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Abstract of the Thesis

A bisimulation approach to verification of molecular
implementations of formal chemical reaction networks

by

Qing Dong

Master of Science

in

Computer Science

Stony Brook University

2012

In molecular computing, chemical reaction networks have been proposed as a high-level

programming language. For a formal specification represented by a CRN, the implemented

system will be more complex and, thus, will be represented by another CRN with additional

intermediate states and details. Here we study the problem of how to define and verify

the correctness of the implementation. First, the equivalence between a formal CRN and

an implementation CRN is defined using a bisimulation approach. Then, an algorithm is

constructed for verifying CRN equivalence by looking for a valid interpretation from the

implementation CRN to the formal CRN. Finally, the algorithm is implemented, and tested

on a variety of practical cases.
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Chapter 1

Introduction

Since the foundation of chemical reaction network (CRN) theory in the 1970s [13][14], it

has been one of the most fundamental mathematical models for characterizing the behavior

of chemical systems. Furthermore, in the area of molecular computing, CRNs have become

a programming language for molecular systems [1][12]. Soleveichik et. al. [15] have shown

that stochastic CRNs can emulate Turing machines with an arbitrarily small probability

of error. As a programming language, CRNs are powerful, but there is another important

question for a programming language, which is “correctness”: How do we know that a set of

designed molecules and their detailed interactions constitute a correct implementation of the

formal chemical reaction network specification that we want? In general, the implemented

system will consist of many more species and many more reactions than the formal specifi-

cation, because a variety of molecular details must be accounted for in the model. In this

study, we explored the equivalence between an implementation CRN and a formal CRN,

which can be used to define the correctness of an implementation. Computational models

that are closely related to CRNs, such as vector addition systems (VASs) and Petri nets,

have been extensively explored in the literature. A variety of equivalence notions have been

explored for these two models [4][6]. For example, equivalence based on reachability sets for

VASs was proven to be undecidable by Hack [4]. The reachability set was defined by Hack
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as the set of all the states that can be reached by the system with a specific starting state

[4], however, it contains no information about the pathway through which one state gets to

another. Studies of strong bisimulation [16] are based on establishing a match for each step

in the pathway when comparing two systems. Equivalence based on strong bisimulation was

explored by Larroussinie and Schnoebelen [6], who showed that any relation between the

simulation preorder and bisimilarity is EXPTIME-hard.

In the current study, we explored the CRN equivalence based on weak bisimulation

[16], which tries to establish the correspondence for some steps along the pathway while

ignoring those that are considered to be silent. This approach was based on the idea that

the implementation CRN would contain more species, states, and reactions than the formal

CRN, which are added into the system to help the implementation practically. Thus, those

extra implementation details should be ignored when trying to compare the essential behavior

of the two CRNs. Firstly, we defined this CRN equivalence formally using three different

forms of representation, to show some insights of the definition. Then based on this definition,

we proceeded to establish an algorithm to verify the equivalence between a formal CRN and

an implementation CRN.
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Chapter 2

CRN Equivalence

This section presents the basic concepts and terminology, notions, and relationships

between notions that define CRN equivalence.

2.1 Basic Concepts

A state is a multiset of species.

A reaction is an ordered pair of states (R,P ), where R is called reactants and P is

called products. We say the reaction is trivial if R = P .

A CRN is a set of nontrivial reactions. We refer to a pair of CRNs as formal CRN and

implementation CRN, where the second CRN containing extra species, and the first CRN

acts as a reference.

The notation r | S denotes that the reaction r = (R,P ) can occur in state S, which means

R ⊆ S. The notation S⊕r denotes (S \R)∪P , which is the resulting state after the reaction

r = (R,P ) occurs in state S, if r can occur in S. Otherwise, S ⊕ r is invalid.
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An interpretation is a mapping from the species in an implementation CRN to multisets

of the species in a formal CRN, i.e. every implementation species is labeled with a multiset

of formal species. For an interpretation m, if an implementation species p′ is interpreted to

a formal species p, then m(p′) = p, which can be similarly applied to states and reactions.

Thus, it is clear that if in an implementation CRN, S ′⊕r′ = T ′, then m(S ′)⊕m(r′) = m(T ′)

if r = m(r′) is a reaction in the formal CRN.

In our study, S ′ r′⇒m T ′ denotes the following: with interpretation m, in the implementation

CRN, state T ′ can be produced by S ′⊕r′1⊕r′2 · · ·⊕r′k⊕r′⊕r′k+1⊕· · ·⊕r′n, where r′i(i = 1 . . . n)

is interpreted to trivial reactions by m. It then follows that m(S ′)⊕m(r′) = m(T ′).

The notaion r′ ‖m S ′ denotes that with interpretation m, the reaction r′ can occur in some

state produced by S ′⊕r′1⊕r′2⊕· · ·⊕r′n, where r′i(i = 1 . . . n) is interpreted to trivial reactions.

A trajectory is an initial state followed by a finite or infinite sequence of reactions

S, r1, r2, · · · . A trajectory is valid if every reaction can occur in the state produced by all

prior reactions. In an implementation CRN with interpretation m, it is evident that if S ′ r′1⇒m

S ′
1

r′2⇒m S ′
2 · · · in CRN B, and m(r′1) = r1,m(r′2) = r2, · · · , then there exists a valid implemen-

tation trajectory S ′, r′11, · · · , r′1n1
, r′1, r

′
21, · · · , r′2n2

, r′2 · · · , where r′11, · · · , r′1n1
, r′21, · · · , r′2n2

, · · ·

are all interpreted to trivial reactions. So the implementation trajectory becomes S, r1, r2, · · ·

after it has been interpreted.
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2.2 Notions of CRN Equivalence

We define three different notions of equivalence between a formal CRN A and an imple-

mentation CRN B with interpretation m showing the right mapping between species.

