
One Dimensional Boundaries
for DNA Tile Self-Assembly

Rebecca Schulman, Shaun Lee, Nick Papadakis, and Erik Winfree

Computer Science and Computation & Neural Systems
California Institute of Technology, Pasadena, CA 91125, USA

Abstract. In this paper we report the design and synthesis of DNA
molecules (referred to as DNA tiles) with specific binding interactions
that guide self-assembly to make one-dimensional assemblies shaped as
lines, V’s and X’s. These DNA tile assemblies have been visualized by
atomic force microscopy. The highly-variable distribution of shapes – e.g.,
the length of the arms of X-shaped assemblies – gives us insight into how
the assembly process is occurring. Using stochastic models that simulate
addition and dissociation of each type of DNA tile, as well as simplified
models that more cleanly examine the generic phenomena, we dissect
the contribution of accretion vs aggregation, reversible vs irreversible
and seeded vs unseeded assumptions for describing the growth processes.
The results suggest strategies for controlling self-assembly to make more
uniformly-shaped assemblies.

1 Introduction

Self-assembly - the process by which monomer units come together to form a
larger structure according to local, energetic rules - is of great theoretical and
practical interest. Most natural self-assembling systems, including crystals, bio-
logical membranes, and virus capsids do not permit easy experimental variation
of the specificity of binding between units. Control over binding specificity allows
the investigation of both the theoretical possibilities of the self-assembly process
as well as the practical goal of constructing more complex nano-fabricated pat-
terns.

Control over binding specificity allows the self-assembly process to be pro-
grammed. The potential of self-assembly programming derives from Wang’s in-
vestigations of the two-dimensional tiling problem [14], in which he showed that
two-dimensional tiling systems can simulate a universal Turing machine [15]. The
(abstract) Tile Assembly Model (aTAM) [17] is an extension of Wang’s tiling sys-
tems to include a specific growth process motivated by physical considerations
of crystallization. In aTAM, a program is the specification of the tile types, the
bond types on their sides, the bond strengths and a threshold value. Assem-
bly begins with a seed tile and proceeds by the non-deterministic addition of
tiles at locations where the total strength of all bonds that would be formed is
greater than the threshold. The abstract Tile Assembly Model has been shown



to be Turing-universal [16, 17], which implies that complex objects can be self-
assembled from relatively small numbers of tile types [9]. We therefore say that
aTAM supports algorithmic self-assembly.

Our goal is to implement the aTAM in chemistry by using DNA tiles – specif-
ically, double crossover (DX) molecules [7] – making use of the complementary
base-pairing between its strands to control the strength and specificity of molec-
ular assembly. Each DX molecule consists of two parallel double helices; each
strand first participates in one helix, then crosses to the other helix, holding the
two helices together. There are four single-stranded sticky ends that can hydro-
gen bond to complementary sticky ends on other DX molecules, allowing fine
control of binding specificity. Previous work has shown that the DX molecules
R00 and S00 (shown in figure 1) will self-assemble into two-dimensional sheets
in which R00 and S00 are arranged periodically in stripes, in agreement with
their sticky-end interactions [18]. It remains to be shown experimentally that
well-defined algorithmic patterns can result from two-dimensional self-assembly
of DNA tiles. Additional forms of control are necessary to achieve this.

As an example of algorithmic self-assembly, consider the set of eight abstract
tiles (and their DNA analogs) shown in figure 1 as boundary tiles and rule tiles1.
Each DNA tile is designed to have the same bond types, with approximately
the same binding strengths, as the corresponding abstract tile; in the abstract
model, the B bond has twice the strength as the other bond types. See figure 1
for details.

Under the aTAM with the threshold for tile addition set at 2 units, these
tiles set up boundary conditions and execute iterated XOR logic to construct
Pascal’s triangle modulo 2, the discrete analog of the fractal Sierpinski gasket
[3]. Self-assembly begins with the corner tile RC as the seed tile: Due to the
strong bond B, first SB, and then RB, can bind repetitively to either side of
RC, creating a V-shaped boundary. As soon as a pair of SB tiles have bound to
either side of RC, an R11 tile can be added directly above RC, thereby forming
two strength-1 bonds and thus achieving the threshold. No other tile could have
been added at that location, because all other tile types would form at most one
strength-1 bond. As soon as the R11 tile and flanking RB tiles are present, two
new locations become available for tile addition; this time, it is only S01 that
can make two matching bonds. This process continues forever; at each location,
a unique tile may be added, and thus the pattern generated is uniquely defined;
an intermediate assembly is shown at the bottom of figure 1.

