Protein Engineering vol.15 no.10 pp.779-782, 2002

Protein Design is NP-hard

Niles A.Pierce!> and Erik Winfree3

I Applied and Computational Mathematics and >Computer Science and
Computation and Neural Systems,California Institute of Technology,
Pasadena, CA 91125, USA

2To whom correspondence should be addressed.

E-mail: niles@caltech.edu

Biologists working in the area of computational protein
design have never doubted the seriousness of the algo-
rithmic challenges that face them in attempting in silico
sequence selection. It turns out that in the language of the
computer science community, this discrete optimization
problem is NP-hard. The purpose of this paper is to
explain the context of this observation, to provide a simple
illustrative proof and to discuss the implications for future
progress on algorithms for computational protein design.
Keywords: complexity/design/NP-complete/NP-hard/proteins

Introduction

The protein design problem may be formulated in many
different ways; here, we focus on a simple definition that has
gained significant attention (Desjarlais and Handel, 1995;
Dahiyat and Mayo, 1996, 1997; Gordon and Mayo, 1998;
Malakauskas and Mayo, 1998; Koehl and Levitt, 1999; Pierce
et al., 2000; Shimaoka et al., 2000; Wernisch et al., 2000;
Looger and Hellinga, 2001; Gordon et al., 2002). The objective
is to optimize the stability of a specified backbone fold that is
assumed to be rigid. At each residue position in the design,
different amino acid alternatives are compared in the form of
discrete side-chain ‘rotamers’, representing the statistically
dominant orientations of amino acid side chains in naturally
occurring proteins (Janin et al., 1978; Ponder and Richards,
1987; Dunbrack and Karplus, 1993). Choosing one rotamer at
each position defines the global conformation of all the atoms
in the system and implicitly specifies an amino acid sequence.
Different conformations are ranked using an empirical potential
function that attempts to quantify the free energy of the system.
For simplicity, the potential function is assumed to contain
only pairwise terms, which may be used to describe van der
Waals, electrostatic and hydrogen bonding interactions, as well
as solvent exposure (Gordon et al, 1999). [Rotamer self-
energies that are typically used in protein design to capture
the interactions with the backbone can be folded into the
pairwise terms (Gordon and Mayo, 1999).] In formulating the
protein design problem, we intentionally use intuitive (but
technically imprecise) notation in order to reach the widest
audience. Computer scientists should have little difficulty
filling in the details.

Protein design (PRODES) can be described in optimization
form as (see Figure 1):

Given p disjoint sets of rotamers R; (one set for each position
i) and a potential function E(-,-) that returns the energy between
a pair of rotamers at different positions, choose the rotamer

© Oxford University Press

r; € R; at each position that minimizes the sum of the pairwise
interaction energies between all positions:

Etolal = Z Z E(rhrj)
iogj<i

A solution to this problem is called a global minimum
energy conformation (GMEC). There is currently no known
algorithm for identifying a GMEC solution efficiently (in a
specific sense to be defined shortly). Given the failure to
identify such an approach, it is worth attempting to discern
whether this is even a reasonable goal. Fortunately, a beautiful
theory from computer science allows us to classify the tracta-
bility of our problem in terms of other discrete optimization
problems (Garey and Johnson, 1979; Papadimitriou and
Steiglitz, 1982). This theory does not apply directly to the
optimization form, but instead to a related decision form that
has a ‘yes/no’ answer. The decision form of PRODES becomes:

Is there a rotamer at each position such that E,,,,; < K for a
specified constant K?

In complexity theory, a problem is formally a set of input—
output pairs. A particular input is called an instance of the
problem. An algorithm solves a problem if it produces the
correct output for every valid instance. To classify algorithm
efficiency, it is useful to define the concepts of polynomial-
time and polynomial-space algorithms. These imply,
respectively, that the algorithm requires a number of steps and
an amount of data storage space that are at most polynomials
of the length of the data describing the instance (e.g. if Ixl is
the length of the input data x, then there exist constants o and
B such that there are polynomial bounds alxl, as opposed to
exponential bounds of§™).