I Equivalence in terms of trajectory

(i) For any valid trajectory S, r1, r2, · · · in CRN A, there exists at least one state S ′ of

CRN B, such that m(S ′) = S. For every such state S ′, there exists a valid trajectory

S ′ r′1⇒m S ′
1

r′2⇒m S ′
2

r′3⇒m · · · in CRN B, such that m(r′i) = ri.

(ii) For any valid trajectory in CRN B, its interpreted trajectory is a valid trajectory in

CRN A.

II Three conditions of interpretation

(i) Atomic condition: For every formal species, there is at least one implementation

species which is interpreted to exactly that formal species.

(ii) Delimiting condition: The set of formal reactions and the set of interpreted imple-

mentation reactions are the same, ignoring trivial reactions.

(iii) Permissive condition: If r | S , and m(S ′) = S, then there exists an implementation

reaction r′ for which m(r′) = r and r′ ‖m S ′.

III Weak Bisimulation

For every formal state S, there is at least one implementation state S ′, where m(S ′) = S.

Further more, m(S ′) = S implies,

(i) if S ⊕ r = T , then there exists T ′ and r′ such that m(r′) = r, m(T ′) = T and S ′ r′⇒m T ′
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(ii) if S ′ ⊕ r′ = T ′, m(r′) = r, then there exists a formal state T such that m(T ′) = T , and

S ⊕ r = T .

We can illustrate these definitions with some examples. Consider the following case,

formal CRN implementation CRN interpretation

a+ b→ c a↔ x m(a) = a,m(b) = b,m(c) = c

b+ x→ c+ y m(x) = a,m(y) = φ

In the formal CRN, {a, a, b} a+b→c−→ {a, c} is a valid trajectory, while in the implementation

CRN, {b, x, x} x→a−→ {a, b, x} b+x→c+y−→ {a, c, y} is a valid trajectory. After being interpreted,

it becomes {a, a, b} a→a−→ {a, a, b} a+b→c−→ {a, c}, then after removing the first trivial step, it

becomes the same as the formal trajectory.

For the interpretation, the atomic condition is satisfied by m(a) = a,m(b) = b,m(c) = c.

The implementation CRN becomes {a ↔ a, a + b → c} after being interpreted, it would

be exactly the same as the formal CRN after removing the first trivial reaction. Thus, the

delimiting condition is satisfied. Further more, it is clear that for any implementation state

that contains {a, b} after being interpreted, b+x→ c+ y, which is interpreted to a+ b→ c,

would be able to occur either immediately, or after a → x occurs. Thus the permissive

condition is satisfied, since a→ x is interpreted to a trivial reaction.

From a weak bisimulation point of view, we can observe the implementation state {b, x, x}

as an example: m(b, x, x) = {a, a, b}. In the formal CRN, {a, a, b} ⊕ (a + b → c) = {a, c},

while in the implementation CRN, {b, x, x} ⊕ (b+ x→ c+ y) = {c, x, y}. With m(b+ x→

c + y) = (a + b → c) and m(c, x, y) = {a, c}, the requirements for weak bisimulation are

fulfilled, for this case.

The second example, below, illustrates why implementation species can be interpreted
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as multisets. As an exercise, the reader can verify that the given interpretation is valid and

prove that there is no valid interpretation that maps every implementation species to either

a single formal species or to null.

formal CRN implementation CRN interpretation

a+ b→ c a+ b↔ x m(a) = a,m(b) = b,m(c) = c

x→ c+ y m(x) = a+ b,m(y) = φ

2.3 Equivalence between Notions

The three defined notions of CRN equivalence have their own intuition, respectively,

and their own different forms of representation. Even so, we are able to prove that they are

essentially equivalent to each other.

I → II

Proof For II(i), the proof is straight forward: every formal state is required to have at

least one implementation state, if we consider formal states consisting of exactly one species.

For II(ii), the prove is by contradiction: we suppose the two sets of reactions are different.

This means either (a) there is a reaction r = (R,P ) in CRN A, which does not have an

implementation reaction, or (b) there is a reaction r′ = (R′, P ′) in CRN B, whose interpre-

tation is not in CRN A. For (a), a valid trajectory start with R ⊕ r would have no valid

implementation trajectory, which is in contradiction with I(i). For (b), a valid trajectory

start with R′ ⊕ r′ would have no valid interpreted trajectory, which is in contradiction with

I(ii). Thus, we establish the proof for II(ii).

For II(iii), again the proof is by contradiction: we suppose r | S, and m(S ′) = S, however,

there does not exists an implementation reaction r′ in which m(r′) = r and r′ | S ′. A valid

trajectory starting with S ⊕ r would have no valid implementation trajectory with initial
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state S ′, which is in contradiction with I(i). Thus, the proof for II(iii) is established.

II → III

Proof Atomic condition directly implies that every formal state has at least one imple-

mentation state.

For III(i), m(S ′) = S, and S ⊕ r = T , which implies r | S. Using II(iii), there exists r′

such that m(r′) = r and r′ ‖m S ′. Also, there exists a state T ′, such that S ′ r′⇒m T ′, and

m(S ′) = S, m(r′) = r. Then S ⊕ r = m(S ′)⊕m(r′) = m(T ′), which implies T = m(T ′).

For III(ii), S ′ ⊕ r′ = T ′, m(r′) = r, so r is a reaction in CRN A using II(ii). Then

m(S ′)⊕m(r′) = m(T ′), which means S ⊕ r = m(T ′). So m(T ′) is the formal state we want.

