of output

that is measured in these experiments is not truly bimolecular. That is, the gradual leak rate does

not scale with the concentration of the reactants exactly as we expect a bimolecular process to. We

believe this is because the gradual leak process is likely a conglomeration of multiple pathways,
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and we use the bimolecular description as an effective quantitative coarse-graining to describe

the process. Taken together, these initial and gradual leaks were too high for our purposes of

engineering oscillatory dynamics; we decided to comprehensively revisit our sequence design

and verification criteria.

3.5 Choosing algorithms for sequence design and verification

3.5.1 Heuristics for evaluating sequence designs in silico

Our experience with Design 1 suggested that we did not really know what we should design for

(or against). To understand that better, we developed some heuristic measures which attempted

to quantitatively capture various undesired spurious interactions. Using these heuristic measures,

we hoped to quantify the “goodness” of candidate designs and sequence design algorithms (by

comparing the best designs we could obtain from each algorithm). We now introduce the heuristic

measures.

First, we define a “NUPACK interaction score”, I (S1, S2), between single-stranded molecules

S1 and S2. I (S1, S2) is the percentage of strands that are in any dimer (S1:S1, S1:S2, or S2:S2), as

predicted by NUPACK when S1 and S2 are each at a concentration of 1 µM. For this calculation (i)

the temperature is set to be 25◦C and (ii) the salt concentration to be 1 M Na+, and (iii) complexes
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comprising at most 2 strands are considered. Therefore, with some algebra,

I (S1,S2) = 100 ∗
(

[S1 : S1] + [S1 : S2] + [S2 : S2]
c

)
, (3.8)

where c = 1 µM.

The “Top Strand Interactions (TSI)” score is the sum of interaction scores for every distinct pair

of top strands (signal strands, Flux, Back, and Helper strands). That is, if {Si} are the top strands,

TSI :=
∑

(i,j)|i≤j

I (Si,Sj). (3.9)

The “Toehold Occlusion (TO)” score is the sum of I (t∗, S) for every toehold-complement t∗

and top strand S, assuming S does not contain toehold t. If S does contain toehold t, I (t∗, S) is

replaced by I (t∗, S<t) + I (t∗, S>t) where S<t is the subsequence of S, starting at the 5’ end, before

encountering domain t and S>t is the subsequence after domain t. Strictly, the above definition of

S>t could contain an occurrence of t if t occurs multiple times in the original strand S; if that is the

case, iteratively apply the same rule. That is,

TO :=
∑
(t,S)

t ∈ Toeholds
S ∈ Top Strands

F (t,S), (3.10)

where

F (t, S) :=

 I (t∗, S) , if S does not contain t

F (t∗, S<t) + F (t∗, S>t), if S contains t.

The “Weighted Sum - Branch Migration (WS-BM)” score identifies subsequence matches (not

necessarily aligned by position) between distinct branch migration domains, which include the

mA,mB,mC and history domains. WS-BM is essentially a weighted count of such subsequence

matches. (Note that there are no intended matches between branch migration domains.) A subse-

quence match of length 5 contributes 1 point, length 6 contributes 2 points, length 7 contributes 4

points, and so on until lengths greater than or equal to 10 contribute 32 points.
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If {Ri} is the set of branch migration domains,

WS-BM :=
∑

(Ri,Rj)
i < j

 ∑
s ∈Φ(Ri)∩Φ(Rj)

W (s)

 , (3.11)

where Φ(Ri) is the multiset of all subsequences of the sequence Ri and W is the weight function

defined by

W (s) :=


0 if |s| < 5

2|s|−5 if |s| ∈ [5, 10]

32 if |s| > 10.

The “Maximum Branch Migration subsequence (Max-BM)” score seeks to quantify the same

kind of non-ideality in the design but measures the length of the longest subsequence match be-

tween distinct branch migration domains, rather than a weighted sum. That is,

Max-BM := max
(Ri,Rj)
i < j

(
max

s ∈Φ(Ri)∩Φ(Rj)
|s|
)
. (3.12)

The “Weighted Sum Inter-Complex (WSIC)” seeks to evaluate unintended subsequence matches

between distinct complexes, which includes both single-stranded and multi-stranded complexes

(irrespective of the locations of the subsequences within the complexes). In particular, even a

subsequence which spans a strand break would be counted as a contiguous subsequence of that

complex. A subsequence match of length 6 contributes 1 point, length 7 contributes 2 points, and

so on until matches of length 12 and above contribute 7 points.

If {Ci} is the set of complexes, then

WSIC :=
∑

(Ci,Cj)
i < j

 ∑
s ∈Φ(Ci)∩Φ(Cj)

W (s)

 , (3.13)

where Φ(Ci) is the multiset of all subsequences of the complex Ci and W is the weight function

defined by

W (s) :=


0 if |s| < 6 or if s is an intended match specified at the domain level

|s| − 5 if |s| ∈ [6, 12]

12 if |s| > 12.
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The “Weighted Sum Inter-Complex Mismatch (WSIC-M)” is identical to the WSIC score, except

that it only counts subsequence matches with a 1-base mismatch. To illustrate with a particular

example, subsequences “ATAACCA” and “ATATCCA” would be considered a match.

3.5.2 Candidate sequence design methods

Since (i) toehold strengths are critical for controlling reaction kinetics (Figure 2.2) and (ii) excessive

spurious interaction between toeholds assumed to be orthogonal at the domain level is undesir-

able, we decided to design the toeholds first. Our objective was to obtain toeholds strong enough

to elicit fast kinetics, with toehold strengths being as close as possible, yet as mutually orthogo-

nal as possible. For this purpose we used StickyDesign [234], a software package used to design

“sticky ends” for experimental DNA-tile based self-assembly [235]. Without accounting for flank-

ing bases (which do affect nearest neighbor contributions to the toehold strength), we targeted

toehold strengths between 8.0 and 9.0 kcal/mol and toehold cross-talk binding energies of less

than or equal to 2.5 kcal/mol.

Once the toeholds were fixed, we tried multiple sequence design algorithms that were avail-

able at that time to design the rest of the system. Among these were SpuriousC [124], which

minimizes unintended subsequence matches within and between complexes [125]; DomainDe-

sign [126], which focuses on designing domains of user-specified lengths to be as orthogonal as

possible to each other based on thermodynamic calculations; and NUPACK [123, 127] which mini-

mizes ensemble-defect [128] to match the user-specified structure for each complex based on ther-

modynamic calculations.

The best designs we could obtain from each candidate algorithm were compared with each

other and Design 1 on the basis of our custom heuristic measures. The results are summarized

in Table 3.1. Note that there are three different designs based on NUPACK: “NUPACK” was run

without any artificial negative-design constraints; “NUPACK-ND” included some hacks to en-

force negative design for minimizing spurious interactions between single strands and toehold

complements. These were essentially in the form of artificial target “complexes” between species

that were not supposed to interact wherein the desired structure was specified to be without any

base pairing between the two species. “NUPACK-ND-BM” included additional such constraints

between branch migration domains.

Table 3.1 suggests that, given our toeholds, SpuriousC and DomainDesign gave the best de-
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Method TSI TO WS-BM Max-BM WSIC WSIC-M

Design 1 0.8 466.0 18 6 12469 8009

SpuriousC 7.2 21.6 10 6 30 2514
(Design 2)

DomainDesign 12.2 19.6 7 6 1239 4016

NUPACK 1.6 56.2 73 10 13574 8674

NUPACK-ND 1.4 14.8 306 13 23529 27578

NUPACK-ND-BM 2.2 34.0 9 8 25872 8429

Table 3.1: Performance of the best designs from various sequence design methods on our custom
heuristic measures. The heuristic measures and sequence design methods used are described in
the text. Scores in bold were thought to be unacceptably high relative to other methods; this
determination was based on a subjective intuition acquired by repeated design attempts.

signs according to our heuristic measures. Some caveats are in order while interpreting the re-

sults. First, our heuristic measures include measures that focus on spurious matches at the level

of sequence identity, without a thermodynamic or kinetic evaluation of how physically important

those spurious sequence identity matches might be in the test tube. Second, at the time this anal-

ysis was performed, NUPACK’s second generation algorithms for “test tube design” [129], which

perform negative design against competing complexes which could form in a user-specified test

tube, had not been released. We have not tested the performance of the second generation NU-

PACK sequence design algorithms in this analysis.

3.6 Sequence design 2

Based on the analysis in Section 3.5.2, we decided to use SpuriousC for designing our second

attempt. We also enforced two other constraints that are included in the optimized SpuriousC

design evaluated in Table 3.1. Since fraying due to thermal fluctuations at the ends of helices

is thought to contribute to gradual leak pathways of the kind in Figure 3.12 [126, 148, 153], we

constrained the ends of helices and junctions to end with two strong (C/G) base pairs, in order

to mitigate gradual leak. As a direct consequence of this decision, we had to choose between (i)
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Figure 3.17: To reduce gradual leaks that are thought to be facilitated by thermal fraying of base
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consecutive “strong” (S) base pairs. This strategy is illustrated in the React (a) and Produce (b)
molecules. b. In this strategy, there is a trade off between ACT alphabet and preventing branch
migration at the junction in the Produce molecules. With the ACT alphabet, back and forth branch
migration of 2 nucleotides around the junction is unavoidable since both mc and hck will need to
begin with “CC”. To avoid this, we violated ACT alphabet by fixing the first base of mC (first of
the two highlighted bases in this figure) to be a ‘G’. In some situations, e.g. ReactACAp, the second
highlighted base was also a ‘G’ (optimized by the designer to reduce spurious scores).

allowing 1-2 base pairs to continually branch migrate back and forth on either side of the junction

in the Produce species or (ii) violate the ‘ACT’ alphabet rule by incorporating Guanines (G) at

specific places in top strands (see Figure 3.17). Since option (i) could significantly complicate

toehold energy calculations, we chose to violate the ATC alphabet.

Experimentally, we found that Design 2 had much less gradual leak — as low as 1 - 10 /M /s.

Gradual leaks of this magnitude are illustrated in Figure 3.18 with an example from Design 3. This

is “good enough” for oscillatory dynamics according to our modeling. However, Design 2 did not

show any reduction in initial leak.

3.7 Sequence design 3

Typically, a domain level design specification can function with either orientation (5’-3’) for the

DNA strands involved. However, it has been suggested in the literature [217] that certain 5’-3’

orientations for the molecules may be preferable in practice because of asymmetries in the distri-

bution of synthesis errors along the 5’-3’ axis. In the hope that reversing 5’-3’ orientations might

change the distribution of synthesis errors to a more favorable one, which may in turn result in
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Note the fast triggering in Sample 2 and the much reduced gradual leak in Sample 1 (in general,
5x-10x lower than Design 1; see Figure 3.15 for an example). The apparent incompletion effect
is also illustrated. Despite careful quantitation of all species, only 25 nM of FluxBCj is released,
which is about 16% less than the full 30 nM expected.
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lower initial leak, we decided to try Design 3, which is the same as Design 2 but with 5’-3’ orien-

tations reversed.

Since the free energy contributions of individual nearest-neighbor base pair stacks towards

double helix stability are not symmetric with respect to 5’-3’ orientation, reversing the orientation

of our design would perturb the thermodynamics of all our domains, including toeholds. This is

an undesirable as it could potentially alter the kinetics of desired strand displacement pathways.

In spite of this, we went ahead with testing Design 3.

Experimentally, we found that Design 3 did have much lower initial leaks — reduced to 3-5%

of the fuel concentration (see Figure 3.18). This was a big improvement from 10% in Designs 1 and

2. In addition, gradual leaks remained low, except in one particular case, that of ProduceCApAq

and HelperAAq, where it was very high, approximately 150 /M /s.

Based on careful debugging experiments where we measured the gradual leak with various

versions of the ProduceCApAq and HelperAAq molecules, including 1-base mutations, we postu-

lated a remote-toehold [216] style mechanism for the particularly high gradual leak rate (Fig-

ure 3.19). This particular gradual leak pathway is tackled in Design 4 (Section 3.8).

While discussing these experimental results with Paul W. K. Rothemund, he suggested that

performing these experiments with 0.5 - 1 M Na+ (as opposed to 12.5 mM Mg++, which was our

protocol at that time) may result in lower gradual leak since Mg++ is known to stabilize DNA-

DNA junctions [194, 236, 237] and might be accelerating this gradual leak pathway by stabiliz-

ing invasion of the Helper species at the junction. When we tested the gradual leak pathways in

0.5 M Na+, we found that there was a reduction in gradual leak across the board by approximately

a factor of 2. So, we altered our protocol at this stage to use 0.5 M Na+ instead of 12.5 mM Mg++.

Even though DNA strand displacement kinetics in high sodium (0.5 -1 M Na+) [145, 146] is not

dramatically different from kinetics in 12.5 mM Mg++ [147], we experimentally verified that the

kinetics of our desired pathways did not slowdown significantly due to the change in salt condi-

tions (experiments not shown).

3.7.1 Kinetics of desired pathways

Apart from investigating leaks, we also experimentally checked whether the desired pathways

(such as release of output in appropriate conditions) were occurring with (roughly) the expected

kinetics. We found that ReactBABr and ReactACAp were slow to “trigger” — that is, when both
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inputs were present, these molecules were much slower to release their outputs than expected.

Compared to ReactCBCj, where this triggering process takes about 20 minutes (Figure 3.18), these

molecules took about 10 hours (slower by a factor of 30).

We re-examined the MFE structures and partition functions of all the complexes involved in

NUPACK. We found that hairpins had crept into both these strands, which were supposed to

be free of secondary structure, during our last re-design (Figure 3.20). In addition to the MFE

structure, we found that the first two bases of the branch migration domain mA, both G’s, were

bound almost all the time in some (weak) hairpin or the other. This location is especially critical,

as initiation of the first branch migration step is known to be among the slowest unimolecular

steps in the strand displacement process and is important in determining kinetics [148]. Given

that Ap and Aq are common inputs to both React molecules, we hypothesized that this secondary

structure was responsible for the slowdown in triggering both molecules.
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Figure 3.19: Based on experiments measuring gradual leak with single-base changes at the posi-
tions illustrated (‘ATCC’ in HelperAAq and ‘GGTA’ in ProduceCApAq), these bases contribute to the
high gradual leak between ProduceCApAq and HelperAAq. We hypothesize a remote-toehold type
mechanism for this gradual leak; the complementarity between ‘CC’ of HelperAAq and ‘GG’ of
ProduceCApAq could co-localize the molecules fleetingly to accelerate strand displacement, acting
similarly to a strong 2-base pair toehold.
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3.8 Sequence design 4

In Design 4, we wanted to modify Design 3 to (i) speed up the triggering of ReactBABr and

ReactACAp to (roughly) match ReactCBCj by removing unintended secondary structure in Ap and

Aq (Figure 3.20) and (ii) reduce the gradual leak between ProduceCApAq and HelperAAq by elimi-

nating the remote-toehold style mechanism we postulated in Figure 3.19.

First, we came up with a new heuristic measure for evaluating candidate sequence designs

that seeks to quantify the presence of significant secondary structure in strands that are intended

to be single-stranded. Let punpaired(b,S) be the NUPACK-predicted fraction of a given base b in a

given strand S that is unpaired at equilibrium in a solution with only S present (and considering

single-stranded complexes only). This measure, Single-Strand Unpaired (SSU), is the minimum of

punpaired across all bases in all strands that are supposed to be free of secondary structure. That is,

if T is the set of all strands that are supposed to be free of secondary structure,

SSU := min
S ∈ T

min
b ∈ S

punpaired(b,S). (3.14)

For Design 3, the SSU was only 0.13, and the base that was the least unpaired was one of the G’s

in the beginning of the branch migration region mA. Note that, among all the heuristic measures

we have defined, SSU is the only measure where “larger is better”.

We decided to modify Design 3 “by hand” to mitigate the problems described above. We iden-

tified 8 bases that, if changed, seemed to mitigate one or both of those issues, and identified by trial

and error what degrees of freedom those bases had (that is, which options for their new identity

did not introduce new secondary structure or malformed complexes as predicted by NUPACK).

We changed 3 bases by hand as there seemed to be a clear “best choice” for those 3 bases. For the

other 5 bases, we evaluated all candidate designs by brute force on our heuristic measures and

chose a design that seemed satisfactory on all those measures. In particular, the SSU for the new

design, which we call “Design 4-PRE” increased to 0.76, which was encouraging.

Experimentally, we found (i) a dramatic reduction in the ProduceCApAq-HelperAAq gradual

leak, which reduced to approximately 15 /M /s and (ii) a dramatic speedup in the triggering of

ReactBABr, which was now comparable to ReactCBCj. However, there was no speedup in the trig-

gering of ReactACAp, which suggested that another factor was responsible for the slow triggering

of ReactACAp.
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We re-examined everything we knew about these two molecules — the thermodynamics of all

the complexes and intermediates, the toehold energies, and so on — and noticed that the toehold

exchange reaction in ReactACAp had the two most imbalanced toeholds. The “forward” toehold,

fA, was the weakest and the “backward” toehold, fC, was the strongest. In addition to that, fC, be-

ing an “internal” toehold, would have an additional (coaxial) stack when bound (see Figure 3.21).

As a first order approximation, the imbalance ∆∆G = ∆GfC − ∆GfA , would slowdown the for-

ward toehold exchange rate by a factor of about 10∆∆G [143, 147, 148].

To balance the energies, we tried to remove one or two base pairs from the internal toehold as

shown in Figure 3.21, effectively modifying ReactACAp and BackAC to have a truncated toehold fC.

Experimentally, we were satisfied with the speedup due to a two base pair truncation and called

the resulting molecules ReactACApi2 and BackACi2. We call this design, augmented with the 2-base

truncations described above, Design 4.

With this modification, all 3 React and all 3 Produce steps in Design 4 had, according to our

modeling, low enough gradual leak rates and high enough triggering rates that the DNA imple-

mentation could show oscillatory behavior. In the following chapter, we examine our experiments

in cascading these molecules to build autocatalytic reactions and a chemical oscillator exclusively

based on DNA strand displacement.

We conclude this chapter on debugging molecular networks and sequence design with a note

on the “incompletion” effect. We have repeatedly found, across multiple designs, that our fuel

species release sub-stoichiometric quantities of output molecules when triggered with a certain

nominal concentration of input molecules (see Figures 3.18 and 3.21). Despite careful repeated

quantitation of all species involved, and different ways of normalizing our data, we could not

quantitatively understand the mechanistic origins of this effect to our satisfaction. This effect has

also been reported by Chen et al. [112] in their investigations on implementing another CRN-to-

DNA translation scheme [111].

This incompletion effect could arise due to multiple molecular non-idealities, and each of those

effects probably partially contributes to it. For example, fuel species with synthesis errors on the

output strands could consume their inputs and release non-functional outputs; spurious products

formed due to leak pathways could interfere with stoichiometries of desired reaction pathways

(Figure 3.13 and discussion thereof). Trying to quantitatively understand this incompletion effect

and the extent to which various mechanisms contribute to it is an important direction for future
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work.

Supplementary information: All sequence designs and experimental methods are provided

in Section 5.3.1.
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4 Engineering well-mixed chemical systems with

prescribed dynamical behaviors

It would not take long to assemble an imposing catalogue of examples illustrating

the resistance of human nature to observations that do not fit into existing theory.

- A. T. Winfree [18]

In Chapter 3, we described our adventures while programming and de-bugging molecular re-

action networks. Here, we present our efforts to engineer in vitro CRNs with prescribed dynamical

behaviors by cascading the molecules and reaction-pathways we optimized in Chapter 3.

We successfully implement three distinct autocatalytic reactions, which we then combine into a

de novo DNA strand displacement oscillator (“Displacillator”). Unlike biological networks, which

use sophisticated evolved molecules (like proteins) to realize such behavior, our test tube realiza-

tion is the first to demonstrate that Watson-Crick base pairing interactions alone suffice for oscilla-

tory dynamics. Since our design pipeline is general and applicable to any CRN, our experimental

demonstration of a de novo chemical oscillator could enable the systematic construction of CRNs

with other dynamic behaviors.

The scientific contributions described in Chapters 3 and 4 are part of a manuscript currently in

preparation:

Niranjan Srinivas, Georg Seelig, Erik Winfree and David Soloveichik, “Programming dynamical

behaviors in chemical systems with DNA strand displacement cascades”, in preparation.

Therefore, the data analysis, modeling and interpretation presented in this chapter should be

considered preliminary.

Lastly, I summarize my contributions to this work. When I started working on this project,

David Soloveichik, Georg Seelig, and Erik Winfree had already chosen the particular target chem-
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ical reaction network (CRN), an oscillator. David had designed the first set of DNA sequences

(Design 1 in Chapter 3) and performed preliminary experiments with those. Apart from perform-

ing experiments de-bugging Design 1, I came up with all other designs (Designs 2, 3, and 4 in

Chapter 3) and performed all other experiments. In that process I formulated and updated the

sequence-verification criteria listed in Chapter 3. I also did the modeling described in both Chap-

ter 3 and in this Chapter. Erik, David, and Georg provided valuable feedback throughout these

efforts.

4.1 Combining autocatalysis and thresholding into tunable delay elements

As a test of our ability to cascade the individual fuel species from Design 4, we set out to combine

the appropriate React and Produce steps into three distinct autocatalytic modules. Our goal was

to demonstrate exponential amplification of autocatalyst in each case.

For concreteness, we use the module C + B→ 2C as a running example in this discussion,

but the same holds for the other modules. In preliminary experiments, we found it challenging

to control the initial concentrations of autocatalyst (C). When we combined all the fuel species

for a given autocatalytic module (ReactCBCj, BackCB ProduceBCjCk, HelperCCk) in the test tube at

100 nM each, along with 50 nM of the signal strand (B) that is consumed by the autocatalyst, the

exponential amplification began immediately even without any explicit addition of autocatalyst

(C). In fact, the initial rate of amplification (in nM/hr) was quite large and we could not clearly

observe the initial “slow” phase of the amplification.

We reasoned that this was due to a high initial leak of autocatalyst (C). This hypothesis is con-

sistent with our measurements of individual initial leaks. We would expect that the approximately

3-5 nM of initially leaked Flux (FluxBCj) would get amplified to about 6 - 10 nM of autocatalyst

(C). Combined with the direct release of about 3-5 nM of autocatalyst (C) due to initial leak from

the Produce species (ProduceBCjCk), this would result in an initial autocatalyst concentration of

about 9-15 nM.

In order to control the initial concentrations of the autocatalyst and clearly separate the three

processes — initial leak, gradual leak, and exponential amplification — which have different

timescales, we combined autocatalysis with thresholding to engineer tunable delay elements. We

do not add any autocatalyst and rely on the spurious pathways to provide autocatalyst. The fast
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irreversible threshold effectively consumes all the initially leaked autocatalyst before amplification

can begin. However, the relatively slow but persistent release of autocatalyst due to gradual leak

eventually exhausts all the threshold and kickstarts autocatalytic amplification after that. We may

therefore tune the delay before exponential amplification by varying the initial concentration of

threshold (Figure 4.1).

In Chapter 3, we had introduced fluorescent reporters for A, B, and C. We use the same molecules

as thresholds in the autocatalyst and oscillator experiments. This “threshold readout” allows us to

directly observe the consumption of the thresholds ThA, ThB, and ThC. In order to observe both

the consumption of the threshold and the autocatalytic amplification simultaneously in the same

sample, we combine the threshold readout with a “Helper readout”. We achieve this by fluores-

cently tagging the Helper species with a spectrally distinct fluorophore and placing a quencher

on the Produce species, as shown in Figure 4.1. As the autocatalytic amplification proceeds, the

Helper species will be consumed to produce the corresponding Waste species and its fluorophore

will be quenched. This Helper readout strategy may be used to monitor the progress of any re-

action as long as it produces two outputs (and therefore requires a Helper species in the DNA

implementation).