The PRODES decision problem can now be identified with
one or more of the following three complexity classes:

P: Contains problems for which polynomial-time algorithms
are known to exist.

NP: Contains problems for which polynomial-time algorithms
are not necessarily known. The requirement is that for every
‘yes’ instance x of a problem A, there must exist a polynomial-
space certificate for x that can be checked for validity in
polynomial-time.

NP-complete: Contains those problems in NP to which all
other problems in NP can be polynomial-time reduced. (A
problem A in NP is polynomial-time reducible to a problem
A’ in NP, if given a string x, a string x’ can be constructed in
polynomial-time such that x is a ‘yes’ instance of A if and
only if x" is a ‘yes’ instance of A".)

Problems in class P are considered easy and the correspond-
ing algorithms are considered efficient. If problem A’ is easy
and problem A is polynomial-time reducible to A’, we can
conclude that A is also easy. A longstanding conjecture in
complexity theory is that P # NP and in particular, that no

779

N.A.Pierce and E.Winfree

polynomial-time algorithms exist for problems that are
NP-complete. However, NP-complete problems do have the
significant property that if there is a polynomial-time algorithm
for any NP-complete problem, then there is a polynomial-time
algorithm for all problems in NP. Ideally we would like to
discover a polynomial-time algorithm for PRODES. However,
before expending further effort in this endeavor, it is worth-
while first to attempt to determine whether this problem is
NP-complete. If so, decades of failed attempts to find a
polynomial-time algorithm for any NP-complete problem sug-
gest that there is little cause for optimism.

Materials and methods

To prove that the decision form of PRODES is NP-complete,
we must show:

Step I: that PRODES belongs to the class NP.

Step 2: that all other problems in NP polynomial-time reduce
to PRODES.

From the definition of NP-completeness, this second require-
ment can be satisfied by polynomial-time reducing any one
known NP-complete problem to PRODES.

One famous NP-complete problem is satisfiability (SAT),
an important problem in mathematical logic:

Given M disjunctive clauses C;, C,, ..., Cysinvolving N Boolean
(T/F) variables x;, X, ..., Xy, is the formula C;C,Cy
satisfiable?

For example, the instance (x; + %, + x3):(X] + x, + x3)-¥3,
with M = 3 and N = 3, is satisfiable and has the two valid
certificates (x;,x5,x3) € {(LTF),(FFEF)}. Here, * represents
‘and’, ‘+’ represents ‘or’ and ‘X’ represents the negation of
x. Variables and their negations (e.g. x; and X;) are called
literals. In general, SAT can be solved in exponential-time by
trying all possible truth assignments, requiring up to 2V tests.
It is remarkable that there is no known polynomial-time
algorithm for this simple problem. Quite to the contrary, it is
the first problem to have been proved to be NP-complete
(Cook, 1971; Karp, 1972; Levin, 1973) and often serves as
the starting point for other NP-completeness proofs.

Results

We now seek to prove that the decision form of PRODES is
NP-complete by considering two steps in turn:

Step 1: PRODES belongs to NP since for a ‘yes’ instance, the
validity of a polynomial-space certificate consisting of p
rotamer indices can be verified in polynomial-time by evaluat-
ing Etotal~

Step 2: We will reduce SAT to PRODES. Consider a SAT
instance with M clauses and N variables, where clause i has
L; literals. Construct PRODES with p = M + N positions and
K = 0 (e.g. see Figure 2):

M positions, each representing a clause i, each with L; rotamers
representing the literals in clause i;

N positions, each representing a variable x;, each with two
rotamers representing the possible values 7 or F' for x;.

780

r=1I,

r=2,

r=3,

Fig. 1. (a) Representative protein backbone with three rotamers at position

i = 1 and two rotamers at positions i = 2 and i = 3. (b) The corresponding
graph. Each box represents a backbone position; each circular node
represents a rotamer alternative; each edge connecting two nodes is
weighted by the pairwise energy. In this picture, the goal is to choose the
one node within each box that minimizes the sum of the three edge weights
connecting the nodes.

