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Abstract. The mathematical formalism of mass-action chemical reac-
tion networks (CRNs) has been proposed as a mid-level programming
language for dynamic molecular systems. Several systematic methods
for translating CRNs into domain-level strand displacement (DSD) sys-
tems have been developed theoretically, and in some cases demonstrated
experimentally. Software that facilitates the simulation of CRNs and
DSDs, and that helps automate the construction of DSDs from CRNs,
has been instrumental in advancing the field, but as yet has not incorpo-
rated the fundamental enabling concept for programming languages and
compilers: a rigorous abstraction hierarchy with well-defined semantics
at each level, and rigorous correctness proofs establishing the correctness
of compilation from a higher level to a lower level. Here, we present a
CRN-to-DSD compiler, Nuskell, that makes a first step in this direction.
To support the wide range of translation schemes that have already been
proposed in the literature, as well as potential new ones that are yet to be
proposed, Nuskell provides a domain-specific programming language for
translation schemes. A notion of correctness is established on a case-by-
case basis using the rate-independent stochastic-level theories of pathway
decomposition equivalence and/or CRN bisimulation. The “best” DSD
implementation for a given CRN can be found by comparing the mole-
cule size, network size, or simulation behavior for a variety of translation
schemes. These features are illustrated with a 3-reaction oscillator CRN
and a 32-reaction feedforward boolean circuit CRN.

1 Introduction

Toehold-mediated nucleic acid strand displacement has become a widely used
technology to control and fine-tune the interactions of DNA and RNA molecules
[8,22]. This contribution focuses on automated construction – compilation – of
nucleic acid networks, to realize larger, dynamically more complex and precise
algorithms using DSD. We use the abbreviation DSD for “domain-level strand
displacement” as opposed to the more common notion of “DNA strand displace-
ment”, because all results presented in this work are using the domain-level
abstraction and we do not analyse any sequence-level details.
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Domains are segments of a molecule with well defined properties. In the sim-
plest case, we distinguish two types of domains: toehold domains and branch-
migration domains. A DSD system contains many possible instances of those
domains, where two domains can only bind if they are of the same type and
complementary to each other. Toehold domains (short) bind reversibly, while
branch-migration domains (long) bind irreversibly. Ensuring that these proper-
ties are fulfilled is something attributed to the sequence-level. This abstraction
enables us to study nucleic acid reaction networks on a different level of detail,
including rigorous proofs to guarantee the correctness of a domain-level compi-
lation and simulations of DSD systems based on “typical” sequence-independent
reaction rates. A correct domain-level network can then be compiled to either
DNA or RNA sequences or combinations of different nucleic acids, as well as,
hypothetically, other artificial polymers such as PNA sequences, or even proteins
[1].

Formal CRNs are a natural language to formulate the intended dynamics of
a nucleic acid network and therefore serve as the ideal input for a DSD com-
piler. We demonstrate automated translation of CRNs into DSD systems, as
well as the formal verification and simulation using our compiler Nuskell (see
Sect. 2). We show that there are many formally correct translations of particu-
lar CRNs, but that some types of CRNs are more efficiently implemented with
different translation schemes [2–4,12,13,18,20]. Starting from CRNs highlights
a fundamental difference from other existing compilers, e.g. VisualDSD [12], the
most used software for DNA strand displacement design, that takes hand-crafted
DSD modules as input in order to predict and verify their dynamics [10]. The
DNA strand displacement compilers Seesaw [21] and Piperine [20] have each
been developed for one experimentally tested/optimized translation scheme and
translate digital circuits or bimolecular reactions respectively.

Formal CRNs themselves might be derived from higher-level languages such
as digital-circuits, Turing machines, etc. [5,17,18]. A demonstration is shown
in Sect. 3.3, where we present a translation from a logic circuit into a formal
CRN, and then use Nuskell to compile this CRN into a DSD circuit. The DSD
implementation is pathway decomposition equivalent [16] (see Sect. 2.3) with the
input CRN.