A CRN model modified to allow non-integer product stoichiometry (“modified-CRN” model;

equations 4.1 to 4.3) semi-quantitatively captures most features of the data, including the temporal

correspondence between the exhaustion of threshold and the beginning of exponential amplifica-

tion. Since the modified-CRN model does not include any fuel species, the quantity plotted in

Figure 4.1 lieu of the concentration of HelperCCk consumed is the equivalent quantity at each time

T , which is given by
∫ T

0 kCBCC · C(t) · B(t) dt.

C + ThC
kThC−−−→ φ, rate = kThC · C · ThC (4.1)

φ
kleakC−−−−→ C, rate = kleakC (4.2)

C + B kCBCC−−−−→ sC · C, rate = kCBCC · C · B (4.3)

The rate constants kleakC and kCBCC are fitted, while kThC = 1.2×106 /M /s has been measured

experimentally (see Table 4.3 and Section 4.3.3). The stoichiometry sC of the output C is also a fitted

parameter, since we do not expect our DNA implementation to have perfect stoichiometry for each

reaction (see Section 3.3.2). The initial leak was modeled by fitting the initial concentration (C0)
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Figure 4.1: Exponential kinetics of the autocatalytic reaction C + B→ 2C with delays tuned by
threshold concentrations. a, b. Molecular implementation of C + B→ 2C using our general CRN
to DNA scheme. The Helper species is tagged with a fluorophore which gets quenched when it is
consumed during the reaction cascade to form Waste. c. Thresholding mechanism. The reporter
for C from Chapter 3 is used here as a threshold. It contains a fluorophore spectrally distinct from
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Initially, all samples contain 100 nM of the ReactCBCj, BackCB and HelperCCk species (i.e. all fuel
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ThC remaining (top) and HelperCC consumed (bottom). Approximately 8 nM of C is released due
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C by auto-catalysis takes over. Note the temporal correspondence (indicated by dashed vertical
lines) between the times at which ThC is exhausted and the times at which exponential amplifica-
tion begins. f. Predictions of a semi-quantitative CRN-level model comprising reactions 4.1 to 4.3.
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of autocatalyst (C), which was also assumed to be the amount of Helper (HelperCCk) consumed in

the initial leak process. The best fit values were

(C0, kCBCC, kleakC, sC) = (6.6 nM, 2.2× 104 /M /s, 0.05 nM/hr, 1.5).

Note that sC = 1.5 suggests lower than expected output stoichiometry, which is consistent with

our understanding based on leak and triggering experiments on individual fuel species (Chap-

ter 3).

The biggest discrepancy between the semi-quantitative model and the experimental data lies

in the shape of the threshold concentration curves. The model predicts that the threshold concen-

tration is depleted at a constant rate due to gradual leak, whereas the experimental data shows

a more complex variation in the rate of threshold depletion. A mechanistic model of the DNA

implementation seems necessary for understanding this feature of the data.

Figure 4.2 demonstrates exponential amplification with tunable delay based on the other two

autocatalytic modules. Having succeeded in cascading the individual fuel species into three au-

tocatalytic modules, we attempted to combine all three autocatalytic modules in one test tube to

implement a de novo oscillator based on DNA strand displacement.
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4.2 Displacillator: a de novo strand displacement oscillator

In trying to combine our autocatalytic modules into a strand displacement oscillator, we encoun-

tered several challenges. First, we had to achieve initial values for the concentrations of (A, B, C)

that would be suitable for obtaining and observing oscillations. The initial concentrations needed

to be different enough that we would obtain observably large oscillations, while still being much

smaller than the concentration of our fuel species in order to ensure multiple cycles of oscillation

before the fuel species are exhausted. Second, in our initial experiments, we observed strongly

damped oscillations. We hypothesized that the damping arose from each autocatalytic module

having lower than ideal stoichiometry due to molecular non-idealities (Section 4.1 and Chapter 3).

4.2.1 Counteracting damping: Catalytic helper mechanism

One way of counteracting damping and “tuning up” our Displacillator would be to engineer an

alternative mechanism for the Helper step where, in addition to the second output of the Produce

species, the Flux strand is also released. If that happens, the Flux strand can continue to interact

with more Produce species and release more outputs, thereby effectively increasing output stoi-

chiometry. Inspired by Zhang et al. [143]’s entropy driven catalyst, we came up with the “catalytic

Helper” mechanism (see Figure 4.3) to engineer such an alternative Helper pathway. For clarity

we note here that in our case, the entropic benefit is a bonus and not the only reason our desired

pathway is thermodynamically favorable.

A catalytic Helper (CatHelper) species is a modified version of the corresponding Helper

species that releases not just the second output, but also the Flux strand (by toehold exchange).

The released Flux strand is subsequently free to interact with more Produce species and release

more outputs, thereby increasing the output stoichiometry of the desired CRN. By tuning the con-

centration of CatHelper species relative to Helper species, we are able to control the probability

of each pathway, thereby providing a flexible knob for increasing the output stoichiometry of our

reactions to compensate for the incompletion effect. From now on, the term “total-Helper” for a

given autocatalytic module refers to the sum of CatHelper and Helper species for that module.
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“total-Helper” for a given autocatalytic module refers to the sum of catalytic and standard Helper
species for that module.
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4.2.2 Optimized Displacillator experiments

We describe our optimized experimental protocol for Displacillator experiments in Figure 4.4. We

attempt to control the initial concentrations of A, B, and C by using thresholds to irreversibly

consume initial leaks, and subsequently adding the desired amounts of A, B, and C by hand to

kickstart oscillation. It is challenging to exactly balance the initial concentrations of thresholds

such that both our objectives, the consumption of the initial leak and the consequent extinction

of thresholds, are achieved in reasonable time. This is illustrated in Figure 4.4, which shows that

at the time of the second addition, about 7 nM of ThA is leftover (see Sample 1 in panel (b)). We

do not, at this time, quantitatively understand this transient phase where initial leaks, desired

reactions, and thresholding all occur at the same time; nor do we fully understand the effect of the

leftover thresholds on the observed dynamical behavior. Therefore we do not yet know how to

optimally set the initial concentrations of thresholds. These experiments have been optimized by

trial and error.

Similarly, we tuned the relative concentrations of Helper and CatHelper (ratio of 3:1) in order

to optimize the number of oscillatory cycles observed. These ratios for the three modules may

likely permit further optimization if aided by quantitative mechanistic modeling.

We use two copies of each sample: one to observe the consumption of Helper and CatHelper

species (“Helper readout”) and the other to observe the consumption of thresholds (“threshold

readout”). The first sample uses Helper and CatHelper species that are fluorescently tagged and

plain versions of thresholds, which do not have fluorophores or quenchers. In the other copy, plain

versions of Helper and CatHelper species are used along with fluorescently tagged thresholds.

Produce species in both samples are labeled with a quencher on the bottom strand.

Experiments where the Displacillator is started from multiple initial conditions are presented

in Figure 4.5. The rate of consumption of the different Helper species, which measures the in-

stantaneous rate (in nM/hr) at which each autocatalytic module is proceeding (apart from a small

contribution from gradual leak), clearly shows that the modules are “firing” one after another in

the expected order.
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Figure 4.4: Experimental setup for Displacillator experiments. Two samples are used for each
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do not contain fluorophores, and thresholds ThA, ThB, and ThC with fluorophores. Sample 2
uses plain versions of thresholds (indicated with a †), which do not contain fluorophores, and
Helper and CatHelper species with fluorophores. Otherwise Samples 1 and 2 are identical. (In
particular, Produce species in both samples are labeled with a quencher on the bottom strand.)
Helper:CatHelper ratio of 3:1 was arrived at by experimental tuning. a. All fuel species except
Produce species are present initially, along with 10 nM of each threshold. After measuring the
background, a “soup” containing 100 nM of each Produce species is added to each sample. This
causes initial leak of signal strands A, B, and C, which is reflected in (i) the initial drop in total-
Helper concentration (Sample 1) because these species are consumed and quenched during initial
leak and (ii) the initial spike in consumption of thresholds (Sample 1) as the leaked signal strands
are consumed. Once the initial leak stabilizes, we add (A, B, C) to kickstart oscillation with the
initial conditions we desire.
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CatHelper) concentrations are presented in the top row; time derivatives of those measurements
are presented in the bottom row. Time derivatives of Total-Helper measurements indicate instan-
taneous rate (in nM/hr) at which each autocatalytic module is proceeding in the test tube, apart
from consumption of Total-Helper due to gradual leak. The sequential ‘firing’ of the autocatalytic
modules in the expected order (as long as the fuel species are at significant concentration) indicates
oscillatory behavior.
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4.2.3 Inferring signal strand concentrations

Ideally, we would like to directly measure the concentrations of the signal strands A, B, and C. Un-

fortunately, such direct measurement is difficult since irreversibly consuming any of these strands

for reading out the concentration would alter the dynamical behavior of our system. Tagging the

target species with fluorophores has been shown to enable direct monitoring of dynamic circuits

without irreversible consumption [238]. However, in our design this approach necessitates place-

ment of fluorophores in the middle of the first toehold of each signal strand (fA, fB, and fC). Since

modifying toeholds could significantly perturb strand displacement and toehold exchange rates,

we chose to infer the concentrations of A, B, and C from measurements of Helper concentrations.

We now discuss two approaches for doing so.

4.2.3.1 Ideal stoichiometry approach

The CRN we seek to implement (ignoring rate constants) is

B + A −−→ 2 B (4.4)

C + B −−→ 2 C (4.5)

A + C −−→ 2 A. (4.6)

With two assumptions, there is an easy way of inferring signal strand concentrations from

Helper measurements. The first assumption is that our DNA implementation is faithful to the

stoichoimetry specified by the formal CRN in equations 4.4 - 4.6. The second assumption is that the

contribution of gradual leaks (such as Produce-Helper gradual leaks) to total-Helper consumption

is negligible. For the purposes of this section, Helperi(t) for an autocatalytic module i is defined

as the total-Helper concentration for that module at time t.

With the above two assumptions, we can define

FlowBABB(t) := HelperBBs(0)−HelperBBs(t) (4.7)

FlowCBCC(t) := HelperCCk(0)−HelperCCk(t) (4.8)

FlowACAA(t) := HelperAAq(0)−HelperAAq(t) (4.9)

to be the progress through each reaction upto time t (in nM). In other words, FlowBABB(t) mea-

sures “how much” of reaction 4.4 has taken place upto time t. Consequently, one can infer the
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Figure 4.6: Inferences of A(t), B(t) and C(t) concentrations with the ideal stoichiometry approach
outlined in Section 4.2.3.1. Time derivatives, which signify net production rate of each signal
strand, are also presented.

concentrations of A, B, and C as a function of time as follows:

A(t) = A(0)− FlowBABB(t) + FlowACAA(t) (4.10)

B(t) = B(0)− FlowCBCC(t) + FlowBABB(t) (4.11)

C(t) = C(0)− FlowACAA(t) + FlowCBCC(t). (4.12)

Inferences of A(t), B(t), and C(t) concentrations under this ideal stoichiometry approach are

provided in Figure 4.6. Here initial concentrations A(0), B(0) and C(0) are calculated from (i) the

amounts added to kickstart the oscillations and (ii) the threshold concentrations remaining at the

time of addition.

In this method, the assumption of ideal stoichometries is far more crucial than the choice to

neglect gradual leak contributions. It would be possible to easily correct definitions 4.7- 4.9 for

gradual leaks, say with independently measured gradual leak parameters for a certain model of

gradual leak. However, the stoichiometry assumptions are hard to justify, for two reasons. First,
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we know from the experiments and discussions in Chapter 3 that individual React and Produce

steps yield sub-stoichiometric outputs. Second, although we have compensated for such incom-

pletion effects by using the catalytic Helper mechanism, it is not clear at all that we have achieved

exact compensation and restored ideal stoichiometry for our reactions.

4.2.3.2 Phenomenological model

To avoid the rigid stoichiometry assumptions in Section 4.2.3.1, which are hard to justify, we

present here an alternative phenomenological model where reactant and product stoichiometries

are fit parameters. This model, presented in Equations 4.13 - 4.18, attempts to infer signal con-

centrations in an internally consistent way. For the purposes of this section, Helperi(t) for an

autocatalytic module i is defined as the total-Helper concentration for that module at time t.

rBA · (B + A) kBABB−−−−→ pBA · B, rate = kBABB · B ·A (4.13)

rCB · (C + B) kCBCC−−−−→ pCB · C, rate = kCBCC · C · B (4.14)

rAC · (A + C) kACAA−−−−→ pAC ·A, rate = kACAA ·A · C (4.15)

φ
kleakA−−−−→ A, rate = kleakA (4.16)

φ
kleakB−−−−→ B, rate = kleakB (4.17)

φ
kleakC−−−−→ C, rate = kleakC (4.18)

Rate constants kBABB, kCBCC, kACAA are in /M /s; rate constants kleakA, kleakB, kleakC are in M /s.

ri and pi determine effective stoichiometries for the reactants and products, respectively. Along

with the initial conditions (A(0),B(0),C(0)), which are fitted for each experiment, these comprise

the parameters (Θ) of the phenomenological model.

How do we interpret the parameters ri and pi? For a given autocatalytic module, ri is inter-

preted as the average number of reactants consumed per unit consumption of total-Helper species

for that module. Similarly, pi is interpreted as the average number of products released per unit

consumption of total-Helper species for that module.

Interpreting the data. We now outline how, given a parameter set Θ and the data set D con-

taining measurements of total-Helper concentrations, we infer concentrations A(t), B(t), and C(t).
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We define the leak-corrected consumption of total-Helper as below:

FlowΘ,D
BABB(t) := HelperBBs(0)−HelperBBs(t)− kleakB · t (4.19)

FlowΘ,D
CBCC(t) := HelperCCk(0)−HelperCCk(t)− kleakC · t (4.20)

FlowΘ,D
ACAA(t) := HelperAAq(0)−HelperAAq(t)− kleakA · t. (4.21)

This leak correction involves an implicit assumption: that gradual leaks of signal strands arise pri-

marily from the Produce-Helper gradual leak mechanism. This is a good approximation because

the Produce-Helper gradual leak arises from two fuel species which are both at high concentra-

tion, in contrast to the React-second input gradual leak where only the React species is at high

concentration. In addition, for Design 4, the React-second input gradual leaks have a rate constant

of about 1 - 5 /M /s, whereas Produce-Helper gradual leaks have a relatively larger rate constant

between 5 - 15 /M /s.

By taking time derivatives of equations 4.19 - 4.21, we can infer instantaneous rates of total-

Helper consumption through each autocatalytic module.

FlowRateΘ,D
BABB(t) := −dHelperBBs(t)

dt − kleakB (4.22)

FlowRateΘ,D
CBCC(t) := −dHelperCCk(t)

dt − kleakC (4.23)

FlowRateΘ,D
ACAA(t) := −dHelperAAq(t)

dt − kleakA. (4.24)

The interpretation of ri and pi as average number of reactants consumed and products released

per unit consumption of total-Helper provides a clean way of inferring concentrations of signal

strands from measurements of total-Helper concentrations, given a set of model parameters Θ.

AΘ,D(t) = A(0)− rBA · FlowΘ,D
BABB(t) + (pAC − rAC) · FlowΘ,D

ACAA(t) + kleakA · t (4.25)

BΘ,D(t) = B(0)− rCB · FlowΘ,D
CBCC(t) + (pBA − rBA) · FlowΘ,D

BABB(t) + kleakB · t (4.26)

CΘ,D(t) = C(0)− rAC · FlowΘ,D
ACAA(t) + (pCB − rCB) · FlowΘ,D

CBCC(t) + kleakC · t. (4.27)

Model predictions. Given the reactions and rates (4.13 - 4.18), we may generate model predic-
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tions by numerically simulating the following mass action ODEs. We define

FΘ
BABB(t) := kBABB · B(t) ·A(t) (4.28)

FΘ
CBCC(t) := kCBCC · C(t) · B(t) (4.29)

FΘ
ACAA(t) := kACAA ·A(t) · C(t). (4.30)

The mass action ODEs are

(
dA
dt

)Θ
= −rBA · FΘ

BABB(t) + (pAC − rAC) · FΘ
ACAA(t) + kleakA (4.31)(

dB
dt

)Θ
= −rCB · FΘ

CBCC(t) + (pBA − rBA) · FΘ
BABB(t) + kleakB (4.32)(

dC
dt

)Θ
= −rAC · FΘ

ACAA(t) + (pCB − rCB) · FΘ
CBCC(t) + kleakC. (4.33)

Given the initial concentrations of A, B, and C specified in Θ, we may numerically solve the

mass action ODEs above to generate model predictions for A(t), B(t), and C(t). Further, the pre-

dicted curves for A(t), B(t), and C(t) imply a prediction of the instantaneous rates (in nM/hr)

through each autocatalytic module. There is a subtlety involved in this calculation. The instanta-

neous rate (in nM/hr) of consumption of the reactants of each autocatalytic module is calculated

as specified in equations 4.28 - 4.30. However, since we measure total-Helper concentrations, we

would like to calculate the instantaneous rate of consumption of total-Helper species, rather than the

reactants, for each autocatalytic module. Since ri is interpreted as the average number of reactants

consumed per unit total-Helper consumption, all we need to do is to divide equations 4.28 - 4.30 by

the corresponding ri; this gives us the instantaneous rate of consumption of total-Helper species

for each module, according to our model.

Parameter fitting. We simultaneously fit (i) the model predicted signal concentrations (AΘ(t),

BΘ(t), CΘ(t)) to the signal concentrations inferred from data (AΘ,D(t), BΘ,D(t), CΘ,D(t)) and (ii)

the model predicted instantaneous rate of total-Helper consumption for each autocatalytic module

(calculated as FΘ
BABB(t)/rBA and so on) to the same quantity inferred from data using equations

4.22 - 4.24.

We briefly address the fact that the two fitting criteria, (i) and (ii) above, are in different units

(nM and nM/hr respectively). As a quick preliminary solution to this issue, we just add the two
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Parameter Best-fit value

(rBA, rCB, rAC) (1.2 , 0.8, 0.8)

(pBA,pCB,pAC) (2.0 , 1.4, 1.9)

(kleakB, kleakC, kleakA) (2, 2, 6) in /M /s

(kBABB, kCBCC, kACAA) (1.2× 104, 7.9× 103, 6.4× 103) in /M /s

Table 4.1: Best-fit values for parameters from the phenomenological model. The leak rate constants
kleakB, kleakC, kleakA are provided in terms of the equivalent bimolecular Produce-Helper leak rate
constants they imply, assuming Produce and Helper species are at 100 nM each.

error functions corresponding to (i) and (ii) above to obtain the objective function which is sub-

sequently minimized by nonlinear least squares. Essentially, this procedure involves an implicit

weighting arising from the different units. Currently, the optimal error value has a ratio of approx-

imately 20 : 1 in favor of the first component. Further analysis with a more principled choice of

weights may result in better fits.

Interpreting stoichiometric best fit parameters. The best fit values (Θopt) for the parameters

are listed in Table 4.1. The initial concentrations of (A, B, C) for each experiment, which were fitted

around expected values, are omitted for brevity. We now attempt to interpret the stoichiometric

best fit parameters.

Since ri is the average number of reactants consumed per unit of total-Helper consumption,

ri < 1 implies that more than one unit of total-Helper is consumed, on average, per unit consump-

tion of reactants. This indicates the effectiveness of the catalytic Helper mechanism. While at first

glance rBA = 1.2 may be surprising, we point out that in this preliminary analysis we do not have

estimates for the error bars associated with these parameters; therefore, it is hard to interpret the

best fit parameters at face value.

Since pi is the average number of products released per unit of total-Helper consumption,

pi < 2 implies sub-stoichiometric release of products per unit of total-Helper consumed. This

could arise from incompletion effects in the produce step, possibly due to mechanisms similar to

that of Figure 3.13 (b).

Lastly, pi/ri, the average number of products released per unit consumption of reactants, is



115

approximately (1.7, 1.6, 2.2) for the three modules.

Results from the phenomenological model. The results of the data analysis with the phe-

nomenological model are provided in Figures 4.7 and 4.8. In particular, the phase and velocity

plots (panels (e) and (h) of Figure 4.8) clearly illustrate the triangular orbit which is characteristic

of the Displacillator.
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Figure 4.7: a. Concentrations of A, B, and C inferred from Helper concentration measurements
based on the phenomenological model in Section 4.2.3.2. b. Time derivatives of A, B, and C. The
order of the peaks is as expected in experiments with all three initial conditions.

4.3 Mechanistic model of the Displacillator

Given that the Displacillator has been engineered at the level of molecular pathways, where each

strand displacement or toehold exchange reaction can be quantitatively understood, it would be

very satisfying to be able to explain the dynamical behavior of the system directly in terms of

those designed elementary reactions. In particular, our focus in this section is to use a “mecha-

nistic model” to semi-quantitatively explain the temporal features of the data (such as period of

oscillation) in terms of elementary reactions.
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Figure 4.8: Experimental demonstration of the Displacillator, a de novo oscillator based on DNA
strand-displacement. All solid lines (including phase and velocity plots) are measurements or
model-based inferences from experimental data; model predictions are indicated by dashed lines.
The model used is the semi-quantitative phenomenological model presented in Section 4.2.3.2.
a. The 3 autocatalytic modules. b. Measurement of fuel consumption (concentrations of Helper
species) in one experiment. c. Instantaneous reaction rates (nM/hr) for each autocatalytic reaction,
inferred from measurements in (b). d. Model predictions corresponding to the module flow rates
plotted in (c). e. Phase plot comprising the three different trajectories, starting from 3 different
initial points (indicated by squares), shown in Figure 4.7. f. Inferred A, B, C trajectories for the
experiment shown in (b), corresponding to the pale blue trajectory in (e). g. Model predictions
corresponding to the data in (f). h. Velocity plots for the three trajectories shown in (e), which
follow a roughly triangular orbit as expected for this oscillator. Solid circles correspond to the
solid circles in (e) to indicate relationship to initial points. i. Velocity trajectories as a function of
time for the experiment shown in (b), corresponding to the pale blue trajectory in (h). j. Model
prediction corresponding to the data shown in (i).
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4.3.1 Mechanistic model

We now present a mechanistic model of the Displacillator that models each elementary strand

displacement and toehold exchange reaction. The mechanistic model comprises the following re-

actions for the autocatalytic module B + A→ 2B and similar reactions for the other two modules:

B + ReactBABr
kBABr

fwd1←−−−→
kBABr

back

ReactIntBABr + BackBA (4.34)

ReactIntBABr + A kBABr
fwd2−−−−→ FluxABr + WasteBA (4.35)

FluxABr + ProduceABrBs
kABrBs

fwd1←−−−→
kABrBs

back

B + ProduceIntABrBs (4.36)

ProduceIntABrBs + HelperBBs
kABrBs

fwd2−−−−→ B + WasteABrBs (4.37)

In addition, we include the two main gradual leak pathways

ProduceABrBs + HelperBBs
kABrBs

leak−−−−→ B (4.38)

ReactBABr + A kBABr
leak−−−−→ FluxABr. (4.39)

For simplicity, this model does not account for spurious products (of the kind in Figure 3.13)

that could form through these leak pathways and subsequently participate in additional reac-

tions. Versions of this model that hope to quantitatively match data must likely incorporate such

pathways. Further, since incompletion effects are not included in the model, the catalytic-Helper

mechanism is omitted as well. Lastly, we have assumed that the initial leaks have been consumed

entirely by thresholds, and that the thresholds have been entirely exhausted. So, for each ex-

periment, we set initial conditions to be what we would expect assuming that thresholding is

instantaneous.