G G, o8
XX X X ox X X
T F T F T F
X X, A3

Fig. 2. Reduction of SAT into PRODES for the instance (x; + X, + x3)-
(X + xp + x3)-%3. Only edges between rotamers with energy E(-,-) = 1 are
depicted. The problem is satisfiable if and only if rotamers can be selected
that exclude all of these non-zero pairs. For this ‘yes’ instance, the two
valid certificates are (x;,xp,x3) € {(TLTF),(FEEF)}.

Now assign the following energies to each of the rotamer
pairs:

E(ryr) = 1 if r; represents the literal x; (a non-negated
variable) and rj represents the value F for xy;

E(ryr;) = 1if r; represents the literal %, (a negated variable)
and r; represents the value T for x;;

E(r;rj) = 0 otherwise.

With this specification, it is possible to select rotamers for the
PRODES instance such that E,,= 0 < K if and only if the
original SAT instance is satisfiable. That is, a valid certificate
for a ‘yes’ instance of PRODES can be used to construct a
validate certificate for a ‘yes’ instance of SAT and vice versa.
In total, there are fewer than 3MN rotamers, so that E(-,-) can
be contained within a 3MN X 3MN matrix. Hence, a poly-
nomial-space instance of PRODES can be constructed in
polynomial-time given an instance of SAT, and the instance
will be ‘yes’ for PRODES if and only if it is ‘yes’ for SAT.
This proves that the decision form of PRODES is NP-

complete. [We chose to show that PRODES is NP-complete
by reducing SAT to PRODES. Other known NP-complete
problems also naturally reduce to PRODES. Graph coloring
(Garey and Johnson, 1979) is NP-complete (Karp, 1972) and
can be seen as a strict subset of PRODES (J.Hartline, personal
communication, 2000), wherein each position (node in the
graph) has the same number of rotamers (colors) and the
energy function is unity for edges joining rotamers of the same
color and zero otherwise. Maximum a posteriori inference
in graphical belief networks (Pearl, 1988) is NP-complete
(Shimony, 1994) and the specific case of pairwise Markov
nets (Weiss, 2000) is formally identical with PRODES. In this
case, the positions correspond to variables, the rotamers
represent the possible states of each variable and the energy
function quantifies the conditional probabilities between these
states. Consequently, the considerable efforts devoted to devel-
oping algorithms for one problem may in some cases be
directly applied to other problems.]

Discussion

So is it good news or bad news to discover that the decision
form of PRODES is NP-complete? Certainly, it would be more
useful for ongoing design efforts to be able to show that
PRODES belongs to the class P, for then we would have a
polynomial-time algorithm for solving the problem (at least in
decision form). However, proving that PRODES is NP-
complete provides critical information: we now know that
protein design is as hard as any problem in the class NP,
including such celebrated problems as the traveling salesman
problem. This implies that past failures in developing efficient
algorithms for all other NP-complete problems now apply also
to PRODES. Alternatively, PRODES now joins the list of
problems for which the discovery of a polynomial-time algo-
rithm would revolutionize the field of complexity theory.

An optimization problem for which the related decision
problem is NP-complete is termed NP-hard. Hence, the optim-
ization form of PRODES is NP-hard. More generally, the class
‘NP-hard’ is comprised of those problems, in any form, for
which a polynomial-time algorithm could be used to provide
a polynomial-time algorithm for an NP-complete problem.
Such problems are at least as hard as any problem in NP.

It is important to keep in mind that the classification of
protein design as an NP-hard optimization problem is a
reflection of worst-case behavior. In practice, it is possible for
an exponential-time algorithm to perform well or for an
approximate stochastic method to prove capable of finding
excellent solutions to NP-complete and NP-hard problems.
This is the case for stochastic local search algorithms for SAT
(Selman et al., 1992, 1994), which are creating excitement in
the computer science community because they can dramatically
outperform all known deterministic algorithms for this problem
(Hoos and Stutzle, 2000). In the protein design community,
stochastic methods based on Monte Carlo, simulated annealing
or genetic algorithms have performed with some success on
small protein design problems (Desjarlais and Clarke, 1998),
but deviate substantially from the GMEC solution as the
problem size increases (Voigt et al., 2000). Deterministic
exponential-time methods such as dead-end elimination
(Desmet et al., 1992; Goldstein 1994; Gordon and Mayo 1998;
Pierce et al., 2000; Looger and Hellinga, 2001; Gordon et al.,
2002) and branch and bound (Leach and Lemon, 1998; Gordon
and Mayo, 1999; Wernisch et al., 2000) are guaranteed to
converge to the GMEC solution when they do converge. The