2 Nuskell

The CRN-to-DSD compiler Nuskell is an open-source Python package1 for the
design, verification and analysis of DSD systems. Figure 1 provides an overview
of the Nuskell compiler project. The translation from CRNs to DSD sys-
tems is described in Sect. 2.1, the domain-level reaction enumeration using the
peppercornenumerator2 library [7] in Sect. 2.2 and the two notions of stochastic
trajectory-type CRN equivalence (pathway equivalence [16] and CRN bisimula-
tion equivalence [9]) in Sect. 2.3.
1 www.github.com/DNA-and-Natural-Algorithms-Group/nuskell.
2 www.github.com/DNA-and-Natural-Algorithms-Group/peppercornenumerator.

www.github.com/DNA-and-Natural-Algorithms-Group/nuskell
www.github.com/DNA-and-Natural-Algorithms-Group/peppercornenumerator
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Fig. 1. The Nuskell compiler. The current version “Nuskell 1.0” translates for-
mal CRNs into a set of domain-level nucleic acid complexes. The algorithm for trans-
lation can be chosen from multiple different CRN-to-DSD translation schemes (see
Sect. 2.1). Domain-level complexes are input for a DSD reaction network enumerator
(see Sect. 2.2). Two CRN equivalence notions (see Sect. 2.3) can be used to formally
verify the equivalence between the domain-level reaction network and the formal CRN.
Alternatively, initial complex concentrations can be specified to simulate the formal
and/or enumerated CRN using ODEs. Domain-level specifications may be imported or
exported to a plain-text format (*.pil) for manual adjustments or as an alternative to
translation schemes. The next version “Nuskell 2.0” will translate correct domain-
level specifications into sequence-level specifications and use sequence-level kinetic mod-
els to verify the correct implementation of domain-level reaction networks. Eventually,
the Nuskell project may incorporate experimental feedback to train domain-level and
sequence-level biophysics.

2.1 Translation: From a CRN to DSD Species

A multitude of translations from formal reactions into DSD systems have been
shown previously [2–4,11–13,18,20], and there are many more possible varia-
tions. Nuskell’s CRN-to-DSD translation is a top-down approach. First, one has
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to conceptualize a domain-level design in terms of an algorithm and then apply
it to a formal input CRN. From this point on, we call a translation scheme a
script written in the Nuskell programming language, which takes an input CRN
and produces a DSD system. The language provides an “easy” formulation of
translation schemes, and, more importantly, a standardized format for compar-
ison, evaluation and debugging. This approach is in contrast to the bottom-up
language of VisualDSD, where the user prototypes domain-level complexes as
individual modules and combines them into a DSD system. In the bottom-up
approach, it is not obvious whether a particular DSD implementation or its
components can be generalized to implement different algorithms or whether
conceptually new modules are required.

# Translate formal reactions with two reactants and two products.

# Lakin et al. (2012) "Abstractions for DNA circuit design ." [Fig. 5]

# Define a global short toehold domain

global toehold = short ();

# Define domains and structure of signal species

class formal(s) = "? t f" | ". . ."

where { t = toehold; f = long () };

# Define fuel complexes for bimolecular reactions

class bimol_fuels(r, p) =

[ "a t i + b t k + ch t c + dh t d + t* dh* t* ch* t* b* t* a* t*"

| "( ( . + ( ( . + ( ( . + ( ( . + ) ) ) ) ) ) ) ) .",

"a t i" | ". . .", "t ch t dh t" | ". . . . ." ]

where {

a = r[0].f;

b = r[1].f;

c = p[0].f; ch = long ();

d = p[1].f; dh = long ();

i = long (); k = long ();

t = toehold };

# Module *rxn* applies the fuel production to every bimolecular reaction

module rxn(r) = sum(map(infty , fuels))

where fuels =

if len(r.reactants) != 2 or len(r.products) != 2 then

abort(’Reaction type not implemented ’)

else

bimol_fuels(r.reactants , r.products );

# Module *main* applies *rxn* to the crn

module main(crn) = sum(map(rxn , crn))

where crn = irrev_reactions(crn);

Listing 1.1. An example of a translation scheme. The formal class defines a signal
species for every formal species, here, consisting of three unpaired domains: a history
domain, a global short domain and a unique long domain. The main module translates
a CRN into a set of fuel complexes: the CRN is converted to irreversible reactions, every
reaction translated into a set of fuel complexes and the sum over all sets returned by
the main function.

