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Abstract. Self-assembly is a process in which basic units aggregate un-
der attractive forces to form larger compound structures. Recent theo-
retical work has shown that pseudo-crystalline self-assembly can be al-
gorithmic, in the sense that complex logic can be programmed into the
growth process [26]. This theoretical work builds on the theory of two-
dimensional tilings [8], using rigid square tiles called Wang tiles [24] for
the basic units of self-assembly, and leads to Turing-universal models
such as the Tile Assembly Model [28]. Using the Tile Assembly Model,
we show how algorithmic self-assembly can be exploited for fabrication
tasks such as constructing the patterns that define certain digital circuits,
including demultiplexers, RAM arrays, pseudowavelet transforms, and
Hadamard transforms. Since DNA self-assembly appears to be promising
for implementing the arbitrary Wang tiles [30, 13] needed for program-
ming in the Tile Assembly Model, algorithmic self-assembly methods
such as those presented in this paper may eventually become a viable
method of arranging molecular electronic components [18], such as car-
bon nanotubes [10, 1], into molecular-scale circuits.

1 Introduction

A simple example of embedding computation in self-assembly is shown in Fig-
ure 1 (from [29]). The seven square tiles pictured in Figure 1(a) are Wang tiles
[24]; they are to be arranged so that labels on the sides of abutting tiles match.
Many copies of each tiles may be used, but the tiles may not be flipped or
rotated. The result is a pattern such as the one shown in Figure 1(c).

To be applicable to the subject of self-assembly, Wang’s tiling model must
be extended to describe how the tiles aggregate into patterns, based on simple
local rules. The Tile Assembly Model [28] does this by assigning an integer bond
strength to each side of each tile. Growth occurs by the addition of single tiles,
one at a time. In order for a new tile to attach itself to an existing pattern of
tiles, the sum of the bond strengths on the edges where it would stick must sum
to at least the threshold 7, a fixed parameter of the experiment.

The tiles shown in Figure 1(a) constitute a self-assembly program for counting
in binary, and we will refer to them in this paper as the counter tiles. Lines on
the edges are drawn to indicate the strength of binding: a thin line indicates
a strength-1 bond, thin double lines indicate a strength-2 bond, and a thick
line indicates a strength-0 bond (i.e. a side that does not stick to anything). Of
course, a bond is formed only when the edge labels match.
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Fig. 1. The counter tiles (from [29]). The set of seven tiles shown in (a) are a Tile
Assembly Model program for counting in binary. The tiles labeled “1” are colored
gray to make it easier to see the resulting pattern, visible in (c). The self-assembly
progresses by individual tiles accreting to the assembly as shown in (b). Edges marked
with a small letter or number have bond strengths of 1, while edges with a double line
have bond strengths of 2 (and do not require a further label here, since there is only
one vertical and one horizontal kind). A later stage of self-assembly is shown in (c),
with arrows indicating all the places that a new tile could accrete.

To understand how the program works, we can conceptually categorize the
seven tiles used in this example into two groups: The three tiles bearing large
letters, called boundary tiles, are used to set up the initial conditions on the
boundary of the computation. The four tiles bearing large numbers, called rule
tiles, perform the computation and their numbers are to be interpreted as the
binary digits of the output pattern.

The pattern in Figure 1(c) shows a stage of self-assembly with 7 = 2, so
tiles can only bind to one another when the total binding strength is > 2. For
example, an “L” tile may bond on either side to another “L” tile or on its right
side to an “S” tile, using a single strength-2 bond. The rule tiles, which can
form only strength-1 bonds, can only bind to an assembly if two or more bonds
cooperate to hold the tile in place, since 7 = 2. Thus, at first, the only counter
tiles which can assemble are boundary tiles, via strength-2 bonds. Only after
the boundary tiles have begun to assemble into a V-shape, can rule tiles begin
binding at corner sites as shown in Figure 1(b). The rule tile shown there can
form two strength-1 bonds, and it is the only tile that can stick there.

