
Complexity of Self-Assembled Shapes

(Extended Abstract?)

David Soloveichik and Erik Winfree

California Institute of Technology, Pasadena, CA 91125, USA
{dsolov,winfree}@caltech.edu

Abstract. The connection between self-assembly and computation sug-
gests that a shape can be considered the output of a self-assembly “pro-
gram,” a set of tiles that fit together to create a shape. It seems plausible
that the size of the smallest self-assembly program that builds a shape
and the shape’s descriptional (Kolmogorov) complexity should be re-
lated. We show that under the notion of a shape that is independent of
scale this is indeed so: in the Tile Assembly Model, the minimal num-
ber of distinct tile types necessary to self-assemble an arbitrarily scaled
shape can be bounded both above and below in terms of the shape’s Kol-
mogorov complexity. As part of the proof of the main result, we sketch
a general method for converting a program outputting a shape as a list
of locations into a set of tile types that self-assembles into a scaled up
version of that shape. Our result implies, somewhat counter-intuitively,
that self-assembly of a scaled up version of a shape often requires fewer
tile types, and suggests that the independence of scale in self-assembly
theory plays the same crucial role as the independence of running time
in the theory of computability.

1 Introduction

Self-assembly is the process by which an organized structure can spontaneously
form from simple parts. The Tile Assembly Model [15, 14], based on Wang
tiling [13], formalizes the two-dimensional self-assembly of square units called
“tiles” using a physically plausible abstraction of crystal growth. In this model,
a new tile can adsorb to a growing complex if it binds strongly enough. Each
of the four sides of a tile has an associated bond type that interacts with a cer-
tain strength with matching sides of other tiles. The process of self-assembly is
initiated by a single seed tile and proceeds via the sequential addition of new
tiles. Confirming the physical plausibility and relevance of the abstraction, sim-
ple self-assembling systems of tiles have been built out of certain types of DNA
molecules [16, 11, 10, 8]. The possibility of using self-assembly for nanofabrica-
tion of complex components such as circuits has been suggested as a promising
application [5].

The view that the “shape” of a self-assembled complex can be considered the
output of a computational process [2] has inspired recent interest [7, 1, 3, 6, 4].

? A preprint of the full paper can be found at http://arxiv.org.

While it was shown through specific examples that self-assembly could be used
to construct interesting shapes and patterns, it was not known in general which
shapes could be self-assembled from a small number of tile types. Understanding
the complexity of shapes is facilitated by an appropriate definition of shape. In
our model, a tile system generates a particular shape if it produces any scaled
version of that shape (Sect. 3). This definition may be thought to formalize
the idea that a structure can be made up of arbitrarily small pieces. Compu-
tationally, it is analogous to disregarding computation time and is thus more
appropriate as a notion of output of a universal computation process.1 Using
this definition of shape, we show that for any shape S̃, if Ksa(S̃) is the minimal
number of distinct tile types necessary to self-assemble it then Ksa(S̃) log Ksa(S̃)
is within multiplicative and additive constants (independent of S̃) of the shape’s
Kolmogorov complexity. This theorem is proved by construction (which might be
of independent interest) of a general method for converting a program that out-
puts a fixed size shape as a list of locations into a tile system that self-assembles
a scaled version of the shape. Our result ties the computation of a shape and
its self-assembly, and, somewhat counter-intuitively, implies that scaling up a
shape may often allow it to be self-assembled from fewer tile types. Another
consequence of the theorem is that the minimal number of tile types necessary
to self-assemble an arbitrary scaling of a shape is uncomputable. Answering the
same question about shapes of a fixed size is computable but NP complete [1].