A drawback of CRN-to-DSD translation schemes is that they require a par-
ticular DSD architecture. There are always two types of species involved: sig-
nal species and fuel species. Signal species are at low concentrations and they
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represent the dynamical information, e.g. input andoutput species. Fuel species are
at high (ideally constant) concentrations and they mediate the information trans-
fer by consuming and/or releasing signal species. All signal species must have the
same domain-level constitution and structure, and they must be independent of
each other. After compilation, every signal species corresponds to one species in
the formal CRN.

We provide a continuously growing translation scheme library online3, and a
basic example in Listing 1.1 (translating Fig. 5 of [12]). The Nuskell program-
ming language is inspired by the functional programming language Haskell and
provides DSD specific classes, functions and macros to generalize translations for
arbitrary CRNs [16]. There are two required parts: (i) the formal class defines
sequence and structure of signal complexes, (ii) the main module produces a set
of fuel species from the input CRN.

In some translation schemes, multiple signal species can correspond to the
same formal species [2,12,18,20]. These schemes make use of so-called history
domains. A history domain is considered to be an inert branch-migration domain
of a signal species, but it is unique to the reaction that has produced the sig-
nal species. Hence, multiple species that differ only by their history domains
map to the same formal species. When writing a translation scheme, a history
domain is a wildcard: ‘?’. Together with the remainder of the molecule, a species
with a wildcard forms a regular-expression, matching every other species in the
system that differs only by a single domain in place of ‘?’. Nuskell automati-
cally replaces history domains after domain-level enumeration, when it is known
which species actually got produced. If there exists a species matching the regu-
lar expression, then the species with the wildcard domain and every enumerated
reaction involving that species is removed from the system, otherwise, the wild-
card domain is replaced by a new branch-migration domain.

A given translation schemes may be particularly efficient for certain types of
formal reactions but inefficient or incorrect for other types, or it can be correct for
every possible formal CRN, typically at the cost of being less efficient. For exam-
ple, some translation schemes are particularly efficient for reversible reactions,
while others implement reversible reactions using two irreversible reactions. To
bypass the strict DSD system architectures that are imposed by translation
schemes, Nuskell also provides an import/export file format (*.pil) to modify
DSD systems, add extra modules or analyse bottom-up, hand-crafted, or alterna-
tively compiled domain-level designs. In order to verify CRN equivalence, users
have to ensure that names of signal species in the DSD implementation match
the formal species in the input CRN, potentially using wildcards to indicate his-
tory domains. Also, Nuskell can export DSD systems to the VisualDSD file for-
mat (*.dna), which enables convenient access to the functionality of VisualDSD,
including visualization, alternative reaction enumeration semantics and verifica-
tion using probabilistic model checking [10].

3 http://www.github.com/DNA-and-Natural-Algorithms-Group/nuskell/schemes.

http://www.github.com/DNA-and-Natural-Algorithms-Group/nuskell/schemes
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2.2 Reaction Enumeration and Reaction Rate Calculation

The domain-level representation provides a more coarse-grained perspective on
nucleic acid folding than the single-nucleotide level. At the nucleotide level every
step is a base pair opening or closing reaction and the corresponding rate can
be calculated from the free energy change of a reaction combined with inherent
kinetic rate constants [6,15]. On the domain level, we consider a more diverse
set of reactions in order to account for the fine-grained details that can hap-
pen on the sequence level. Nuskell uses the domain-level reaction enumerator
Peppercorn [7] to predict desired and, potentially, undesired reactions emerging
from interactions between previously compiled signal and fuel species.