That the pattern is Pascal’s triangle mod 2 derives from the fact that each
rule tile corresponds to an entry of the truth table for the XOR function. Con-
ceptually, the inputs to the tile are given in the two sticky ends at the bottom,
and the tile’s output is (repeated) in both sticky ends at the top. Because of
the geometry of the DX molecules we used, and the fact that DNA strands
are directed (by convention, from 5’ to 3’), tiles in alternating rows have re-
versed strand orientation. This means that two tiles are required for each line

1 Two additional tiles, RCxy and S00N, were needed as well for some experiments
reported here.







 



 





Fig. 1. Abstract tiles, DNA tiles, and their assembly according to the Tile Assembly
Model. Tile types. Tiles are classified into boundary tiles and rule tiles. Boundary
tile RCxy and rule tile S00N, although not part of the assembly process shown at the
bottom, were used in experiments reported here. Boundary tiles RC and RCxy are also
called corner tiles. A variant of S00N, called S00N-23J, contains hairpin sequences to
enhance AFM contrast, as in [18]; it has the same sticky ends as S00N. Each DNA
tile is approximately 4 × 12 nm. Abstract tiles may be flipped left-to-right (reflecting
a symmetry present in the DNA molecule) as necessary. Bond types. Tiles whose
names begin with R can bind only to tiles whose names begin with S (because R
tiles have 5′ sticky-end overhangs on top, while S tiles have 3′ overhangs, necessitating
different sticky end sequences). For the abstract tiles, matching bond types B and B
(which are implemented in DNA by GC-rich length-7 sticky ends) have a strength of
2, while the other matching bond types (0 and 0, and 1 and 1, implemented in DNA
as length-5 sticky ends) have a strength of 1, in some arbitrary units. Assembly. In
the bottom half of the figure, tiles are added to a growing assembly either when a B
bond can be formed or when two weaker bonds can be formed simultaneously. The
red X indicates a location where mismatch of the sticky ends prevents tile addition
according to the aTAM. Full sequences and sequence design procedures are available
at http://www.dna.caltech.edu/SupplementaryMaterial.



in the truth table. For example, the R01 and S01 tiles have the same semantics
(0 XOR 1 = 1), but R01 has 5’ overhanging sticky ends on its output (top), while
S01 has 3’ overhangs. There is no need for an S11 tile, as it does not appear in
the Sierpinski pattern.

In order to apply insights about abstract algorithmic self-assembly to real
physical systems, we need to understand when a physical system is well-modeled
by the aTAM. Initial steps in this direction were achieved in [17], which defined
the kinetic Tile Assembly Model (kTAM) to include rules of reversible chemistry:
any tile may be added at any site at a rate proportional to its concentration as
free monomer, and any tile may leave the assembly at a rate exponentially related
to the strength of its bonds with the rest of the assembly. In that work, it was
argued that physical conditions can be achieved under which the Sierpinski tiles
self-assemble correctly with high probability: growth from corner tiles proceeds
with a low error rate; growth from rule tiles is very rare; and growth from
boundary tiles quickly incorporates a corner tile, and then proceeds with a low
error rate.

Although encouraging, the original kTAM model makes assumptions that
are not appropriate for some circumstances. Specifically, it assumes (1) that the
monomer tile concentration are held constant for the duration of the simulation.
Therefore, we call it a powered model; in an unpowered model, monomer tile
concentrations would be depleted as they are used. (2) that assemblies grow only
by addition of a single tile at a time, a process called accretion. The alternative,
aggregation, allows two large assemblies to come together and bind to each other.
(3) that growth of assemblies is independent of one another, and therefore the
fate of a single seed tile can be simulated in isolation. We call this a (singly-
)seeded model. Assumption (3) is actually a consequence of assumptions (1)
and (2); if either monomers are unpowered, or aggregation of assemblies is to
be considered, then a multiply-seeded model is appropriate. Experiments where
DNA molecules are passively assembled in a test tube are more likely to resemble
a multiply-seeded, unpowered, aggregation model. Therefore, results from the
singly-seeded, powered, accretion kTAM must be carefully interpreted, or – as
we do here – enhancements of the original kTAM must be used.