III → I

Proof For I(i), there is a valid formal trajectory S, r1, r2, · · · in CRN A. As every formal

state has at least one implementation state, there exists at least one implementation state

S ′, such that m(S ′) = S. If S1 = S ⊕ r1, then using III(i), there exists S ′
1 and r′1 such that

m(r′1) = r1, m(S ′
1) = S1, and S ′ r′1⇒m S ′

1. With this step by step calculation for each reaction

in the trajectory in CRN A, we get a valid trajectory in CRN B.

For I(ii), there is a valid implementation trajectory S ′, r′1, r
′
2, · · · in CRN B. Let

r1 = m(r′1) and S ′
1 = S ′ ⊕ r′1, then using III(ii), there exists a formal state S1 such that

m(S ′
1) = S1, and S ⊕ r1 = S1. Again, with this step by step calculation for each reaction in
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the trajectory in CRN B, we get a valid trajectory in CRN A.

10



Chapter 3

An Algorithm for Finding Valid Interpretations

Given a formal CRN A and an implementation CRN B, our goal is to either find an

interpretation that satisfies the three conditions we have described, which we call a valid

interpretation, or assert that no such interpretation exists.

3.1 Complexity Analysis

We refer to CRNs that only contain single molecular to single molecular reactions sm-

CRNs. Each species in a smCRN can be assigned a vertex. Each reaction can then be

represented as a directed edge from one vertex to another (a bidirectional reaction would

be represented as two edges between the same pair of vertices but with opposite directions).

The smCRN can then be converted to a directed graph. Similarly, any directed graph can

be converted to a smCRN in an analogous manner.

In this way, we can prove that if two directed graphs G and H have the same number

of vertices, and their corresponding smCRNs are A and B, then there exists an isomorphism

between G and H if and only if there exists a valid interpretation from B to A. A brief
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explanation of this proof follows: A mapping f : V (G) → V (H) is an isomorphism, if and

only if f is a bijection and it keeps the adjacent relation between vertices, which means any

two vertices u and v are adjacent in G if and only if f(u) and f(v) are adjacent in H. This

is equivalent to the delimiting condition. With the premise that G and H have the same

number of vertices (thus A and B have the same number of species), bijection is equivalent

to the atomic condition. The atomic condition and the delimiting condition imply the per-

missive condition with that premise.

Therefore, the problem of whether there exists a valid interpretation from one smCRN to

another is as difficult as the problem of whether two directed graphs with the same number

of vertices are isomorphic or not. But the second problem has no known polynomial time

solution [11].

For most cases of interest, such as when a formal CRN is compiled to DNA, we are

informed, for each formal species, of one implementation species that is interpreted to it

exactly. This implies that the atomic condition is already satisfied. This extra information,

however, does not make the problem easier.

3.2 Overview

Since a polynomial time solution is not likely to be found, our aim was to establish an

efficient depth-first-search algorithm to solve this problem.

Input:

A formal CRN A consisting of N reactions; an implementation CRN B consisting of M

reactions. (The extra information for satisfying the atomic condition is provided by using

12



formal species names for the appropriate species within the implementation CRN.)

Output:

Either a valid interpretation from B to A, or the assertion that no such interpretation exists.

1. Establish a table T of size M×(N+1) with each element (i, j) being a Boolean variable

which means the ith reaction in CRN B can/cannot be interpreted to the jth reaction

in CRN A. (Can/cannot refers to whether, if this pair of formal reaction and imple-

mentation reaction is considered individually, there exists any interpretation (valid or

not when the rest of the reactions are considered) that interprets this implementation

reaction to this formal reaction.) Initiate the table using A and B.(Column N + 1 in

this table corresponds to a trivial reaction.)

2. If T has any row or any non-trivial column with all False entries, then backtrack.

Otherwise, find the column of T (without the trivial column) with the least possibilities

(but at least one possibility) out of the columns that have not been implemented under

the current interpretation. When all columns are implemented, go to step 3.

(a) For each of the possibilities, enumerate all possible interpretations of unknown

species in the current reaction. The number of possibilities will be finite here.

(b) For each of these possibilities, update T , and do step 2 recursively.

3. Find the row of T with the least nontrivial possibilities out of the rows that have not

been fully implemented.

(a) For each of the possibilities, enumerate all possible interpretations of unknown

species in the current reaction that satisfy the given formal reaction. For the

possibility of being trivial, do not enumerate unknown species, just go to step 3

recursively.
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(b) For each of these possibilities, update T . If T has any row or any non-trivial

column with all False entries, then backtrack.

(c) If no unknown species remain, then run the Permissive Test. If the permissive

condition is satisfied, then a valid interpretation is found, so output the result

and terminate. Otherwise, backtrack.

(d) If all remaining unknown reactions can be trivial, then run the Trivial Reaction

Solver.

(e) Do step 3 recursively.

4. Now we have tried all the possibilities, and no valid interpretation is found, so we can

assert that there is no valid interpretation from B to A.

Step 1 is initialization. Step 2 finds an implementation reaction that interpreted to each

formal reaction. Step 3 tries to fit the remaining implementation reaction into the formal

CRN, leaving some unknown species in those reactions that will be interpreted to trivial

reactions which will be decided in the Trivial Reaction Solver.

3.3 Trivial Reaction Solver

When the algorithm reaches this section, the problem has been reduced as follows: The

delimiting condition is satisfied, and all the unknown species are in reactions that can be

individually interpreted to trivial reactions. We want to find an appropriate interpretation

that is a completion of the current interpretation and

(1) interprets the reactions containing unknown species to trivial reactions,

(2) does not violate the permissive condition, if possible.

14



In order to satisfy (1) we establish a system of equations for each formal species, where each

equation corresponds to a trivial reaction. There should be the same number of molecules

of a formal species in the reactants and the products of a trivial reaction.