Detailed Enumeration. The general types of reactions are summarized in Fig. 2. In
particular: spontaneous binding and unbinding of domains, 3-way branch migra-
tion, 4-way branch migration and remote toehold branch migration. These reac-
tions have been identified as most relevant in DSD systems. A typical DSD reac-
tion pathway (also shown in Fig. 2) is a sequence of these detailed reaction steps.
Peppercorn’s enumeration semantics are justified based on the assumption that

Fig. 2. Reaction semantics of the DSD enumerator Peppercorn [7]. Four generally
supported detailed forms of reactions: intermolecular and intramolecular binding/
unbinding of domains, 3-way branch migration, 4-way branch migration and
remote toehold branch migration. A typical detailed domain-level strand dis-
placement pathway. The condensed reaction network notion removes the interme-
diate (transient) complex and calculates one irreversible rate (see main text). Toe-
hold occlusion describes the effect of toehold binding to a complementary domain
that does not have the correct adjacent branch-migration domain. 0-toehold branch
migration is an invalid reaction in the Peppercorn semantics, but it is a well-known
unintended leak reaction.
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the DSD system is operated at sufficiently low concentrations, such that unimole-
cular reactions always go to completion before the next bimolecular interaction
takes place. A number of enumeration constraints are implemented to avoid com-
binatoric explosions [7].

Condensed Enumeration. Under the assumptions of low concentrations, a con-
densed CRN can be calculated, with reactions that indicate just the eventual
results after all unimolecular reactions complete, and with rate constants sys-
tematically derived from the detailed reaction network rate constants. Reaction
condensation can drastically reduce the size of an enumerated network by remov-
ing reactions that do not result in stable resting states. A particular example,
toehold occlusion is shown in Fig. 2. The reversible binding of a single toehold
domain without the prospect of initiating branch migration is captured in the
detailed reaction network, but not in its condensed form. For more details and
subtleties, see [7].

Limitations. There are other forms of interactions which cannot be modelled
using the presented set of reactions. Most prominently, every conformation in
the DSD system has to be free of pseudoknots. That means every bound domain
dissects the structure into an independent left and a right part, such that there
are no base pairs connecting them. Also, initiation of 3-way branch-migration
reactions requires at least one already bound domain. So-called 0-toehold branch-
migration reactions (see Fig. 2) have been observed in practice due to partial
unbinding at helix ends, but cannot be enumerated. They belong to the broader
category of leak reactions which we faithfully ignore in the current version of the
compiler.

Reaction rates. Peppercorn uses empirical domain-level reaction rates derived
from DNA strand displacement and general DNA biophysics experiments. The
domain-level reaction rate constants assume perfect Watson-Crick complemen-
tary of domains and “typical” sequences, as they only depend on the length and
the type of a reaction. Detailed explanation on rates, as well as their justification
compared with thermodynamic models can be found in [7], but it is important to
emphasize that domain-level designs may choose from a range of realistic rates,
which are here presented in a discrete form as typical for certain toehold and
branch-migration domain lengths. Finding sequences that confirm these chosen
rates constants and verifying them using stochastic sequence-level simulations
is the responsibility of a sequence-level compiler. There are many mechanisms,
such as small variations in toehold sequence composition, single-nucleotide mis-
matches, wobble base pairs, and non-canonical base pairs that can be exploited
to fine-tune reaction dynamics.

2.3 Verification of DSD Reaction Networks

The most fundamental requirement towards compilation of large scale DSD sys-
tems is verification. Every formal reaction is translated into multiple imple-
mentation reactions. Thus, there are many possibilities for introducing “bugs”,
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i.e. unwanted side reactions that alter the implemented algorithm. We present
two case-by-case verification strategies that compare formal CRNs with their
implementations. As intended, our approach does not verify the general correct-
ness of a particular scheme, but the correctness of a particular implementation.