Successive additions of rule tiles and boundary tiles would result in a struc-
ture like that in Figure 1(c) whose rows may be read, from bottom to top, as
an enumeration of binary numbers. To understand how this works, inspect the
rule tiles. Consider the bottom and right sides of each rule tile as inputs, and
the left and top sides as outputs. A rule tile fitting into a corner “reads” two
input bits by matching bonds; one bit it reads is the identity of the digit below
it and the other is the carry bit from the tile to its right (if “c¢”, carry= 1; if “n”,



carry= 0). The number on the rule tile and the bond that it outputs on its top
reflect the result of adding, modulo 2, the two input bits; the bond it outputs
to its left reflects the resulting carry bit. Rule tiles thus copy the digits below
them, unless a carry is indicated from the right. Initially the “L” boundary tiles
present all zeros to the rule tiles from below; this starts the counting at zero.
The “R” boundary tiles present a new carry bit for each row of the counter from
the right; this adds 1 to each successive row of the counter.

It is clear from Figure 1(c) that multiple corner sites may be available for
binding rule tiles at the same time; the order in which tiles are added at these
sites is not specified. Despite the nondeterministic nature of assembly, it can be
shown that the infinite structure that is formed by the counter tiles is unique
[27]. This is essentially because a unique rule tile binds at each corner site. For
the counter tiles, this in turn is a consequence of our requirement that a rule tile
may be added only by the cooperative formation of at least two bonds at once,
that is, 7 = 2 while the rule tile bond strengths are each 1.

To understand why we use 7 = 2, consider what would happen if 7 = 1. Since
bond strengths are required to be integers, any Tile Assembly Model program
with 7 = 1 would not be able to require a tile to match the assembly on more
than a single side, which makes information processing difficult at best, and if
a unique output is required, self-assembly at 7 = 1 appears not to be Turing-
universal in two dimensions.

If 7 = 2 is more powerful than 7 = 1, then why don’t we try even higher
values? The two-fold answer is that (A) there does not seem to be much to gain,
since most Tile Assembly Model programs already work well with 7 = 2, and (B)
the experimental conditions must allow a tile to be able to distinguish between
a total bond strength of 7 vs. a total bond strength of 7 — 1, so experimentally
it is good to maximize the ratio between these, which means minimizing 7.

Is the 7 = 2 assumption reasonable for physical systems? Real crystal growth
does seem to approximate 7 = 2 growth with strength-1 bonds. The phenomena
of faceting and supersaturation are both consequences of the rarity of steps that
violate 7 = 2. If a programmable experimental system well-modeled by 7 = 2
(such as [30] or [19]) can be perfected, then two-dimensional self-assembly can
be used to build a binary counter, and in fact, two-dimensional 7 = 2 self-
assembly is universal [26]. That is, any computer program may be translated
into a set of tiles that when self-assembled, simulate the computer program. But
the stubbornly practical may still ask: What is such an embedding of computation
in self-assembly good for?

2 Self-Assembled Circuits

In principle we could use self-assembly wherever we use a conventional computer.
In practice we do not expect that computation by self-assembly will be able to
compete with the speed of traditional computer architectures on explicitly com-
putational problems. Instead, factors such as the physical nature of the output
and the ability to run the same program many times at once in parallel motivate
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Fig. 2. Using a binary counter to self-assemble a demultiplexer. Logic levels for an
example input-output pair are shown: only the row that exactly matches the input
pattern is set to “1”. To make a pattern with N rows, 10 4 log N tiles are used.

us to look for fabrication problems: particular patterns or sets of patterns that
have potentially useful properties (e.g. as templates for electronic circuits), and
which are amenable to self-assembly.

Naively we might wonder, “Can we self-assemble the circuit for a contempo-
rary CPU?” Assuming that we can create tiles that act as circuit elements® what
we are really asking is “Can we self-assemble the layout pattern for a CPU?”
The answer, in theory, is yes, and we may do so without using any complex
computation.