How do we choose the rate constants for the mechanistic model? In the course of optimiz-

ing the performance of the Displacillator, we experimentally characterized 18 bimolecular rate

constants for the intended strand displacement and toehold exchange reactions involving fuel

and intermediate species, along with the rate constants for the consumption of signal strands by

thresholds. These include all designed strand displacement and toehold exchange reactions except

those involved in the catalytic Helper pathway, which have not been characterized. Along with

the measured rate constants, we use rate constants estimated from gradual leak experiments for
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Figure 4.9: Attempts to explain the temporal dynamics of the Displacillator in terms of elementary
strand displacement and toehold exchange reactions whose rate constants have been character-
ized experimentally (see Section 4.3.3). The mechanistic model predicts much faster oscillations
than observed in experiment (panel b). When augmented with the toehold occlusion effect to ob-
tain the mechanistic-occlusion model, semi-quantitative agreement with the periods of oscillation
observed in experiment is obtained (c).

gradual leak pathways (kABrBs
leak ∼ kBCjCk

leak ∼ 5; kCApAq
leak ∼ 15; kBABr

leak ∼ kACApi2
leak ∼ kCBCj

leak ∼ 1; all

in /M /s).

Figure 4.9 presents predictions of the mechanistic model and experimental data for one run of

the Displacillator. The mechanistic model predicts much faster oscillations than experimentally

observed; the periods of oscillations are strikingly different.

4.3.2 Mechanistic-occlusion model

We wondered if the discrepancy in timescales could be explained by toehold occlusion (Figure 3.14).

The mechanistic model assumes that toehold dissociation, like all unimolecular steps, is effectively

instantaneous. However, each of our toehold and toehold-complements are present in multiple

species, including fuel species at high concentration. Therefore, if toehold dissociation steps are

not fast enough to be assumed instantaneous, two complexes that are supposed to interact fleet-

ingly through toehold hybridization might actually be co-localized for significant time intervals.

When they are co-localized, the toeholds involved would be unavailable for desired reactions,

which could cause a slowdown relative to the mechanistic model. This phenomenon has been

reported elsewhere in the literature [107].

We enumerated, by hand, all such toehold hybridization interactions specified at the domain

level between two species where at least one is a fuel species at high concentration. For species
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involved in the autocatalytic module B + A→ 2B, these interactions are listed below. A generic

variable Oi is used in place of symbols for each distinct pairwise complex. For simplicity, the

hybridization rate kon and dissociation rate koff are assumed to be identical for each interaction.

The following are toehold occlusion interactions arising within the module B + A→ 2B.

HelperBBs + ReactBABr
kon←−→
koff

O1 (4.40)

ProduceABrBs + A kon←−→
koff

O2 (4.41)

ProduceIntABrBs + HelperBBs
kon←−→
koff

O3 (4.42)

ProduceIntABrBs + B kon←−→
koff

O4. (4.43)

The following are toehold occlusion interactions arising between one species from the module

B + A→ 2B and another species from a different module.

BackCB + ReactBABr
kon←−→
koff

O5 (4.44)

ReactACApi2 + BackBA
kon←−→
koff

O6 (4.45)

ProduceIntCApAq + BackBA
kon←−→
koff

O7 (4.46)

ProduceIntABrBs + BackCB
kon←−→
koff

O8 (4.47)

ProduceBCjCk + BackBA
kon←−→
koff

O9 (4.48)

ProduceABrBs + BackACi2
kon←−→
koff

O10 (4.49)

ProduceBCjCk + ProduceABrBs
kon←−→
koff

O11 (4.50)

ProduceCApAq + ProduceABrBs
kon←−→
koff

O12 (4.51)

ProduceBCjCk + ProduceIntABrBs
kon←−→
koff

O13 (4.52)

ProduceIntCApAq + ProduceABrBs
kon←−→
koff

O14. (4.53)

We augmented the mechanistic model with these reactions and similar ones for the other au-

tocatalytic modules to obtain the “mechanistic-occlusion model”. Fixing kon = 2 ∗ 106 /M /s for

convenience, we found that the predictions of the mechanistic-occlusion model are quite sensitive
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to the dissociation parameter koff . For koff = 0.1 /s, for example, we could obtain good semi-

quantitative agreement with the temporal dynamics of the data (see Figure 4.9). These rates imply

a toehold binding ∆G of about 10 kcal/mol, which is within 1.0 - 2.0 kcal/mol of our estimated

toehold energies.

4.3.3 Characterizing individual strand displacement and toehold exchange rates

As mentioned earlier, we experimentally characterized 18 bimolecular rate constants for the in-

tended strand displacement and toehold exchange reactions involving fuel and intermediate species,

along with the rate constants for the consumption of signal strands by thresholds. These include

all designed strand displacement and toehold exchange reactions except those involved in the cat-

alytic Helper pathway, which have not been characterized. These rate constants were measured

in independent experiments where only the relevant species were present (see Section 5.3.2). The

results are summarized in Tables 4.2 and 4.3.

Overall, the rates for different strand displacement and toehold exchange steps vary by as

much as a factor of 30. Yet certain patterns seem to emerge. For the React species, kback is higher

than kfwd2 in all cases, at least by a factor of 2. For the Produce species the opposite is true by at

least a factor of 3. This comparison is important because, for both the React and Produce steps,

kback and kfwd2 represent reactions that compete directly with each other at the intermediate stage

of execution.

We do not fully understand, at this stage, the significance of the rate constants we have mea-

sured in influencing the kinetics of each module and the Displacillator. Informally, the model

predicted plots in Figure 4.9 can vary quite dramatically if some rate constants, such as kfwd1 for

the React species, are varied. It is possible that a formal analysis of sensitivity to parameters is

required to better understand these effects.

4.4 Sequence design and in silico verification

In this thesis, we have demonstrated experimentally that DNA strand displacement is a general

technology for systematically implementing prescribed dynamical behaviors in a test tube. In this

process, we have developed heuristics for sequence design and verification, biophysical under-

standing of desired and spurious strand displacement pathways and experimental tools to assay
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Complex kfwd1 kback kfwd2

ReactACApi2 2.7× 105 1.1× 106 1.4× 105

ReactBABr 1.8× 105 6.2× 105 2.7× 105

ReactCBCj 8.6× 104 9.8× 105 3.0× 105

ProduceCApAq 2.1× 105 2.2× 105 1.2× 106

ProduceABrBs 6.0× 105 4.6× 105 1.5× 106

ProduceBCjCk 1.6× 106 2.4× 105 2.6× 106

Table 4.2: Measured rate constants (all in /M /s) for designed strand displacement and toehold
exchange reactions in the Displacillator. The reactions corresponding to the notation for rate con-
stants are specified in Equations 4.34 - 4.37. Note that rate constants involving the catalytic Helper
pathway have not been characterized.

Threshold Measured rate constant ( /M /s)

kThA 7.4× 105

kThB 1.7× 106

kThC 1.2× 106

Table 4.3: Measured rate constants (all in /M /s) for the consumption of signal species (Ap, Br,
and Cj) by thresholds (ThA,ThB, and ThC, respectively) .



122

and debug in vitro chemical networks. Here we summarize what we learned about sequence de-

sign and in silico verification while engineering experimental DNA strand displacement systems

based on our CRN-to-DNA scheme. We believe that while these design rules are likely particu-

larly relevant to our CRN-to-DNA scheme, the general principles may apply to any DNA strand

displacement system.

First, given the importance of toehold strengths in determining strand displacement and toe-

hold exchange kinetics, we recommend that toeholds be designed first, using software that allows

the design of short strands that are iso-energetic as well as orthogonal (such as StickyDesign [234]).

In particular, it might be helpful to consider the different local contexts for each toehold (internal,

external, with or without overhangs or dangles).

Once the toeholds are designed, we suggest designing the rest of the system using software

that can accommodate negative design. This is because, given that all intended complexes and

intermediates are well-formed, negative design to prevent spurious interactions may need more

emphasis. Also, closing helices and junctions with strong C-G base pairs, wherever possible, will

likely minimize gradual leak rates.

For both design steps above, we strongly recommend using ‘ACT’ alphabet for the “top”

strands. Violating ACT alphabet should be done with caution, if at all, since multiple problems can

arise both due to unintended secondary structure in single-strands and unexpected leak pathways

arising out of a short but strong (2 or 3 G-C base pairs) spurious match.

Once multiple candidate sequence designs have been obtained, an in silico verification step

where all candidate designs are evaluated on heuristic metrics of the kind we discuss in Chapter 3

may help identify designs with the fewest potential problems. In general, we believe that this

verification step is likely more important than the choice of design algorithm or criteria.

Lastly, once strong candidate designs are identified, it might be a good idea to test the corre-

sponding designs with 5’-3’ orientations reversed. This is because, while we believe that initial

leaks are likely caused by synthesis errors, we do not have confidence in our ability to predict the

optimal 5’-3’ orientation. Therefore, in case a design is found where both orientations satisfy the

verification step, it might be informative to try both orientations experimentally. It is important

to remember at this stage that reversing 5’-3’ orientations may perturb the thermodynamics of

toeholds and other critical regions; those checks will need to be repeated for the reversed designs.

We conclude this section with a necessary caveat. The design rules summarized here have not
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yet been rigorously tested. We are currently collaborating with James Parkin and Erik Winfree

on streamlining software tools that incorporate these design rules and testing new “from scratch”

sequence designs for our Displacillator. This effort is currently in progress and preliminary results

are encouraging.

4.5 Challenges in scaling up CRN-to-DNA approaches

Scaling up the CRN-to-DNA approach investigated in this thesis for engineering much larger and

more complex CRNs is an attractive but difficult task. Here, we briefly discuss the multiple chal-

lenges that would need to be addressed to make progress towards that goal.

In our efforts, we chose to design orthogonal toeholds. That design principle has the advan-

tages of minimizing cross-talk between fuel species belonging to different reactions and the prob-

lem of toehold occlusion. However, there are a finite number of orthogonal toeholds available at

any (reasonable) toehold length. So, as the desired CRN gets larger, we may be constrained to

re-use toeholds, which will exacerbate cross talk and toehold occlusion.

Since the strand displacement system is implemented in a well-mixed solution, the number

of pair-wise interactions possible in the test tube scales quadratically with the size of the DNA

implementation. Therefore, even if we achieve perfect orthogonality for all our toeholds, fleeting

binding of different complexes due to “toehold-only interactions” will cause a significant fraction

of toeholds to be occluded at any given time.

Both the problems discussed above may be mitigated by lowering the concentrations of the

fuel species. However, that will necessarily scale down the concentration range of the intended

dynamical behavior. In addition, the intended dynamical behavior would occur at much lower

rates and take much longer to observe, which might pose an experimental challenge.

Implementing CRNs tethered to a surface, such as that of DNA origami, has been suggested as

a possible solution [239–242] to some of the challenges described above, since limiting interactions

to species that are co-localized can reduce spurious interactions and allow domains to be re-used

multiple times.

However, there remain three general obstacles that are common to both CRNs in solution and

CRNs on surface. First, kinetic sequence design is an unsolved problem, since predicting DNA

hybridization, branch migration, fraying, and dissociation kinetics from DNA sequence itself is a
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challenge [148, 153, 192]. However, without scientific understanding and algorithms that permit

hybridization and strand displacement kinetics to be predicted from DNA sequence within a factor

of 20 (at the very least), it is hard to imagine that large CRNs with prescribed dynamic behavior

can be reliably engineered. This is because multiple rounds of re-design will likely be required just

to adjust rate parameters.

Second, scaling up will require (i) better mechanistic understanding of initial and gradual leaks,

so that they can be mitigated further and (ii) design principles to modify the domain-level specifi-

cations of current CRN-to-DNA schemes for increased fault tolerance and robust performance in

the face of molecular non-idealities.

Third, enabling sustained dynamic behavior will require mechanisms for continuous “power

supply”. By this, we mean that either macroscopic or molecular solutions would need to be found

for the problem of replenishing fuel species and removing the buildup of waste molecules.

The challenges we have outlined here lead to a natural question. Given the “real-world” con-

straints involved in engineering CRNs with our CRN-to-DNA technology (such as spurious path-

ways, limited number of orthogonal toehold sequences, quadratic scaling of toehold occlusion,

and so on), what sub-class of all formal CRNs can we reasonably hope to engineer in a test tube?

At this time, we are not sure what the answer to this question is. However, with further work

on understanding the experimental constraints and their implications for our design pipeline, an-

swers to this question will begin to emerge.
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5 Appendix

5.1 Appendix to Chapter 1

Table 5.1 lists the references indexed in Figure 1.2.
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Index Reference
R1 Kallenbach et al. [156]
R2 Chen and Seeman [243]
R3 Yurke et al. [145]
R4 Yurke and Mills [146]
R5 Shin and Pierce [244]
R6 Shih et al. [245]
R7 Seelig et al. [105]
R8 Zhang et al. [143]
R9 Yin et al. [160]

R10 Rothemund [132]
R11 Rothemund et al. [142]
R12 Han et al. [246]
R13 Wickham et al. [247]
R14 Wei et al. [134]
R15 Ke et al. [248]
R16 Teichmann et al. [249]
R17 Gerling et al. [250]
R18 Qian and Winfree [107]
R19 Qian et al. [251]
R20 Wickham et al. [252]
R21 Chen et al. [112]
R22 Srinivas [253]
R23 Zhang et al. [254]

Table 5.1: References in Figure 1.2.
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5.2 Appendix to Chapter 2.

5.2.1 Introduction.

b tfwd b

S X kr(tfwd)

kf kb
kbI J

bb

Y L
t*fwd

tfwd
+ +

trev trevkr(trev)

kf

Figure 5.1: The phenomenological model of Zhang and Winfree [147] for reversible toehold exchange. For
simplicity, they assume the hybridization rate constants for both toeholds to be the same (kf ). kf and kb are
fitted to the data.

The phenomenological model of Zhang and Winfree [147] directly treats reversible toehold

exchange (Figure 5.1), which is a generalization of strand displacement. In the main text, we

restricted their model to irreversible strand displacement without any fundamental changes.

5.2.2 Intuitive Energy Landscape model.

Zero toehold case. The IEL for the zero toehold case (h = 0) is illustrated in Figure 5.2. The main

modification is the addition of a fraying step (state A to A′, at the cost of one base pair stack -

|∆Gbp|), which permits a collision leading to the formation of a base pair between the substrate-

incumbent duplex and the invader. Such a collision essentially results in the displacement of

one incumbent base by the invader (state B′). The remaining states are identical to the case with

a toehold at least 1-base long, except that the branch migration domain is shorter by one base

(length b − 1 rather than b). Since the substrate-incumbent duplex needs to fray at either end to

permit strand displacement from that end, the collision rate includes a multiplicative factor of

2 × e−|∆Gbp|/RT , which accounts for the average fraction of duplexes frayed at either end. So,

the complexes join at a rate kbi × u × (2 × e−|∆Gbp|/RT ) rather than just kbi × u, where u is the

concentration.

We now approximate keff(0) in terms of keff(1), which will prove useful once we derive expres-

sions for keff(h) for h > 0. As we pointed out earlier, once the first base pair forms between the

frayed substrate-incumbent duplex and the invader, the situation is identical to the h = 1 case

with the toehold just bound, except with a branch migration domain of length b− 1 rather than b.
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Assuming b is long enough that b− 1 ≈ b,

keff(0) ≈ (2 e−|∆Gbp|/RT ) keff(1) . (5.1)

Choosing kuni. We choose kuni such that the rate of dissociation of the last base pair of the

toehold is approximately equal to the rate of fraying of every other base pair. So, we set

kuni e
−|∆Gbp|/RT ≈ kbi e

(−|∆Gbp|+|∆Gassoc|)/RT u0, (5.2)

which yields

kuni ≈ kbi e
|∆Gassoc|/RT u0 (5.3)

where u0 = 1 M is the reference concentration.

Modeling keff. Conceptually, we may split the kinetics of strand displacement into two parts:

the concentration-dependent, bimolecular part involving collision and formation of the first base

pair of the toehold (state A to B) and the unimolecular part comprising the formation of the remain-

ing base pairs of the toehold (states B to C) and branch migration (states C to F). The unimolecular

part is modeled as a random walk on the free energy landscape starting at B, and ending either at

A (no displacement) or at E (successful displacement). In the low-concentration regime, the uni-

molecular part finishes (one way or the other) much faster than the rate of collision; so, we model

the effective rate constant of strand displacement, keff, as

keff = kv × p (5.4)

where kv is the rate constant for the formation of the first toehold base pair and p = P(reaching E before A starting at B)

is the probability of successful displacement starting at B. Since the IEL assumes a collision rate of

kbi × u, kv = kbi.

Calculating p. First, given the rates of the individual transitions as specified in the kinetic

model, the probabilities of transition from each state to its neighbors can be calculated. Let pi,j be

the probability of going from state i to state j. Then, we choose

pi,i+1 = ki,i+1

ki,i+1 + ki,i−1
, (5.5)

pi,i−1 = ki,i−1

ki,i+1 + ki,i−1
. (5.6)

Since we are interested in the probability that the random walk finishes at one end rather than the



129

A 1 2 4 6 8 10 12 14 16 18 20

0

10

Number of strand displacement steps completed

∆ 
G

°
 (k

ca
l/m

ol
)

Free energy landscape for toehold length 0

B’

E

F
A

A’

D

∆
G

b
o
x
(k

ca
l/

m
ol

)

Figure 5.2: IEL free energy landscape at 25 ◦C for a 0-base toehold. First, the invader and the substrate-
incumbent complex are unconstrained by each other (A). Then, the substrate-incumbent complex frays at
one end (A′). This fraying step, at the cost of one base pair stack (|∆Gbp|), is necessary to enable a collision
leading to a base pair, since no toehold is present. Once such a collision occurs, the first base of the incumbent
has effectively been displaced by the invader (B′). The remaining states are identical to the positive toehold
case.
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other, we use absorbing boundaries:

pi,i = 1 for i = A, E (A′ for 0 toehold) . (5.7)

Given these transition probabilities, p can be calculated analytically using the method of Rudolph

[173] for calculating absorption probabilities for a 1-dimensional random walk with absorbing

boundaries.
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Figure 5.3: Strand displacement kinetics predicted by the IEL under varying conditions, for both Metropolis
and Kawasaki unimolecular rate models. (A) IEL (2.6, 0) (B) IEL (2.6, 1.2) (D) for the sequence dependent free
energy landscape predicted by the NUPACK energy model with Dangles = “Some” (shown in (C)). None
of these variations is consistent with experimental data [147]. (C) States A–F pertain to Figure 2.3 in the
main text. The sequence dependent landscape is much “rougher” than the IEL, but this “roughness” goes no
further in accounting for the data (D).
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Alternate unimolecular rate model. We also considered the Kawasaki [174] method for as-

signing unimolecular transition rates in the IEL:

kij = kuni × e−(∆Gbox(j)−∆Gbox(i))/2RT (5.8)

kji = kuni × e−(∆Gbox(i)−∆Gbox(j))/2RT (5.9)

As with the Metropolis rate model, this choice guarantees detailed balance and thus that the sys-

tem eventually converges to a Boltzmann distribution:

Prob(i) = 1
Q

e−
∆Gbox(i)

RT where Q =
∑
i

e−
∆Gbox(i)

RT .

Once again, we choose kuni such that the rate of dissociation of the last base pair of the toehold

is approximately equal to the rate of fraying of every other base pair. For the Kawasaki method,

we have

kuni e
−|∆Gbp|/2RT ≈ kbi e

(−|∆Gbp|+|∆Gassoc|)/RT u0, (5.10)

which yields

kuni ≈ kbi × e(−|∆Gbp|/2 + |∆Gassoc|)/RT u0 . (5.11)

With kuni ≈ 1.8× 107 /s as calculated above, the Kawasaki method consistently predicts a slightly

smaller acceleration in keff with toehold length than the Metropolis [172] method (see Figure 5.3);

therefore our conclusions about constraints on IEL parameters that are necessary to match exper-

imental data are robust to this choice. In the analysis below, the Metropolis method is assumed

throughout.

Analytical approximations for keff(h). The IEL is simple enough to yield itself to an approxi-

mate analysis that permits intuitive understanding of the model. For h > 1, we may approximate

keff(h) as:

keff(h) ≈ kbi × pzip × pbm|toe(h) (5.12)

where pzip is the probability that the full toehold “zips up” once the first base pair is formed,

kbi×pzip is the bimolecular rate constant for all the base pairs in the toehold to form and pbm|toe(h)

is the probability that, once the toehold has zipped up, the incumbent is displaced before the

toehold dissociates.

For h = 1, there are no other bases in the toehold to zip up, so keff(1) may simply be approxi-
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mated as

keff(1) ≈ kbi × pbm|toe(1). (5.13)

We shall now estimate pbm|toe(h). Let kfirst be the rate at which the first base of the incumbent is

displaced by the invader, once the toehold is bound. Let kr(h) be the rate at which the toehold

of length h dissociates from the state in which it is fully bound (i.e. state C of Figure 2.3 in the

main text). We estimate kfirst and kr(h) later. The probability of displacing the first base of the

incumbent before the toehold dissociates is simply kfirst/(kfirst + kr(h)).

For simplicity, we assume that once (b − 1) bases of the incumbent have been displaced, the

last base always dissociates. This approximation allows us to think about branch migration as a

flat random walk. Our approximation is reasonable because the probability that the invader dis-

sociates without completing strand displacement after displacing (b − 1) bases of the incumbent

can only be 0.5, in the worst case (for a 0-base toehold, with kuni >> kbi), and hence introduces

negligible error on a logarithmic scale. Moreover, if branch migration is indeed significantly slow

relative to fraying, we would expect that the last few bases of the incumbent would fray, leading

to the dissociation of the incumbent even before branch migration completes. Once the first base

of the incumbent has been displaced, the probability of displacing the remaining bases of the in-

cumbent before going back to the toehold-only-bound state is 1/(b−1), according to the gambler’s

ruin analysis (see Section 14.2 of Feller [169]). With a probability of (b − 2)/(b − 1), we return to

the toehold bound state - from where, by definition, displacement succeeds with a probability of

pbm|toe(h).

Therefore, we have pbm|toe(h) ≈(
kfirst

kfirst + kr(h)

)[
1

b− 1 + b− 2
b− 1 × pbm|toe(h)

]
(5.14)

which yields

pbm|toe(h) ≈ kfirst

kfirst + (b− 1)kr(h) . (5.15)

Therefore, equation 5.12 yields

keff(h) ≈ kbi × pzip ×
kfirst

kfirst + (b− 1)kr(h) . (5.16)

With some algebra, equation 5.16 yields

keff(h) ≈ kbi × pzip

1 + (b− 1)kr(h)
kfirst

(5.17)
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for h > 1.