Pathway Decomposition Equivalence. This notion was introduced in [16] together
with an early version of the Nuskell compiler. The core idea is to represent each
implementation trajectory as a combination of independent pathways of reac-
tions between formal species. Pathway decomposition yields a set of pathways
which are indivisible (or prime) and are called the formal basis of a CRN. The
formal basis is unique for any valid implementation. Any two CRNs are said to
be equivalent if they have the same formal basis. Conveniently, a CRN without
intermediate species has itself as the formal basis, and it is worth pointing out
that this equivalence relation allows for the comparison of one implementation
with another implementation.

A common artifact of incorrect CRN-to-DSD translations is that interme-
diate species accumulate. That means the implementation network produces
intermediate species, but they do not get cleaned up after a formal reaction goes
to completion. In the notion of pathway equivalence, a given implementation
is tidy if all intermediate species are cleaned up after a formal reaction goes
to completion, and not tidy otherwise. The pathway decomposition verification
method removes fuel species and inert waste products before equivalence testing,
the compiler distinguishes formal from intermediate species.

CRN Bisimulation Verification. A CRN bisimulation [9] is an interpretation of
the implementation CRN, where every implementation species is mapped to a
multiset of formal species. This often yields so-called trivial reactions, where
reactants and products do not change according to the interpretation. An inter-
pretation is only a bisimulation if three conditions are fulfilled: (i) atomic con-
dition – for every formal species there exists an implementation species that
interprets to it, (ii) delimiting condition – any reaction in the implementation
is either trivial or a valid formal reaction, and (iii) permissive condition – for
any initial condition in the implementation CRN, the set of possible next non-
trivial reactions is exactly the same as it would be in the formal CRN. CRNs
are said to be bisimulation equivalent, if the translation can be interpreted as
an implementation of that formal CRN.

Bisimulation does not require any upfront information of which signal species
correspond to formal species. In fact an implementation can be bisimulation equiv-
alent without the intended correspondence between signal and formal species. For
this reason, Nuskell provides a mapping from signal to formal species as a partial
interpretation upfront, guaranteeing that the species are interpreted as intended,
and also guaranteeing that the atomic condition is fulfilled.

Differences of Equivalence Notions. In most cases of practical interest, path-
way decomposition and CRN bisimulation agree. However, it is worth point-
ing out examples where pathway decomposition and CRN bisimulation disagree.
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First, note that pathway decomposition theory was intended to be applied to trans-
lation schemes that implement reversible reactions as two independent irreversible
reaction pathways; it generally does not handle schemes that provide a single
reversible implementation of each reversible reaction. For example, consider the
following implementations using the scheme presented in [13]:

A + B � C + D A + B � B + C A + B � C + B

A � i1

B + i1 � i2

i2 � C + i3

i3 � D

A � i1

B + i1 � i2

i2 � B + i3

i3 � C

A � i1

B + i1 � i2

i2 � C + i3

i3 � B

not pathway equivalent pathway equivalent not pathway equivalent
bisimulation equivalent bisimulation equivalent bisimulation equivalent

It is easy to see that all CRNs are bisimulation equivalent, e.g. the interpretation
{i1 = {A}; i2 = {C,D}; i3 = {D}} is a valid bisimulation of A + B � C + D.
However, the first example is not pathway equivalent, because the species C can
be produced and then reverse without producing D. This form of prematurely
generated or consumed species is forbidden in pathway equivalence, because it is
problematic for implementations of irreversible reactions. In the second example
of a catalytic reaction, this effect is not present, because the catalyst last and
producing it first. Changing this order of reactants makes the two CRNs path-
way inequivalent. On the other hand, bisimulation demands an interpretation of
every species in terms of a formal species. A particularly relevant example is the
delayed choice phenomenon [16]. Consider the formal CRN {A → B;A → C}
and its implementation {A → i; i → B; i → C}. The two CRNs are clearly path-
way equivalent, but bisimulation cannot interpret i such that both formal reac-
tions are possible. Taken together, although both pathway decomposition and
bisimulation capture the majority of intuitive equivalence relations, particular
forms of very efficient implementations, or shortcuts might result in differences
between the notions.