2 The Tile Assembly Model

We present a description of the Tile Assembly Model based on Rothemund
and Winfree [7] and Rothemund [6]. We will be working on a Z × Z grid of
unit square locations. The directions D = {N, E, W, S} are used to indicate
relative positions in the grid. Formally, they are functions Z × Z → Z × Z:
N(i, j) = (i, j+1), E(i, j) = (i+1, j), S(i, j) = (i, j−1), and W (i, j) = (i−1, j).
The inverse directions are defined naturally: N−1(i, j) = S(i, j), etc. Let Σ be a
set of bond types. A tile type t is a 4-tuple (σN , σE , σS , σW) ∈ Σ4 indicating
the associated bond types on the north, east, south, and west sides. Note that
tile types are oriented and a rotated version of a tile type is considered to be a
different tile type. A special bond type null represents the lack of an interaction
and the special tile type empty = (null, null, null, null) represents an empty
space. If T is a set of tile types, a tile is a pair (t, (i, j)) ∈ T ×Z

2 indicating that
location (i, j) contains the tile type t . Given the tile t = (t, (i, j)), type(t) = t
and pos(t) = (i, j). Further, bondD(t), where D ∈ D, is the bond type of the
respective side of t , and bondD(t) = bondD(type(t)). A configuration is a set
of tiles such that there is exactly one tile in every location (i, j) ∈ Z × Z. For

1 The production of a shape of a fixed size cannot be considered the output of a
universal computation process: whereas questions about the result of universal com-
putation are often uncomputable, any question about a shape of a fixed-size can
be answered with a finite simulation of the self-assembly process [7], because in the
model considered here, once a tile is added, it cannot be removed. Thus questions
about shapes of fixed size are decidable.

any configuration A, we write A(i, j) to indicate the tile at location (i, j). We
will write a configuration as a set of non-empty tiles; all other tiles are implicitly
empty.

A strength function g : Σ × Σ → Z, where null ∈ Σ, defines the inter-
actions between adjacent tiles: we say that a tile t1 interacts with its neighbor
t2 with strength Γ (t1, t2) = g(σ, σ′) where σ is the bond type of tile t1 that is
adjacent to the bond type σ′ of tile t2.

2 In most previous works on self-assembly,
as in this work, strength functions are restricted with the following properties:
(1) g is symmetric (the effect that one tile has an another is equal to the effect
that the other has on the first), (2) g(σ, null) = 0 (the lack of an interaction is
normalized to zero), (3) g is non-negative (there are no “adverse” interactions
counteracting other interactions), (4) g is diagonal : g(σ, σ′) = 0 if σ 6= σ′ (only
sides with matching bond types interact). Property 4 shows the roots of the
Tile Assembly Model in the Wang tiling model. Our results confirm that non-
negativity is not a major restriction as Theorem 1 is valid for strength functions
taking on negative values. However, if property 4 is relaxed then information
in tile systems can be represented more compactly (using fewer tile types [4]),
potentially leading to a different form of Theorem 1.

A tile system T is a quadruple (T, ts, g, τ) where T is a finite set of non-
empty tile types, ts is a special seed tile with type(ts) ∈ T , g is a strength
function, and τ is the threshold parameter. Self-assembly is defined by a relation
between configurations. Suppose A and B are two configurations, and t is a tile
such that A = B except at pos(t) and A(pos(t)) = null but B(pos(t)) = t.
Then we write A →T B if

∑

D∈D Γ (t, A(D(pos(t)))) ≥ τ . This means that a tile
can be added to a configuration iff the sum of its interaction strengths with its
neighbors reaches τ . The relation →∗

T
is the reflexive transitive closure of →T.

Whereas a configuration can be any arrangement of tiles (not necessarily
connected), we are interested in the subclass of configurations that can result
from a self-assembly process. Formally, the tile system and the relation →∗

T
define

the partially ordered set of assemblies: Prod(T) = {A s.t. {ts} →∗
T

A}, and
the set of terminal assemblies: Term(T) = {A ∈ Prod(T) and 6 ∃B 6= A s.t.
A →∗

T
B}. A tile system T uniquely produces A if ∀B ∈ Prod(T), B →∗

T
A

(which implies Term(T) = {A}).
The tile systems used in our constructions have τ = 2 with the strength

function ranging over {0, 1, 2}. It is known that τ = 1 systems with strength
function ranging over {0, 1} are rather limited [7, 6].