In this work, we address these issues as they apply to the self-assembly of
one-dimensional boundaries. Originally intended as a simple step toward demon-
strating the Sierpinski pattern experimentally, construction of one-dimensional
boundaries has turned out to be an interesting story in its own right. Al-
though the individual DX tiles required for the Sierpinski tile set formed re-
liably and associated specifically in accord with the programmed interactions,
several attempts to create uniformly V- and X-shaped boundaries produced, in-
stead, a high-variance distribution of mostly asymmetrically-shaped assemblies.
This turns out to be an excellent test of the various assumptions used in the
kTAM. We show, first, that a multiply-seeded, unpowered, accretion variant
of the kTAM gives simulation results qualitatively similar to the experimental
results. This, however, does not identify which assumptions are valid for our
experimental system, nor does it provide understanding. For that, we turn to



three simplified models that test the assumptions of accretion vs aggregation,
reversible vs irreversible binding, and singly- vs multiply-seeded growth. Our
experimental results are compatible with the reversible and irreversible aggre-
gation models, and incompatible with the irreversible seeded accretion model.
Furthermore, our understanding of the models suggests several approaches to
solve the problem of creating uniformly-shaped boundaries.

2 Experiments with Seeded and Unseeded Assembly

Early attempts to produce the Sierpinski pattern by mixing the tiles described
above were unsuccessful. AFM imaging revealed that some assembly occurred,
but it was irregular and difficult to interpret, due to poor AFM resolution at
the time. We have since begun a step-by-step process of debugging, testing com-
ponents of the system one at a time and in simple combinations. During this
process resolution has been improved to the point where we regularly can discern
individual tiles.

First we tested the boundary tiles in isolation. RB and SB together make
what we term a single-layer boundary. Figure 2(a) illustrates a typical AFM
image of the long filaments formed. Images were difficult to obtain at lower tile
concentrations, which precluded identifying individual assemblies. However, it
was clear that filaments formed and that they were quite flexible, often forming
loops, circles, or coils.

In order to create rigid, straight assemblies, a double-layer boundary was
formed by adding the R11 and S00N tiles2 to RB and SB, as shown in figure 2(b).
Individual tiles can be distinctly recognized. We also observed long single-layer
assemblies, both alone and as tails extending from double-layer assemblies (see
arrow).

Unfortunately, the addition of small quantities of the RC tile to double-
layer boundary did not create shallow V-shaped boundaries suitable for grow-
ing large assemblies. There was little evidence of the expected V-shape; images
of these samples were essentially indistinguishable from double-layer boundary
alone (data not shown). It is not clear whether the few V’s that were observed
were V-shaped tile arrangements, or simply two boundary assemblies aligned in
a V shape by chance, or a boundary assembly folded into a V shape.

The construction of a four-tile assembly consisting of RC, R11, and two SB
tiles called the 2x2 V, verified that the RC tile was binding correctly to its
immediate neighbors. Figure 3(a) shows that this construct forms as designed,
although at this concentration, 2x2 assemblies appear to associate loosely with
each other.

However, when the tiles needed to form the slightly larger V structure shown
in figure 3(c) were combined, a 3x3 V shape was almost never clearly observed.
Instead, a great deal of double-layer boundary that may or may not have had a
corner tile attached and very occasional shallow V’s were visible.

2 We used S00N here because the combination of R11, S01, RB, and SB tiles might
be prone to growing additional layers with mismatches.
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(a) Single-layer boundary at high con-
centration. RB and SB tiles at 1:1,
2.5µM each tile.

(b) Double-layer boundary. Bold por-
tion of the diagram represents the ar-
rangement of the double layer bound-
ary assemblies. The bold tiles combina-
tion with the tiles in gray is a hypoth-
esized structure for the motif shown in
inset that is seen occasionally. Red star
indicates mismatched sticky ends in the
putative structure. RB, SB, S00N-23J,
R11 at 1:1:1:1, 0.1µM each tile. Diluted
2:1 before imaging.

Fig. 2. Boundary assemblies imaged via AFM. Sample prep: Oligos were obtained
PAGE-purified from Integrated DNA Technologies (www.idtdna.com), and quantified
by UV-absorbance. The four strands comprising each tile were mixed at .4µM (each
strand) in TAE/Mg++ buffer (40mM Tris-Acetate, 1mM Na2EDTA, 12.5mM Magne-
sium Acetate) and annealed from 90 to 20 ◦C at 1 ◦/min. These tile stocks were mixed
at room temperature (≈ 25◦C) in the specified ratios. Time between mixing and imag-
ing was typically one hour, but varied from 20 min to several days. AFM imaging: 5µl
of sample was deposited on freshly cleaved muscovite mica (Pella, www.tedpella.com)
and allowed to adsorb for 3 min. After optional rinsing with TAE/Mg++ buffer, it
was imaged under buffer using tapping mode on a Digital Instruments (www.di.com)
Nanoscope IIIA with NP-S sharpened silicon nitride tips.
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(a) 2x2 V. SB, R11, RC, 2:1:1, RC at
0.1µM
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(b) 2x2 X. SB, R11, RCxy, 4:2:1, RCxy
at 0.057µM

(c) 3x3 V. RB, SB, S00N-23J, R11, RC,
2:2:2:2:1, RC at 0.044µM. Arrow points
to a V-shaped structure that is seen oc-
casionally, and is believed to be the ar-
rangement of tiles shown here in bold
and gray.