3 Case Studies

This section provides a glimpse into the future of automated DSD circuit design.
We discuss potential problems of translation schemes, optimization strategies, and
compare different schemes for a small oscillating CRN. Last but not least, we
demonstrate the correct compilation of a large CRN implementing a digital circuit.

3.1 The Effects of Network Condensation (and Toehold Occlusion)

The intention behind network condensation is primarily to reduce the size of enu-
merated reaction networks. This makes verification methods, which often scale
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poorly with CRN size, more likely to be computationally tractable. However,
here we use network condensation to study the effects of toehold occlusion, i.e.
an effect where complementary toeholds bind “unintentionally” without actu-
ally triggering strand displacement reactions (see Fig. 2). Toehold occlusion is
believed to influence the dynamics of a DSD system [14,20], especially in schemes
where the consumption of fuels results in accumulation of waste species with
accessible toeholds.

We start with compiling an oscillator CRN with a translation scheme that has
recently been able to confirm DNA oscillations experimentally [20]. The CRN is
composed of three autocatalytic reactions:

A + B → 2B
B + C → 2C (1)
C + A → 2A

As the scheme uses history domains that are unique to each reaction output
and every formal species (A, B, C) is produced twice in the formal CRN, signal
species exist in two versions: A1, A2, B1, B2, C1, C2. We simulate the system at
the domain level using fuel concentrations at initially 100 nM and signal con-
centrations at [A1] = 2 nM, [B1] = 10 nM, [C1] = 15 nM. Keeping the species
at very low concentrations extends the number of oscillations, as fuel species get
depleted more slowly.

Figure 3 shows data from multiple simulations, analysing the influence of
reaction network condensation as a function of toehold length. We observed a
roughly constant number of oscillations ranging from 9 to 11 peaks in total,
across toehold lengths between 3–9 nt. The differences come from minor fluctu-
ations when fuel species get depleted, i.e. the first 9 oscillation peaks are present
across all examples. Hence, neither toehold length, nor reaction network conden-
sation has a strong effect on the number of oscillation peaks.

The period of oscillations, however, changes drastically for chosen toehold
lengths. At the typical lengths of 5–7 nt we observe the fastest oscillations accord-
ing to the detailed reaction network. For this range of toehold lengths and concen-
tations, binding and unbinding of toeholds occurs at a similar rate, which means
(a) toeholds frequently bind to complementary sites and have enough time to
initiate-branch migration and (b) toeholds bound to sites where branch migra-
tion cannot be initiated dissociate quickly. For shorter toeholds, both detailed
and condensed enumerations agree, because toeholds dissociate at a high rate
and the effects of toehold occlusion are insignificant. However, the fraction of toe-
holds completing branch migration is low, slowing down the oscillation period.
For longer toeholds, detailed and condensed enumeration disagree. In the detailed
network, toehold occlusion slows down the system, such that species cannot bind
to their intended complementary regions. The condensed network does not sim-
ulate toehold-occlusion effects and therefore these networks oscillate faster with
increased toehold length.

This result is particularly interesting because some translation schemes use
a mechanism called garbage collection [2,3]. The intention is to collect waste
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(a) ODE simulation: detailed network,
6 nt toeholds

(b) Simulations as a function of toehold
length.

Fig. 3. Controlling the dynamics of a DSD oscillator via toehold length. Data compares
an oscillator implemented using Srinivas’ translation scheme [19], with initial condi-
tions: A1 = 2 nM, B1 = 10 nM, C1 = 15 nM. (a) Simulation of a detailed enumerated
DSD reaction network. Black, red and blue lines correspond to the formal species A,
B and C respectively. Note that there are two molecules with distinct history domains
for each formal species. 9 oscillation peaks are clearly visible, starting with C (blue)
and ending with B (red). These peaks are also present in all other simulations, inde-
pendent of toehold length. However, there are actually two more hardly visible peaks
for species A and C just before they reach equilibrium. (b) Number of oscillation
peaks (top) and the period of oscillations (bottom) as a function of toehold length.
Oscillation peaks are counted after the species with distinct history domains have been
added (e.g. A = A1 + A2). The oscillation period for n oscillation peaks is calculated
as 3(tn − t1)/(n − 1), where tn is the time point of the last oscillation peak. (Color
figure online)