Protein design is NP-hard

key question is how these algorithms perform on problems of
interest to the protein design community.

Algorithm performance varies widely with the physical
model (Gordon et al., 2002), as characterized by the empirical
potential function and the rotamer library size. However, at
present, with an experimentally validated physical model and
an exact search method, it is often possible to design entire
core, boundary or surface regions of small protein domains
(representing ~25-75 residues at a time) (Gordon et al., 2002).
Ultimately, it would be desirable to obtain GMEC solutions
for entire domains with 100-200 residues. Note that as the
number of residues increases from 75 to 200, the number of
conformations increases from O(n”) to O(n*"), where n is
the average number of rotamers per position.

How should the research community attempt to bridge this
sizeable gap? The knowledge that the problem is NP-hard
implies that we may always have to rely on exponential-time
algorithms if GMEC solutions are required. Hence, current
state-of-the-art methods that have exponential worst-case
bounds continue to merit further research. These methods are
able to identify global minima for problems that would require
107° times the age of the universe using an exhaustive search.
Similar further improvements would dramatically increase the
scope of rational protein design. If such advancements prove
elusive using exact algorithms, then improved stochastic,
heuristic or approximate methods will likely play an increas-
ingly important role in protein design. The finding that protein
design optimization is NP-hard thus reinforces the need for
continued efforts on exact exponential-time and approximate
stochastic methods, encourages interaction with other scientific
communities working on NP-hard optimization problems and
drastically increases the pessimism for finding an efficient
polynomial-time algorithm.

It remains possible that the protein design problem can be
simplified (e.g. by placing restrictions on the potential function)
to yield a less general problem for which polynomial-time
algorithms can be devised. [It is instructive to consider the
situation with variants of the traveling salesman problem
(TSP)—perhaps the most-studied NP-hard problem (Lawler
et al., 1985). TSP cannot even be efficiently approximated to
within any constant factor (Sahni and Gonzalez, 1976). How-
ever, when restricted to the important subclass of Euclidean
constant-dimension problems, finding exact optimal solutions
remains NP-complete, but approximate TSP is dramatically
easier (nearly linear-time for randomized algorithms) (Arora,
1998). Thus important open questions are to determine whether
PRODES is efficiently approximable and to find natural
restrictions on PRODES that allow for more efficient algo-
rithms.] It may also be possible that there exist alternative
formulations of the protein design problem that are of equal
intellectual merit and practical utility (e.g. design for surface
shape or chemistry with no restriction on the backbone
fold), but greater computational tractability. These alternative
formulations are also likely to be NP-hard, so it remains an
important open question as to whether the protein design
problem can be described in a form that is both computationally
tractable and biologically sound.

Acknowledgements

We thank L.J.Schulman for a critical reading of the manuscript. This research
was supported by the Burroughs-Wellcome Foundation through the Caltech
Initiative in Computational Molecular Biology (NAP) and by the Defense

781

N.A.Pierce and E.Winfree

Advanced Research Projects Agency (DARPA) and Air Force Research
Laboratory under agreement F30602-010200561 (both authors).

References

Arora,S. (1998) J. Assoc. Comput. Machin., 45, 753-782.

Cook,S.A. 1971. In Proceedings of the 3rd ACM Symposium on the Theory
of Computing. Association of Computing Machinery, New York, pp.
151-158..

Dahiyat,B.I. and Mayo,S.L. (1996) Protein Sci., 5, 895-903.