For example, if the reactions to be interpreted as trivial are as follows,

A+B + x1 + x2 → 2B + 2x2

2B + x2 → A+ x1

Then for formal species A, we have the following equations,

x1 − x2 = −A

−x1 + x2 = A

and we rewrite this in matrix form, 1 −1

−1 1

×
 x1

x2

 =

 −1

1


Since we only want non-negative integer solutions, this is actually a system of linear Dio-

phantine equations. Any feasible solution of the equations would satisfy (1). However, the

number of feasible solutions could be infinite, and we can not afford to try them one by one.

So we need to find solutions that satisfy (2). In order to do this, we introduce the following

concept:

A solution is minimal if there is no other solution for which every component is less than

or equal to its corresponding component. Because there must be at least one different com-

ponent for two different solutions, there must be a component for the minimal solution that

is strictly less than the other solution.

The number of minimal solutions for a system of linear Diophantine equations is limited.
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Furthermore with the following theorem, we only need to consider one minimal solution.

Theorem Given a formal CRN A, and an implementation CRN B, if all non-formal species

in B are in reactions that interpret to trivial reactions and a valid interpretation exists, then

for any formal species D that ever occurs as a reactant in A, the system of linear Diophantine

equations established according to the trivial reactions for D has only one minimal solution.

Proof Suppose x1, x2, · · · , xn are the non-formal species. If the system of equations has

two different minimal solutions,

u = (a1, a2, · · · , an)

v = (b1, b2, · · · , bn)

then the reactions can all be trivial for

x1 = a1D + · · · (other formal species)

x2 = a2D + · · · (other formal species)

...

xn = anD + · · · (other formal species)

and also for

x1 = b1D + · · · (other formal species)

x2 = b2D + · · · (other formal species)

...

xn = bnD + · · · (other formal species)
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Since they are different minimal solutions, we can suppose u corresponds to a valid inter-

pretation and a1 > b1, b2 > a2 with out loss of generality. Now let us consider the formal

reaction containing D as a reactant

S +D → products

where S stands for the reactants except this D. According to the permissive condition, since

a1 > b1 ≥ 0, there must be a series of trivial reactions which makes

S +x1 ⇒ non-formal products + formal products

where the formal products ⊇ S + D in order to let the formal reaction occur at this state

(because the non-formal species only occur in trivial reactions, so the state must contain all

the reactants explicitly).

Suppose the number of Ds that S contains is r, the number of Ds that the formal products

contains is t. Then the number of Ds that x1 contains is no less than r− t+ 1 according to

the series of trivial reactions. So we have a1 ≥ r − t+ 1 and b1 ≥ r − t+ 1.

If the non-formal products contain no Ds after interpretation, then a1 = b1 = r−t+1, which

is contradictory to a1 > b1. If the non-formal products contain some non-formal species xi,

which contains some Ds after interpretation, we can apply the above argument on xi, and

the same contradiction will occur. This recursion will end in a limited number of steps,

since the number of Ds contained in the non-formal species we are considering is always

decreasing, and the initial number a1 is a limited amount.�

For any formal species that occur as a reactant, with the above theorem. we conclude

that any minimal solution of the equation will satisfy both (1) and (2). For formal species

that never occur as a reactant, it is clear that any feasible solution will not influence the

permissive condition. Thus, we have shown that to find one minimal solution of the equation
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and to use that to complete the current interpretation is sufficient for correctness of the

Trivial Reaction Solver. The next question is how to find a minimal solution for a system

of linear Diophantine equations. We use the algorithm introduced by Contejean and Devie

[8], which established an efficient incremental algorithm for homogeneous equations; for non-

homogeneous equations A~x = ~b, a new matrix A′ is constructed by first appending −~b to

A as the last column, and then looking for a solution of A′~x = ~0 with the last component

being 1.

3.4 Permissive Test

For the permissive test, we start with a formal CRN A, an implementation CRN B,

and an interpretation from B to A. The task is to assert whether or not this interpretation

satisfies the permissive condition. We consider the complexity of this problem.

Consider a reachability problem: suppose CRN H consists of n reactions,

{R1 → P1, R2 → P2, · · · , Rn → Pn}

where all the species involved are x1, x2, · · · , xm. We ask: from a starting state S, can the

target state T be reached or not, by carrying out a series of reactions in CRN H?

For such a reachability problem, we can construct the following permissive problem:

• Let the formal CRN A be {a→ b}

• Let the implementation CRN B be

{R1 → P1, R2 → P2, · · · , Rn → Pn, a→ a+ S, a+ T → b}

• Let the interpretation be x1 = φ, x2 = φ, · · · , xm = φ

18



Observe that the interpretation from B to A would satisfy the permissive condition if and

only if state S can reach state T in CRN H. The reachability problem in a CRN is almost the

same as the reachability problem in a VAS, where the exact complexity is still unknown [2].

And the best known algorithm for reachability problem in a CRN is bounded by a primitive

recursive function [1]. So it is not likely that a polynomial algorithm can be found for the

reachability problem, or for the permissive test we are considering here.

Thus, our algorithm tests the permissive condition in an exhaustive way. This means for a

formal reaction R → P , and an implementation state S that is a superset of R after being

interpreted, we enumerate all the possible trivial reaction chains starting from S, up to a

manually set maximum length, and determine if any implementation reaction that interprets

to R→ P can occur after the trivial reactions.

We wanted the set of implementation states that must be tested to be as small as possible.

The smallest set is the collection of all the minimal states, where “minimal” means that

the state has no strict subset that is a superset of R after being interpreted. To construct

the set of minimal states for a formal reaction is also a challenging problem, so we elected

to use a slower but simpler method. Our algorithm enumerates all such implementation

states T where the ith element of T contains the ith element of R after being interpreted.