Analyzing equation 5.17 provides intuition about the dependence of keff(h) on h. For long

toeholds, i.e. in the saturation limit, (b− 1) kr(h)
kfirst

<< 1; this yields the saturation value

keff(∞) ≈ kbi × pzip. (5.18)

For short toeholds, i.e in the “sloping” part of the keff(h) curve, (b− 1) kr(h)
kfirst

>> 1 and this yields

keff(h) ≈ kbi pzip kfirst

(b− 1) kr(h) . (5.19)

We now estimate pzip. For h > 1, we assume, for simplicity, that the formation of a second base

pair of the toehold will guarantee zippering. Then, pzip may be approximated as

pzip ≈
kuni

kuni + kr(1) . (5.20)

Note that kr(1) is just the rate for the simple bimolecular dissociation step, and so we have

kr(1) ≈ kbi λ (5.21)

where λ is defined as

λ = e−(|∆Gbp|−∆Gassoc)/RT u0 . (5.22)

We now estimate kr(h) for h > 1. Once a toehold of length h is fully bound, (h − 1) uphill

fraying steps and 1 dissociation step need to occur for the toehold to dissociate. Therefore,

kr(h) ≈ kfray(h− 1)× (1− pzip) (5.23)

where kfray(h−1) is the rate at which (h−1) base pairs of the toehold fray, starting from the toehold

fully bound state, to leave the invader bound by 1 base of the toehold (state C to B in Figure 2.3 in

the main text).

Clearly,

kfray(h− 1) = kuni e
−(h−1) |∆Gbp|/RT . (5.24)

From equations 5.20, 5.23 and 5.24, we get

kr(h) ≈ e−(h−1) |∆Gbp|/RT × 1
1/kuni + 1/kr(1) . (5.25)

We also recall that in our particular parameterization we chose kuni such that kr(1) ≈ kfray(1),

although we do not use or need that condition in this analysis.
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Lastly,

kfirst = 1
2 × kuni × e−∆Gs+p/RT (5.26)

where ∆Gs+p is defined as

∆Gs+p = ∆Gs + ∆Gp (5.27)

and ∆Gs is the sawtooth amplitude and ∆Gp is the plateau height.

Substituting for kr(h) from equation 5.25, kfirst from equation 5.26 and pzip from equation 5.20

into equation 5.19, we may approximate keff(h) for h > 1 in the pre-saturation regime. We also

assume that b is long enough that b− 1 ≈ b. With some algebra, we get

keff(h) ≈ kuni e
−(∆Gs+p−h|∆Gbp|)/RT η

2 b (5.28)

where η is defined as

η = 1
e∆Gassoc/RT u0

. (5.29)

We now approximate keff(1) using equation 5.13. Using equations 5.15, 5.21 and 5.26, we get

keff(1) ≈ ρ kbi

ρ+ 2 b λ e∆Gs+p/RT
(5.30)

where ρ is defined as

ρ = kuni/kbi. (5.31)

Having already assumed that b − 1 ≈ b, we may approximate keff(0) in terms of keff(1) using

equation 5.1. Along with equation 5.30, this yields

keff(0) ≈ 2 e−|∆Gbp|/RT ρ kbi

ρ+ 2 b λ e∆Gs+p/RT
. (5.32)

Although equations 5.30 and 5.32 seem different in form from equation 5.28, that is only be-

cause equation 5.28 assumes the pre-saturation (“sloping”) regime, whereas equations 5.30 and

5.32 are more general. For reasonable values of ρ and long enough b, such as the default IEL

values (ρ ≈ 25, b = 20), we may use the approximation

ρ+ 2 b λ e∆Gs+p/RT ≈ 2 b λ e∆Gs+p/RT . (5.33)

This yields

keff(1) ≈ kuni e
−(∆Gs+p−|∆Gbp|)/RT η

2 b (5.34)
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and

keff(0) ≈ kuni e
−∆Gs+p/RT η

b
(5.35)

which are consistent in form with equation 5.28, but for the factor of two for h = 0.

We define

Ah2,h1 = log10(keff(h1))− log10(keff(h2)) (5.36)

to be the orders of magnitude acceleration in keff as toehold length increases from h1 to h2. We

now use equations 5.18 and 5.32 to study the dependence of A∞,0 on ρ, ∆Gs+p and b. With some

algebra, equations 5.18 and 5.32 yield

A∞,0 ≈ µ+ log10

(
ρ+ 2 b λ e∆Gs+p/RT

ρ+ λ

)
(5.37)

where µ is defined as

µ = log10

(
e|∆Gbp|/RT /2

)
≈ 0.9 . (5.38)

Dependence on ρ = kuni/kbi. To analyze the effect of changing ρ onA∞,0, let us choose a priori

reasonable values for the other parameters: b = 20, ∆Gs = 1.5 stacks (2.6 kcal/mol) and ∆Gp = 0.

Then, equation 5.37 becomes

A∞,0 ≈ 0.9 + log10

(
ρ+ 4000
ρ+ 1.4

)
(5.39)

whose behavior is qualitatively similar to the numerical curve plotted in Figure 5.4. Moreover, the

difference between A∞,0 at ρ = ∞ and ρ = 0 as predicted by equation 5.39 is approximately 3.5,

which is consistent with the total variation in A15,0 as numerically plotted in Figure 5.4.

Dependence on ∆Gs+p. For the default kuni and kbi values used in the IEL, ρ/(ρ + λ) may be

neglected in equation 5.37 to yield

A∞,0 ≈ µ+ log10

(
2 b e∆Gs+p/RT λ

ρ+ λ

)
. (5.40)

This yields an approximately linear dependence on ∆Gs+p:

A∞,0 ≈ c1 + c2 ∆Gs+p (5.41)

where

c1 = µ+ log10

(
2 b λ
ρ+ λ

)
(5.42)
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that matches the experimentally observed value of 6.5 orders of magnitude.

and

c2 = 1
RT loge(10) . (5.43)
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Figure 5.5: Orders of magnitude acceleration in keff between toehold lengths 15 and 0 (A15,0), as a function
of the length of the branch migration domain, as predicted by IEL(5.3, 2.0).
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Dependence on b. From equation 5.40, we have

A∞,0 ≈ log10(b) + c3 (5.44)

where

c3 = µ+ log10

(
2 e∆Gs+p/RT λ

ρ+ λ

)
. (5.45)

The logarithmic dependence of A∞,0 on b is qualitatively similar to the numerical curve of A15,0

plotted in Figure 5.5.

Estimating branch migration step times. In order to compare with experimentally inferred

values [165, 166], we define average branch migration step time (tbm) as the average time taken

for a single step of branch migration in either direction. For the IEL and AEL, tbm is calculated as

tbm = 1
kbm

(5.46)

where

kbm = kuni × e−∆Gs/RT . (5.47)

5.2.3 Augmented Energy Landscape model

The IEL assumes the initial attachment of all toeholds occurs at the same rate. It is possible to

consider alternatives, such as an attachment rate that is linear in toehold length. At the cost of

some of its intuitive simplicity, the IEL can be augmented to include such a linear dependence of

the binding rate on toehold length. We outline the Augmented Energy Landscape model (AEL)

below. The state space of the model is identical to the IEL, although we now include a multiplicity

factor in the free energy of states with a partially formed toehold. This accounts for the fact that

there are several ways in which to form an incomplete toehold. Note that the AEL represents the

0-base toehold system in an identical fashion to the IEL.

Free-energy model. The AEL free-energy model is identical to that of the IEL except for states

in which the toehold is partially formed. We adjust the free energy of these states by a factor

∆Gmult(n) = −RT ln(h− n+ 1), (5.48)

where n is the number of base pairs present and h is the total toehold length. This factor accounts

for the multiplicity of states with n base pairs (assuming the toehold base pairs form a continuous

helix).
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Rate model. The AEL has an identical rate model to the IEL, except for transitions involving

states in which the toehold is partially formed. The transition from n to n − 1 base pairs with

the toehold could occur by fraying a base pair at either end of the partially formed duplex. We

therefore assign these processes a rate

kn,n−1 = 2kuni e−|∆Gbp|/RT . (5.49)

The requirement of detailed balance fixes the rates in the opposite direction:

kn−1,n = 2kuni
h+ 1− n
h+ 2− n. (5.50)

Attachment to the toehold is assumed to occur in h equally likely ways: the rate of attachment

is then

k0,1 = h kbi u0 e−∆Gvolume/RT , (5.51)

where u0 = 1 M is the reference concentration. Once again, detailed balance fixes the reverse rate.

k1,0 = kbi u0 e(−|∆Gbp|+∆Gassoc)/RT . (5.52)

The remaining consideration is the relation between kuni and kbi. Once again, we assume that

breaking of the final base pair in the toehold occurs at the same rate as other base pairs are dis-

rupted, giving

kuni = kbiu0 e∆Gassoc/RT . (5.53)

The AEL is simulated in a manner exactly analogous to Multistrand (see Supplementary Section

S4), using a Gillespie algorithm [73] and utilizing “first step” mode in which the strands are ini-

tialized in the state with 1 base pair, and the system is evolved to see if displacement is successful.

The success probability is then multiplied by the initial binding rate to find the overall reaction

rate. The probability is estimated using at least 104 successful trajectories for each case.

Performance of the AEL. Overall, these modifications to the IEL result in a self-consistent

model with an initial binding rate that is linear in the length of the toehold. As with the IEL, the

AEL has free parameters kbi, ∆Gs and ∆Gp, and the overall acceleration with increased toehold

length is largely determined by ∆Gs + ∆Gp. We fix ∆Gp = 2.0 kcal/mol in accordance with

experiment (Figure 7 of the main text), and adjust kbi and ∆Gs to fit the data of Zhang and Winfree

[147]. We find that kbi = 3.30× 105/M/s and ∆Gs = 3.60 kcal/mol (implying kuni = 8.17× 106/s)



139

Toehold length kAEL
eff (/M/s) kexpt

eff (/M/s)
0 1.4 1.4
1 12 8.2
2 214 144
3 3.7× 103 1.1× 103

4 6.2× 104 5.1× 104

5 6.7× 105 9.6× 105

6 1.7× 106 2.4× 106

15 4.8× 106 4.8× 106

Table 5.2: Comparison of AEL predictions and experimental results from Zhang and Winfree [147]
for the rate of displacement as a function of toehold length.

give a good fit to experiment, as summarised in Table 5.2.

5.2.4 Secondary structure kinetics model

Multistrand [153] essentially employs a Gillespie algorithm [73] for generating statistically correct

trajectories of a stochastic Markov process. Code implementing the Multistrand model is available

for public download (http://www.dna.caltech.edu/Multistrand/).

Choice and timing of next transition. Suppose the box is in state i. Then, the next state m is

chosen randomly from the states j which are adjacent to i (i.e. they differ from i by only one base

pair), weighted by the rate of transition to each.

P(state m is chosen) = kim∑
j kij

(5.54)

The time taken for the transition from i tom to occur (∆t) is chosen randomly from an exponential

distribution with rate parameter λ, where λ is the total rate of transitioning from the current state

i. That is,

P(time taken is ∆t) = λe−λ∆t (5.55)

where λ =
∑
j kij .

First step mode. We will describe first step mode for a general reaction of the form:

A+B
keff−−→ C +D (5.56)

For a strand displacement reaction, which involves intermediate steps, this model assumes a low-

concentration regime where the bimolecular step occurs on a much longer timescale than the uni-

http://www.dna.caltech.edu/Multistrand/
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molecular steps; equation 5.56 may then be used to accurately capture the dynamics.

The first step simulation mode begins with the bimolecular join step where A and B collide and

form a base pair. The secondary structures of A and B are obtained by Boltzmann sampling the

non-pseudoknotted secondary structure space for each molecule. If the bimolecular reaction rates

are slow enough for the reactants to be in equilibrium, this sampling is valid. Once the secondary

structures of A and B have been sampled, one of the available join steps is chosen at random and

the simulation proceeds. As more trajectories are run, different initial secondary structures for A

and B and different join steps are explored.

Note that we are not directly simulating the bimolecular join steps, whose rates are propor-

tional to the simulated concentration (and are hence much slower than the unimolecular steps).

This allows Multistrand to focus on the trajectories where a collision does occur, rather than spend-

ing most of the time simulating unimolecular reactions while waiting for the rare bimolecular

reaction.

As simulation of a trajectory proceeds, two distinct end states are tracked: the molecules falling

apart into the reactants (one of the A + B configurations), or forming the products (one of the C

+ D configurations). Each trajectory simulated may be classified as one that failed (if the former

happens) or one that reacted (if the latter happens).

Our simulations yield the following data: first passage times for trajectories that reacted (∆tireact),

first passage times for trajectories that failed (∆tifail), the number of trajectories that reacted (Nreact)

and failed (Nfail), and the estimated average rate of collision (kcoll in /M/s) of the reactants A and

B. For each trajectory, the rate of collision is calculated as Nfirst× kbi×u, where Nfirst is the number

of possible first base pairs between the sampled secondary structures of A and B for that trajectory

and u is the simulated concentration. kcoll is estimated as the mean of the rates of collision for the

trajectories simulated.

The following model is used to analyze simulation data. We assume that molecules A and

B collide to either form a reactive molecule that will yield the products C and D (in our case,

successful displacement) or a nonreactive molecule that will fall apart into the reactants A and B

in some time (in our case, unsuccessful displacement).

A+B
k1−→ AB

k2−→ C +D (5.57)

A + B
k′1−−⇀↽−−
k′2

AB
′

(5.58)
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Our model (equations 5.57, 5.58) is fitted as follows.

k1 = Nreact

Nreact +Nfail
× kcoll (5.59)

k′1 = Nfail

Nreact +Nfail
× kcoll (5.60)

k2 = 1
E[∆tireact]

(5.61)

k′2 = 1
E[∆tifail]

(5.62)

Assuming equation 5.56 is valid, keff may be predicted [153] based on our model as follows.

keff = 1
∆tcorrect

× 1
u

(5.63)

where ∆tcorrect is the expected time taken for a successful reaction to occur. ∆tcorrect is calculated

from the expected time for a failed collision to fall apart into the reactants (∆tfail), and the expected

time for a reactive collision to produce the products (∆treact). ∆tfail and ∆treact depend on the

expected time for any collision to occur (∆tcoll). These quantities are calculated as follows.

∆tcorrect = ∆tfail ×
k′1
k1

+ ∆treact (5.64)

∆tfail = ∆tcoll + 1
k′2

(5.65)

∆treact = ∆tcoll + 1
k2

(5.66)

∆tcoll = 1
(k1 + k′1)× u (5.67)

In the low-concentration regime, the resolution of the three-stranded complex (resulting in

successful displacement of the incumbent or dissociation of the invader) may be assumed to be

effectively instantaneous compared to the rate of the bimolecular collision step. That is, we may

assume kcoll × u << k2, k
′
2. Indeed, we make this assumption since we are inferring a bimolecular

rate constant (equation 5.56). With that assumption, the general formulation (equation 5.63) may

be reduced to

keff = kcoll × p (5.68)

where p is the probability that the collision results in successful displacement of the incumbent.

Simulation details. We simulated the “average strength toehold” experimental system of

Zhang and Winfree [147], measuring strand displacement rates as a function of toehold length
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Figure 5.6: Multistrand simulations at 25 ◦C with different choices: (A) (i) in treating free energy con-
tributions due to dangles [178] (options “Some”(default), “None” and “All” in the NUPACK [123] energy
model [120]) and (ii) with substrate overhangs only as long as the toehold on the invader - i.e. matching
length bottom toeholds on the substrate, rather than the full 15 base overhang used by Zhang and Winfree
[147] (B) different ways of assigning absolute transition rates for unimolecular steps while satisfying detailed
balance. Note that none of the variations are able to account for the experimental data points (in black) from
Zhang and Winfree [147]; solid black line is their phenomenological model. Standard errors for Multistrand
simulations are under 1% (not shown).

Strand Sequence
Substrate 5′- GAAGTGACATGGAGA CGTAGGGTATTGAATGAGGG -3′

Incumbent 5′- CCCTCATTCAATACCCTACG -3′
Invader 5′- CCCTCATTCAATACCCTACG TCTCCATGTCACTTC -3′

Table 5.3: Sequences used in Multistrand simulations of strand displacement, with toeholds in italics. For
toehold lengths less than 15, the toehold of the invader is truncated to the appropriate length, measured from
the 5’ end. For simulations with a matching length substrate overhang, the toehold of the substrate was also
truncated to match the toehold of the invader.

at 25 ◦C. We omitted the downstream step used for experimental detection purposes, and deleted

the extra domain in the incumbent which was used only in that step. The sequences we used are

provided in Table 5.3. Simulations were performed in first step mode.

Multistrand variations. The experimental system of Zhang and Winfree [147] employs a sub-

strate strand with a 15-base overhang. Depending on the length of the invading toehold, a subset

of this overhang is complementary to the toehold. The fact that the substrate overhang is longer

than the toehold it binds to could conceivably have two effects: (i) stabilizing the first toehold

base pair between the invader and the substrate through a dangle free energy contribution and/or

(ii) allowing unexpected pathways of displacement through a larger set of possible first base pairs.

Multistrand simulations with a matching length substrate overhang (truncated to match the length

of the invading toehold) are closer to experiment by only 0.6 orders of magnitude (Figure 5.6(A)).
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Figure 5.7: The dependence of Multistrand predictions on kuni/kbi (red circles indicate default value of
kuni/kbi). Error bars are 3∗SE long where SE is the standard error. (A) Orders of magnitude acceleration in
keff between toehold lengths 15 and 0 (A15,0), as predicted by Multistrand, as a function of log10(kuni/kbi).
IEL(2.6, 0) predictions are shown for comparison. Even implausibly low values of kuni/kbi do not result in
acceleration that matches the experimentally observed value of 6.5 orders of magnitude. (B) log10(keff) vs
log10(kuni/kbi) for toehold lengths 15 and 0. The surprising non-monotonicity in (A) at the lowest value of
kuni/kbi is observed to arise from the disproportionately large decrease in log10(keff) for toehold length 15 in
(B). We hypothesize that this is likely a sequence dependent effect.

This suggests that possible effects (i) and (ii) are not large enough to explain the discrepancy be-

tween Multistrand predictions and experimental measurements of strand displacement kinetics.

Because the energy models used by Multistrand [153], NUPACK [123], Mfold [184], and Vienna

RNA [183] do not have a consensus method for handling dangle energy terms, we ran Multistrand

simulations with each of the three options (Figure 5.6(A)). For each dangles option, kbi and kuni

were separately calibrated to the same data (hybridization, zippering) used for calibrating the

Metropolis method, as described in Schaeffer [153]. Only minor differences were observed.

We also performed Multistrand simulations using the Kawasaki [174] method for assigning

unimolecular transition rates, for which kbi and kuni were also recalibrated; again this yielded

nearly identical results (Figure 5.6(B)).

Dependence on the ratio kuni/kbi. When the invader is bound to the substrate by just one base

of the toehold, it can either dissociate, leading to unsuccessful displacement, or form another base

pair of the toehold and proceed towards zippering. Since dissociation is a bimolecular process, its

rate is influenced by kbi, while the rate of the unimolecular zippering process is influenced by kuni.

Decreasing kuni/kbi increases the rate of the former relative to the latter. Although this is true for

both short and long toeholds, short toeholds reach the state where the invader is bound to the sub-
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strate by just one base more often than long toeholds. So, decreasing kuni/kbi disproportionately

reduces the displacement rate of short toeholds and increases the orders of magnitude acceleration

due to toehold length predicted by Multistrand (Figure 5.7).

5.2.5 Measuring relative stability of strand displacement intermediates

DNA sequence design. DNA oligonucleotide sequences were designed by modifying sequences

from Zhang and Winfree [147] by hand to get orthogonal domains d and e. Secondary structures

of oligonucleotides and complexes were verified using the NUPACK web server [123] to be as

intended.

Buffer conditions. DNA oligonucleotides were stored at 4 ◦C in TE buffer (10 mM Tris.HCl

pH balanced to 8.0, with 1 mM EDTA.Na2, purchased as 100x stock from Sigma-Aldrich). Prior to

experimentation, TE buffer containing 62.5 mM MgCl2 was added at a ratio of 1:4 to the sample,

resulting in a final MgCl2 concentration of 12.5 mM, out of which 1 mM is bound to EDTA. This

buffer was used to prepare and store all oligonucleotide complexes, and to conduct all temperature

dependent absorbance experiments, and will be referred to as “TE/Mg2+” buffer.

Annealing and purification of complexes. All DNA oligonucleotides were purchased from

Integrated DNA Technologies (IDT). Oligonucleotides of length 60 bases or less were ordered with

HPLC purification, while those longer than 60 bases were ordered with IE-HPLC purification.

Concentrations were estimated from absorbance at 260 nm (measured using a Thermo Scientific

NanoDrop cuvette-free spectrophotometer) using calculated extinction coefficients [219].

All complexes Xi:Yj were prepared by annealing Xi (at an approximate concentration of 25

µM) with Yj (at 20% excess) in TE/Mg2+ buffer. All annealing operations were performed in an

Eppendorf Mastercycler Gradient thermocycler. The samples were cooled at a constant rate from

95 ◦C to 20 ◦C in 90 min.

All complexes were purified by nondenaturing (ND) polyacrylamide gel electrophoresis (PAGE)

by running the samples on 12% gel at 150 V for approximately 6h. The acrylamide (19:1 acry-

lamide:bis) was diluted from 40% acrylamide stock purchased from Ambion. ND loading dye

containing xylene cyanol FF in 50% glycerol was added to all samples, resulting in a final gyc-

erol concentration of 10% by volume. The appropriate bands were cut out and eluted in 1 mL

of TE/Mg2+ buffer for 2 days. Purified complexes were quantitated from absorbance at 260 nm

(measured using a Thermo Scientific NanoDrop cuvette-free spectrophotometer) using calculated

extinction coefficients [219]. Typical yields ranged from 40% to 60%.
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Figure 5.8: Raw absorbance data (at 260 nm), while annealing, at a concentration of 200 nM. Measurements
were taken every 0.1 ◦C between 20 ◦C and 90 ◦C. The lower temperature transition is the (bimolecular)
formation of the complex, while the higher temperature transition is the (unimolecular) formation of the
hairpin. Data acquired by annealing and melting are essentially superimposable.

Temperature-dependent absorbance experiment protocols. Temperature-dependent absorbance

experiments were performed using a Model 14 UV-Vis spectrophotometer, equipped with a water

bath temperature controller, from AVIV Biomedical, Lakewood, NJ. UV absorbance at 260 nm be-

tween 20 ◦C and 90 ◦C was measured with a 1 nm bandwidth using 1.6 mL quartz cuvettes. The

temperature step was set at 0.1 ◦C/min with a 0.1 ◦C dead-band and an equilibration time of 0.25

minutes. All cuvettes were thoroughly cleaned before each experiment: each cuvette was washed

15 times in distilled water, once in 70% ethanol, another five times in distilled water, and finally

once more in 70% ethanol.

One temperature-dependent absorbance experiment consisted of: (i) heating from 20 ◦C to

90 ◦C, before taking any measurements; (ii) annealing from 90 ◦C to 20 ◦C while measuring ab-

sorbance every 0.1 ◦C; (iii) holding for 2h at 20 ◦C; (iv) melting from 20 ◦C to 90 ◦C while mea-

suring absorbance every 0.1 ◦C. All heating and annealing steps in an experiment were at the

temperature step mentioned above (0.1 ◦C/min). An example of raw temperature-dependent ab-

sorbance data at 200 nM obtained while annealing (step ii) is provided in Figure 5.8.

For each complex, one sample was prepared at each of four different concentrations. For each

of those samples, two runs of the temperature-dependent absorbance experiment described above

were performed.
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Concentration (nM) Upper normalization range ( ◦C)
100 [61, 63]
150 [63, 65]
200 [64, 66]
300 [65, 67]
400 [65, 67]
500 [65, 67]

Table 5.4: Melt fraction for each complex is calculated from smoothed absorbance data by normalizing the
absorbance in the [20, 35] ◦C range to 0 and the absorbance in the concentration-dependent upper normal-
ization range, specified in this Table, to 1. Our results are robust to this choice; this was verified by repeating
the analysis with [65, 67] ◦C as the upper normalization range across all concentrations.

