
Programmable Control of Nucleation
for Algorithmic Self-Assembly

(Extended Abstract?)

Rebecca Schulman and Erik Winfree

California Institute of Technology, Pasadena, CA 91125, USA
{rebecka,winfree}@caltech.edu

Abstract. Algorithmic self-assembly has been proposed as a mecha-
nism for autonomous DNA computation and for bottom-up fabrication
of complex nanodevices. Whereas much previous work has investigated
self-assembly programs using an abstract model of irreversible, errorless
assembly, experimental studies as well as more sophisticated reversible
kinetic models indicate that algorithmic self-assembly is subject to sev-
eral kinds of errors. Previously, it was shown that proofreading tile sets
can reduce the occurrence of mismatch and facet errors. Here, we in-
troduce the zig-zag tile set, which can reduce the occurrence of spurious
nucleation errors. The zig-zag tile set takes advantage of the fact that as-
semblies must reach a critical size before their growth becomes favorable.
By using a zig-zag tile set of greater width, we can increase the critical
size of spurious assemblies without increasing the critical size of correctly
seeded assemblies, exponentially reducing the spurious nucleation rate.
In combination with proofreading results, this result indicates that algo-
rithmic self-assembly can be performed with low error rates without a
significant reduction in assembly speed. Furthermore, our zig-zag bound-
aries suggest methods for exquisite detection of DNA strands and for the
replication of inheritable information without the use of enzymes.

1 Introduction

Since Adleman first used DNA to perform a hard computation [1], researchers
have explored the ability of biological molecules to carry out algorithms. Algo-
rithmic self-assembly of DNA tiles [19] is Turing universal in theory, and tile sets
for the construction of a variety of desired products have been suggested [12, 15,
3, 8]. An example of a structure that can be constructed using algorithmic self-
assembly, a Sierpinski triangle, is shown in Figure 1. A simple generalization of
this construction can be used to implement an arbitrary cellular automaton.

A tile program consists of labels for the sides of each of a set of square tiles,
the strength with which each possible pair of labels binds, a designated seed tile,
and a strength threshold τ . Polyomino tiles with labels on each unit-length of
the perimeter can be used in addition to square tiles. The abstract tile-assembly

? A preprint of the full paper can be found at http://arxiv.org.
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Fig. 1: Tile assembly models (a) The Sierpinski tile set. Tiles cannot be ro-
tated. Whereas the rule tiles have sides that form strength-1 (weak, single-line)
bonds, some sides on the boundary tiles form strength-2 (strong, double-line)
bonds or strength-0 (null, thick-line) bonds. (b) Seeded growth of the Sierpinski
tiles according to the aTAM at τ = 2. The small tiles indicate the (only) four
sites where growth can occur. At each location exactly one tile matches both
exposed sides, so assembly results in a unique pattern. (c) For the growth of
an isolated crystal under unchanging tile concentrations, the forward rate (as-
sociation) is rf = kf [tile] = kfe

−Gmc , while the reverse rate (dissociation) is
rr,b = kfe

−bGse for a tile that makes bonds with total strength b. Parameters
Gmc and Gse govern monomer tile concentration and sticky-end bond strength,
respectively. A representative selection of possible events is shown here. The
kTAM approximates the aTAM with threshold τ when Gmc = τGse − ε, in
which case the same set of reactions are favorable or unfavorable in the two
models. (d) An undesired assembly that can form due to unseeded growth of
boundary tiles followed by facet errors.

model (aTAM) [20] describes the behavior of a tile program executed in the
absence of assembly errors. Under the aTAM, assembly starts with designated
tiles (usually just the seed tile) and proceeds by the addition of tiles at locations
on the assembly’s perimeter where the total strength of the connections between
the tile and the assembly is greater than or equal to the threshold. Addition
of tiles is irreversible but non-deterministic. Within the aTAM, it is possible
to prove program correctness – that is, that growth from the seed tile always
results in the unique desired structure. In this paper, unless stated otherwise
mismatched labels will always bind with strength 0, bond strengths will be non-
negative integers, and τ = 2, as is the case for most prior work on algorithmic
self-assembly.