(d) 3x3 X. Circles indicate examples of
1-, 3-, and 4-armed structures. RB, SB,
S00N-23J, R11, RCxy, 4:4:4:2:1, RCxy
at 0.027µM

Fig. 3. X and V Structures. In diagrams, black indicates the target assembly (according
to stoichiometry); gray indicates other possible polymerization. Experimental methods
are as shown in figure 2.



To address the theory that the corner tiles were present, but not visible in
some of the previous experiments, a new corner tile that would form assemblies
of a distinct X shape was created. This tile, RCxy, resembles an RC tile joined
to a second RC tile that has been rotated. The 2x2 X, a repetition of the 2x2 V
experiment with the RCxy tile and adjusted stoichiometries of the other tiles, is
shown in figure 3(b). The resulting motif formed without difficulty.
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Fig. 4. (a) Measured sizes of double-layer boundary assemblies from an image similar
to figure 2(b). (b) Measured sizes of double-layer arms extending from the RCxy corner
tile from the image in figure 3(d) (c): A scatter plot of the length of two arms attached
to the same corner tile and to different corner tiles, showing that the size of a given
arm is independent of the size of the other arms attached to the same corner tile. Arms
sizes are calculated from contour sizes of arms as shown in the insets in graphs (a)
and (b). The measured contour length of each arm was converted to a length in tiles
using the formula 1 tile = 12.5 nm. Simulated measurement noise was added in the
scatter plot to avoid exact superposition of datapoints. Single-layer arms, single-layer
tails, and assemblies only partially contained in the image were not counted.

Finally, the 3x3 X, shown in figure 3(d), behaved analogously to the 3x3 V.
Rather than forming the target assembly, some arms grew relatively long, while
others didn’t grow at all. The distribution of arm lengths found in an image of
double-layer boundary and of 3x3 X is shown in figure 4. Two trends are clear:
relative frequency decreases with arm length, and the lengths of arms attached
to the same corner tile appear to be statistically uncorrelated.

These experiments confirm that the Sierpinski tiles form structures that re-
flect their programmed interactions. However, the frequency and shape of the
structures that arose were sometimes unexpected.

3 Simulations of Tile Assembly

Our first approach to explaining these results considers a tile-based assembly
model that incorporates basic aspects of the physical chemistry of DNA [1]:



1. The rate of association between tiles, accomplished by the hybridization of
their sticky ends, is dominated by their respective concentrations. Therefore,
the forward rate constant kf is identical for all assemblies and all tiles.

2. The rate of dissociation of a tile from an assembly is based on the total
free energy, ∆G, of all sticky-end bonds that must be broken. Therefore, the
reverse rate constant kr = e∆G/kT .

Canonical reactions are illustrated in figure 5. If there were only one reaction
involving tile T , assembly A, and assembly A′, then

d[A]

dt
= kr[A

′]− kf [A][T ].

The full model allows any tile to add to any assembly at any location, but
tiles that do not match their neighbors will have weak bonds and hence disso-
ciate quickly. In principle, the definition of the tile set, including the strengths
of all pairwise interactions between tiles, uniquely determines the dynamics of
self-assembly. Assembly concentrations evolve over time according to a set of
ordinary differential equations, each being a sum of terms similar to the ones
shown above. However, as there are an infinite number of different assemblies, an
infinite number of ODE’s are required. Solving this system explicitly is infeasible
in general.

Therefore, we make use of the computationally tractable stochastic kinetic
Tile Assembly Model (kTAM) described in [17]. In the original model, a single
selected seed tile grows into a larger assembly by successive addition or dissocia-
tion of single tiles, as described above; it is a seeded, powered, accretion model.
Fortunately, at steady-state (if it exists), the probability of observing a par-
ticular assembly in the simulation is proportional to the concentration of that
same assembly in the full model at equilibrium, so long as in both cases the
steady-state monomer tile concentrations are the same [12].