Two state model. We analyze the temperature-dependent absorbance data using a two-state

model [191]: each molecule is assumed to be either in the fully bound state (Xi:Yj) or the fully

dissociated state (Xi + Yj).

The raw absorbance data was smoothed by a moving average of 30 points (corresponding to a

temperature interval of 3 ◦C). The “melt fraction” or fraction of complex dissociated at tempera-

ture T (f(T )) was calculated by normalizing the average absorbance of the bound state (between

[20 ◦C, 35 ◦C]) to 0 and that of the dissociated state (between a concentration-dependent upper

normalization range - see Table 5.4) to 1. Note that the upper normalization range at a given con-

centration is the same for all complexes. Our results are robust to the choice of upper normalization

range; this was verified by repeating the analysis with [65, 67] ◦C as the upper normalization range

across all concentrations.

Given the initial concentration c of the complex Xi:Yj, the melt fraction f(T ) at temperature T

in the two-state model can be calculated from (∆H◦,∆S◦) as follows. Consider the reaction Xi +

Yj � Xi:Yj, at temperature T . Let us assume that the initial concentration c of Xi:Yj dissociates

to Xi and Yj at concentration x each. Then, Xi:Yj is at concentration c − x. We know that the

equilibrium constant Keq(T ) is related to f(T ) as

Keq(T ) = c− x
x2 = 1− f(T )

cf(T )2 (5.69)

Solving the quadratic equation for f(T ) ≥ 0, we get

f(T ) =
−1 +

√
1 + 4cKeq(T )

2cKeq(T ) (5.70)

Since Keq(T ) = exp(−∆G◦(T )
RT ), we may predict the entire temperature-dependent melt fraction

curve by varying T appropriately.
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Figure 5.9: Example posterior probability distributions obtained by Bayesian analysis over (A) (∆H◦,∆S◦)
space and marginals over (B) ∆G◦ at 55 ◦C, (C) ∆H◦ and (D) ∆S◦ for complex X10:Y10. All ∆G◦55 and ∆H◦
values are in kcal/mol while ∆S◦ values are in kcal/K/mol. Note that the 99% confidence interval is much
more narrow for ∆G◦55 compared to ∆H◦ and ∆S◦.
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For each complex, we infer (∆H◦,∆S◦) (and hence ∆G◦25, ∆G◦55) by fitting the predicted

melt fraction curves to smoothed and normalized absorbance data across different concentra-

tions. By comparing the free energies of different complexes, we can infer the contribution of

the poly-T overhangs. We do this in two ways: a Bayesian analysis and a descriptive “leave-one-

concentration-out” fit.

Bayesian analysis. We essentially discretize the (∆H◦,∆S◦) space into a grid and calculate

the likelihood that our experimental data for each complex (all data traces at four concentrations)

arose from each candidate pair in the discretization, assuming an independent Gaussian noise

model. Normalizing the likelihood yields the posterior distribution for ∆H◦, ∆S◦ and ∆G◦ (e.g.

Figure 5.9). We calculate posterior means and 99% confidence intervals, under the assumptions of

the two-state model and our Bayesian framework.

In other words, given candidate values of the standard enthalpy and entropy of formation,

(∆H◦0 ,∆S◦0 ), for a particular complex, smoothed and normalized absorbance data DTi,cj at a cer-

tain temperature Ti and concentration cj is assumed to be related to the predicted melt fraction

fTi,cj
as follows:

DTi,cj = fTi,cj + ξTi,cj (5.71)

where

ξTi,cj ∼ N (0, σ2
Ti,cj

)

is independent additive Gaussian noise. That is, ξTi,cj and ξTl,ck
are assumed to be independent

if Ti 6= Tl or cj 6= ck. σ2
Ti,cj

is calculated as the sample variance of smoothed and normalized

absorbance data points at concentration cj in a neighborhood around Ti (three points on either

side of Ti).

With these assumptions, the likelihood of observing the data given the estimate (∆H◦0 ,∆S◦0 ) is

simply

L(∆H◦0 ,∆S◦0 ) =
∏
Ti,cj

φfTi,cj
,σ2

Ti,cj

(DTi,cj
) (5.72)

where φµ,σ2 is the probability density function of the Gaussian distribution with mean µ and vari-

ance σ2.

Starting with a uniform prior over the (∆H◦, ∆S◦) grid, the posterior probability distribution
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Figure 5.10: ∆G◦ of formation (at 55 ◦C) of complexes in the strand displacement snapshot study (A) or the
local overhang study (B). Error bars in black indicate Bayesian posterior means and 99% confidence intervals.
Error bars in red indicate means and standard deviations of leave-one-concentration-out least square fits.
NUPACK predictions with dangles options “some” and “none” are provided for comparison.

is proportional to the likelihood (this standard result from Bayesian statistics is justified later). So,

normalizing the likelihood of observing our data, we can calculate the posterior distribution:

P (∆H◦0 ,∆S◦0 ) = L(∆H◦0 ,∆S◦0 )∑
∆H◦

i
,∆S◦

j

L(∆H◦i ,∆S◦j )
(5.73)

In practice, we first perform a coarse discretization of (∆H◦,∆S◦) space in order to identify the

region containing non-zero values of the posterior probability; we then perform a fine discretiza-

tion of that region and evaluate the posterior probability over it.

Once we have the posterior probability over (∆H◦,∆S◦) space, we find the smallest region

containing 99% of the probability, and then evaluate marginal posterior probability distributions

for ∆H◦, ∆S◦, ∆G◦25 and ∆G◦55 (Figure 5.9). The 99% confidence intervals are relatively much

narrower for ∆G◦55 than ∆H◦ or ∆S◦. This shows that our data permits accurate comparison of

the stability of our complexes through ∆G◦, but cannot easily separate the enthalpic and entropic

contributions. Also note that error bars and 99% confidence intervals are much narrower for ∆G◦55

(Figure 5.10) compared to ∆G◦25 (Figure 2.8 in the main text). This is to be expected because the

former temperature is closer to the experimental melting temperature of our complexes. With the

assumptions in the two-state model and our Bayesian framework, we report posterior means and

99% confidence intervals for quantities of interest (Table 5.6, Figure 5.10).
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Relationship between posterior probability and likelihood. We now recall that with a uni-

form prior, the posterior probability distribution is proportional to the likelihood. For a more

detailed introduction, see Gelman et al. [220]. Suppose θ is a vector of parameters we want to

infer, and that we have data D which is informative about θ. Then, we know

P(θ,D) = P(θ)× P(D|θ) = P(D)× P(θ|D) (5.74)

Therefore the posterior distribution P(θ|D) is obtained by

P(θ|D) = P(θ)× P(D|θ)
P(D) (5.75)

Here, P(θ) is constant because we start with a uniform prior. P(D) =
∑
θ P(θ) × P(D|θ) is also

independent of θ. P(D|θ) is nothing but the likelihood. Hence, with a uniform prior, the posterior

distribution is proportional to the likelihood.

Leave-one-concentration-out analysis. This is a simple and descriptive way of analyzing the

data, which essentially serves as a sanity check. Data from each complex is analyzed separately

to infer the free energy of formation of that complex. We measured temperature-dependent ab-

sorbance data at four concentrations. Here, we sequentially leave out data from one concentration

at a time, thus generating four datasets, each containing data from three concentrations. For each

dataset, we perform a simultaneous nonlinear least squares fit (using the Levenberg-Marquardt

algorithm, implemented by a built-in MATLAB function) of the predicted melt fraction curves

to the smoothed and normalized absorbance data across all three concentrations present in the

dataset. This procedure generates four estimates of (∆H◦,∆S◦) of formation for each complex,

one for each leave-one-concentration-out dataset. We then calculate ∆G◦25 and ∆G◦55 for each of

those four estimates and report the mean and standard deviation, for each complex (Table 5.5).

5.2.6 Coarse-grained molecular modeling

A Coarse-grained molecular model. OxDNA and its interaction potentials have been described

in detail by Ouldridge [154]. Code implementing OxDNA is available for public download (http:

//dna.physics.ox.ac.uk/). OxDNA represents DNA as a string of nucleotides, where each nu-

cleotide (sugar, phosphate and base group) is a rigid body with interaction sites for backbone,

stacking and hydrogen-bonding interactions. The potential energy of the system can be decom-

http://dna.physics.ox.ac.uk/
http://dna.physics.ox.ac.uk/
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Complex ∆G◦25, avg ∆G◦25, sd ∆G◦55, avg ∆G◦55, sd
X20:Y00 -18.00 0.15 -10.35 0.023
X19:Y01 -16.48 0.14 -9.66 0.013
X18:Y02 -16.15 0.11 -9.62 0.031
X10:Y10 -16.03 0.14 -9.19 0.033
X02:Y18 -16.36 0.08 -9.32 0.029
X01:Y19 -16.44 0.16 -9.49 0.014
X00:Y20 -17.96 0.09 -10.24 0.027
X00:Y00 -19.17 0.31 -11.02 0.058
X01:Y01 -17.78 0.06 -9.98 0.017
X02:Y02 -16.92 0.27 -9.54 0.008
X05:Y05 -16.22 0.28 -9.32 0.028

Table 5.5: Leave-one-concentration-out mean and standard deviation for ∆G◦ at 25 ◦C and 55 ◦C, for each
complex. All values in kcal/mol.

Complex E[∆H◦] ∆H◦CI E[∆S◦] ∆S◦CI E[∆G◦25] ∆G◦25, CI
X20:Y00 -93.2 [-97.8, -88.8] -0.252 [-0.266, -0.239] -17.99 [-18.42, -17.56]
X19:Y01 -84.9 [-89.1, -81.0] -0.229 [-0.242, -0.217] -16.49 [-16.85, -16.16]
X18:Y02 -80.9 [-84.8, -77.3] -0.217 [-0.229, -0.206] -16.15 [-16.49, -15.84]
X10:Y10 -83.2 [-86.2, -80.4] -0.226 [-0.234, -0.217] -15.98 [-16.25, -15.73]
X02:Y18 -83.9 [-92.8, -80.1] -0.227 [-0.255, -0.215] -16.21 [-16.84, -15.87]
X01:Y19 -87.5 [-91.6, -83.5] -0.238 [-0.250, -0.226] -16.54 [-16.99, -16.19]
X00:Y20 -97.0 [-99.8, -89.8] -0.264 [-0.273, -0.242] -18.16 [-18.47, -17.54]
X00:Y00 -100.3 [-104.6, -96.2] -0.272 [-0.285, -0.260] -19.18 [-19.63, -18.74]
X01:Y01 -95.8 [-103.5, -88.1] -0.262 [-0.285, -0.238] -17.82 [-18.49, -17.16]
X02:Y02 -89.9 [-94.3, -85.6] -0.245 [-0.258, -0.232] -16.92 [-17.30, -16.55]
X05:Y05 -83.9 [-92.0, -78.7] -0.227 [-0.252, -0.211] -16.17 [-16.78, -15.75]

Table 5.6: Bayesian posterior means and 99% confidence intervals for ∆H◦, ∆S◦ and ∆G◦25 for each com-
plex. ∆H◦ and ∆G◦25 values are in kcal/mol while ∆S◦ is in kcal/K/mol.
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Vcoaxial stack

Vbackbone

Vstack

VH.B.

Vcross stack

Figure 5.11: A model DNA duplex, with stabilising interactions depicted schematically. The backbone sites
are shown as spheres, the bases as ellipsoids. Backbone colouring indicates strand identity. All nucleotides
also interact with repulsive excluded volume interactions. The coaxial stacking interaction acts like a stacking
interaction between bases that are not immediate neighbours along the backbone of a strand.

posed as

V =
∑
〈ij〉

(
Vb.b. + Vstack + V

′

exc

)
+

∑
i,j /∈〈ij〉

(VHB + Vcr.st. + Vexc + Vcx.st.) , (5.76)

where the first sum is taken over all nucleotides that are nearest neighbors on the same strand and

the second sum comprises all remaining pairs. The interactions between nucleotides are schemat-

ically shown in Figure 5.11. The backbone potential Vb.b. is an isotropic spring that imposes a

finite maximum distance between backbone sites of neighbours, mimicking the covalent bonds

along the strand. The hydrogen bonding (VHB), cross stacking (Vcr.st.), coaxial stacking (Vcx.st.)

and stacking interactions (Vstack) are anisotropic and explicitly depend on the relative orientations

of the nucleotides as well as the distance between the relevant interaction sites. This orientational

dependence captures the planarity of bases, and drives the formation of helical duplexes. The

coaxial stacking term is designed to capture stacking interactions between bases that are not im-

mediate neighbours along the backbone of a strand. Bases and backbones also have excluded

volume interactions Vexc or V
′

exc.

Hydrogen-bonding interactions are only possible between complementary (A-T and C-G) base-

pairs, but no other sequence-dependence is included in oxDNA. Consequently, the interactions

were fitted to reproduce melting temperatures of ‘average’ oligonucleotides, obtained by averag-
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ing over the parameters of SantaLucia’s nearest-neighbour model [118], and the structural and

mechanical properties of double- and single-stranded DNA.

oxDNA does not have any explicit electrostatic interactions. It was fitted to reproduce DNA be-

havior at salt concentration [Na+] = 0.5 M, where the electrostatic properties are strongly screened,

and it may be reasonable to incorporate them into a short-ranged excluded volume. Possible is-

sues related to salt concentrations are discussed in the main text. It should be noted that the

oxDNA neglects several features of the DNA structure and interactions due to the high level of

coarse-graining. Specifically, the double helix in the model is symmetrical rather than the grooves

between the backbone sites having different sizes (i.e., major and minor grooving), and all four

nucleotides have the same structure.

Simulation Techniques. The thermodynamic properties of the molecular model are obtained

by averaging over the Boltzmann distribution

ρ(rN ,pN ,qN ,LN ) ∝ e(−βH(rN ,pN ,qN ,LN )). (5.77)

Here H is the system Hamiltonian, which is a function of positional and angular particle coordi-

nates rN and qN and their generalized momenta pN and LN . As the terms containing pN and

LN in H are separable and can be analytically integrated out, the probability of a certain config-

uration is proportional to a Boltzmann factor for its potential energy, exp(−βV (rN ,qN )). Obtain-

ing kinetic properties requires an additional choice of dynamics. The Virtual Move Monte Carlo

(VMMC), and Langevin Dynamics (LD) algorithms used for thermodynamic and kinetic proper-

ties respectively are outlined in the following sections.

Virtual Move Monte Carlo. Monte Carlo techniques involve randomly generating trial moves of

a system consisting of a set of particles, and accepting those moves with probabilities that ensure

the simulation samples from the distribution given in equation 5.77. The widely used Metropolis

Monte Carlo algorithm (MMC) [172] attempts random moves of single particles, and accepts those

moves with a probability

Pacc(µ→ ν) = min{1, exp (−β(V ν − V µ))}, (5.78)

where µ and ν represent initial and final states respectively. Although simple to implement, MMC

can struggle to equilibrate strongly interacting systems as moves of single particles tend to gener-

ate large increases in energy, and are therefore rejected.
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Figure 5.12: Examples of initial ‘single particle’ seed moves attempted in our implementation of the VMMC
algorithm. (A) Initial state. (B) New state obtained from (A) after rotating the central nucleotide about its
backbone site. (C) New state obtained from (A) after translating the central nucleotide. In each of the new
states, the flanking nucleotides act as a reference: they have exactly the same position and orientation as in
(A). Once an initial ‘seed’ move such as (B) or (C) has been selected, clusters are grown from this seed in the
manner outlined by Whitelam et al. [200].

The VMMC algorithm [199, 200] overcomes this problem by generating clusters that depend

on energy changes resulting from attempted moves (we use the variant presented in the appendix

of Whitelam et al. [200]). A random single particle move is chosen, and energy changes due to that

move are calculated with all neighbours of the seed particle. Those particles for which the energy

is increased are probabilistically added to the cluster, and move together with the seed particle.

The process is then repeated with neighbours of the newly added particles, until no more new

links are formed. Due to the statistical biases introduced during cluster building, a more complex

acceptance factor than equation 5.78 is required in order to satisfy detailed balance.

In the context of the molecular model studied in this work, a ‘single particle’ is a nucleotide,

and the attempted moves are translation of a whole nucleotide and rotation of a nucleotide about

its backbone site. These moves are illustrated in Figure 5.12.

Umbrella sampling. Despite the efficiency of VMMC, obtaining accurate statistics for the free-

energy landscape of displacement and the stability of a duplex can be difficult. Equilibration

can be accelerated by flattening free-energy barriers with an artificial biasing weight W (rN ,qN )



155

[202]. A lower barrier means transitions occur more quickly, and equilibration is accelerated. The

thermodynamic expectation of any variable A follows from the biased sample obtained as

〈A〉 =
∫

drNdqNA(rN ,qN )e−βV (rN ,qN )∫
drNdqNe−βV (rN ,qN )

=
∫

drNdqN A(rN ,qN )
W (rN ,qN )W (rN ,qN )e−βV (rN ,qN )∫

drNdqN 1
W (rN ,qN )W (rN ,qN )e−βV (rN ,qN )

= 〈A(rN ,qN )/W (rN ,qN )〉W
〈1/W (rN ,qN )〉W

. (5.79)

Here 〈〉W indicates the expectation found by sampling from the biased distribution

W (rN ,qN ) exp(−βV (rN ,qN )). For simulations in this paper an initial W (rN ,qN ) was chosen

from experience, and improved by hand as required.

Langevin Dynamics. Langevin Dynamics is an approach for generating diffusive motion of

coarse-grained models with implicit solvent. The principle is that the solvent exerts both random

forces and dissipative drag on the solute, and that the two are related by a fluctuation-dissipation

relation to ensure that the steady-state distribution is given by equation 5.77. Newton’s equations,

with the addition of these solvent-mediated forces, can then be integrated to give dynamical tra-

jectories. In this work, we use the quaternion-based algorithm of Davidchack et al. [201] as an

efficient methodology for simulating rigid bodies.

To use this algorithm, it is necessary to specify a friction tensor relating the drag forces experi-

enced by a particle to its momenta. For simplicity, we assume each nucleotide interacts with the

solvent in a spherically symmetric manner, meaning that the task is reduced to identifying linear

and rotational damping coefficients, γ and Γ. We choose values of γ = 0.59 ps−1 and Γ = 1.76 ps−1.

These values are around one to two orders of magnitude smaller than would be inferred for a

objects the size of nucleotides in a fluid with the viscosity of water. Lower friction coefficients

accelerate dynamics, which would have been prohibitively slow otherwise, but still reproduce

diffusive motion. It is reasonable to assume that, for the comparison of relative rates of similar

processes, this choice will not be overly important given the number of approximations already

inherent in the oxDNA. Indeed, simulations with γ = 5.9 ps−1 and Γ = 17.6 ps−1 showed no mea-

surable difference in the probability of successful displacement for a 3-base toehold once attached.

Furthermore, the sequence of states visited during unbiased VMMC simulations provides another

(less rigorous) approximation to dynamics. These simulations give a somewhat lower success rate
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of displacement from a toehold-bound state than LD. The net effect, however, is simply a shift-

ing of the start of the plateau by around half a base pair, and the qualitative arguments are still

valid. These results suggest the findings presented here are not strongly sensitive to the choice

of dynamics. Simulations reported in this work were performed with a time step of 5.13 fs. As

shown by Ouldridge [154], such a time step reproduces the average energies of a duplex and the

hairpin-folding kinetics obtained with much smaller integration time steps.

Forward flux sampling. Forward flux sampling (FFS) allows the calculation of the flux between

two local minima of free energy, and also sampling from the ensemble of trajectories that link

the two minima [203, 204]. The term ‘flux’ from (meta)stable state A to state B has the following

definition.

Given an infinitely long simulation in which many transitions are observed, the flux

of trajectories from A to B is ΦAB = NAB/(τfA), where NAB is the number of times

the simulation leaves A and then reaches B, τ is the total time simulated and fA is the

fraction of the total time simulated for which state A has been more recently visited

than state B.

The concept of flux is therefore a generalization of a transition rate for processes that are not instan-

taneous: it incorporates the time spent in intermediate states betweenA andB. In our simulations

of displacement, state A is the initial configuration of incumbent bound to substrate, with invad-

ing strand unattached, and B is the state with the invading strand bound to the substrate with the

incumbent strand unattached. The three-stranded complexes involved in branch migration are

intermediate states.

In the experimental work of Zhang and Winfree [147], bimolecular rate constants for strand

displacement are measured using bulk systems at low concentrations (∼nM). In our simulations,

we use three strands in a periodic cell of volume 1.67 × 10−20 L. The periodic boundary condi-

tions allow us to mimic a bulk system, and the volume used corresponds to a concentration of

approximately 100 µM for each strand. If the simulation time spent in intermediate states were

negligible, fluxes could then be taken directly as instantaneous reaction rates, allowing bimolec-

ular rate constants to be inferred and compared to experiments. At such a high concentration as

100 µM, however, we find that the time scale for resolving a three-stranded complex (when either
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Figure 5.13: Schematic illustration of FFS. The space is divided into different values of the order parameter
Q by interfaces, with Q values indicated by numbers in the figure. We wish to estimate the flux from Q =
−2 to Q = Qmax = 3. (A) First stage, estimating the flux across the interface λ0

−1 between Q = −1 and
Q = 0. Circles indicate crossings of the interface that contribute to the flux; only positive crossings are
counted, and only the first crossing since leaving Q = −2. (B) Subsequent stages, estimating the probability
of reaching interface λQ

Q−1 from λQ−2
Q−1. In this example, two trajectories are launched from each point at the

prior interface. These trajectories end either by successfully reaching λQ
Q−1 , or by failing and returning to

λ−1
−2.

displacement is completed, or the invading strand detaches) can be a significant contribution to

the overall displacement reaction time. It is reasonable to assume that the time required to resolve

the three-stranded complex does not scale with simulation concentration, and therefore should

not contribute to rate constants at the low concentrations typical of experiment. To make a fair

comparison to experiment, therefore, we must not include time spent in three-stranded complexes

in our estimate of the flux. Mathematically, this corresponds to redefining fA so that it doesn’t

include time spent in three-stranded intermediates. The measurements of flux thus recorded are

reported in the main text as transition rates, as the assumption of instantaneous transitions for a

dilute solution is implicit in the measurement process.

FFS is illustrated schematically in Figure 5.13. We first discuss FFS generally, before specifying

the implementation for our system. We require an order parameter Q that measures the extent of

the reaction, such that non-intersecting interfaces λQQ−1 can be drawn between consecutive values

of Q. We define the lowest value of Q as Q = −2 because the procedure for interfaces λQQ−1 with

Q > 0 is distinct from that for Q ≤ 0. Initially, simulations are performed that begin in the lowest

value of Q and the flux of trajectories crossing the surface λ0
−1 (for the first time since leaving

Q = −2) is measured. Note that the simulation is not restarted when trajectories cross λ0
−1.