species with available toehold domains into inert complexes. Therefore, garbage
collection introduces additional complexes and reactions to keep the computation
speed of a DSD system constant. However, in practice, this makes systems larger
and harder to verify. In a physical realization, it increases the synthesis cost as
well as the possibilities for leak reactions, such that experimental realizations
have so far refrained from these additional complexes [4]. Studying the differences
of detailed vs. condensed reaction networks shows that, if one chooses the rates
for toehold binding appropriately and with respect to intended concentrations,
toehold occlusion is not a limiting issue for the presented system.
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3.2 Comparing DSD Oscillator Translations

In Fig. 4 we compare implementations of the above oscillator CRN using 13
different translation schemes. All schemes compared here verified correct for a
single autocatalytic reaction A + B → 2B, according to at least one of the
two equivalence notions. Figure 4b shows verification results of the full system,
including potential cross reactions between the three autocatalytic reactions.
The schemes are generalized versions to support n-arity of reactions, but use
exclusively reaction mechanisms shown (or described) in the original publica-
tion. A variant differs from the originally published version, either to correct
the original version, to generalize it in a form that was not obvious from the
publication, or to make a modification that enhances the performance of the
scheme.

Figure 4 compares the size of the condensed enumerated network and the
number of nucleotides in a system. The number of nucleotides is an indicator for
the synthesis cost of nucleic acid sequences, calculated as the combined length
of all distinct strands. The size of the implementation network is an indicator
of computation efficiency, calculated as number of irreversible implementation
reactions (i.e. reversible reactions are two irreversible reactions) in the condensed
reaction network.

The implementations range from 27 to 108 reactions in the condensed enu-
merated CRN and from 693 to 1557 nucleotides. Obviously, removing garbage
collection complexes reduces the total number of nucleotides as well as the num-
ber of reactions. The largest system in terms of reactions is lakin2012 3D.ts.
A simple modification in lakin2012 3D var1.ts: removing inert domains of
strands that reverse the consumption of input strands, makes them indepen-
dent of the implemented formal reaction and reduces the numbers to 48 reac-
tions and 693 nucleotides. The 2-domain scheme cardelli2013 2D 3I.ts is
implemented with the 3-domain irreversible step as suggested in the publica-
tion [3]. This scheme is particularly optimized for autocatalytic reactions such
that they do not require extra garbage collection complexes and reactions.
Hence, cardelli2013 2D 3I.ts and cardelli2013 2D 3I noGC.ts both return
the same set of fuel species for this CRN.

3.3 Towards Compilation of Large CRNs

We now demonstrate the domain-level implementation of larger systems. Our
test case, adapted from [14], is a dual-rail implementation of a logic circuit
computing the floor of the square root of a 4-bit binary number:

y2y1 = �√x4x3x2x1� (2)

First, the logic circuit was translated into a CRN that consists of 32 uni-
and bimolecular reactions (see Fig. 5a), second, the CRN was compiled using
Nuskell with the scheme soloveichik2010.ts [18]. The condensed enumer-
ated reaction network has 316 species (52 signal species, 92 fuel species, 172
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(a) Efficiency of translations schemes

Translation scheme pathway equivalent bisimulation equivalent

soloveichik2010.ts True True
cardelli2011 FJ.ts False -
cardelli2011 FJ noGC.ts False -
cardelli2011 NM.ts - -
cardelli2011 NM noGC.ts False True
qian2011 3D var1.ts True True
lakin2012 3D.ts False -
lakin2012 3D var1.ts False True
cardelli2013 2D 3I.ts False -
cardelli2013 2D 3I noGC.ts - -
chen2013 2D JF var1.ts - -
lakin2016 2D 3I.ts - -
srinivas2015.ts True True