3 Arbitrarily Scaled Shapes and Their Complexity

In this section, we introduce the model for the output of the self-assembly process
used in this paper. Let S be a finite set of locations on Z×Z. The adjacency graph

2 More formally,

Γ (t1, t2) =

g(bondD−1(t1), bondD(t2)) if ∃D ∈ D s.t. pos(t1) = D(pos(t2));
0 otherwise.

G(S) is the graph on S defined by the adjacency relation where two locations are
considered adjacent if they are directly north/south, or east/west of one another.
We say that S is a coordinated shape if G(S) is connected.3 The coordinated

shape of assembly A is the set SA = {(i, j) s.t. A(i, j) 6= empty}. Note that
SA is a coordinated shape because A contains a single connected component.

For any set of locations S, and any c ∈ Z
+, we define a c-scaling of S as

Sc = {(i, j) s.t. (bi/cc, bj/cc) ∈ S} .

Geometrically, this represents a “magnification” of S by a factor c. Note that
a scaling of a coordinated shape is itself a coordinated shape: every node of
G(S) gets mapped to a c2-node connected subgraph of G(Sc) and the relative
connectivity of the subgraphs is the same as the connectivity of the nodes of
G(S). A parallel argument shows that if Sc is a coordinated shape, then so is S.
We say that coordinated shapes S1 and S2 are scale-equivalent if Sc

1 = Sd
2 for

some c, d ∈ Z
+. Two coordinated shapes are translation-equivalent if they

can be made identical by translation. We write S1
∼= S2 if Sc

1 is translation-
equivalent to Sd

2 for some c, d ∈ Z
+. Scale-equivalence, translation-equivalence

and ∼= are equivalence relations. We call S̃, the equivalence class of coordinated
shapes under “∼=”, the shape S̃. We say that S̃ is the shape of assembly

A if SA ∈ S̃. The view of computation performed by the self-assembly process
espoused here is the production of a shape as the “output” of the self-assembly
process. Intuitively, the idea of scale-invariance attempts to formalize the notion
that a physical object can be constructed from arbitrarily small pieces.

Having defined the notion of shapes, we turn to their descriptional complex-
ity. As usual, the Kolmogorov complexity of a binary string x with respect to a
universal Turing machine U is KU (x) = min {|p| s.t. U(p) = x}. (See the exposi-
tion of Li and Vitanyi [9] for an in-depth discussion of Kolmogorov complexity.)
Let us fix some “standard” universal machine U . We call the Kolmogorov com-
plexity of a coordinated shape S to be the size of the smallest program outputting
it as a list of locations:4,5

K(S) = min {|s| s.t. U(s) = 〈S〉}.

The Kolmogorov complexity of a shape S̃ is:

K(S̃) = min
{

|s| s.t. U(s) = 〈S〉 for some S ∈ S̃
}

.

3 We say “coordinated” to make explicit that a fixed coordinate system is used. We
reserve the unqualified term “shape” for when we ignore scale and translation.

4 Note that K(S) is within an additive constant of K(x) where x is some other effective
description of S, such as a characteristic function. Since our results are asymptotic,
they are independent of the specific representation choice. One might also consider
invoking a two dimensional computing machine, but it is not fundamentally different
for the same reason.

5 Notation 〈·〉 indicates some standard binary encoding of the object(s) in the brackets.
In the case of coordinated shapes, it means an explicit binary encoding of the set of
locations. Integers, tuples or other data structures are similarly given simple explicit
encodings.

We define the tile-complexity of a coordinated shape S and shape S̃ re-
spectively as:

Ksa(S) = min

{

n s.t. ∃ a tile system T of n tile types that uniquely produces
assembly A and S is the coordinated shape of A

}

Ksa(S̃) = min

{

n s.t. ∃ a tile system T of n tile types that uniquely produces
assembly A and S̃ is the shape of A

}

.