For each T , the algorithm considers all its subsets, and if the subset contains R after being

interpreted, that subset is tested. In this way, all the minimal states are be tested (as well

as some superfluous states).
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Chapter 4

Results

In order to run our algorithm on practical test cases, we used the BioCRN compiler in-

troduced by shin [7]. The BioCRN compiler takes a formal CRN and a translation scheme as

input, and produces a DNA-based implementation CRN as output. As an example transla-

tion scheme, the following two figures (taken from Soloveichik et al. [9]) briefly explains how

the translation scheme invented by David Soloveichik works to construct an implementation

CRN.

Figure 4.3 and figure 4.4 present example results from our program.

Figure 4.5 shows the results of all test cases; and compares them with the results of

Seung Woo Shin’s verifier (introduced in chapter 4 of his thesis [7] ). A different notion of

CRN equivalence was defined by shin [7]. Instead of looking for a valid interpretation from

the implementation CRN to the formal CRN, Shin tried to decompose the implementation

CRN into prime formal pathways and then compare the set of pathways with the formal

CRN. The data in this figure indicate that, in some cases, the two different definitions of

CRN equivalence yield different conclusions.
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Figure 4.1: Unimolecular module of Soloveichik’s translation scheme, shows the DNA imple-
mentation of the formal unimolecular reaction X1 → X2 +X3 with reaction index i. Orange
boxes highlight the DNA species that correspond to the formal species X1 (species identifier
1-2-3), X2 (4-5-6), and X3 (7-8-9). Domains identical or complementary to species identifiers
for X1, X2, and X3 are colored red, green, and blue, respectively. Black domains (10 and
11) are unique to this formal reaction.
A. Complex Gi undergoes a strand displacement reaction with strand X1, with X1 displacing
strand Oi.
B. Oi displaces X2 and X3 from complex Ti.
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Figure 4.2: Bimolecular module of Soloveichik’s translation scheme, shows DNA implemen-
tation of the formal bimolecular reaction X1 + X2 → X3 with reaction index i. The black
domain (12) is unique to this formal reaction.
A. X1 reversibly displaces Bi from complex Li producing complex Hi.
B. X2 displaces Oi from complex Hi . Occurrence of reaction B precludes the backward
reaction of A.
C. Oi displaces X3 from complex Ti.
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verify ts/soloveichik.ts crn/crn6.crn --bisimulation

Original CRN: Valid interpretation:

A + B -> A + C i842 -> Y + X + A

B + A -> X + B + A i394 -> X + Y + X

X -> X + Y + X i119 -> X + B + A

Y + B -> Y + X + A i2300 -> A + C

X -> i778 -> Y

X + A -> C i575 -> X

i599 -> C

Compiled CRN: i2232 -> A

i119 -> i194 + A + B + X i73 -> B

i2232 -> A i886 ->

i2232 + B -> i2300 + i2340 i14 ->

i2300 -> i2392 + A + C i15 ->

i394 -> i1457 + X + X + Y i631 ->

i575 -> X i2340 ->

i575 + A -> i599 + i631 i120 ->

i599 -> i3032 + C i194 ->

i73 -> B i1457 ->

i73 + A -> i119 + i120 i2392 ->

i778 -> Y i969 ->

i778 + B -> i842 + i886 i3032 ->

i842 -> i969 + A + X + Y verify: compilation was correct.

A -> i2232

B -> i73

X -> i14 + i15

X -> i15 + i394

X -> i575

Y -> i778

Figure 4.3: First example result, used the translation scheme from the file “soloveichik.ts”,
and the formal CRN from the file “crn6.crn”, which is shown in the “Original CRN” section.
The BioCRN Compiler constructed the implementation CRN as shown in “Compiled CRN”
section. The program successfully identified a valid interpretation.
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verify ts/qian.ts crn/crn4.crn --bisimulation

Original CRN: Delimiting condition cannot be satisfied.

A + B -> B + B There is implementation reaction not in formal CRN.

B + C -> C + C Max search depth reached: 3

C + A -> A + A with interpretation:

i218 -> A + B

Compiled CRN: i1003 -> B + B

i124 -> i157 + A i509 -> C + A

i124 -> i59 + A i1078 -> A + A

i157 -> i218 + A i853 -> B + C

i157 + A -> i124 i1153 -> C + C

i218 -> i1003 + i1004 i1004 ->

i218 + A -> i157 i1079 ->

i358 -> A i1154 ->

i358 + B -> i407 verify: compilation was incorrect.

i407 -> i358 + B

i407 -> i448 + B

i448 -> i509 + B

i448 + B -> i407

i509 -> i1078 + i1079

i509 + B -> i448

i59 -> C

i59 + A -> i124

i660 -> B

i660 + C -> i730

i730 -> i660 + C

i730 -> i780 + C

i780 -> i853 + C

i780 + C -> i730

i853 -> i1153 + i1154

i853 + C -> i780

A -> i358

B -> i660

C -> i59

Figure 4.4: Second example result, used the translation scheme from the file “qian.ts” (in-
troduced by Qian et al. [10]), and the formal CRN from the file “crn4.crn”. The program
failed to find a valid interpretation, implying that no valid interpretation exists; as an aid
to the user, it output the best (invalid) interpretation that it found.
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[pathway/bisimulation] crn1 crn2 crn3 crn4 crn5 crn6 crn7 crn8