Any particular pattern, no matter how complex, can be self-assembled by
assigning a unique tile type, with a unique set of binding interactions with its
neighbors, to each position in the pattern. The resulting program is as big as the
pattern itself, with every tile in the program being used just once in the pattern.
This type of self-assembly program (called unique addressing) is undesirable be-
cause it is not efficient — an efficient program would use a small number of tile

! Periodic electrical networks of functional LEDs have already been self-assembled on
the millimeter scale [7].
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Fig. 3. Two self-assembled demultiplexers at right angles can address a memory. The
gray memory cell is being addressed in this figure.

types compared to the size of the pattern. Instead, unique addressing uses the
greatest number of tile types possible to create a pattern. In physical implemen-
tations [30] it appears that creating unique tile types and unique specific binding
interactions is expensive and difficult, so with currently-envisioned techniques it
seems that unique addressing is impractical except for very small patterns.

For a circuit to be well-suited to self-assembly, its structure should have a
highly methodical pattern to it. The simplest such pattern would be a periodic
arrangement of units, such as occurs in a random-access memory circuit, shown
in the upper right region of Figure 3. Indeed, using DNA self-assembly to cre-
ate a molecular-scale memory was suggested in [18]. The pattern generated by
the counter tiles of Section 1 is a somewhat more interesting pattern, yet still
methodical, which we can see is why it was easy to implement via self-assembly.
Later in this paper we will encounter more circuits with methodical structure.



Looking again at the counter tiles, we can think about what similar programs
we might be able to construct. The counter tiles use a constant number of tile
types to form a structure that grows indefinitely in two directions. If we wish
to form a structure of a specific chosen size, we need a set of tiles that not only
count, but also stop when the count is complete. Such efficient self-assembly
programs for growing finite shapes have been presented in [20]. Here, we use an
improved construction [5] wherein, in each successive row, the rightmost “0” is
replaced by a “1” and all bits to its right are zeroed. If there is no rightmost “0”,
it stops. In this construction, shown in Figure 2, a set of log N input tiles are used
to define the width of the counter; the assembly grows into a rectangle of exactly
size N x (1 4+ log N). Thus the counter can be used to make relatively narrow
structures of a chosen length. By adding an additional constant number of tiles
we can self-assemble N x N squares. In these examples, wedding computation
with self-assembly addresses what is to chemists a difficult synthetic (fabrication)
problem — how to make polymer or crystalline structures of a well-defined size.

Perhaps surprisingly, the binary counter itself happens to yield the layout
for a useful circuit. In Figure 2, each tile type is shown labelled with a circuit
element, such as a wiring arrangement, an AND gate, or an AND-NOT gate.
Once assembled, the tiles form a circuit with 4 input lines along the bottom and
24 = 16 output lines along the right. This is a demultiplexer: the address bits
on the input lines specify exactly one output line to be active. A larger circuit
with n = log N input lines and N = 2™ output lines can be self-assembled by
changing only the n input tiles. Note that multiple types of tiles can carry the
same circuit element. This is a common phenomenon: all the markings on all
the tiles comprise rather more information than just the pattern that we care to
create; this excess information is necessary to specify how to grow the pattern
correctly.

This is our first example of self-assembly being used to create a useful circuit?.
Whether or not this could be practical depends upon how the tiles are imple-
mented physically and how the circuit elements are attached to the tiles. Let’s
speculate on a few possible approaches, each of which involves considerable chal-
lenges. For example, if the tiles were made of DNA (e.g., the 2 x 12 nm molecules
in [30]) and the circuit elements were small molecular electronic devices (e.g.,
[6,14]) covalently attached to the DNA, some chemical post-processing could
be necessary to make functional connections between the circuit elements. On
the other hand, if again DNA tiles were used but now the labels were single-
stranded DNA protruding from the tiles, then in a post-processing step after
assembly is complete, larger circuit elements (e.g., DNA-labelled carbon nan-
otubes [25]) could be arranged by hybridization to the self-assembled pattern,
thereby forming the desired circuit. Alternatively, the tiles could be micron- or
millimeter- scale objects with embedded conventional electronic components, as

2 Qur approach, in which the self-assembled patterns are used as templates for fab-
ricating functional circuits out of other materials, can be contrasted to work that
uses the self-assembly process itself to perform either a fixed [12] or reconfigurable
[4] computation.
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Fig. 4. The Sierpinski triangle and a set of tiles that construct it in the limit.

in [7,11,3]. Algorithmic self-assembly has been demonstrated at this scale as
well [19].