In order to use this model to simulate our experimental systems – where the
set of tile types and their total initial concentrations are known, but the equi-
librium concentration is not known – two enhancements of kTAM are necessary,
which we call the multiply-seeded, unpowered, accretion kTAM (multi-kTAM).

kf

kr
+

1

(a)

kf

kr
+

2

(b)

Fig. 5. Growth of tile assemblies based on (a) formation of a single bond, with energy
∆G1 and reverse rate kr1 = e∆G1/kT , and (b) formation of two bonds simultaneously,
with energy ∆G2 and reverse rate kr2 = e∆G2/kT .



First, multiple assemblies are grown simultaneously; and second, the concentra-
tion of each monomer tile (shared by all assembly growth processes) is depleted
with each tile addition and restored with each tile dissociation. Thus, there are
two new parameters to the model: how many assemblies to simulate, NA, and
their “effective concentration”, CA, determining how much the global tile concen-
tration changes with each monomer association or dissociation. Unfortunately,
the choice of NA and CA can bias the steady-state distribution in the simula-
tion, and it is at this point unclear how to optimally choose those parameters
in order for the simulation to accurately reproduce the equilibrium distribution
of assemblies defined by the full model. Therefore, although we believe we chose
reasonable parameters for our simulation, the results of the multi-kTAM simu-
lations must be considered qualitative until better understanding of the model
is achieved.

We ran the multi-kTAM simulation for tile sets modeling each of the six
experiments described in the previous section. The results, depicted qualitatively
in figure 6, reproduce main features of AFM qualitatively: whereas the 1-layer,
2-layer, and V and X 2x2 tile sets all form the desired structures, but the 3x3
tile set polymerizes into assemblies with predominantly just one or two arms. At
low simulation temperatures, the defect shown in figure 2(b) (inset), also occurs
in the simulations.

This gives us confidence that the unexpected features we observe in the AFM
images are not necessarily due to ill-formed tiles, bad DNA, old chemicals, or
unknown physical or chemical effects, but rather, they may be due solely to the
processes incorporated into our model. This is encouraging, because it implies
that our model may provide the necessary insights required to fix the problem.
However, because of the dependence on the parameters NA and CA, we are not
confident that the distributions resulting from multi-kTAM simulations are the
correct predictions of the general physical model of tile-based assembly. Further-
more, the simulations do not give us a clear intuitive understanding of why the
model reproduces these effects. For that, we turn to simplified models that can
be analyzed exactly.

4 A Theory of Boundary Tile Assembly

Our experimental and simulation results can be summarized in the observation
that small, well-defined assemblies form as expected, and that experiments in
which the tiles could polymerize (i.e., form arbitrarily long chains) produced a
distribution of assemblies in which the target was a rarity.

Therefore, with the goal of understanding the general features of boundary
formation, we discuss a class of models that further idealizes the kTAM model
and are simple enough that they can be analyzed and reasoned about intuitively.

Specifically, three models will be considered: (a) an irreversible seeded pro-
cess, (b) reversible aggregation and accretion systems at equilibrium, and (c) an
irreversible aggregation process. The experimentally measured arm lengths may
seem to be more consistent with models (b) and (c).



In what follows, we reduce the formation of DNA tile boundaries to the
formation of one dimensional heterogeneous polymers containing two types of
monomers: the corner tile and the generic boundary tile. A corner tile may only
occur once in the assembly and can bind up to four boundary tiles. Boundary
tiles may attach to corner tiles and polymerize linearly. We refer to the boundary
tile species as B and the corner tile species as C. Assemblies may consist of a line
of boundary tiles, or a corner tile connected to four such lines (in this context
called arms) forming an X shape. A boundary assembly is referred to as Bn,
n > 0 and a four armed assembly that contains a corner tile and arms of lengths

(a) 1-layer
boundary

(b) 2x2 V (c) 3x3 V (d) 2-layer V

(e) 2-layer
boundary

(f) 2x2 X (g) 3x3 X (h) 2-layer X

Fig. 6. A selected sample of assemblies in the steady-state distribution of multi-kTAM
simulations for each experiment shown in figures 2 and 3. Initial monomer tile concen-
trations were chosen exactly in correspondence to the experimental conditions, with
the exception that concentration for 2-layer V and 2-layer X simulations were as in
the corresponding 3x3 experiment, but with RC diluted 100:1. Each simulation was
started with NA = 100 seed tiles of each type, each with CA = [monomer]/1000.
Tile binding strengths (∆G = 7.2 kcal/mol for the 0 and 1 bond types) were
chosen based on length-5 sticky ends at 25◦C, as in [17], with the B bonds be-
tween boundary tiles RB and SB being treated as twice as strong as the bonds be-
tween other tiles. Mismatched bonds between tiles with non-complementary sticky
ends were assigned ∆G = 0. Simulation code and parameter files are available at
http://www.dna.caltech.edu/SupplementaryMaterial.