cardelli_2domain T/T I/T I/T I/T R/R I/T I/I I/T

cardelli_2domain_nogc T/T I/T T/T I/T R/R I/T I/I I/T

cardelli_SA T/T T/T T/T T/T R/R T/T T/T T/T

cardelli_SA_noGC C/C C/C C/C C/C R/R C/C C/C C/C

cardelli_fj I/I I/I I/I C/C R/R T/T T/C T/T

qian I/I I/I I/T I/I I/I I/T C/I* I/I

qian_bug C/C C/C I/I I/T I/I I/T I/I I/I

qian_fixed C/C C/C T/T C/C I/T T/T C/C T/C

qian_fixedrev C/C C/C T/T C/C I/T T/T C/C T/T

qian_rev I/I I/I I/T I/I I/I I/T C/I* I/I

soloveichik C/C C/C C/C C/C I/I C/C I/I I/I

[pathway/bisimulation] crn9 crn10 crn11 crn12 crn13 crn14 crn15 crn16

cardelli_2domain R/R I/T I/T I/T I/T T/C I/T R/R

cardelli_2domain_nogc R/R I/T I/I I/T I/T T/C I/T R/R

cardelli_SA R/R T/T T/C T/T T/T C/C T/T R/R

cardelli_SA_noGC R/R T/C C/C C/C C/C C/C C/C R/R

cardelli_fj R/R T/T T/T T/T I/I I/C* T/T R/R

qian I/I I/I C/I* I/C* I/T I/C* I/C* I/I

qian_bug I/I I/I C/I* I/I I/I C/C I/C* I/I

qian_fixed I/C* T/T C/C T/C T/T C/C T/C I/C*

qian_fixedrev I/C* T/T C/C I/C* I/C* C/C I/C* I/C*

qian_rev I/I I/I C/I* I/C* I/I I/C* I/C* I/I

soloveichik I/I I/I I/I I/I C/C C/C I/I I/C*

C=correct, I=incorrect, T=timeout, R=resultless due to compiler crash, e.g. 0 arguments.
* indicates significant difference.

Figure 4.5: Results compared with Shin’s verifier
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Chapter 5

Discussion

In this study, we defined the equivalence between a formal CRN and an implementation

CRN using a bisimulation approach. The definition was presented using three different

forms of representation, each of which provides a distinct intuition for how to characterize

the behavior of a CRN. Based on the definition, we developed an algorithm to verify CRN

implementations by trying to construct a valid interpretation from the implementation CRN

to the formal CRN.

There are many opportunities for further exploration of the bisimulation approach to CRN

equivalence:

• In the well-established theory of bisimulation, various properties and theorems could

also be applied in this context of CRN equivalence, and these may leads to deeper

insights into the behavior of CRNs.

• Further exploration of the CRN equivalence properties we have defined is needed. For

example, with a given implementation CRN and set of formal species, is the formal

CRN uniquely equivalent to the implementation CRN? Or, if implementation CRN

B is equivalent to formal CRN A and implementation CRN D is equivalent to formal

CRN C, and if we then compose B with D, and A with C, are they still equivalent?
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• For translation schemes, such as those mentioned in the results section, which translate

a formal CRN to a DNA-based implementation CRN, the relationship between the

two CRNs should be further explored. It maybe true that the implementation CRN is

always equivalent to the formal CRN for some translation schemes. This would be an

important property to prove mathematically if so.

• Augmented translation schemes exist that yield infinite CRNs by implementing DNA

polymer reactions, thus yielding efficient Turing-universal behavior [10]. Extending

the bisimulation approach to validate such implementations is an important goal.

Also for the algorithm of finding a valid interpretation, we envision two possible im-

provements:

• For the complexity analysis, we have proven that the problem is at least as difficult

as graph isomorphism. This should be further studied to determine if this is actually

NP-complete or not.

• Although there is no polynomial time algorithm to solve the permissive test, there

could be implementations with better efficiency. For example, a well-constructed hash

table and using BFS instead of DFS may lead to better performance.
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Appendix: Detailed Pseudo-code

The detailed pseudo-code for the algorithm is listed here, consisting of seven functions:
Substitute, EquationsSolve, UpdateTable, PermissiveTest, SearchRow, SearchColumn,
and Main.

function Substitute(CRN , interpretation)
. Substitute implementation species for formal species in CRN according to

interpretation
newCRN ← emptyList
for reaction ∈ CRN do

[reactant, product]← reaction
newReactant← emptySet
for i ∈ reactant do

if i is formal species then
newReactant← newReactant ∪ i

else
for j ∈ interpretation do

[implementationSpecies, setOfFormalSpecies]← j
if i = implementationSpecies then

newReactant← newReactant ∪ setOfFormalSpecies
end if

end for
end if

end for
newProduct← emptySet
for i ∈ product do

if i is formal species then
newProduct← newProduct ∪ i

else
for j ∈ interpretation do

[implementationSpecies, setOfFormalSpecies]← j
if i = implementationSpecies then

newProduct← newProduct ∪ setOfFormalSpecies
end if

end for
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end if
end for
append(newCRN, [newReactant, newProduct])

end for
return newCRN

end function

Example input:
CRN = [[{a}, {b, x}], [{b}, {b, y}]]
interpretation = [[x, {a}], [y, {a, b}]]
Example output:
[[{a}, {b, a}], [{b}, {b, a, b}]]
This example means CRN:

a → b+ x

b → b+ y

with interpretation:

x = a

y = a+ b

becomes:

a → b+ a

b → b+ a+ b
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function EquationsSolve(a,s)

. Find a non-negative integer solution ~x of the equation a~x = ~b or return ~0 when there is
no such solution

append −~b to a as its last column
. Now the problem is converted to finding a solution ~x of the equation a~x = ~0 with the

last component of ~x being 1 for the new a
q ← number of columns in a
p← Push(~0, emptyStack)
s← emptySet
for i = 1 to q do