The total flux of trajectories from Q = −2 to the alternative minima (Q = Qmax) is then cal-

culated as the flux across λ0
−1 from Q = −2, multiplied by the conditional probability that these

trajectories reach Q = Qmax before returning to Q = −2, P (λQmax
Qmax−1|λ0

−1). This probability can

be factorized into the product of the probabilities of trajectories starting from the interface λQQ−1
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reaching the interface λQ+1
Q before returning to Q = −2

P (λQmax
Qmax−1|λ

0
−1) = ΠQmax

Q=1 P (λQQ−1|λ
Q−1
Q−2). (5.80)

The simulation then proceeds by randomly loading microstates which correspond to the crossing

of λ0
−1, and using these as initial points from which to estimate P (λ1

0|λ0
−1). The process is then it-

erated for successive interfaces, allowing the estimation of flux and the construction of trajectories

sampled from the distribution of transition pathways.

Simulation implementation.

Kinetics of displacement. Three strands of DNA (substrate, incumbent and invading strand, with

sequences as given in the Table 5.7) were simulated in a periodic cubic cell of 1.67 × 10−20 l, at

a temperature of T = 25◦C, using the LD algorithm with FFS. Strands were initialized with the

incumbent bound to the substrate and the invading strand separate, and equilibrated for 0.513 µs.

Given the diffusion constant of model DNA (∼ 10−9 m2s−1 for our system with γ = 0.59 ps−1 and

Γ = 1.76 ps−1), this is approximately the time required for the reactant DNA molecules to diffuse

by the length of the simulation cell. It is also far longer than the decorrelation time of the potential

energy of the reactants (around 1 ns).

To simplify the sampling, we used an approach in which only the expected base pairs between

the incumbent and the substrate or the invading strand and the substrate are given non-zero bind-

ing strength - we shall refer to these base pairs as correct base pairs. In a full system, incorrect

base pairs can potentially contribute to association processes, typically through the formation

of metastable misbonded structures that then relax into the intended configuration [192]. The

metastability of these misbonded structures would make them difficult to incorporate into the FFS

simulations of displacement. As the sequences used by Zhang and Winfree [147] were deliberately

designed to minimize the occurrence of misbonded configurations, we expect that this simplifica-

tion should have minor systematic effects on our measurements. We also tested this assumption

by measuring the rate at which two strands, corresponding to a full invader with a toehold of

six bases and the 15-base toehold domain of the substrate, formed the intended 6-base-pair toe-

hold. In one case we considered only native interstrand interactions, in the other we allowed all

possible complementary base pairs. We found that allowing non-native base pairs increased asso-

ciation rates by approximately 50%, a small effect given the range of relative displacement rates

considered in this work. More details are provided in the following sections.
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Duplex Sequence (5′–3′)
Substrate GACATGGAGACGTAGGGTATTGAATGAGGG

Incumbent TCCCTCATTCAATACCCTACG
Invader CCCTCATTCAATACCCTACG[TCTCCAT]

Table 5.7: Sequences used in simulations of strand displacement. Bases in italics constitute the primary
branch migration domain. The bases in square brackets indicate those that are added to create a toehold.

The order parameterQ used for FFS up to the attachment of the invading strand to the substrate

is the same for all toehold lengths, and the definition is given in Table 5.8. For this parameter, a

potential correct base pair between the invading and substrate strands is counted as nearly formed

if

• The separation of hydrogen bonding sites is ≤ 0.85 nm.

• The hydrogen-bonding potential consists of a separation dependent factor multiplied by a

number of modulating angular factors. At most one of these factors that contributes multi-

plicatively to the hydrogen-bonding energy is zero.

• The hydrogen-bonding energy is less negative than −2.98 kcal mol−1.

In this context, a ‘correct’ base pair is a base pair that is expected in the final substrate/invading

strand duplex. Physically, these conditions mean that the bases are close and fairly well aligned,

but not forming a strong base pair.

For higher values (Q > 4), the order parameter definition depends on toehold length. For

shorter toeholds, a greater number of interfaces are needed to measure the flux accurately. Succes-

sive values ofQ correspond to increasing numbers of correct base pairs (with a hydrogen-bonding

energy more negative than −2.98 kcal mol−1) between the invading strand and the substrate. Fi-

nally, the maximum value of Q corresponds to the invading strand having the maximum number

of base pairs with the substrate, and all correct base pairs for the incumbent and substrate strand

having a distance of at least 2.56 nm between hydrogen-bonding sites. The explicit definitions of

Q > 4 for each toehold are given in Table 5.9.

For each toehold length, 100 independent simulations were performed to measure the initial

flux. In each simulation, 10 states at the interface λ0
−1 were collected, giving 1000 in total (a typi-

cal number in FFS simulations [203, 204]). Crossings of the λ0
−1 interface were saved with a 10 %

probability, meaning that ∼ 100 crossings were observed in total for each independent simulation.

Saving states with only a 10 % probability ensures that the 1000 states collected are more statisti-
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Order parameter Q Separation d/nm Nearly-formed bp n Formed bp b

Q = −2 d > 5.11 0 0
Q = −1 5.11 ≥ d > 3.42 0 0
Q = 0 3.42 ≥ d > 2.56 0 0
Q = 1 2.56 ≥ d > 1.71 0 0
Q = 2 1.71 ≥ d > 0.85 0 0
Q = 3 d ≤ 0.85 0 0
Q = 4 d ≤ 0.85 n ≥ 1 0

Table 5.8: Order parameter definitions for early stages of FFS simulations of displacement, up to the stage
of attachment of the invading strand to the substrate. The separation d is the minimum distance between
hydrogen-bonding sites over all potential correct base pairs in the invading and substrate strands.

Q 0,1 2 3 4

5 b = 1 b = 1 1 ≤ b < 3 1 ≤ b < 4
6 2 ≤ b < 4 2 ≤ b < 5 3 ≤ b < 8 4 ≤ b & Q 6= Qmax
7 4 ≤ b < 10 5 ≤ b < 9 8 ≤ b & Q 6= Qmax Q = Qmax
8 10 ≤ b & Q 6= Qmax 9 ≤ b & Q 6= Qmax Q = Qmax
9 Q = Qmax Q = Qmax

Q 5 6 7

5 1 ≤ b < 5 1 ≤ b < 6 1 ≤ b < 7
6 5 ≤ b & Q 6= Qmax 6 ≤ b & Q 6= Qmax 7 ≤ b & Q 6= Qmax
7 Q = Qmax Q = Qmax Q = Qmax

Table 5.9: Order parameter definitions for the later stages of FFS simulations of displacement. b is the
number of base pairs between substrate and invading strand with hydrogen-bonding energy more negative
than −2.98 kcal mol−1. Q = Qmax is defined as b having its maximum value (toehold length plus branch
migration domain length) and all correct base pairs for the incumbent and substrate strand having a distance
of at least 2.56 nm between hydrogen-bonding sites.
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cally independent than otherwise. For each subsequent interface, a large number of trajectories

were launched and those that reached the next interface before returning to Q = −2 were saved.

The number of attempts and successes for each interface are given in Table 5.10.

Uncertainties in the measurements can be estimated in the following manner. As 100 indepen-

dent simulations were performed for each toehold length to measure the initial flux, the standard

error can be estimated in the usual way. Assuming we have obtained a representative set of states

at each interface, the later stages can be modelled as Bernoulli trials – the probability of success

measured after N attempts has a variance of p(1− p)/N , where p is the true probability of success.

The measured p can then be used to estimate the standard error on p for each stage. The errors

for individual stages can then be added in quadrature, and overall errors are given alongside the

overall fluxes in Table 5.10. Note that this estimation of errors assumes that the set of states at

each interface is a representative sample of the true distribution. As such, this error estimate is a

lower bound on the true uncertainty. In particular, the assumption will be weakest for the 0-base

toehold, where the number of completely independent reactive trajectories is small. However,

given that the relative rates for different toehold lengths in the exponential regime are approxi-

mately consistent with what would be expected from the known thermodynamics of oxDNA, and

that the overall difference between the shortest and longest toeholds is larger than six orders of

magnitude, errors due to measurement uncertainty are unlikely to affect our conclusions.

In some simulations involving the longer toeholds, complete (and long-lived) binding to the

toehold occurred during the initial measurements of the flux across λ0
−1. In a conventional imple-

mentation of FFS [203, 204], the time spent in these states would be included in the estimate of the

flux. As stated in the main text, however, for comparison to dilute systems we wish to ignore time

spent in three-stranded complexes. Therefore these simulations were ended early, and the time

spent bound to the toehold was disregarded. These binding events are not useless, however: the

frequency with which they occurred can be compared to the predictions of FFS. The number of un-

solicited binding events (9 in total for ∼ 0.63 ms of total simulation time for toeholds of length 4, 5,

6 and 7) is consistent with the predictions of FFS (∼ 15 ms−1), suggesting that the implementation

of FFS is reliable.

Simulations of association allowing non-native base pairs. We measured the rate at which two

strands, corresponding to a full invader with a toehold of six bases and the 15-base toehold do-

main of the substrate (see Table 5.7) formed the intended 6-base-pair toehold, both with and with-
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Target Toehold length
interface 0 1 2 3

λ0
−1 9581 (181 µs) 10400 (201 µs) 10532 (191 µs) 9851 (175 µs)

λ1
0 10000 / 4031 10000 / 4406 10000 / 4187 10000 / 4264
λ2

1 10000 / 4607 10000 / 4716 10000 / 4588 10000 / 4627
λ3

2 10000 / 2304 10000 / 2468 10000 / 2635 10000 / 2721
λ4

3 10000 / 1415 10000 / 1973 10000 / 2436 10000 / 2405
λ5

4 50000 / 179 30000 / 745 25000 / 728 20000 / 765
λ6

5 30000 / 526 15000 / 1877 3000 / 942 4500 / 1036
λ7

6 60000 / 289 50000 / 315 16001 / 462 2000 / 261
λ8

7 10000 / 1025 5000 / 325 2500 / 319 200 / 50
λ9

8 300 / 149 300 / 131 300 / 92

flux and 4.97× 10−3 0.292 7.06 210
error / s−1 6.5× 10−4 3.4× 10−3 0.89 31

Target Toehold length
interface 4 5 6 7

λ0
−1 10179 (168 µs) 9859 (163 µs) 9617 (158 µs) 9148 (143 µs)

λ1
0 10000 / 4316 10000 / 4497 10000 / 4229 10000 / 4327
λ2

1 10000 / 4632 10000 / 4778 10000 / 4642 10000 / 4768
λ3

2 10000 / 2732 10000 / 2920 10000 / 2999 10000 / 2966
λ4

3 10000 / 2575 10000 / 2785 10000 / 3151 10000 / 3227
λ5

4 20000 / 797 10000 / 408 10000 / 490 10000 / 490
λ6

5 3000 / 767 3000 / 967 1000 / 289 1000 / 290
λ7

6 200 / 51 199 / 177 100 / 100 100 / 100

flux and 2.22× 103 1.24× 104 1.61× 104 1.81× 104

error / s−1 300 840 1.2× 103 1.4× 103

Table 5.10: Trajectories attempted/successful at each stage of FFS for all toehold lengths. For λ0
−1, values

are given for the total number of trajectories crossing λ0
−1 (for the first time since leaving Q = −2), and the

total simulation time taken. The interfce corresponding to the formation of the first base pair is highlighted
in yellow, and the interface corresponding to the formation of the full toehold in green (when this is distinct
from the first bp).
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out non-native interactions between the strands (intrastrand hairpins were allowed in both cases).

The order parameters used, which are very similar to those used in the initial stages of the dis-

placement simulations, and the results, are given in Table 5.11. 20 initial flux simulations were

initialized for 0.86µ s each before sampling was started, and simulations that reached Q = 7 were

restarted to avoid including the time taken to resolve a misbonded complex in the flux calculation

(as such a time would be negligible compared to diffusional time scales at the low concentrations

relevant to experiment). Errors are estimated analogously to those for displacement.

As can be seen from Table 5.11, although the rate of formation of structures with six base pairs is

much faster when non-native interactions are present, many of these structures involve misbonds

that subsequently melt. The overall result is that non-native interactions accelerate binding by

only 50%, suggesting that the systematic effect of ignoring non-native base pairs on the relative

rates of displacement for different toehold lengths is small.

Free energy profiles of displacement. Free energy profiles of displacement were sampled using

VMMC simulations of the three strands at a temperature T = 25◦C. In this work, the trial moves

used to generate VMMC clusters were:

• Rotation of a nucleotide about its backbone site, with the axis chosen from a uniform random

distribution and the angle from a normal distribution with mean of zero and a standard

deviation of 0.12 radians.

• Translation of a nucleotide with the direction chosen from a uniform random distribution

and the distance from a normal distribution with mean of zero and a standard deviation of

1.02 Å.

These trial moves are illustrated in Figure 5.12. The variances are chosen from experience to pro-

vide efficient sampling. Umbrella sampling was performed using a biasing of the system accord-

ing to the number of base pairs between the substrate and the incumbent strand, and the substrate

and the invading strand. The umbrella biasing potential forbade complete detachment of any

strand. States were recorded in histograms according to the intact base pairs between invading

and substrate strands closest to the 3′ end of the substrate. Further, states were divided between

coaxially stacked and unstacked macrostates according to the configurations of the nucleotides

between the final base to which the invading strand was paired and the first base to which the

incumbent was bound. If any of these substrate bases was not stacked with its neighbour, the
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Order parameter Q Definition Native Non-native
interactions only interactions permitted

Q = −2 d > 5.11
Q = −1 5.11 ≥ d > 3.42 Crossings of λ0

−1 (simulation time / µs)
Q = 0 3.42 ≥ d > 2.56 8195 (69.3) 8145 (66.9)

Attempts/successes at reaching λQQ−1 from λQ−1
Q−2

Q = 1 2.56 ≥ d > 1.71 10000/4327 10000/4416
Q = 2 1.71 ≥ d > 0.85 10000/5186 10000/5167
Q = 3 0.85 ≥ d & n = 0 10000/5333 10000/5152
Q = 4 n ≥ 1 & b = 0 & c = 0 10000/968 10000/5333
Q = 5 b = 1 & c = 0 12000/852 12000/2094
Q = 6 b ≥ 2 & 6 > c ≥ 1 7500/3468 12000/3213
Q = 7 c ≥ 6 [& cnat < c ] 2500/1879 5850/2251
Q = 8 c ≥ 6 & cnat = c 277/104

Overall flux (and error) / s−1

3.83× 104 (1.57× 103) 5.15× 104 (3.28× 103)

Table 5.11: Order parameter definitions FFS simulations of association for an invader with a 6-base toehold
and the 15-base toehold domain of the substrate, and simulation results. The separation d is the minimum
distance between hydrogen-bonding sites over all pairs of bases in the invading and substrate strands. n
is the number of nearly formed base pairs, as defined in the text. b is the number of base pairs with en-
ergy more negative than −1.43 kcal/mol, and c the number of base pairs with energy more negative than
−1.79 kcal/mol. cnat is the number of those base pairs which are native (i.e., the intended toehold base
pairs). In the native-only simulations, cnat = c by definition, and Q = 7 is the maximal value in this case.
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Molecule Sequence
Hairpin 5′-(TTTTTTTTTT) [GTACATCTGAAG] TTTTTT [CTTCAGATGTAC] TACCGT{AG}-3′
ssDNA 5′- {CT}ACGGTA(TTTTTTTTTT) -3′

Table 5.12: Sequences used in simulations of the hybridization of a strand to the single-stranded overhang
of a hairpin to measure the effect of ssDNA overhangs on melting equilibria. Bases in brackets “()” represent
the overhangs, which are not present in every simulation. Bases enclosed by “{}” are only used in simulations
of the 8-base hybridization. Square brackets “[]” enclose the stem of the sequence.

state was deemed to be coaxially unstacked. For the purpose of these simulations, an interaction

energy (hydrogen-bonding or stacking energy) more negative than −0.60 kcal mol−1 was counted

as an instance of hydrogen-bonding or stacking, as appropriate. Final data was obtained from 10

simulations of 4× 1010 attempted VMMC moves.

Duplex formation. To measure the effect of ssDNA overhangs on melting equilibria, simulations

of the hybridization of a strand to the single-stranded overhang of a hairpin were performed. Dan-

gling poly(dT) overhangs of various lengths were included to indicate the destabilizing effect of

excess ssDNA at a junction. Hairpin stems of length 12, with a loop of length 6, were used. Com-

plementary sections of length 6 and 8 were used to allow accurate estimates of the destabilization

at 25◦C and 55◦C. The sequences used are provided in Table 5.12.

In this case, all complementary base pairs were allowed to form hydrogen bonds. VMMC

simulations were performed in periodic simulation cells of volume 1.67 × 10−20l at a range of

temperatures in the vicinity of 25◦C and 55◦C. Histogram reweighting [221] was used to infer the

results at the desired temperatures. 4 simulations of 4 × 1010 steps each were performed in a pe-

riodic cubic cell of volume 3.96 × 1020 l for each system, with attempted moves identical to those

used for the displacement landscape (except that rotations were drawn from a distribution with a

standard deviation of 0.2 radians and displacements from a distribution with standard deviation

1.7 Å) . Umbrella sampling as a function of the number of interstrand base pairs was used to accel-

erate sampling. The ratio of bound to unbound states in simulations, φ, was recorded (any state

with at least one interstrand hydrogen-bond more negative than −0.60 kcal mol−1 was counted as

bound). The free-energy of formation follows as ∆G = −RT lnφ: values for various combinations

of ssDNA overhangs are reported in Table 2.2. For each system, free energies inferred from the 4

separate simulations were consistent to within ∼ 0.1 kcal mol−1.
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5.2.7 Notes on 1D Landscape Models

A sequence-dependent free energy landscape for RNA strand displacement. Figure 5.14 shows

the sequence-dependent free energy landscape for strand displacement with a 10-base toehold at

25◦C predicted by efn2 [207, 208]. From this we infer that their model accounts for junction-context

only when the junction is part of an ‘interior multiloop’; during branch migration, the overhangs

at the junction form an ‘exterior loop’, for which it appears that the coaxial stacking terms are not

calculated.

Comparing IEL predictions to a prior phenomenological model. We present below the for-

mulae derived by Zhang and Winfree [147] using their phenomenological model of reversible

toehold exchange, restricted to the irreversible strand displacement case. We use their equations

1 and 2, in the limit where the 0-length “reverse toehold” dissociation rate is arbitrarily large, as

further described in their Figure 8. Denoting their effective bimolecular rate constant for strand

displacement by kZW
eff (h), we have

kZW
eff (h) ≈ kf kb

krev(h) + kb
(5.81)

where

krev(h) ≈ 2 kf
b
e−|∆G

◦(h)|/RT (5.82)

and

kb ≈
400
b2

. (5.83)

kf ≈ 3 × 106 /M/s is their fitted rate constant for toehold hybridization, kb is their fitted rate

constant for crossing the “half-way point” of branch migration, krev(h) is the calculated unimolec-

ular rate constant for toehold dissociation, b is the length of the branch migration domain, and

|∆G◦(h)| is the absolute free energy of binding between the toehold and its complement.

We compared the dependence of strand displacement kinetics on branch migration domain

length as predicted by IEL(5.3, 2.0) and the phenomenological model of Zhang and Winfree [147]

(Figure 5.15). Numerically, predictions of their phenomenological model are quite consistent with

the IEL’s predictions in the cases we examined.
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Figure 5.14: The sequence-dependent free energy landscape of strand displacement for a 10-base toehold at
25◦C predicted by efn2 for RNA molecules. States A–F correspond to those in the IEL analysis, Figure 3 of the
main text.
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Figure 5.15: Predicted dependence of keff on toehold length for various lengths of the branch migration
domain. IEL(5.3, 2.0)’s predictions are marked by filled circles and solid lines, while predictions of the phe-
nomenological model of Zhang and Winfree [147] are indicated by crosses and dashed lines.
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5.3 Appendix to Chapters 3 and 4

5.3.1 Materials and Methods

DNA oligonucleotides. All DNA oligonucleotides used in this study were purchased from Inte-

grated DNA Technologies (IDT). Oligonucleotides of length less than 60 bases were ordered with

HPLC purification, while those 60 bases or longer were ordered with IE-HPLC purification. Where

applicable, fluorophores and quenchers were attached by IDT as well.

Buffer conditions. All DNA oligonucleotides were stored at 4 ◦C in TE buffer (10 mM Tris.HCl

pH balanced to 8.0, with 1 mM EDTA.Na2, purchased as 100x stock from Sigma-Aldrich). We de-

fine two buffer conditions. First, “TE/Mg++”, which was prepared by adding TE buffer contain-

ing 62.5 mM MgCl2 in a ratio of 1:4 to the sample, thereby achieving a final MgCl2 concentration

of 12.5 mM, out of which 1 mM is bound to EDTA. Second, “TE/Na+”, which was prepared by

adding the appropriate quantity of dry NaCl salt (purchased 99% pure from EM Science, lot num-

ber 43076317) to a given volume of TE buffer to achieve a final NaCl concentration of 0.5 M. All

buffer solutions were pH adjusted to 8.0 and filtered with a 1 micron filter (Nalgene rapid-flow).

All spectrofluorimetry experiments with Designs 3 and 4 reported here were performed in

TE/Na+ buffer. Spectrofluorimetry experiments with earlier Designs 1 and 2 were performed in

TE/Mg++ buffer.

Quantitation of single strands. Single strands were quantitated from absorbance at 260 nm

(measured using a Thermo Scientific NanoDrop cuvette-free spectrophotometer) using calculated

extinction coefficients [219]. After thorough vortexing to ensure homogeneity in concentration, 3

samples of 2 µL each were typically used to measure absorbance. Two readings were taken from

each sample and all data points were averaged. Typically, readings were within 2-5% of each other.

Annealing protocol. All annealing steps in this study were identical and were performed with

an Eppendorf Mastercycler Gradient thermocycler. The samples were first heated up to 95 ◦C and

then slowly cooled to 20 ◦C at the constant rate of 1 ◦C/min.

Annealing Reporters. All reporter complexes were annealed with a 20% excess of top strand

(which is labeled with quencher in each case). For experiments with Designs 3 and 4, reporters

were annealed in TE/Na+ buffer. For experiments with Designs 1 and 2, reporters were annealed

in TE/Mg++ buffer.

Reporter complexes were not gel purified after annealing. Reporter complexes were annealed
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to have a bottom strand concentration of 5 µM, which also determines nominal concentration of

reporter since the top strand was added in excess. This procedure was chosen because of two

reasons. First, accurate quantification of bottom strands leads to accurate estimates of the concen-

tration of reporter complex. This is important since the total concentration of reporter complex

is used for normalization of spectrofluorimetry data. In contrast, quantifying the concentration of

multistranded complexes is relatively less accurate because of larger errors in estimating extinction

coefficients. Second, since reporter top strands have no toehold domains and are modified with

quenchers, the excess addition of top strands ensures that all bottom strands form complexes, even

with somewhat imperfect stoichiometry. This mitigates the chances of any active single-stranded

DNA being present and ensures a stable fluorescence baseline.

Annealing and purification of multistranded fuel species. Each multistranded fuel species

(React and Produce species) were prepared as follows. First, 5 nanomoles of the bottom strand

was annealed with 6 nanomoles (20% excess) of each of the top strands in TE/Mg++ buffer (at an

approximate concentration of 25 µM).

After annealing, complexes were purified by nondenaturing (ND) polyacrylamide gel elec-

trophoresis (PAGE) by running the samples on 12% gel at 150 V for approximately 6 hours. The

purpose of the purification was (i) to remove the excess top strands that were added and (ii) re-

move multimers of the desired complexes that form due to the high concentrations in the anneal-

ing step. The acrylamide (19:1 acrylamide:bis) was diluted from 40% acrylamide stock purchased

from Ambion. ND loading dye containing xylene cyanol FF in 50% glycerol was added to the Re-

act species, resulting in a final glycerol concentration of 10% by volume. Since the Produce species

contain a quencher, 50% glycerol was added directly (rather than the ND loading dye) to achieve

a final gycerol concentration of 10% by volume.