In contrast to assembly in the aTAM, the assembly of DNA tiles is neither
errorless nor irreversible. In practice a tile sometimes binds and sticks to a grow-
ing assembly even when the strength of the tile’s attachments is smaller than



the threshold, an event called an unfavorable attachment. Unfavorable attach-
ments can lead to three kinds of errors. First, an unfavorable attachment that
only partially matches the adjacent tiles can occasionally become locked into
place by succeeding attachments, forming a mismatch error. Second, a tile that
attaches unfavorably to a facet and in turn allows the attachment of incorrect
tiles nearby causes a facet error (Figure 1(d)). Lastly, a spurious nucleation error
occurs when an assembly grows from a tile other than the designated seed tile.

Mismatch, facet and spurious nucleation errors have all been observed in
algorithmic self-assembly experiments. In an experimental demonstration of the
algorithmic self-assembly of a Sierpinski triangle [16], between 1% and 10% of
tiles mismatched their neighbors, an effect that was attributed to both mismatch
and facet errors. Furthermore, only a small fraction of the observed crystals were
properly nucleated from seed molecules.

Why avoiding spurious nucleation can be difficult was clarified by experi-
ments with just the boundary tiles shown in Figure 1 [17]. While the aTAM
predicts that V-shaped assemblies should form, most observed assemblies were
linear polymers without a seed tile. When all the tiles in the Sierpinski tile
set were combined, most assemblies seen were spuriously nucleated rather than
grown from a V-shaped boundary. The spuriously nucleated assemblies could
have been produced either by linear boundaries growing wider due to multiple
facet errors or by rule tiles assembling by themselves into crystals.

To theoretically study the rates at which these three kinds of errors occur,
we need a model that includes energetically unfavorable events. The kinetic Tile
Assembly Model (kTAM) [20] describes the dynamics of assembly according to
an inclusive set of reversible chemical reactions: A tile can attach to an assembly
anywhere that it makes even a weak bond, and any tile can dissociate from
the assembly at a rate dependent on the total strength with which it adheres to
the assembly (see Figure 1(c)). Several variants of the kTAM, reflecting different
assumptions about how growth proceeds, have been developed [18]. In the kTAM
as described in Figure 1(c), mismatch errors occur at least at a rate proportional
to the square root of assembly speed [20]. Therefore, the mismatch error rate
can be reduced by decreasing the temperature of the assembly reaction and/or
decreasing the monomer concentration – but a 10-fold decrease in error rates
requires a 100-fold decrease in assembly speed. A better solution to controlling
mismatch and facet errors is to use “proofreading” tile sets that implement the
same logic of an original tile set but assemble more robustly, reducing the error
rates exponentially without significant slow-down [21, 6, 14].

In this paper we propose a method to control spurious nucleation errors with-
out significant slow-down, exponentially reducing the rate at which assemblies
without a seed tile grow large (unseeded growth), while maintaining the rate of
growth that starts from a seed tile and proceeds roughly according to aTAM
(seeded growth). To do so, a tile set must satisfy two conflicting constraints:
When assembly begins from a seed tile, it must proceed quickly, whereas when
assembly starts from a non-seed tile, it must go nowhere.

These two constraints are simultaneously satisfied by a phenomenon well-
known to children who make rock candy: the nucleation of crystals in a super-



saturated solution. By cooling a solution slowly, it is possible to create a solution
that has more solute dissolved than would be possible in standard conditions,
called a supersaturated solution. Because of the interplay between surface and
volume energy terms in a supersaturated solution, crystals smaller than a criti-
cal size will tend to shrink, whereas large crystals will grow. The seeded growth
of crystals results from the mixing of a supersaturated solution with a small
number of large crystals, called seed nuclei. When a seed nucleus is added to the
solution, its growth is immediately favorable. Monomers attach to the seed, and
a large crystal results.

To apply these principles for the control of nucleation in algorithmic crystals,
it is enough to create a well-behaved boundary that plays the same role as the
V-shaped boundary in Figure 1, but grows exclusively from a seed. Since rule
tiles are not likely to spuriously nucleate on their own under optimal assembly
conditions, once the well-behaved boundary has set up the correct initial infor-
mation, algorithmic crystal growth will proceed correctly and without spurious
side products. We use large seed tiles that serve the the same purpose as the
large seed nuclei in the rock candy example. Tiles attach to the seed tile to pro-
duce a long boundary of predefined width. Because only full-width boundaries
can grow by favorable attachments, without the seed tile there is a critical size
barrier that prevents spurious nucleation – unlike the boundary tiles of Figure 1
for which the critical size is a single tile. The tile set that implements these ideas,
called the zig-zag tiles, is described below.