A demultiplexer could be used as a building block for a larger self-assembled
circuit: a pair of demultiplexers oriented at right angles along the borders of
an N x N memory allow a memory element to be accessed using only 2log N
lines. Thus a memory circuit may be self-assembled (see Figure 3). What other
circuits might be possible? Our next constructions derive from the observation
that the demultiplexer circuit implements a generalized inner product of a binary
vector by a binary matrix, with the binary function EQUALS substituting for
multiplication and AND substituting for addition in the definition of matrix
multiplication. That is, the circuit takes an n-bit binary vector, “multiplies” it
by a nx2" size binary “counting” matrix, and outputs a 2" long vector. Similarly,
a circuit for an arbitrary binary matrix multiplication could be created by self-
assembling a circuit decorated with logic gates as appropriate for the matrix of
choice.

3 Self-similar Transforms

Another complex pattern that may be created by a simple self-assembling com-
putation is the Sierpiriski triangle, pictured in Figure 4(a). Only seven tiles,
shown in Figure 4(b) (from [27]), are required to create a pattern (shown in Fig-
ure 4(c)) whose limit is this triangular fractal pattern. As with the counter tiles,
its construction depends on 7 = 2 assembly. By labeling the sides of the tiles as
“input” and “output”, individual tiles can be seen to encode the binary function
XOR. Diagonals of the assembly, interpreted as zeros and ones, form rows of
Pascal’s triangle modulo 2. It can also be seen that diagonals of the assembly
are instantaneous descriptions of a one-dimensional cellular automaton. Aside
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Fig. 5. Comparison of self-similar binary matrices. From left to right, the binary pseu-
dowavelet matrix (Ws2), the Sierpiriski triangle matrix (Ss2), and the Hadamard ma-
trix (Hsz). For the pseudowavelet and Sierpinski matrices, black represents 1 and white
represents 0. For the Hadamard matrix, black represents 1 and white represents -1.

from its interpretation as a computation, this pattern is beginning to find some
practical uses; rendered in metal the Sierpinski triangle appears to be a superior
cellular phone antenna [17].

Does the Sierpinski triangle also have a circuit interpretation like the binary
counter? Perhaps not, but it inspires thought: interpreted as a binary matrix
the Sierpinski triangle has many periodic rows whose periods are related by a
logarithmic scaling. This suggests that using the Sierpinski triangle as a matrix
multiplier might effect some transform similar to a wavelet or Fourier transform.
In fact, binary versions of the wavelet and Fourier transforms, namely the binary
pseudowavelet transform [15] and the Hadamard transform [21, 16, 31], have self-
similar matrices closely related to the Sierpinski triangle. Both these transforms
have been used in signal processing and image compression. The Hadamard
matrix in particular has uses from quantum computation to cell phones, and
can be used directly for implementing a parallel Walsh transform [23]. Many
theoretical and practical uses have been studied for Hadamard matrices of size
2" 12,9, 22].

Given the similarity of these transforms to the Sierpinski triangle, it seems
reasonable to expect that there should exist simple tile sets that self-assemble
into circuit patterns for computing them. This turns out to be correct.

In Figure 5 we give a visual comparison of these matrices to the Sierpinski
matrix. Their formal similarity can be seen from their recursive definitions: Wy =
T, = H; = 51 = [1], and for n a power of 2,

TI'L Wn, TVL TTL S’YL S’!L HTL HH/

The pseudowavelet transform W,, has a simple self-similar structure for which
it seems likely we can find a simple self-assembly program; in fact, a straight-
forward modification of the Sierpinski tiles will suffice. First, modify the tiles
so growth occurs from the right to the left (in Figure 5); then make a “tagged”
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Fig. 6. Construction of the pseudowavelet tile set. (a) A tile set for growing the
Sierpinski triangle from the upper right corner, as in Figure 5. (b) A tile set for growing
the pseudowavelet transform from the upper right corner.