Dabhiyat,B.I. and Mayo,S.L. (1997) Science, 278, 82-87.

Desjarlais,J.R. and Clarke,N.D. (1998) Curr. Opin. Struct. Biol., 8, 471-475.

Desjarlais,J.R. and Handel, T.M. (1995) Protein Sci., 4, 2006-2018.

Desmet,J., De Maeyer,M., Hazes,B. and Lasters,I. (1992) Nature, 356,
539-542.

Dunbrack,R.L.,Jr and Karplus,M. (1993) J. Mol. Biol., 230, 543-574.

Garey,M.R. and Johnson,D.S. 1979. Computers and Intractability: a Guide
to the Theory of NP-Completeness. Freeman, New York.

Goldstein,R.F. (1994) Biophys. J., 66, 1335-1340.

Gordon,D.B. and Mayo,S.L. (1998) J. Comput. Chem., 19, 1505-1514.

Gordon,D.B. and Mayo,S.L. (1999) Structure, 7, 1089-1098.

Gordon,D.B., Marshall,S.A. and Mayo,S.L. (1999) Curr. Opin. Stuct. Biol.,
9, 509-513.

Gordon,D.B., Hom,G.K., Mayo,S.L. and Pierce,N.A. (2003) J. Comput. Chem.,
24 (2), to appear.

Hoos,H.H. and Stutzle,T. (2000) J. Autom. Reasoning, 24, 421-481.

Janin,J., Wodak,S., Levitt,M. and Maigret,D. (1978) J. Mol. Biol., 125,
357-386.

Karp,RM. (1972) In Miller,R.E. and Thatcher,J.W. (eds), Complexity of
Computer Computations. Plenum Press, New York, pp. 85-103.

Koehl,P. and Levitt,M. (1999) J. Mol. Biol., 293, 1161-1181.

Lawler,E.L., Lenstra,J.K., Rinnooy Kan,A.H.G. and Shmoys,D.B. (1985) The
Traveling Salesman Problem. Wiley, New York.

Leach,A.R. and Lemon,A.P. (1998) Proteins, 33, 227-239.

Levin,L.A. (1973) Probl. Inf. Transmiss., 9, 265-266.

Looger,L.L. and Hellinga,H.W. (2001) J. Mol. Biol., 307, 429-445.

Malakauskas,S.M. and Mayo,S.L. (1998) Nature Struct. Biol., 5, 470-475.

Papadimitriou,C.H. and Steiglitz,K. 1982. Combinatorial Optimization:
Algorithms and Complexity. Prentice Hall, Englewood Cliffs, NJ.

PearlJ. 1988. Probabilistic Reasoning in Intelligent Systems. Morgan-
Kauffman, San Francisco.

Pierce,N.A., Spriet,J.A., Desmet,J. and Mayo,S.L. (2000) J. Comput. Chem.,
21, 999-1009.

Ponder,J.W. and Richards,FE.M. (1987) J. Mol. Biol., 193, 775-791.

Sahni,S. and Gonzalez,T. (1976) J. Assoc. Comput. Machin., 23, 555-565.

Selman,B., Levesque,H. and Mitchell,D. (1992) In Proceedings of AAAI *92.
MIT Press, Cambridge, MA, pp. 440-446.

Selman,B., Kautz,H.A. and Cohen,B. (1994) In Proceedings of AAAI ’94.
MIT Press, Cambridge, MA, pp. 337-343.

Shimaoka,M., Shifman,J.M., Jing,H., Takagi,J., Mayo,S.L. and Springer,T.A.
(2000) Nature Struct. Biol., 7, 674—-678.

Shimony,S.E. (1994) Artif. Intell., 68, 399-410.

Voigt,C.A., Gordon,D.B. and Mayo,S.L. (2000) J. Mol. Biol., 299, 789-803.

Weiss, Y. (2000) Neural Comput., 12, 1-41.

Wernisch,L., Hery,S. and Wodak,S.J. (2000) J. Mol. Biol., 301, 713-736.

Received March 13, 2002; revised May 31, 2002; accepted July 2, 2002

782