For Designs 3 and 4, the appropriate bands were cut out and eluted in 1 mL of TE/Na+ buffer

for 18-24 hours. For Designs 1 and 2, the elution was done in TE/Mg++ buffer instead.

Dialysis of multistranded fuel species. For Designs 3 and 4, since the experiments were to

be performed in TE/Na+ buffer, a further reduction (approximately 2500 fold) in Mg++ concen-

tration was achieved using 2 rounds of dialysis. Each round of dialysis is expected to achieve a

reduction of approximately 50 fold, since 1 ml of purified multistranded fuel species was dialyzed

with approximately 50 ml of TE/Na+ buffer for 2 hours using a 2 ml Thermo Scientific Slide-A-

Lyzer MINI dialysis device with a 10K MWCO membrane.
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Quantitation of multistranded fuel species. The procedure for quantitating multistranded

fuel species is essentially identical to the procedure for single strands, except for the calculation

of extinction coefficients, which involves corrections for hyperchromicity [219]. We expect the in-

ferred concentrations to be less accurate because of larger uncertainties in the estimated extinction

coefficients. Typical yields after purification ranged from 40% to 60%.

Experimental protocols for spectrofluorimetry. Spectrufluorimetry experiments were per-

formed using a commercial SPEX Fluorolog-3 from Horiba, equipped with a water bath temper-

ature controller. All spectrofluorimetry experiments were performed at 25 ◦C unless otherwise

mentioned. Synthetic round-top quartz cuvettes (119-004F) from Hellma, with a total volume 1.6

ml, were used.

Prior to each experiment, all cuvettes were cleaned thoroughly. Each cuvette was washed 10

times in Milli-Q water, twice in 70% ethanol, and finally another 5 times in Milli-Q water. After

washing, cuvettes were dried by gently tapping them on a Kimtech Science wipe placed on paper

towels for cushioning. They were subsequently left to air-dry for about one hour. Cuvette caps

were washed once thoroughly with Milli-Q water, once with 70% ethanol, and once again with

Milli-Q water. They were then dried with Kimtech Science wipe and left to air-dry for an hour.

After adding the sample, the exterior of the cuvette was washed with the same procedure as the

caps.

For experiments involving the ROX fluorophore, excitation was at 584 nm, while emissions

were at 602 nm. For experiments involving the Alexa-488 fluorophore, excitation was at 492 nm,

while emissions were at 517 nm. For experiments involving the Alexa-647 fluorophore, excitation

was at 650 nm, while emissions were at 670 nm. Band pass value of 2 nm was used for both

excitation and emission monochrometers for all experiments except those measuring individual

strand displacement and toehold exchange rate constants, for which a bandpass of 4 nm was used.

All experiments were done with integration time of 10 seconds for each data point.

For experiments involving one fluorophore, measurements were taken every minute; for those

with multiple fluorophores, measurement interval increased proportionally because each excita-

tion/emission channel was allotted 1 minute for measurement.
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Reporter Measured rate constant ( /M /s)

kRepA 7.4× 105

kRepB 1.7× 106

kRepC 1.2× 106

kRepFluxABr 2.2× 106

kRepFluxBCj 3.1× 106

kRepFluxCAp 7.7× 105

kRepBackBA 6.8× 105

kRepBackCB 1.0× 106

kRepBackACi2 1.1× 105

Table 5.13: Measured rate constants (all in /M /s) for reporters for signal strands, flux strands,
and back strands, respectively. Molecular design diagrams at the sequence level are shown in
Figures 5.24 - 5.31. Note that since Rep A, Rep B, and Rep C have also been used as thresholds in
the autocatalytic delay element and Displacillator experiments, rates for those steps are identical
to the threshold rates listed in Table 4.3.

5.3.2 Measuring individual strand displacement and toehold exchange rates

Figures 5.33 - 5.50 provide molecular design diagrams at the sequence level for each desired path-

way for which the rate constant has been measured. The measured values for rate constants of

those pathways are provided in Table 4.2. Molecular design diagrams at the sequence level for

“reporter” steps are provided in Figures 5.24 - 5.32. Rate constants were also characterized for

these reporter steps; these are presented in Table 5.13.

5.3.3 Sequences from Designs 1, 2, 3 and 4

DNA Sequences from Design 1 (Table 5.14), Design 2 (Table 5.15), Design 3 (Table 5.16) and Design

4 (Tables 5.17 and 5.18) are provided. Molecular design diagrams at the sequence level are pro-

vided for Design 4 in Figures 5.16 - 5.23. Table 5.19 provides sequences for reporter species used

for characterizing the rates of individual strand displacement and toehold exchange reactions in-
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volved in desired pathways for Design 4.

TCTCACCACACTTCTATCCTTTTCTACATCCTAACTATCACTAC D4_Ap
hAp fA sAmA

CCACAACTAACCCTAATCCTTTTCTACATCCTAACTATCACTAC D4_Aq
hAq fA sAmA

GCCATTACATTCAAACCATATCCCACCAATCAATCTCTTTACCC D4_Br
hBr fB sBmB

GCCAACCTATTCTTCCCATATCCCACCAATCAATCTCTTTACCC D4_Bs
hBs fB sBmB

GCCACCTCCCTTCTAACAACAAACCTCTCAACTTCCTCATTTCT D4_Cj
hCj fC sCmC

CGCAAACACACTCCTACAACAAACCTCTCAACTTCCTCATTTCT D4_Ck
hCk fC sCmC

Figure 5.16: Molecular design diagrams at the sequence level for signal strands Ap, Aq, Br, Bs, Cj,
and Ck in Design 4.
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Strand name Sequence

D1_React_BOT_CBCj AGTGGGTTAGTAGAGAGTTGTTAGTGGGAAATGGGAATGTTGTGAGGAATGAGAGGGTAT

D1_Back_CB CTCATTCCTCACAACATTCCCATTTCCCA

D1_Flux_BCj CTAACAACTCTCTACTAACCCACTTCATACCTTATCC

D1_Produce_BOT_BCjCk AGAGGGTATGAAGGTGTAAGAAGGAGGGTATGGATAAGGTATGAAGTGGGTTA

D1_Cj CTTCATACCTTATCCATACCCTCTCATTCCTCACAACATTCCCA

D1_Ck CCTTCTTACACCTTCATACCCTCTCATTCCTCACAACATTCCCA

D1_Helper_CCk ATACCCTCCTTCTTACACCTTCATACCCT

D1_React_BOT_BABr TGAGGGTTAGAGGTTTGAAGAGTGAGGGATTTGGGTTAGTAGAGAGTTGTTAGTGGGAAA

D1_Back_BA CTAACAACTCTCTACTAACCCAAATCCCT

D1_Flux_ABr CACTCTTCAAACCTCTAACCCTCATTCAAATCTCACC

D1_Produce_BOT_ABrBs AGTGGGAAAGGAGAGAATGAATGGTGGGAAAGGTGAGATTTGAATGAGGGTTA

D1_Br CATTCAAATCTCACCTTTCCCACTAACAACTCTCTACTAACCCA

D1_Bs CCATTCATTCTCTCCTTTCCCACTAACAACTCTCTACTAACCCA

D1_Helper_BBs TTTCCCACCATTCATTCTCTCCTTTCCCA

D1_React_BOT_ACAp TGTGGGAATGTTGTGAGGAATGAGAGGGTATAGGGTTAGAGGTTTGAAGAGTGAGGGATT

D1_Back_AC CACTCTTCAAACCTCTAACCCTATACCCT

D1_Flux_CAp CTCATTCCTCACAACATTCCCACACAATACTATCATC

D1_Produce_BOT_CApAq TGAGGGATTGTGTTTGAGTTTAGGAGGGATTGATGATAGTATTGTGTGGGAAT

D1_Ap CACAATACTATCATCAATCCCTCACTCTTCAAACCTCTAACCCT

D1_Aq CCTAAACTCAAACACAATCCCTCACTCTTCAAACCTCTAACCCT

D1_Helper_AAq AATCCCTCCTAAACTCAAACACAATCCCT

Table 5.14: DNA sequences from Design 1.
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Strand name Sequence

D2_React_BOT_CBCj TCGGGTAAAGAGATTGATTGGTGGGATATGGAGAAATGAGGAAGTTGAGAGGCTTGTTGT

D2_Back_CB GCCTCTCAACTTCCTCATTTCTCCATATC

D2_Flux_BCj CCACCAATCAATCTCTTTACCCGACACCTCCCTTCTA

D2_Produce_BOT_BCjCk GCTTGTTGTAGGAGTGTGTTTGCGTTGTTGTTAGAAGGGAGGTGTCGGGTAAA

D2_Cj GACACCTCCCTTCTAACAACAAGCCTCTCAACTTCCTCATTTCT

D2_Ck CGCAAACACACTCCTACAACAAGCCTCTCAACTTCCTCATTTCT

D2_Helper_CCk ACAACAACGCAAACACACTCCTACAACAA

D2_React_BOT_BABr CCGTAGTGATAGTTAGTATGTACCAAAGGATGGGTAAAGAGATTGATTGGTGGGATATGG

D2_Back_BA CCACCAATCAATCTCTTTACCCATCCTTT

D2_Flux_ABr GGTACATACTAACTATCACTACGGCATTACATTCAAA

D2_Produce_BOT_ABrBs GGGATATGGGAAGAATAGGTTGCCGATATGGTTTGAATGTAATGCCGTAGTGA

D2_Br GGCATTACATTCAAACCATATCCCACCAATCAATCTCTTTACCC

D2_Bs GGCAACCTATTCTTCCCATATCCCACCAATCAATCTCTTTACCC

D2_Helper_BBs CCATATCGGCAACCTATTCTTCCCATATC

D2_React_BOT_ACAp CCAGAAATGAGGAAGTTGAGAGGCTTGTTGTGTAGTGATAGTTAGTATGTACCAAAGGAT

D2_Back_AC GGTACATACTAACTATCACTACACAACAA

D2_Flux_CAp GCCTCTCAACTTCCTCATTTCTGGTCACCACACTTCT

D2_Produce_BOT_CApAq CCAAAGGATTAGGGTTAGTTGTGGAAAGGATAGAAGTGTGGTGACCAGAAATG

D2_Ap GGTCACCACACTTCTATCCTTTGGTACATACTAACTATCACTAC

D2_Aq CCACAACTAACCCTAATCCTTTGGTACATACTAACTATCACTAC

D2_Helper_AAq ATCCTTTCCACAACTAACCCTAATCCTTT

Table 5.15: DNA sequences from Design 2.
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Strand name Sequence

D3_React_BOT_CBCj TGTTGTTCGGAGAGTTGAAGGAGTAAAGAGGTATAGGGTGGTTAGTTAGAGAAATGGGCT

D3_Back_CB CTATACCTCTTTACTCCTTCAACTCTCCG

D3_Flux_BCj ATCTTCCCTCCACAGCCCATTTCTCTAACTAACCACC

D3_Produce_BOT_BCjCk AAATGGGCTGTGGAGGGAAGATTGTTGTTGCGTTTGTGTGAGGATGTTGTTCG

D3_Cj TCTTTACTCCTTCAACTCTCCGAACAACAATCTTCCCTCCACAG

D3_Ck TCTTTACTCCTTCAACTCTCCGAACAACATCCTCACACAAACGC

D3_Helper_CCk AACAACATCCTCACACAAACGCAACAACA

D3_React_BOT_BABr GGTATAGGGTGGTTAGTTAGAGAAATGGGTAGGAAACCATGTATGATTGATAGTGATGCC

D3_Back_BA TTTCCTACCCATTTCTCTAACTAACCACC

D3_Flux_ABr AAACTTACATTACGGCATCACTATCAATCATACATGG

D3_Produce_BOT_ABrBs AGTGATGCCGTAATGTAAGTTTGGTATAGCCGTTGGATAAGAAGGGTATAGGG

D3_Br CCCATTTCTCTAACTAACCACCCTATACCAAACTTACATTACGG

D3_Bs CCCATTTCTCTAACTAACCACCCTATACCCTTCTTATCCAACGG

D3_Helper_BBs CTATACCCTTCTTATCCAACGGCTATACC

D3_React_BOT_ACAp TAGGAAACCATGTATGATTGATAGTGATGTGTTGTTCGGAGAGTTGAAGGAGTAAAGACC

D3_Back_AC AACAACACATCACTATCAATCATACATGG

D3_Flux_CAp TCTTCACACCACTGGTCTTTACTCCTTCAACTCTCCG

D3_Produce_BOT_CApAq GTAAAGACCAGTGGTGTGAAGATAGGAAAGGTGTTGATTGGGATTAGGAAACC

D3_Ap CATCACTATCAATCATACATGGTTTCCTATCTTCACACCACTGG

D3_Aq CATCACTATCAATCATACATGGTTTCCTAATCCCAATCAACACC

D3_Helper_AAq TTTCCTAATCCCAATCAACACCTTTCCTA

Table 5.16: DNA sequences from Design 3.
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Strand name Sequence

D4_React_BOT_CBCj TGTTGTTTGGAGAGTTGAAGGAGTAAAGAGGTATAGGGTGGTTAGTTAGAGAAATGGGCG

D4_Back_CB CTATACCTCTTTACTCCTTCAACTCTCCA

D4_Flux_BCj ATCTTCCCTCCACCGCCCATTTCTCTAACTAACCACC

D4_Produce_BOT_BCjCk AAATGGGCGGTGGAGGGAAGATTGTTGTTGCGTTTGTGTGAGGATGTTGTTTG/3IAbRQSp/

D4_Cj TCTTTACTCCTTCAACTCTCCAAACAACAATCTTCCCTCCACCG

D4_Ck TCTTTACTCCTTCAACTCTCCAAACAACATCCTCACACAAACGC

D4_Helper_CCk /56-ROXN/AACAACATCCTCACACAAACGCAACAACA

D4_Cat_Helper_CCk /56-ROXN/AACAACATCCTCACACAAACGCAACAACAATCTTCCCTCCACCG

D4_React_BOT_BABr GGTATAGGGTGGTTAGTTAGAGAAATGGGTAGGAAAAGATGTAGGATTGATAGTGATGCG

D4_Back_BA TTTCCTACCCATTTCTCTAACTAACCACC

D4_Flux_ABr AAACTTACATTACCGCATCACTATCAATCCTACATCT

D4_Produce_BOT_ABrBs AGTGATGCGGTAATGTAAGTTTGGTATAGCGGTTGGATAAGAAGGGTATAGGG/3IAbRQSp/

D4_Br CCCATTTCTCTAACTAACCACCCTATACCAAACTTACATTACCG

D4_Bs CCCATTTCTCTAACTAACCACCCTATACCCTTCTTATCCAACCG

D4_Helper_BBs /5Alex647N/CTATACCCTTCTTATCCAACCGCTATACC

D4_Cat_Helper_BBs /5Alex647N/CTATACCCTTCTTATCCAACCGCTATACCAAACTTACATTACCG

D4_React_BOT_ACApi2 TAGGAAAAGATGTAGGATTGATAGTGATGTTGTTTGGAGAGTTGAAGGAGTAAAGAAG

D4_Back_ACi2 AACAACATCACTATCAATCCTACATCT

D4_Flux_CAp TCTTCACACCACTCTTCTTTACTCCTTCAACTCTCCA

D4_Produce_BOT_CApAq GTAAAGAAGAGTGGTGTGAAGATAGGAAAGGTGTTGATTGGGATTAGGAAAAG/3IABkFQ/

D4_Ap CATCACTATCAATCCTACATCTTTTCCTATCTTCACACCACTCT

D4_Aq CATCACTATCAATCCTACATCTTTTCCTAATCCCAATCAACACC

D4_Helper_AAq /5Alex488N/TTTCCTAATCCCAATCAACACCTTTCCTA

D4_Cat_Helper_AAq /5Alex488N/TTTCCTAATCCCAATCAACACCTTTCCTATCTTCACACCACTCT

Table 5.17: DNA sequences from Design 4.
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Strand name Sequence

D4_Rep_BOT_C TGTTGTTTGGAGAGTTGAAGGAGTAAAGA/3AlexF488N/

D4_Rep_TOP_B /5IAbRQ/CCCATTTCTCTAACTAACCACC

D4_Rep_BOT_B GGTATAGGGTGGTTAGTTAGAGAAATGGG/3Rox_N/

D4_Rep_TOP_A /5IAbRQ/CATCACTATCAATCCTACATCT

D4_Rep_BOT_A TAGGAAAAGATGTAGGATTGATAGTGATG/3AlexF647N/

D4_Helper_CCk† AACAACATCCTCACACAAACGCAACAACA

D4_Cat_Helper_CCk† AACAACATCCTCACACAAACGCAACAACAATCTTCCCTCCACCG

D4_Helper_BBs† CTATACCCTTCTTATCCAACCGCTATACC

D4_Cat_Helper_BBs† CTATACCCTTCTTATCCAACCGCTATACCAAACTTACATTACCG

D4_Helper_AAq† TTTCCTAATCCCAATCAACACCTTTCCTA

D4_Cat_Helper_AAq TTTCCTAATCCCAATCAACACCTTTCCTATCTTCACACCACTCT

D4_Rep_TOP_C† TCTTTACTCCTTCAACTCTCCA

D4_Rep_BOT_C† TGTTGTTTGGAGAGTTGAAGGAGTAAAGA

D4_Rep_TOP_B† CCCATTTCTCTAACTAACCACC

D4_Rep_BOT_B† GGTATAGGGTGGTTAGTTAGAGAAATGGG

D4_Rep_TOP_A† CATCACTATCAATCCTACATCT

D4_Rep_BOT_A† TAGGAAAAGATGTAGGATTGATAGTGATG

D4_Rep_TOP_C /5IABkFQ/TCTTTACTCCTTCAACTCTCCA

D4_QUE_Helper_CCk TGTTGTTGCGTTTGTGTGAGGATGTTGTTTG/3IAbRQSp/

D4_QUE_Helper_BBs GGTATAGCGGTTGGATAAGAAGGGTATAGGG/3IAbRQSp/

D4_QUE_Helper_AAq TAGGAAAGGTGTTGATTGGGATTAGGAAAAG/3IABkFQ/

Table 5.18: Additional DNA sequences from Design 4. † signifies “plain version”, without fluo-
rophores or quenchers attached. Complexes Rep A, Rep B and Rep C, comprising the correspond-
ing top and bottom strands, also act as thresholds.
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Strand name Sequence

D4_Rep_Back_CB_Top TCTTTACTCCTTCAACTCTCCA/3IAbRQSp/

D4_Rep_Back_CB_Bot /56-ROXN/TGGAGAGTTGAAGGAGTAAAGAGGTATAG

D4_Rep_Back_BA_Top CCCATTTCTCTAACTAACCACC/3IAbRQSp/

D4_Rep_Back_BA_Bot /56-ROXN/GGTGGTTAGTTAGAGAAATGGGTAGGAAA

D4_Rep_Back_ACi2_Top CATCACTATCAATCCTACATCT/3IAbRQSp/

D4_Rep_Back_ACi2_Bot /56-ROXN/AGATGTAGGATTGATAGTGATGTTGTT

D4_Rep_Flux_ABr_Top /5IAbRQ/CAAACTTACATTACCG

D4_Rep_Flux_ABr_Bot AGTGATGCGGTAATGTAAGTTTG/3Rox_N/

D4_Rep_Flux_BCj_Top /5IAbRQ/CATCTTCCCTCCACCG

D4_Rep_Flux_BCj_Bot AAATGGGCGGTGGAGGGAAGATG/3Rox_N

D4_Rep_Flux_BCj_Top /5IAbRQ/CATCTTCCCTCCACCG

D4_Rep_Flux_BCj_Bot AAATGGGCGGTGGAGGGAAGATG/3Rox_N

D4_Rep_Flux_CAp_Top /5IAbRQ/CTCTTCACACCACTCT

D4_Rep_Flux_CAp_Bot GTAAAGAAGAGTGGTGTGAAGAG/3Rox_N

Table 5.19: DNA sequences used for characterizing individual rate constants in Design 4.
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CCACCAATCAATCTCTTTACCCATCCTTTTCTACATCCTAACTATCACTACGCCATTACATTCAAAGCGTAGTGATAGTTAGGATGTAGAAAAGGATGGGTAAAGAGATTGATTGGTGGGATATGG

D4_Back_BA

D4_React_BABr

sB fA sAmA hBrmB

fB*

ACCTCTCAACTTCCTCATTTCTCCATATCCCACCAATCAATCTCTTTACCCGCCACCTCCCTTCTAGCGGGTAAAGAGATTGATTGGTGGGATATGGAGAAATGAGGAAGTTGAGAGGTTTGTTGT

D4_React_CBCj

sC fB sBmB hCjmC

fC*

CCACCAATCAATCTCTTTACCCATCCTTT
sB fAmB

D4_Back_CBACCTCTCAACTTCCTCATTTCTCCATATC
sC fBmC

TCTACATCCTAACTATCACTACAACAAACCTCTCAACTTCCTCATTTCTTCTCACCACACTTCTGAAGAAATGAGGAAGTTGAGAGGTTTGTTGTAGTGATAGTTAGGATGTAGAAAAGGAT
D4_React_ACApi2

sA fC sCmC hApmA

fA*

D4_Back_ACi2TCTACATCCTAACTATCACTACAACAA
sA fCmA

Figure 5.17: Molecular design diagrams at the sequence level for the fuel species that mediate the
React steps in Design 4.

D4_Flux_ABr

D4_Flux_BCj

TCTACATCCTAACTATCACTACGCCATTACATTCAAA
sAmA hBr

CCACCAATCAATCTCTTTACCCGCCACCTCCCTTCTA
sBmB hCj

ACCTCTCAACTTCCTCATTTCTTCTCACCACACTTCT
sCmC hAp

D4_Flux_CAp

Figure 5.18: Molecular design diagrams at the sequence level for the Flux species in Design 4.
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CC
AC
CA
AT
CA
AT
CT
CT
TT
AC
CC

GGGATATGGGAAGAATAGGTTGGCGATATGGTTTGAATGTAATGGCGTAGTGA GCCATTACATTCAAACCATATCGCCAACCTATTCTTCCCATATCCCACCAATCAATCTCTTTACCC
fBhBr fBhBs mB

sA*

sB

mB

sB

D4_Produce_ABrBs

D4_Help_BBs

IB RQ

D4_Cat_Help_BBs
hBs fBfB A647

hBr
GCCATTACATTCAAACCATATCGCCAACCTATTCTTCCCATATC

hBs fBfB A647
CCATATCGCCAACCTATTCTTCCCATATC

Figure 5.19: Molecular design diagrams at the sequence level for the fuel species that mediate the
Produce step for the module B + A→ 2B in Design 4. Fluorophores and quenchers are as indicated.
“A647” stands for the fluorophore “Alexa 647”.
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AC
CT
CT
CA
AC
TT
CC
TC
AT
TT
CT

GTTTGTTGTAGGAGTGTGTTTGCGTTGTTGTTAGAAGGGAGGTGGCGGGTAAA GCCACCTCCCTTCTAACAACAACGCAAACACACTCCTACAACAAACCTCTCAACTTCCTCATTTCT
fChCj fChCk mC

sB*

sC

mC

sC

D4_Produce_BCjCk

D4_Help_CCk

IB RQ

D4_Cat_Help_CCk
hCk fCfC ROX

hCj
GCCACCTCCCTTCTAACAACAACGCAAACACACTCCTACAACAA

hCk fCfC ROX
ACAACAACGCAAACACACTCCTACAACAA

Figure 5.20: Molecular design diagrams at the sequence level for the fuel species that mediate the
Produce step for the module C + B→ 2C in Design 4. Fluorophores and quenchers are as indicated.
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TC
TA
CA
TC
CT
AA
CT
AT
CA
CT
AC

GAAAAGGATTAGGGTTAGTTGTGGAAAGGATAGAAGTGTGGTGAGAAGAAATG TCTCACCACACTTCTATCCTTTCCACAACTAACCCTAATCCTTTTCTACATCCTAACTATCACTAC
fAhAp fAhAq mA

sB*

sA

mA

sA

D4_Produce_CApAq

D4_Help_AAq

IB FQ

D4_Cat_Help_AAq
hAq fAfA A488

hAp
TCTCACCACACTTCTATCCTTTCCACAACTAACCCTAATCCTTT

hAq fAfA A488
ATCCTTTCCACAACTAACCCTAATCCTTT

Figure 5.21: Molecular design diagrams at the sequence level for the fuel species that mediate
the Produce step for the module A + C → 2A in Design 4. Fluorophores and quenchers are as
indicated. “A488” stands for the fluorophore “Alexa 488”.