Red: Green;

Fig. 7. The two types of hexagonal tile that will be used for constructing the pattern
in Figure 8(c).

version of each rule tile such that in each row, the first “0” to the left of a “1”
gets tagged, and tags propogate leftward. The black cells are defined by only
untagged tiles. These tiles are shown in Figure 6. Although these tiles build
unbounded patterns, patterns of defined size can be created by replacing the 4
boundary tiles with a binary counter, as in Figure 2 and Figure 3.

4 Growing a Hadamard matrix

In this section we will present a set of hexagonal tiles which deterministically
constructs self-similar Hadamard matrices of order 2"”. We begin, in Subsec-
tion 4.1, by presenting a simple set of “red and green” tiles which constructs
a nice but non-Hadamard self-similar pattern. Then, in Subsection 4.2 we will
present a slight elaboration on those tiles which results in the generation of a
Hadamard matrix and indicate how to turn the given construction into one that
works with square tiles. Finally, in Subsection 4.3 we prove the correctness of
our construction.

4.1 Red and Green Tiles

Figure 7 shows two hexagonal types of tiles, one red and one green. Unlike the
square Wang tiles discussed in earlier sections, these tiles may be rotated and/or
flipped over. Where two tiles abut, the notches on the sides of the hexagons must
fit together (one out and one in), or, where there are spots instead of notches,
the spots of the tiles must match. During growth, a new hexagon will need to
fit in with three existing hexagons, so we will have 7 = 3. (Later we will show
how 7 can be reduced to 2 by converting the hexagons into square tiles.)
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Fig. 8. Stages of growth for the tiles from Figure 7. (a) shows the boundary condition
used to start the growth. (b) shows a sample sequence of snapshots as it grows over
time. (c¢) shows the pattern after it has fully filled in. (d) shows exactly the same
pattern as (c), but with the tiles pulled apart vertically so that the overall shape is
now a square. The relationship to Figure 9 begins to become apparent.

The boundary condition used to initiate growth is composed of red tiles as
shown in Figure 8(a). As in the construction shown in Figure 1, three boundary
tile types with strength-3 bonds can be used to construct this initial condition,
or tiles analogous to those in Figure 2 could be used to self-assemble a boundary
of size exactly 2".

As the assembly grows, as shown in Figure 8(b), the resulting pattern is
unique, since at any location where we might try to add a tile, the two notches
and the spot always restrict our options so that there is at most one way to add
a tile. We can see this by examining just 3 cases: If both notches point up, then
we must add a green tile oriented according to the spot. If both notches point
down, we must add a red tile (upside down from the one shown in Figure 7)
oriented according to the spot. If one notch is down and one is up, then we must
use a red tile, but it will only fit if the spot is on the side where the notch points
up. Luckily, we can prove that the spot will indeed always be on this side, as
we will show in Section 4.3.
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Fig. 9. Successive stages of the “Plus” fractal underlying the pattern of red and green
tiles in Figure 8(c,d).

Fig. 10. The green tiles of the pattern in Figure 8(d) happen to be arranged exactly
like the “Plus” fractal of Figure 9. Red tiles are also arranged the same way, except
the fractal is rotated 45° and centered on an empty point.

Here we will make some observations about the pattern produced by the
tiles, without worrying about proofs. Then in Section 4.3 we will prove that the
grown pattern has the self-similar nature being discussed.

Given a fully grown pattern of size 2" + 1, we can vertically stretch the
rhomboidal array of hexagons from Figure 8(c) into a square array as shown
in Figure 8(d) to make the self-similar pattern more apparent. The pattern is
the self similar pattern of the “Plus” fractal shown in Figure 9. As shown in
Figure 10, if we draw a green + on every green tile in the pattern, then we see
exactly the “Plus” fractal, while if we draw a red X on every red tile, we see a
simple rearrangement of the same fractal.

In fact, we can draw both the red and the green pattern together on the same
tiling, as in Figure 11(a), and in spite of them each covering the entire figure,
the red and green fractals do not touch each other at all.

Since these “Plus” fractals have dimension 2, and adjacent tiles in the red
pattern are v/2 times closer than adjacent tiles in the green pattern, there are
twice as many red tiles as there are green tiles.