Frozen[1, i]← False
end for
while p 6= emptyStack do

top← top(p)
p← pop(p)
n← height(p)− 1
if a× top = ~0 and top 6= ~0 then

if the last component of top is 1 then
. Here we find the solution needed. If we remove this if-statement, s will contain all the

non-zero minimal solutions of a~x = ~0 after the big while loop
return top

end if
s← s ∪ {top}

else
for i = 1 to q do

F [i]← Frozen[n+ 1, i]
end for
for i = 1 to q do

if F [i] = False and (a× top) · (a× ~ei) < 0 then
if t+ ~ei is minimal in s then

p← push(t+ ~ei, p)
n← n+ 1
for j = 1 to q do

Frozen[n, j]← F [j]
end for
F [i]← True

end if
end if

end for
end if

end while
return ~0
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end function

Example input:
a = [[1, 2,−4], [2, 1,−5]]
Example output:
[2, 1, 1]
This example means equations:

x0 + 2x1 − 4x2 = 0

2x0 + x1 − 5x2 = 0

has solution x0 = 2, x1 = 1, x2 = 1

33



function UpdateTable(formalCRN , implementationCRN)
. Calculate the table of every implementation reaction can/cannot be individually

interpreted to each formal reaction and trivial reaction. Note that implementation CRN
have multiple repeated and/or trivial reactions – this is as it should be.

for j = 1 to length(implementationCRN) do
[implementationReactant, implementationProduct]← implementationCRN [j]
for i = 1 to length(formalCRN) do

[formalReactant, formalProduct]← formalCRN [i]
cR← formalReactant ∩ implementationReactant

. cR consists of all common species of formalReactant and implementationReactant
fR← formalReactant \ cR
iR← implementationReactant \ cR
cP ← formalProduct ∩ implementationProduct

. cP consists of all common species of formalProduct and implementationProduct
fP ← formalProduct \ cP
iP ← implementationProduct \ cP
ci← common non-formal species of iR and iP
cf ← fR ∩ fP
if ci 6= emptySet then

iR← iR \ ci
iP ← iP \ ci
fR← fR \ cf
fP ← fP \ cf

end if
. Set table[i, j] to True if implementationCRN [j] can be interpreted to formalCRN [i],
otherwise set table[i, j] to False

if no formal species in iR and iP then
if fR = emptySet then

if fP = emptySet then
table[i, j]← True

else
if iP = emptySet then

table[i, j]← False
else

table[i, j]← True
end if

end if
else

if iR = emptySet then
table[i, j]← False

else
if fP = emptySet then
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table[i, j]← True
else

if iP = emptySet then
table[i, j]← False

else
table[i, j]← True

end if
end if

end if
end if

else
table[i, j]← False

end if
end for . Now check if this implementation reaction can be trivial
ci← implementationReactant ∩ implementationProduct
iR← implementationReactant \ ci
iP ← implementationProduct \ ci
if (iR has no formal species) or (iP has non-formal species) then

if (iP has no formal species) or (iR has non-formal species) then
table[i, length(implementationCRN) + 1]← True

else
table[i, length(implementationCRN) + 1]← False

end if
else

table[i, length(implementationCRN) + 1]← False
end if

end for
return table

end function

Example input:
formalCRN = [[{a}, {b}], [{b}, {a}]]
implementationCRNx = [[{a}, {x}], [{b}, {x}]]
Example output:
[[True, False, True], [False, True, True]]
This example means with formal CRN: a→ b
and implementation CRN: a→ x, b→ x
the table is (

True False True
False True True

)
which implies implementation reaction a→ x can be interpreted to a→ b and trivial reaction
but not b→ a, while implementation reaction b→ x can be interpreted to b→ a and trivial
reaction but not a→ b.
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function PermissiveTest(formalCRN , implementationCRN , interpretation)
function Search(state, depth)

. In the implementation CRN, if after a series of trivial
reactions starting from state within length of depth, some reaction in targetReaction can
occur, then return True. Otherwise return False

if depth < 0 then
return False

end if
for i ∈ targetReaction do

. If any reaction in targetReaction can occur in current state, then permissive condition
is not violated

[reactant, product]← i
if reactant \ state = emptySet then

return True
end if

end for
for i ∈ trivialReaction do
. If any reaction in targetReaction can occur in current state, then search deeper

[reactant, product]← i
if reactant \ state = emptySet then

newState = (state \ reactant) ∪ product
if Search(newState, depth− 1) = True then

return True
end if

end if
end for

end function
newCRN ← Substitute(implementationCRN, interpretation)
table = UpdateTable(formalCRN, newCRN)
trivialReaction← emptySet

. Here we collect the set of implementation reactions which can individually be
interpreted as trivial

for i = 1 to length(newCRN) do
if table[i, length(formalCRN + 1)] = True then

trivialReaction← trivialReaction ∪ implementationCRN [i]
end if

end for
for i = 1 to length(formalCRN) do

. Here we collect the set of implementation reactions which can individually be
interpreted to the ith formal reaction

targetReaction← emptySet
for j = 1 to length(newCRN) do
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if table[j, i] = True then
targetReaction← targetReaction ∪ implementationCRN [i]

end if
end for
[reactant, product]← formalCRN [i]

. Construct setsOfSpecies where setsOfSpecies[n] contains all the implementation
species whose interpretation contains the nth element of reactant

n← 1
for j ∈ reactant do

setsOfSpecies[n]← j
for k ∈ interpretation do

[implementationSpecies, setOfFormalSpecies]← k
if j ∈ setOfFormalSpecies then

setsOfSpecies[n]← setsOfSpecies[n] ∪ {implementationSpecies}
end if

end for
n← n+ 1

end for
. Generate all the implementation states whose ith element is in setsOfSpecies[i]
implementationStates← [emptySet]
for j = 1 to length(reactant) do