2 The Zig-Zag Tile Set

The zig-zag tile set (see Figure 2(a)) of width k contains tiles that assemble
to form a periodic ribbon of width k (see Figure 3(a)). Zig-zag tile sets can be
constructed with any width k ≥ 2. A zig-zag tile set includes a top tile and
a bottom tile, each consisting of 2 horizontally connected square tiles. It also
includes an L-shaped seed tile consisting of k vertically connected square tiles
and a square tile horizontally connected to the bottom of the vertical connected
tiles. In a zig-zag assembly, the top and bottom tiles stagger so that each column
of tiles is connected to the columns on its right and left by either a top tile or a
bottom tile. Each of the k − 2 rows between the top and bottom tiles contains
two unique middle tiles that alternate horizontally. Unique tiles in each row
make assemblies of width less than k impossible to form without zero-strength
attachments. Two tile types in each row enforce the staggering of the top and
bottom tiles, which is essential for seeded growth to proceed quickly in a path
that zig-zags up and down the width of the assembly. The seeded assembly path
is shown in Figure 3(b).

The tile set is designed to operate in a physical regime where the attachment
of a tile to another tile or assembly by two matching sides is energetically favor-
able, whereas an attachment by only one bond is energetically unfavorable. In
this physical regime, algorithmic self-assembly is possible. In the aTAM, these
conditions translate to growth with a threshold of 2. Growth from a seed tile
occurs in a zig-zag shaped pattern; if assembly starts from a non-seed tile, no



Seed Tile

1

4

8

10
12

Top Tile

1
2 3

1

Bottom Tile

Middle Tiles

10
11 12

10

2
5

6
4

3
4

7
5

6
9

12
8

7
8

11
9

(a)

1

4

8

10
12

148

10

12

(b)

Fig. 2: The zig-zag tile set. (a) Each square, rectangle, and L shape represents
a single tile. Excluding the seed tile, tiles are given unique bonds that determine
where the fit in the assemble: each label has exactly one match on another tile.
All correctly-matched bonds have strength 1. The geometric patterns shown on
each tile identify them in subsequent figures. (b) The seed shown here, with
appropriate tiles for vertical zig-zag growth, could be used instead of the L-
shaped seed in (a) to form V-shaped assemblies.

growth occurs. In the kTAM, seeded growth occurs in the same pattern as in the
aTAM, but there are also series of reactions that can cause spurious nucleation
errors.

Spurious nucleation is a transition from assembly melting, where assemblies
are more likely to fall apart than they are to get larger, to assembly growth,
where each assembly step is energetically favorable. An assembly where melting
and growth are both energetically favorable is a critical nucleus. Nucleation
theory [9] predicts that the rate of nucleation is limited by the concentration of
the critical nucleus, [Ac]. Since [Ac] = e−∆G/kT , where ∆G is the free energy of
a critical nucleus with respect to unbound tiles, linearly increasing the energy
barrier, ∆G, exponentially decreases the rate of nucleation1.

Since there is no energy barrier to seeded growth in the zig-zag tile set,
growth from the seed tile is favorable. In contrast, there is an energy barrier for
unseeded growth. The size of this barrier depends on the total concentration of
critical nuclei. For a zig-zag tile set of width k, the critical nuclei are k tiles wide.
Under the right conditions, the energy barrier depends linearly on the width of
the critical nuclei, and thus the concentration of critical nuclei decreases expo-
nentially with k. This argument is not rigorous, however, because unfortunately
there are also many more kinds of critical nuclei for larger values of k. The rate
of spurious nucleation is proportional to the sum of the concentrations of all
these critical nuclei.