@ ®) ko

)
e ol e o [l Hj

= +

e chah el ch

& o) s el ]
o T e T T
ﬁﬁﬁ#ﬂﬁﬁ}%ﬂﬁ#ﬂﬂﬁ%
SEaescsrsEsEaG

Fig. 11. (a) shows the red and green patterns together. (b) shows the correspondence
between the “Plus” fractal and the recursive “L triomino” tiling.

On each red tile, instead of drawing a red X, we can draw an L triomino
oriented according to the tile, yielding the well-known recursive tiling shown in
Figure 11(b).

4.2 The Hadamard Tiles

Now we will modify the red and green tiles to get a set of tiles that can generate
a Hadamard matrix. The main modification is just that we will add +1 and —1
markings to the tiles, so we will have a +1 red tile, a —1 red tile, a +1 green
tile, and a —1 green tile. The +1 and —1 markings on these tiles are what will
form the Hadamard matrix pattern.

We will have the red boundary tiles (corresponding to Figure 8(a)) all carry
the +1 marking. The information about whether a tile is marked +1 or —1 will
be propagated similarly to how the 0 and 1 markings were propagated in the
tiles for the Sierpinski triangle, by labeling edges with “input” and “output”
values. Specifically, on each tile we will label the two lower notched edges (the
“output” edges) with the tile’s main marking, while the two upper notched edges
(the “input” edges) will be labeled with compatible inputs. Note that this means
we can no longer rotate or flip our tiles, so we will need to explicitly have both
orientations of the green tile, and all four orientations of the red tile.

On a red tile, the inputs may be either the same or different, and the tile’s
main marking always matches the input on the same side as the spot. On a green
tile, the inputs are always the same, and the tile’s main marking is always the
opposite of the inputs. This results in a total of 16 types of red tile and 4 types
of green tile.

Note that if we wanted to use square tiles instead of hexagonal tiles, we could
eliminate the sides with the spots, and instead communicate the handedness
of the spot via the tile to the left of what are now two square tiles touching
only at a corner. This breaks some of the symmetry of the tile set (although



Fig. 12. Three depictions of the self-assembled Hadamard matrix. The leftmost dia-
gram shows how the green/red form of the “Plus”/“L triomino” pattern is related to
the Hadamard pattern: Every green tile has the opposite Hadamard color from the tiles
above it, while every red tile has the same color as the tile above it in the direction
of its axis of symmetry. This surprising relationship between these two fundamental
self-similar patterns is the key to how the easily-constructed red and green pattern is
used as a stepping stone to the more difficult Hadamard pattern.

the marking could also be redundantly communicated on the right as well, to
preserve symmetry), but if one needs to use 7 = 2 square tiles, it is nice to know
that there is no theoretical obstacle.

Figure 12 shows the Hadamard pattern as it is produced on the hexagons
together with the red and green patterns, on its own in the original hexagonal
setting, and in its square matrix form.

Now we know what to expect when we grow our pattern. Of course, to get
a pattern of size exactly 2" for some given n, one would need to start with
a boundary condition of just the right length, which can be accomplished as
described in Section 2.

4.3 Proof of Correctness

In this section we prove that the iterative process of tile accretion generates
exactly the same pattern as the recursive subdivision process shown in Figure 13.

Since we know from Section 4.1 that at any given position there is only one
way a tile can be added to that location, we know that the pattern that grows
is the unique pattern satisfying the boundary condition and the edge matching
conditions on the tiles. (If there were more than one growable pattern, then the
uppermost tile position differing in two such patterns would indicate a place
where there is more than one way to add a tile.)

This means that if we can show that the recursive subdivision process always
yields an arrangement that is consistent with the growth rules for the notch and
spot markings on the edges as well as the Hadamard markings, then it must
yield exactly the same arrangement as is generated by the tile accretion process.