(b) Verification of translation schemes

Fig. 4. DSD oscillator implemented using 13 different translation schemes. A “ noGC”
indicates that the scheme differs from the published version in that it does not implement
garbage collection reactions. Other variants are indicated by “ var”. lakin2012 3D.ts

produces identical complexes with the scheme presented in Listing 1.1 for this input CRN.
(a) The plot shows the total length of all distinct strands in the circuit as an indicator
of synthesis cost, and the size of the enumerated reaction network as indication of com-
putation speed. The number of nucleotides is calculated assuming 6 nt toeholds and 15
nt branch-migration domains. (b) A table summarizing the results of verification. None
of the schemes was shown incorrect by both equivalence notions, but many reaction net-
works are too complicated, such that equivalence testing did not terminate within 1 hour.
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Fig. 5. A CRN calculating the square root of a 4-bit binary number compiled to a DSD
system using the translation scheme presented in [18]. (a) A digital circuit taken from
[14] is translated following the rules shown for fanouts and AND gates. NOT and OR
gates follow the same principle, and the three-input AND gate is translated using two
two-input AND gates. (b-e) The four simulations show the results for inputs 0, 1, 4, 9.
Input signal species are called X, output signal species called Y , all other signal species
are “Gates”, which are only transiently produced. All signal species exist in an ON and
OFF version which is either initially present (10 nM) or absent (0 nM). Fuel species
are initially at 100 nM.



246 S. Badelt et al.

intermediate species), 180 reactions, and it verifies as correct according to the
pathway equivalence notion.

Figure 5 shows the simulations for four calculations: 0000, 0001, 0100, 1001.
Every input and output digit is represented by one ON and one OFF species,
which are either initially present (10 nM) or absent (0 nM). The remaining 40
signal species (with unique history domains) represent the 12 transient formal
species in the formal CRN, also called “Gates” in Fig. 5. The fuel species are
initially at 100 nM; some of them are consumed during the DSD calculations,
while others become more abundant. The reaction rates as calculated by the
peppercornenumerator library suggest the completion of the DSD circuit after
approximately 27 h, which is comparable to the computation time using the See-
saw architecture [14], with respect to the lower concentrations of initial species
in this example.

Both enumeration and verification can be bottlenecks to compile large sys-
tems. For example, we have tested other techniques to translate digital circuits
into CRNs with trimolecular reactions, where the enumerator had difficulties
to deal with the combinatorial explosion of intermediate species due to history
domains.

4 Conclusions

The strength of Nuskell comes from three features: First, formulating DSD
design principles as translation schemes makes the design and optimization of
complex networks easily accessible to a broad scientific community. Second, rig-
orous proofs of correctness guarantee a successful domain-level compilation, and
are applied on a flexible case-by-case basis. Third, multiple translation schemes
can be compared for a given CRN, exploiting the diversity of DSD circuits imple-
menting the same CRN and allowing for optimization of circuits at the domain
level, before proceeding to the computationally more expensive DNA sequence-
level design and verification.

The discussed verification methods ensure that – given a particular reac-
tion semantics – a CRN is correctly translated. Variations of these enumeration
semantics are sometimes necessary and can help to identify problems. For ex-
ample, some schemes are only correct if remote toehold branch migration or
4-way branch-migration reactions are disabled, which reveals clues for identify-
ing unintended side reactions and making schemes more robust. On the other
hand, ODE simulations of domain-level systems can be used to compare the
performance of schemes, e.g. in terms of oscillation periods or fuel consumption;
some schemes can be technically incorrect but with a probability of error that
decreases with molecular counts in the stochastic regime and disappears entirely
in the large-volume deterministic regime. Future versions of the compiler might
calculate leak reaction rates to fine-tune the length of particular domains and
to more efficiently combat leak during nucleic acid sequence design.

There are many open questions about the limitations of the algorithmic
behavior that can be programmed into nucleic acid systems. How complex can
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DSD systems get? Does efficiency decrease with a larger number of reactions?
Can particularly efficient translation schemes be combined? Compilers can be
used to study and optimize DSD systems in order to reveal their full potential.
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