1 In the kTAM, ∆G = (bGse − nGmc)kT for an assembly involving n tiles and total
bond strength b. k is Boltzmann’s constant and T absolute temperature.
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Fig. 3: Zig-zag assembly. (a) The structure formed by the zig-zag tile set
according to aTAM with a threshold τ = 2. (b) Seeded growth of a zig-zag tile
set in the aTAM. The same growth pattern occurs reversibly in the kTAM with
a threshold near τ = 2. (c) A possible series of steps by which the tiles could
spuriously nucleate in the kTAM. Under the conditions of interest, some steps
are energetically favorable, but at least k − 1 must be unfavorable for a zig-zag
tile set of width k. At this point, further growth is favorable.

To bound rather than explicitly calculate the rate of spurious nucleation, it is
not necessary to calculate the rate of growth of each critical nucleus. Instead, we
consider a set of subcritical assemblies, and we bound the total flux of assemblies
leaving this set; it is assumed that (in the worst case) every assembly that leaves
the set eventually becomes a long spuriously nucleated ribbon. This flux rate is
a valid upper bound as long as single tiles are members of the set and spuriously
nucleated assemblies are not.

For the zig-zag tile set of width k, we use the set of assemblies of width less
than k. Because of the way the zig-zag tile set is designed, no assembly of width
smaller than k can grow significantly longer without an unfavorable attachment.
However, any assembly of width k can grow in a zig-zag fashion by exclusively
favorable steps. Thus, we bound the rate of spurious nucleation by the rate at
which assemblies of width k − 1 grow to a width of k.

To formally calculate such a bound, we make use of the kTAM as formulated
for mass action dynamics [18], assuming constant tile concentrations. In mass-
action dynamics the rate at which a reaction proceeds is proportional to a rate
constant times the product of the concentrations of the reactants [10]. Given a tile
set, we consider all possible accretion reactions: reactions either between two tiles
or between a tile and an assembly in which tile concentrations remain constant.
Since changes in the concentrations of unbound tiles are ignored2, a reaction’s
rate is dependent on at most one changing concentration, so dynamics are linear
and therefore easier to analyze. The concentration of tiles and the strength of
formation are specified by the parameters Gmc and Gse. The concentration of
each tile (except the seed tile) is [tile] = e−Gmc and the bond strength between

2 In reality, tile concentrations will decrease as they are used, further decreasing the
rate of spurious nucleation.



two matching tiles is Gse. The rate constant for each possible forward reaction
is kf , and the reverse rate constant for a reaction involving b bonds is kfe

−bGse .
For a zig-zag tile set of width k, J(k) is defined as the total rate of all addition
reactions that exit the set of subcritical assemblies, i.e., reactions in which the
reactant has width k − 1 and the product has width k. We have proved the
following theorem:

Theorem 1. For a zig-zag tile set of width k > 2, if Gse > 2(k ln 2+1), Gmc =
2Gse − ε, and 0 ≤ ε < 1

k , then, at all time points, J(k) < 4kfe
ε−kGse .

The proof appears in the full paper.

3 Discussion

3.1 Nucleation of Algorithmic Self-Assembly

Our original motivation for this work was to show that self-assembly programs
that work in the aTAM, in which it is straightforward to design tile sets that al-
gorithmically assemble any computationally defined structure, can also be made
to work in the more realistic kTAM. Tiles sets that assemble correctly via un-
seeded growth in the aTAM with a threshold of τ = 1 will assemble correctly
in the kTAM under the right conditions. However, tile sets that are designed
to assemble via seeded growth in the aTAM with a threshold τ = 2 may fail
in the kTAM because mismatch, facet and spurious nucleation errors occur.
These problems are ameliorated in the limit of slow assembly speed [20]. Other
work has described methods to control mismatch errors and facet errors without
significant slowdown [21, 6, 14]. Here, we have developed a construction that cor-
rects the last discrepancy, spurious nucleation errors, again without significant
slowdown.

However, it remains to be formally proven that these constructions can be
combined to control all types of errors simultaneously for any tile set of interest.
No major difficulties are expected, in large part because mismatch and facet er-
rors can both be controlled by a single mechanism [6] and the control of spurious
nucleation errors works independently of this mechanism. Both methods work
by transforming an original tile set which works in the aTAM at τ = 2 into a
new (typically larger) tile set that is more robust to particular kinds of errors
in the kTAM. The transforms are simple : each tile in the original tile set is re-
placed by a k×k′ block of tiles with a specified pattern of labels that implement
the original tile’s logic. The proofreading methods [21, 6, 14] transform rule tiles,
while the zig-zag tile set can be considered a transform of the seed and boundary
tiles. The cost of both these transformations is a moderate increase in spatial
scale and the number of tile types.