To show that the recursive subdivision process never leads to an inconsistency
among the tiles, we consider what happens when we subdivide every tile in a
consistent pattern X to get a more detailed pattern Y. We will show that if X
was consistent, then so is Y.
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Fig. 13. The left two columns show how red and green hexagons get subdivided into
four hexagons. The second column is the mirror image of the first. Every edge of the
four small hexagons either is the same in all 6 subdivisions, or takes its notch or spot
from a fixed edge of the parent hexagon for all 6 subdivisions. The third column shows
how the Hadamard markings are placed on the subdivided hexagons: shaded hexagons
represent +1, and white hexagons represent —1. The Hadamard markings coexist with
the notch and spot markings, but are shown separately for clarity. If they were shown
together, the first two columns would each need to be shown twice: once with the
upper Hadamard shadings of column 3, and once with the lower Hadamard shadings
of column 3.
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First we consider the spots. The accretion rule for spots is that the spots must
line up on vertically adjacent tiles. Does the subdivision process guarantee that
this will be the case throughout any pattern Y which is the result of subdividing
a consistent pattern X7 There are three cases where tiles in Y need to agree on
the spot position: Two vertically adjacent tiles in ¥ may have come from (A)
the same tile in X, (B) vertically adjacent tiles in X, or (C) diagonally adjacent
tiles in X. For case (A), we know the spots will agree because we see that they
agree in the interior of each individual subdivision rule. For case (B), we know
the spots will agree because we see that the alignment of the spots at the top
and bottom of each subdivision quadruple match the alignment of the spots at
the top and bottom of the parent hexagon, and we know the parent hexagons
agreed in X. For case (C), we know the spots will agree because both the lower
and upper quadruple have the spot towards the top tile of the lower quadruple,
regardless of what quadruples were used.

Next we consider the notches. The accretion rule for notches is that they must
match in direction on diagonally adjacent tiles. The subdivision process leads
to three cases where two tiles in Y need to agree on the notch direction: (A)
the two tiles are in the same quadruple, (B) the two tiles are the top tile of the
lower quadruple and a side tile of the upper quadruple, or (C) the two tiles are a
side tile of the lower quadruple and the bottom tile of the upper quadruple. For
case (A), we know the notches will match because we can see that they match in
every possible quadruple. For case (B), we know the notches will agree because
regardless of which quadruples are involved, the notch in question will always
match the original notch connecting the two parent tiles in X. For case (C), we



know the notches will agree because regardless of which quadruples are involved,
the notch will always point down.

Finally we consider the Hadamard markings. The accretion rule for the
Hadamard markings is that for a red tile, the marking is copied from the up-
per left or upper right tile on the side of the spot, while for a green tile, the
marking is the opposite of the markings on the upper left and upper right tiles
(which happen to have the same markings). We can immediately see that the
the Hadamard markings obtained by subdivision obey the accretion rule for the
side and bottom tiles of each quadruple, while for the top tile we need to know
something about the upper left and upper right neighbor quadruples. What we
know about these quadruples is that their side tiles have the same Hadamard
marking as their parent in the X tiling. The top tile of the lower quadruple,
whose Hadamard marking we are trying to verify, is also marked the same as its
parent in the X tiling, and in fact it is always the very same tile as its parent.
This means that the correct Hadamard marking for its parent in the X tiling
is the same as its correct Hadamard marking in the Y tiling, and so since its
parent was indeed marked correctly in the X tiling, we know it will be marked
correctly in the Y tiling.

Since the spots, notches, and Hadamard markings present after subdivision
follow all the rules used for accretion, we see that the subdivision process does
indeed yield the growable patterns. If we start with the first tile shown in the
subdivision rules, and repeatedly subdivide it to get patterns with more and more
tiles, we see that the upper two sides of the resulting array of hexagons match
exactly the boundary condition shown in Figure 8. This means that the pattern
obtained by repeated subdivision of this tile is exactly the same pattern that
grows from that boundary condition. In particular, the Hadamard markings will
be exactly those that occur on the pattern grown from the boundary condition.
Since it follows from the definition of Hadamard matrices that they are exactly
what gets produced by the Hadamard marking subdivision rule shown in the
third column of Figure 13, this means that the Hadamard markings on the
grown pattern will exactly match the intended Hadamard matrix.
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