m1,m2,m3, and m4 (with mi ≥ 0) is referred to as CBm1
Bm2

Bm3
Bm4

. All
the reactions that we consider involve growth or shrinkage of one of the four
assemblies attached to the corner independent of the length of the others. For
simplicity we will discuss models with one arm per corner tile, with the exception
of the graphical depiction of assemblies produced by our various models (figures
8(d), 8(h), and 8(l)), and a discussion of the difficulty of creating an assembly
where all arms are long. In all models discussed here, the dynamics of systems
with X shaped corner tiles are identical to those of a one armed system, where
each corner tile in the one armed system is replaced by a set of four corner tiles.
The arm lengths of this group of four tiles corresponds to the four arms of a
single X.

B5

CB3B7B0B0

C

B

B2

CB5B3B2B4

Fig. 7. Types of species in our theoretical models of boundary assembly include corner
tiles attached to several boundary assemblies, and boundary and corner tiles alone.

4.1 Seeded Irreversible Tile Assembly by Accretion

The original kTAM model assumes that growth always begins from a seed tile.
This supposition stems from the fact that the formation of a bond between two
rule tiles is not energetically favored unless two such bonds can form at once. The
assumption that growth begins from a seed nucleus is standard in crystal growth,
where crystal formation is believed to be primarily governed by accretion.

Seeded irreversible accretion can be modeled by a single reaction:

B + CBn → CBn+1 n ≥ 0 (1)

Assembly formation through this reaction causes each boundary tile to ran-
domly attach to a corner assembly, completing when every boundary tile has
been attached to an assembly. The result is that, considered in isolation, the
length of an arm is binomially distributed. Where L is a random variable rep-
resenting the length of a single arm, n is a length of interest, c the number of
corner tiles, and b the number of boundary tiles, and p = 1

c ,

Pr(L = n) =

(
b

n

)
pn(1− p)b−n



The length of the arms are approximately independent, so that the total distri-
bution looks like a binomial distribution (figure 8(b); ie the expected number of
arms with length n is approximately c ∗ Pr(L = n).

The variance of this distribution becomes small when the ratio of boundary
to corner tiles and the total number of molecules grow large. Therefore, if this
process were responsible for boundary assembly formation, corner and boundary
tile experiments would reveal many evenly sized assemblies uniformly attached
to corner tiles (figure 8(d)).

4.2 Reversible Tile Assembly

Another possibility was that the tile assemblies observed experimentally were at
conditions approximating equilibrium. In this case, boundary tiles would be in
equilibrium not only with corner assemblies but possibly also with assemblies
made up solely of boundary tiles. The equilibrium conditions for two types of
reaction systems are considered here: an accretion system, where only single
tiles join assemblies with or without a corner tile, and an aggregation system,
where boundary assemblies as well as corner assemblies can form, and boundary
assemblies may interact as boundary tiles do. The reactions for the two models
are (for n > 0,m ≥ 0):

Accretion Aggregation
B + CBm ⇀↽ CBm+1 Bn + CBm ⇀↽ CBm+n

B +Bm ⇀↽ Bm+1 Bn +Bm ⇀↽ Bn+m

The corner and boundary tiles have the same on and off rates, so we assigned
each reaction a common forward rate constant kon, backward rate constant koff,
and equilibrium constant Keq = kon

koff
.

These reactions are simple enough to calculate the equilibrium values in
closed form. The accretion model has the same equilibrium as the aggregation
model. 3 At equilibrium in the accretion model, for all m, p ≥ 0 we have:

[Bm+nC]

[BmC][Bn]
= Keq

[Bm+n]

[Bm][Bn]
= Keq (2)

Solving these gives

3 The kinetics of boundary formation in a reversible accretion process are much slower
than for a reversible aggregation process. Seeded reversible accretion growth also
gives a geometric distribution of tiles at equilibrium. However, in an accretion model,
the concentration of the single boundary species [B] is much greater than in the
aggregation model, where most boundary tiles can react with each other to form
boundary assemblies in addition to connecting to corner tile assemblies. Thus the
geometric distribution parameter Keq[B] for the equilibrium concentrations is much
closer to one in the accretion case. In accretion, we see much more even but still
geometric distributions of corner assembly sizes.