D4_Que_Help_BBs

D4_Que_Help_CCk

GAAAAGGATTAGGGTTAGTTGTGGAAAGGATD4_Que_Help_AAq IB FQ

GGGATATGGGAAGAATAGGTTGGCGATATGG

IB RQ

GTTTGTTGTAGGAGTGTGTTTGCGTTGTTGT

IB RQ

Figure 5.22: Molecular design diagrams at the sequence level for the species that are used for
normalizing Helper readout. These species are added at the end of the experiment for quenching
the remaining Helper species in Design 4. Quenchers are as indicated.
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D4_Rep_A
fA*

A647

fC*
A488

CCACCAATCAATCTCTTTACCCGGGTAAAGAGATTGATTGGTGGGATATGG

fB*
ROX

D4_Rep_B

D4_Rep_C

D4_Rep_Flux_CAp
sC*

GCCATTACATTCAAACGTTTGAATGTAATGGCGTAGTGA

sA*

GCCACCTCCCTTCTACGTAGAAGGGAGGTGGCGGGTAAA

sB*
ROX

ROX

ROX

IB RQ IB RQ

IB RQ IB RQ

IB FQ IB RQ

TCTACATCCTAACTATCACTACGTAGTGATAGTTAGGATGTAGAAAAGGAT

ACCTCTCAACTTCCTCATTTCTAGAAATGAGGAAGTTGAGAGGTTTGTTGT

TCTCACCACACTTCTCGAGAAGTGTGGTGAGAAGAAATG

sCmC

sBmB

sAmA hAp

hBr

hCj

D4_Rep_Flux_ABr

D4_Rep_Flux_BCj

Figure 5.23: Molecular design diagrams at the sequence level for the reporter species used for
reading out the concentrations of signal strands (left) and Flux strands (right) in Design 4. Rep A,
B, and C are also used as thresholds in autocatalytic delay element and Displacillator experiments.
Fluorophores and quenchers are as indicated. “A488” and “A647” stand for the fluorophores
“Alexa 488” and “Alexa 647”, respectively.
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D4_Rep_A

+

+

TCTCACCACACTTCTATCCTTTTCTACATCCTAACTATCACTAC D4_Ap
hAp fA sAmA

fA*
A647

IB RQTCTACATCCTAACTATCACTACGTAGTGATAGTTAGGATGTAGAAAAGGAT

sAmA

IB RQTCTACATCCTAACTATCACTAC
sAmA

fA*
A647

GTAGTGATAGTTAGGATGTAGAAAAGGATTCTCACCACACTTCTATCCTTTTCTACATCCTAACTATCACTAC
hAp fA sAmA

kRepA

Figure 5.24: Molecular design diagram at the sequence level for reporters. The measured value for
the bimolecular rate constant for this pathway is specified in Table 5.13.
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+

+

CCACCAATCAATCTCTTTACCCGGGTAAAGAGATTGATTGGTGGGATATGG

fB*
ROX D4_Rep_B

IB RQ
sBmB

GCCATTACATTCAAACCATATCCCACCAATCAATCTCTTTACCC D4_Br
hBr fB sBmB

CCACCAATCAATCTCTTTACCC IB RQ
sBmB

GGGTAAAGAGATTGATTGGTGGGATATGG

fB*
ROX

GCCATTACATTCAAACCATATCCCACCAATCAATCTCTTTACCC
hBr fB sBmB

kRepB

Figure 5.25: Molecular design diagram at the sequence level for reporters. The measured value for
the bimolecular rate constant for this pathway is specified in Table 5.13.
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+

+

GCCACCTCCCTTCTAACAACAAACCTCTCAACTTCCTCATTTCT D4_Cj
hCj fC sCmC

fC*
A488

D4_Rep_C
IB FQACCTCTCAACTTCCTCATTTCTAGAAATGAGGAAGTTGAGAGGTTTGTTGT

sCmC

IB FQACCTCTCAACTTCCTCATTTCT
sCmC

fC*
A488

AGAAATGAGGAAGTTGAGAGGTTTGTTGTGCCACCTCCCTTCTAACAACAAACCTCTCAACTTCCTCATTTCT
hCj fC sCmC

kRepC

Figure 5.26: Molecular design diagram at the sequence level for reporters. The measured value for
the bimolecular rate constant for this pathway is specified in Table 5.13.
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+

+

GCCATTACATTCAAACGTTTGAATGTAATGGCGTAGTGA

sA*
ROX

IB RQ
hBr

D4_Rep_Flux_ABr

D4_Flux_ABrTCTACATCCTAACTATCACTACGCCATTACATTCAAA
sAmA hBr

GCCATTACATTCAAAC IB RQ
hBr

GTTTGAATGTAATGGCGTAGTGA

sA*
ROX

TCTACATCCTAACTATCACTACGCCATTACATTCAAA
sAmA hBr

kRepFluxABr

Figure 5.27: Molecular design diagram at the sequence level for reporters. The measured value for
the bimolecular rate constant for this pathway is specified in Table 5.13.
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+

+

D4_Flux_BCjCCACCAATCAATCTCTTTACCCGCCACCTCCCTTCTA
sBmB hCj

GCCACCTCCCTTCTACGTAGAAGGGAGGTGGCGGGTAAA

sB*
ROX

IB RQ
hCj

D4_Rep_Flux_BCj

GCCACCTCCCTTCTAC IB RQ
hCj

GTAGAAGGGAGGTGGCGGGTAAA

sB*
ROX

CCACCAATCAATCTCTTTACCCGCCACCTCCCTTCTA
sBmB hCj

kRepFluxBCj

Figure 5.28: Molecular design diagram at the sequence level for reporters. The measured value for
the bimolecular rate constant for this pathway is specified in Table 5.13.
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+

ACCTCTCAACTTCCTCATTTCTTCTCACCACACTTCT
sCmC hAp

D4_Flux_CAp

D4_Rep_Flux_CAp

sC*
ROX

IB RQTCTCACCACACTTCTCGAGAAGTGTGGTGAGAAGAAATG

hAp

IB RQTCTCACCACACTTCTC
hAp

sC*
ROX

GAGAAGTGTGGTGAGAAGAAATGACCTCTCAACTTCCTCATTTCTTCTCACCACACTTCT
sCmC hAp

+

kRepFluxCAp

Figure 5.29: Molecular design diagram at the sequence level for reporters. The measured value for
the bimolecular rate constant for this pathway is specified in Table 5.13.
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TCTTTACTCCTTCAACTCTCCATGGAGAGTTGAAGGAGTAAAGAGGTATAG

fB* ROX
D4_Rep_Back_CB

IB RQ
sC mC

D4_Back_CB
fB

+
TGGAGAGTTGAAGGAGTAAAGAGGTATAG

fB* ROX

TCTTTACTCCTTCAACTCTCCA IB RQ
sC mC

+
sC mC

CTATACCTCTTTACTCCTTCAACTCTCCA

sC mC

CTATACCTCTTTACTCCTTCAACTCTCCA

kRepBackCB

Figure 5.30: Molecular design diagram at the sequence level for reporters. The measured value for
the bimolecular rate constant for this pathway is specified in Table 5.13.
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D4_Rep_Back_ACi2

D4_Back_ACi2

+

+

CATCACTATCAATCCTACATCTAGATGTAGGATTGATAGTGATGTTGTT

fC*

sA mA

CATCACTATCAATCCTACATCT
sA mA

IB RQ

ROX

IB RQ

AGATGTAGGATTGATAGTGATGTTGTT

ROX

fC sA mA

AACAACATCACTATCAATCCTACATCT

fC sA mA

AACAACATCACTATCAATCCTACATCT

kRepBackACi2

Figure 5.31: Molecular design diagram at the sequence level for reporters. The measured value for
the bimolecular rate constant for this pathway is specified in Table 5.13.
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D4_Rep_Back_BA

D4_Back_BA
fA

+

+

sB mB

TTTCCTACCCATTTCTCTAACTAACCACC

CCCATTTCTCTAACTAACCACCGGTGGTTAGTTAGAGAAATGGGTAGGAAA

fA* ROX

IB RQ
sB mB

GGTGGTTAGTTAGAGAAATGGGTAGGAAA

fA* ROX

CCCATTTCTCTAACTAACCACC IB RQ
sB mB

fA sB mB

TTTCCTACCCATTTCTCTAACTAACCACC

kRepBackBA

Figure 5.32: Molecular design diagram at the sequence level for reporters. The measured value for
the bimolecular rate constant for this pathway is specified in Table 5.13.
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D4_Back_ACi2TCTACATCCTAACTATCACTACAACAA
sA fCmA

ACCTCTCAACTTCCTCATTTCTTCTCACCACACTTCTGAAGAAATGAGGAAGTTGAGAGGTTTGTTGTAGTGATAGTTAGGATGTAGAAAAGGAT

D4_ReactInt_ACApi2

sCmC hAp

fC*

TCTCACCACACTTCTATCCTTTTCTACATCCTAACTATCACTAC
hAp fA sAmA

+

TCTCACCACACTTCTATCCTTTTCTACATCCTAACTATCACTAC D4_Ap
hAp fA sAmA

TCTACATCCTAACTATCACTACAACAAACCTCTCAACTTCCTCATTTCTTCTCACCACACTTCTGAAGAAATGAGGAAGTTGAGAGGTTTGTTGTAGTGATAGTTAGGATGTAGAAAAGGAT

D4_React_ACApi2

sA fC sCmC hApmA

fA*

+

kACApi2
fwd1

Figure 5.33: Molecular design diagram at the sequence level for desired reaction pathways. The
measured value for the bimolecular rate constant for this pathway is specified in Table 4.2.
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+
D4_Back_BACCACCAATCAATCTCTTTACCCATCCTTT

sB fAmB

TCTACATCCTAACTATCACTACGCCATTACATTCAAAGCGTAGTGATAGTTAGGATGTAGAAAAGGATGGGTAAAGAGATTGATTGGTGGGATATGG

D4_ReactInt_BABr

sAmA hBr
GCCATTACATTCAAACCATATCCCACCAATCAATCTCTTTACCC

hBr fB sBmB

kBABr
fwd1

+

GCCATTACATTCAAACCATATCCCACCAATCAATCTCTTTACCC D4_Br
hBr fB sBmB

CCACCAATCAATCTCTTTACCCATCCTTTTCTACATCCTAACTATCACTACGCCATTACATTCAAAGCGTAGTGATAGTTAGGATGTAGAAAAGGATGGGTAAAGAGATTGATTGGTGGGATATGG

D4_React_BABr

sB fA sAmA hBrmB

fB*

fA*

Figure 5.34: Molecular design diagram at the sequence level for desired reaction pathways. The
measured value for the bimolecular rate constant for this pathway is specified in Table 4.2.
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+
D4_Back_CBACCTCTCAACTTCCTCATTTCTCCATATC

sC fBmC

CCACCAATCAATCTCTTTACCCGCCACCTCCCTTCTAGCGGGTAAAGAGATTGATTGGTGGGATATGGAGAAATGAGGAAGTTGAGAGGTTTGTTGT

D4_ReactInt_CBCj

sBmB hCj

fB*

GCCACCTCCCTTCTAACAACAAACCTCTCAACTTCCTCATTTCT
hCj fC sCmC

kCBCj
fwd1

+

ACCTCTCAACTTCCTCATTTCTCCATATCCCACCAATCAATCTCTTTACCCGCCACCTCCCTTCTAGCGGGTAAAGAGATTGATTGGTGGGATATGGAGAAATGAGGAAGTTGAGAGGTTTGTTGT

D4_React_CBCj

sC fB sBmB hCjmC

fC*

GCCACCTCCCTTCTAACAACAAACCTCTCAACTTCCTCATTTCT D4_Cj
hCj fC sCmC

Figure 5.35: Molecular design diagram at the sequence level for desired reaction pathways. The
measured value for the bimolecular rate constant for this pathway is specified in Table 4.2.
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D4_Back_ACi2TCTACATCCTAACTATCACTACAACAA
sA fCmA

ACCTCTCAACTTCCTCATTTCTTCTCACCACACTTCTGAAGAAATGAGGAAGTTGAGAGGTTTGTTGTAGTGATAGTTAGGATGTAGAAAAGGAT

D4_ReactInt_ACApi2

sCmC hAp

fC*

TCTCACCACACTTCTATCCTTTTCTACATCCTAACTATCACTAC

hAp fA sAmA

+

TCTCACCACACTTCTATCCTTTTCTACATCCTAACTATCACTAC D4_Ap
hAp fA sAmA

TCTACATCCTAACTATCACTACAACAAACCTCTCAACTTCCTCATTTCTTCTCACCACACTTCTGAAGAAATGAGGAAGTTGAGAGGTTTGTTGTAGTGATAGTTAGGATGTAGAAAAGGAT

D4_React_ACApi2

sA fC sCmC hApmA

fA*

+

kACApi2
back

Figure 5.36: Molecular design diagram at the sequence level for desired reaction pathways. The
measured value for the bimolecular rate constant for this pathway is specified in Table 4.2.
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+

+

kBABr
back

GCCATTACATTCAAACCATATCCCACCAATCAATCTCTTTACCC D4_Br
hBr fB sBmB

CCACCAATCAATCTCTTTACCCATCCTTTTCTACATCCTAACTATCACTACGCCATTACATTCAAAGCGTAGTGATAGTTAGGATGTAGAAAAGGATGGGTAAAGAGATTGATTGGTGGGATATGG

D4_React_BABr

sB fA sAmA hBrmB

fB*

D4_Back_BACCACCAATCAATCTCTTTACCCATCCTTT
sB fAmB

TCTACATCCTAACTATCACTACGCCATTACATTCAAAGCGTAGTGATAGTTAGGATGTAGAAAAGGATGGGTAAAGAGATTGATTGGTGGGATATGG

D4_ReactInt_BABr

sAmA hBr

fA*

GCCATTACATTCAAACCATATCCCACCAATCAATCTCTTTACCC
hBr fB sBmB

Figure 5.37: Molecular design diagram at the sequence level for desired reaction pathways. The
measured value for the bimolecular rate constant for this pathway is specified in Table 4.2.
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+

+

kCBCj
back

ACCTCTCAACTTCCTCATTTCTCCATATCCCACCAATCAATCTCTTTACCCGCCACCTCCCTTCTAGCGGGTAAAGAGATTGATTGGTGGGATATGGAGAAATGAGGAAGTTGAGAGGTTTGTTGT

D4_React_CBCj

sC fB sBmB hCjmC

fC*

GCCACCTCCCTTCTAACAACAAACCTCTCAACTTCCTCATTTCT D4_Cj
hCj fC sCmC

D4_Back_CBACCTCTCAACTTCCTCATTTCTCCATATC
sC fBmC

CCACCAATCAATCTCTTTACCCGCCACCTCCCTTCTAGCGGGTAAAGAGATTGATTGGTGGGATATGGAGAAATGAGGAAGTTGAGAGGTTTGTTGT

D4_ReactInt_CBCj

sBmB hCj

fB*

GCCACCTCCCTTCTAACAACAAACCTCTCAACTTCCTCATTTCT
hCj fC sCmC

Figure 5.38: Molecular design diagram at the sequence level for desired reaction pathways. The
measured value for the bimolecular rate constant for this pathway is specified in Table 4.2.
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ACCTCTCAACTTCCTCATTTCTTCTCACCACACTTCTGAAGAAATGAGGAAGTTGAGAGGTTTGTTGTAGTGATAGTTAGGATGTAGAAAAGGAT

D4_ReactInt_ACApi2

sCmC hAp

fC*

TCTCACCACACTTCTATCCTTTTCTACATCCTAACTATCACTAC
hAp fA sAmA

+

+

GCCACCTCCCTTCTAACAACAAACCTCTCAACTTCCTCATTTCT D4_Cj
hCj fC sCmC

kACApi2
fwd2

ACCTCTCAACTTCCTCATTTCTTCTCACCACACTTCT
sCmC hAp

D4_Flux_CAp

GAAGAAATGAGGAAGTTGAGAGGTTTGTTGTAGTGATAGTTAGGATGTAGAAAAGGAT

D4_Waste_ApCj

TCTCACCACACTTCTATCCTTTTCTACATCCTAACTATCACTAC
hAp fA sAmA

AACAAACCTCTCAACTTCCTCATTTCT
fC sCmC

hCj

GCCACCTCCCTTCTAAC

Figure 5.39: Molecular design diagram at the sequence level for desired reaction pathways. The
measured value for the bimolecular rate constant for this pathway is specified in Table 4.2.
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+

+

D4_Waste_CjBr

CCACCAATCAATCTCTTTACCCGCCACCTCCCTTCTAGCGGGTAAAGAGATTGATTGGTGGGATATGGAGAAATGAGGAAGTTGAGAGGTTTGTTGT

D4_ReactInt_CBCj

sBmB hCj
GCCACCTCCCTTCTAACAACAAACCTCTCAACTTCCTCATTTCT

hCj fC sCmC

GCCATTACATTCAAACCATATCCCACCAATCAATCTCTTTACCC D4_Br
hBr fB sBmB

kCBCj
fwd2

CCACCAATCAATCTCTTTACCCGCCACCTCCCTTCTA
sBmB hCj

D4_Flux_BCj

GCGGGTAAAGAGATTGATTGGTGGGATATGGAGAAATGAGGAAGTTGAGAGGTTTGTTGT
fB*

GCCACCTCCCTTCTAACAACAAACCTCTCAACTTCCTCATTTCT
hCj fC sCmC

CCATATCCCACCAATCAATCTCTTTACCC
fB sBmB

hBr

GCCATTACATTCAAA

Figure 5.40: Molecular design diagram at the sequence level for desired reaction pathways. The
measured value for the bimolecular rate constant for this pathway is specified in Table 4.2.
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+

+

D4_Waste_BrAp

TCTACATCCTAACTATCACTACGCCATTACATTCAAAGCGTAGTGATAGTTAGGATGTAGAAAAGGATGGGTAAAGAGATTGATTGGTGGGATATGG

D4_ReactInt_BABr

sAmA hBr

fA*

GCCATTACATTCAAACCATATCCCACCAATCAATCTCTTTACCC
hBr fB sBmB

TCTCACCACACTTCTATCCTTTTCTACATCCTAACTATCACTAC D4_Ap
hAp fA sAmA

kBABr
fwd2

D4_Flux_ABr

TCTACATCCTAACTATCACTACGCCATTACATTCAAA
sAmA hBr

GCGTAGTGATAGTTAGGATGTAGAAAAGGATGGGTAAAGAGATTGATTGGTGGGATATGGGCCATTACATTCAAACCATATCCCACCAATCAATCTCTTTACCC
hBr fB sBmB

ATCCTTTTCTACATCCTAACTATCACTAC
fA sAmA

hAp

TCTCACCACACTTCT

Figure 5.41: Molecular design diagram at the sequence level for desired reaction pathways. The
measured value for the bimolecular rate constant for this pathway is specified in Table 4.2.
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GGGATATGGGAAGAATAGGTTGGCGATATGGTTTGAATGTAATGGCGTAGTGA GCCAACCTATTCTTCCCATATCCCACCAATCAATCTCTTTACCC
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D4_Produce_ABrBs
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D4_Flux_ABr

TCTACATCCTAACTATCACTACGCCATTACATTCAAA
sAmA hBr

Figure 5.42: Molecular design diagram at the sequence level for desired reaction pathways. The
measured value for the bimolecular rate constant for this pathway is specified in Table 4.2.
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GAAAAGGATTAGGGTTAGTTGTGGAAAGGATAGAAGTGTGGTGAGAAGAAATG CCACAACTAACCCTAATCCTTTTCTACATCCTAACTATCACTAC
fAhAq mA

fA*

sA

D4_ProduceInt_CApAq

IB FQ

ACCTCTCAACTTCCTCATTTCTTCTCACCACACTTCT
sCmC hAp

kCApAq
fwd1

+
TC
TA
CA
TC
CT
AA
CT
AT
CA
CT
AC
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sC*
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IB FQ
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sCmC hAp

D4_Flux_CAp

Figure 5.43: Molecular design diagram at the sequence level for desired reaction pathways. The
measured value for the bimolecular rate constant for this pathway is specified in Table 4.2.
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sB*

sC
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IB RQ

Figure 5.44: Molecular design diagram at the sequence level for desired reaction pathways. The
measured value for the bimolecular rate constant for this pathway is specified in Table 4.2.
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D4_Flux_ABr
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Figure 5.45: Molecular design diagram at the sequence level for desired reaction pathways. The
measured value for the bimolecular rate constant for this pathway is specified in Table 4.2.
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IB FQ
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Figure 5.46: Molecular design diagram at the sequence level for desired reaction pathways. The
measured value for the bimolecular rate constant for this pathway is specified in Table 4.2.
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Figure 5.47: Molecular design diagram at the sequence level for desired reaction pathways. The
measured value for the bimolecular rate constant for this pathway is specified in Table 4.2.
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GGGATATGGGAAGAATAGGTTGGCGATATGGTTTGAATGTAATGGCGTAGTGA GCCAACCTATTCTTCCCATATCCCACCAATCAATCTCTTTACCC
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D4_ProduceInt_ABrBs

IB RQ

TCTACATCCTAACTATCACTACGCCATTACATTCAAA
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CCATATCGCCAACCTATTCTTCCCATATC

GGGATATGGGAAGAATAGGTTGGCGATATGGTTTGAATGTAATGGCGTAGTGA

sA*
IB RQ

TCTACATCCTAACTATCACTACGCCATTACATTCAAA
sAmA hBr

fB*

GCCAACCTATTCTTCCCATATCCCACCAATCAATCTCTTTACCCD4_Bs
hBs fB sBmB

hBs fBfB A647CCATATCGCCAACCTATTCTTCCCATATC

Figure 5.48: Molecular design diagram at the sequence level for desired reaction pathways. The
measured value for the bimolecular rate constant for this pathway is specified in Table 4.2.
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sB*
IB RQ

CCACCAATCAATCTCTTTACCCGCCACCTCCCTTCTA
sBmB hCj hCk fCfC ROXACAACAACGCAAACACACTCCTACAACAA

Figure 5.49: Molecular design diagram at the sequence level for desired reaction pathways. The
measured value for the bimolecular rate constant for this pathway is specified in Table 4.2.
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Figure 5.50: Molecular design diagram at the sequence level for desired reaction pathways. The
measured value for the bimolecular rate constant for this pathway is specified in Table 4.2.
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