As an alternative to these methods, one might wonder whether it is possi-
ble to also design tile sets capable of any desired computation that rely only
on unseeded growth, which appears to be easier to implement experimentally.
However, seeded growth, and therefore control of nucleation, appears to be nec-
essary for practical, algorithmic construction by self-assembly: The seed sets up
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Fig. 4: Exponential amplification of assemblies. Probe strands assemble
onto a target sequence to create a seed assembly, which nucleates zig-zag growth.
Periodic fluid shear causes fragmentation of zig-zag assemblies, leading to expo-
nential amplification. The diagonal structure of the seed assembly shown here is
the natural shape for assembling DAE-E tiles on a scaffold strand [16].

the correct initial inputs and directs computation to proceed from beginning to
end. (As a consequence, existing mismatch and facet error correction techniques
have only been shown to reduce errors in properly seeded assemblies.) Unseeded
growth is much more difficult to program and to analyze than is seeded self-
assembly, because the “computation” can begin in the middle and proceed in
either direction. Although it is possible to assemble computationally defined
sets of structures using unseeded growth [1, 22, 4], we would not expect them
to assemble efficiently a set of structures as rich as that generated by seeded
self-assembly.

3.2 Exquisite Detection of DNA Sequences

Control over nucleation in algorithmic self-assembly can be seen as a special
case of exquisite detection (the detection of a single molecule) [2]. For a tile
set of sufficiently large width, essentially nothing happens when no seed tiles
are present, whereas if even a single seed tile is added, growth by self-assembly
will result in a macroscopic assembly. Theorem 1 shows that the false-positive
rate for detection can be made arbitrarily small by design; the false-negative
rate in the kTAM is 0. Although this idealized model does not consider many
factors that could lead to poorer detection in a real system, we don’t know of
any insurmountable problems with implementing exquisite detection.

There are, however, two immediate drawbacks. First, detecting seed-tile as-
semblies is not as useful as detecting arbitrary DNA sequences. Second, the



linear growth of a single zig-zag assembly would require a long time lapse before
a macroscopic change is perceptible. As sketched in Figure 4, we can surmount
both obstacles. First, as in [13, 23], a set of strands can be designed to assem-
ble double-crossover molecules on a (sufficiently long) target strand with nearly
arbitrary sequence, thus creating the seed assembly if and only if the target
strand exists. Second, since fluid shear forces can fragment large DNA assem-
blies, intermittent pipetting or vortexing will break large zig-zag assemblies, thus
at least doubling the number of growing ends with each fragmentation episode.
This fragmentation process can be expected to lead to exponential growth in the
number of zig-zag assemblies without increasing the false-positive rate.3

3.3 Exponential Replication of Inheritable Information.

The zig-zag constructions detailed in this paper propagate a single bit of in-
formation: the presence or absence of the seed tile. Using a tile set that simply
copies information, we could use the exponential amplification reaction to detect
and identify one of several different target strands, by creating a tile set where
the seed assemblies for each target strand contain a different pattern of 1s and
0s.

Furthermore, considering the amplification process as replication, the infor-
mation encoded in the strip’s width can be seen as a form of inheritable informa-
tion. A zig-zag assembly replicates (in the appropriate culture medium consisting
of tiles) by growth of new layers followed by random fission [11]. Errors during
growth, bit flips as well as errors that increase or decrease the width of the as-
sembly, are inherited. If one sequence of tiles has a greater reproductive fitness
than other sequences – for example, by having a different growth or fission rate
– then natural evolution can be expected to occur. Cairns-Smith considered re-
lated ideas about crystal growth as a possible scenario for the origin of life on
Earth [5]. However, additional mechanisms would have to be present for this in-
heritable information to be useful in directing the reproduction of tile sequences.
Such an enzyme-free system would be considerably less complex than that con-
trolling the replication of chemical information in modern biological organisms
or in processes such as polymerase chain reaction (PCR) that provide the basis
for most in vitro evolution studies.
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