[Bn] = [B](Keq[B])n−1 [BmC] = [C](Keq[B])m (3)

These equation predict that at equilibrium the sizes of assemblies should
be geometrically distributed with parameter (Keq[B]), where [B] is the concen-
tration of lone boundary tiles at equilibrium. This is a well known fact about
polymerization [4, 5].

The equilibrium solution is entirely symmetric with respect to the four arms
of an X shape. Thus for a four armed assembly the concentration of an assembly
type is

[CBm1
Bm2

Bm3
Bm4

] = [C](Keq[B])(m1+m2+m3+m4)

This implies that the total number of tiles connected to a corner X tile
is geometrically distributed. Because tiles are distributed independently across
each of the four arms of a corner X tile, we can conclude that corner tiles with
four long arms are rare, for any reasonable definition of “long”4: the probability
that all four arms are long is the fourth power of the probability that any single
arm is long. Similarly, for corner V tiles, the probability of two long arms is the
square of the probability of one. The arm length distribution for of a reversible
process that approaches equilibrium is shown in figure 8(f). Most corner tiles do
not have more than one or two nontrivial arms (figure 8(h)).

4.3 Irreversible Tile Assembly by Aggregation

Irreversible tile assembly would appear to be a limiting case of the reversible
aggregation model, where binding reactions become so biased toward the forward
reaction that they are essentially irreversible. The results (shown in figures 8(j),
8(l)) of a simulated irreversible aggregation process are similar to the reversible
case, but have a more accentuated fraction of length-0 arms, and the distribution
has longer tails. In irreversible aggregation tiles “freeze” when they are first
attached to a corner tile, rather than finding a final equilibrium state. Therefore,
the results of the irreversible tile assembly model are likely to resemble a kinetic
intermediate rather than the equilibrium of a set of tiles where binding between
tiles is very strong.

5 Discussion

As part of our work on the creation of complex self-assembled structures, we have
designed and experimentally verified the binding specificities of many different
DNA double crossover molecules. We have been able to form specific structures
with these tiles, but not yet control their polymerization. Moreover,the kinetic

4 For example, one could say an arm is “long” if it has at least half the average number
of tiles.
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(k) (l)

Fig. 8. Distributions of the size of assemblies attached to corner tiles for, (8(a), 8(b),
8(c)) the seeded irreversible accretion model at completion, (8(e), 8(f), 8(g)) reversible
aggregation model close to equilibrium, and (8(i), 8(j), 8(k)) the irreversible aggre-
gation model at completion. The column shows results for 1:1, 10:1, and 100:1 stoi-
chiometric ratios of boundary tiles to corner tiles. The last column (8(d), 8(h), 8(l))
gives a visual depiction of eight assemblies randomly chosen from each set of results,
for each of the three models when a 10:1 stoichiometric ratio is used. All simula-
tions used c = 1,000 corner tiles and b = 1,000, 10,000 or 100,000 corner tiles. For
irreversible models, at each step two assemblies were chosen from the collection, and
if a reaction between them was allowed by the model being simulated, the assem-
blies were replaced by the reaction product. For the reversible model, each possi-
ble association or dissociation reaction between two assemblies was chosen randomly,
weighted by rates Kon and Koff where Konb

Koff [B]
= Keq. Assuming the concentration

of boundary tiles was [B] = 0.1µM, the equilibrium coefficient in the reversible reac-
tion was Keq = 1 nM. Simulation code and scripts for these figures are available at
http://www.dna.caltech.edu/SupplementaryMaterial.



tile assembly model’s predictions correspond well with what is seen experimen-
tally. We can further simplify this model to explore extremes in the behavior of
tiles, and to provide simpler explanations for our experimental results.

The experimental statistics shown here represent an initial effort at quan-
tification, and are not yet conclusive. Several sources of error may be present:
A small number of images were analyzed, selected for clarity; they may not be
representative of typical results. Sample preparation techniques, variations in
the adhesiveness of the mica, or AFM tip interactions might affect the observed
distribution of assemblies. The size or shape of an assembly might further affect
its ability to adsorb.

Definitive and more substantial conclusions would require additional samples
to be analyzed; in particular, experiments that vary the stoichiometric ratio of
boundary to corner tiles, imaged with resolution than can distinguish between a
boundary assembly and a corner assembly with one arm, would help discriminate
between the growth models. It would also be instructive to compare to boundary
formation at colder temperatures, which should be an essentially irreversible
process, and to boundaries formed by slow annealing, which should yield the
distribution of a reversible process.