newStates← emptySet
for k ∈ implementationStates do

for s ∈ setsOfSpecies[j] do
newStates← newStates ∪ {k ∪ {s}}

end for
end for
implementationStates← newStates

end for
for j ∈ implementationStates do

for k ⊆ j do
if interpretation of k is superset of reactant then

if Search(k,maxPermissiveDepth) = False then
return False

end if
end if

end for
end for

end for
output interpretation
return True

end function
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Example input:
formalCRN = [[{a}, {b}], [{b}, {c}]]
implementationCRN = [[{a}, {x}], [{y}, {c}]]
interpretation = [[x, {b}], [y, {b}]]
Example output:
False
This example means with formal CRN: a→ b, b→ c
implementation CRN: a→ x, y → b
and interpretation: x = b, y = b
the permissive condition is not satisfied.
This is because in formal state {b}, reaction b→ c can occur, while in implementation state
{x}, which is interpreted to formal state {b}, no further reaction can occur.
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function SearchRow(formalCRN , implementationCRN , interpretation, unknownRow)
if unknownRow = emptySet then

return PermissiveTest(formalCRN, implementationCRN, interpretation)
end if
newCRN ← Substitute(implementationCRN, Interpretation)
table← UpdateTable(formalCRN, newCRN)
if there is a row in table all being False then

return False
end if
if all implementation reactions whose index in unknownRow can be trivial then

construct equations of trivial reactions and call EquationSolve
complete the current interpretation as newInterpretation

using the result of EquationSolve
if PermissiveTest(formalCRN, implementationCRN,

newInterpretation) = True then
return True

end if
end if
minIndex← indexoftherowwithleastTrues
newUnknown← remove(unknownRow,minIndex)
if table[minIndex, lenght(formalCRN) + 1] = True then
. Leave the implementation reaction with minIndex as trivial by removing it from

unknowRow, but not enumerating unknown species in it.
if SearchRow(formalCRN, implementationCRN,

interpretation, newUnknown) = True then
return True

end if
end if

. Get here if the row with minIndex cannot be trivial or no valid interpretation
if it is. So we now explore whether there is a valid interpretation in which this reaction is
non-trivial

[implementationReactant, implementationProduct]← newCRN [minIndex]
for k = 1 to length(formalCRN) do

if table[minIndex][k] = True then
. Now we enumerate all possible interpretations which interpreted the implementation

reaction with minIndex to the kth formal reaction
[formalReactant, formalProduct]← formalCRN [k]
unknownReactant← implementationReactant \ formalReactant
numR← length(unknownReactant)
knownReactant← formalReactant \ implementationReactant
enumR← all possibility of divide knownReactant into numR sets
for i ∈ enumR do
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newInterpretation← interpretation
for p = 1 to numR do

append(newInterpretation, [unknownReactant[p], i[p]])
end for
apply newInterpretation to unknownProduct to get newProduct
unknownProduct← newProduct \ formalProduct
numP ← length(unknownProduct)
knownProduct← formalProduct \ newProduct
enumP ← all possibility of divide knownProduct into numP sets
for j ∈ enumP do

for p = 1 to numP do
append(newInterpretation, [unknownProduct[p], j[p]])

end for
if SearchRow(formalCRN, implementationCRN,

newInterpretation, newUnknown) = True then
return True

end if
end for

end for
end if

end for
end function

This SearchRow function continues the search of SearchColumn. It will call EquationSolve
if all unknown implementation reactions can be trivial. Then the function finds an unknown
implementation reaction with smallest number of possible corresponding formal reactions.
For each possibility, enumerate all possible interpretations of unknown species in the current
reaction. The function keeps doing this recursively until no unknown reactions left, then go
for permissive test.
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function SearchColumn(formalCRN , implementationCRN , interpretation, unknownColumn)
newCRN ← Substitute(implementationCRN, Interpretation)
if thenunknownColumn = emptySet

unknownRow ← list of indices of reactions in newCRN
containing non-formal species

return SearchRow(formalCRN, implementationCRN, interpretation, unknownRow)
end if
table← UpdateTable(formalCRN, newCRN)
if there is a row or a column in table all being False then

return False
end if
minIndex← indexofthecolumnwithleastTrues
newUnknown← remove(unknownColumn,minIndex)
[formalReactant, formalProduct]← formalCRN [minIndex]
for k = 1 to length(implementationCRN) do

if table[k][minIndex] = True then
. Now we enumerate all possible interpretations which interpreted the kth

implementation reaction to the formal reaction with minIndex
[implementationReactant, implementationProduct]← implementationCRN [k]
unknownReactant← implementationReactant \ formalReactant
numR← length(unknownReactant)
knownReactant← formalReactant \ implementationReactant
enumR← all possibility of divide knownReactant into numR sets
for i ∈ enumR do

newInterpretation← interpretation
for p = 1 to numR do

append(newInterpretation, [unknownReactant[p], i[p]])
end for
apply newInterpretation to unknownProduct to get newProduct
unknownProduct← newProduct \ formalProduct
numP ← length(unknownProduct)
knownProduct← formalProduct \ newProduct
enumP ← all possibility of divide knownProduct into numP sets
for j ∈ enumP do

for p = 1 to numP do
append(newInterpretation, [unknownProduct[p], j[p]])

end for
if SearchColumn(formalCRN, implementationCRN,

newInterpretation, newUnknown) = True then
return True

end if
end for

41



end for
end if

end for
end function

This SearchColumn function finds a formal reaction with smallest number of possible cor-
responding implementation reactions. For each possibility, enumerate all possible interpre-
tations of unknown species in the implementation reaction. The function keeps doing this
recursively until every formal reaction has a corresponding implementation reaction, then it
will call SearchRow.
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function Main(formalCRN , implementationCRN)
interpretation← emptySet
unknownColumn = [1, 2, · · · , length(formalCRN)]
return SearchColumn(formalCRN, implementationCRN, interpretation, unknownColumn)

end function

This is the main function of the algorithm, take formalCRN and implementationCRN
as input, return True and output a valid interpretation if such an interpretation exists,
otherwise return False.
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