Furthermore, the experimental results shown here are insufficient for extract-
ing thermodynamic parameters (∆G, or equivalently, Keq) for tile binding events
between our specific molecules. Are the parameters used in the simulations rea-
sonable? Based on generic nearest-neighbor parameters for base stacking within
a duplex [10], coaxial base stacking at nick sites [13], and dangling ends [2],
we estimate5 rule tile sticky ends to bind with Keq between 2 and 200 µM, and
boundary tile sticky ends to bind with Keq between 10 and 100 nM at 25◦C. The
multi-kTAM simulations used 6 µM and 34 pM respectively, while the reversible
aggregation simulations used 1 nM for the boundary tiles. Thermodynamic pa-
rameters for our DNA tiles should be measured experimentally.

Despite these difficulties, the results obtained here, when compared to the
models, support qualitative conclusions, because the generic shape of the as-
sembly shape distributions is not dependent upon the exact parameter values.
Among the simplified models, the predictions of the irreversible aggregation
(figure 8(i)) and reversible aggregation 8(e)) are closer to the experimental ob-
servations (figure 4) than the irreversible accretion model (figures 8(a)). These
models also seem a priori more plausible than the irreversible accretion model,
because boundary tiles have no mechanism to prevent aggregation of boundary
assemblies prior to attachment to a corner assembly. Unfortunately, it will be
difficult to build corner assemblies with long arms using irreversible or reversible
aggregation processes.

Thus, the models suggest that one difficulty in creating large, uniformly-sized
V and X assemblies may be the ability of boundary assemblies to form in the ab-
sence of corner tiles. In this case, neither increasing the concentration of bound-

5 The wide range of the estimates is due to sequence dependence of the parameters
(giving different sticky ends different Keq’s), as well as being due to uncertainty
about the reported parameters.



ary tiles in our reactions, nor increasing the binding strength between boundary
tiles, will significantly increase the concentration of large, uniformly-sized corner
assemblies. This also means that using ligase to lock the tiles together will be
ineffective for making large, uniformly-size corner assemblies.

On the other hand, the seeded accretion model shows that if growth can be
constrained to occur from the corner tile only, then large, relatively uniformly-
sized corner assemblies will result. We are designing a new set of boundary
tiles for a Sierpinski triangle that, even in an aggregation model, dramatically
reduce the ability of boundary tiles to spontaneously assemble in the absence
of a corner nucleus [11]. Preventing such spontaneous growth is also likely to
reduce the effects of stoichiometry poisoning, discussed below.

Several other factors, other than the ones discussed above, may also be play-
ing a role in shaping the experimentally observed distributions. For example,
malformed DNA tiles could terminate growth, leading to truncated distributions.
More subtle is the effect of stoichiometry poisoning. Ideally, the concentrations
of RB and SB tiles in our experiments are equal, but in practice small pipet-
ting errors cause differences in the amount of each type of tile present. These
slight differences can greatly influence the size of assemblies that form, since in a
polymerization reaction involving alternating monomer types, the more unequal
the two concentrations are, the smaller the polymers become on average [6]. In
the case where [RB] > [SB], most assemblies end up in the form RB-(SB-RB)n.
These assemblies cannot combine, so assembly slows down or halts. While indi-
vidual pipetting steps are accurate to within 2 percent, multiple pipetting steps
might increase the total error to as much as 5 or 10 percent. For a concentration
difference between RB and SB tiles in this range, assemblies larger than 10 or
20 tiles would be rare.6

Previous work on DNA computation by self-assembly made use of DNA
triple-crossover tiles that assemble into a seeded 2-layer one-dimensional array
to compute a 4-bit cumulative XOR operation [8]. Attempts to extend that work
to to longer inputs would likely be governed by the same principles discussed
here.

The ultimate goal of one-dimensional boundary formation, in the context
of algorithmic self-assembly, is to provide input for subsequent two-dimensional
growth. However, the relationship between boundary formation and two dimen-
sional crystal growth is not well understood. It is possible, for example, that
problems with boundary formation would be ameliorated if rule tiles were si-
multaneously filling in the space between two arms on a V or X, thus reducing
the troublesome statistical independence.

6 As the concentrations of the two monomer types become more uneven, the distribu-
tion is limited by the ratio r < 1 rather than by the equilibrium constant between
the monomers. Under irreversible binding, the size distribution is

[RB-(SB-RB)n] = r(2n+1) (1− r)2

1 + r
. (4)

In the case of 5-10 percent pipetting error r ≈ 0.9.
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