4 Relating Tile-Complexity and Kolmogorov Complexity

The essential result of this paper is the description of the relationship between
the Kolmogorov complexity of any scale-invariant shape and the number of tile
types necessary to self-assemble it.

Theorem 1. There exist constants a0, b0, a1, b1 such that for any shape S̃,

a0K(S̃) + b0 ≤ Ksa(S̃) log Ksa(S̃) ≤ a1K(S̃) + b1. (1)

Note that since any tile system of n tile types can be described by O(n log n)
bits, the theorem implies there is a way to construct a tiling system such that
asymptotically at least a constant fraction of these bits is used to “describe” the
shape rather than any other aspect of the tiling system.

Proof (of Theorem 1). To see that a0K(S̃) + b0 ≤ Ksa(S̃) log Ksa(S̃), realize
that there exists a constant size program psa that, given a binary description of
a tile system, simulates its self-assembly, making arbitrary choices where multi-
ple tile additions are possible. If the self-assembly process terminates, psa out-
puts the coordinated shape of the terminal assembly as the binary encoding of
the list of locations in it. Any tile system T of n tile types with any diagonal
strength function and any threshold τ can be represented by a string dT of
4ndlog 4ne+ 16n bits: For each tile type, the first of which is assumed to be the
seed, specify the bond types on its four sides. There are no more than 4n bond
types. In addition, for each tile type t specify for which of the 16 subsets L ⊆ D,
∑

D∈L g(bondD(t)) ≥ τ . Note that the possibility of negative bond strengths is
taken into account, but a diagonal strength function is assumed. If T is a tile
system uniquely producing an assembly that has shape S̃, then K(S̃) ≤ |psadT|.
The left inequality in eq. 1 follows with the multiplicative constant a0 = 1/4− ε
for arbitrary ε > 0.

We prove the right inequality in eq. 1 by developing a construction (sketched
in Section 5 and detailed in the full paper) showing how for any program s s.t.

U(s) = 〈S〉, we can build a tile system T of 64d |p|
log |p|e + b tile types, where

b is a constant and p is a string consisting of a fixed program psb and s (i.e.
|p| = |psb| + |s|), that uniquely produces an assembly whose shape is S̃ such
that S ∈ S̃. Program psb and constant b are both independent of S. The right
inequality in eq. 1 follows with the multiplicative constant a1 = 64 + ε for
arbitrary ε > 0. ut

a) b) c)

(0,0)

seed block

Terminating output side

T
er

m
in

at
in

g
 o

u
tp

u
t

si
d
e

P
ro

p
ag

atin
g
 o

u
tp

u
t sid

e Input side

Fig. 1. Forming a shape out of blocks: a) A coordinated shape S. b) An assembly
composed of c by c blocks that grow according to transmitted instructions such that the
shape of the final assembly is S̃. Arrows indicate information flow and order of assembly.
(Not drawn to scale.) The seed block and the circled growth block are schematically
expanded in Fig. 2. c) The nomenclature describing the types of block sides.

Our result can be used to show that the tile-complexity of shapes is uncom-
putable:

Corollary 1. Ksa of shapes is uncomputable. In other words, the following lan-

guage is undecidable: L̃ =
{

(l, n) s.t. l = 〈S〉 for some S ∈ S̃ and Ksa(S̃) ≤ n
}

.

Language L̃ should be contrasted with L = {(l, n) s.t. l = 〈S〉 and Ksa(S) ≤ n}
which is decidable (but hard to compute in the sense of NP-completeness [1]).

Proof (of Corollary 1). We essentially parallel the proof that Kolmogorov com-
plexity is uncomputable. If L̃ were decidable, then we can make a program that
computes Ksa(S̃) and subsequently uses Theorem 1 to compute an effective lower
bound for K(S̃). Then we can construct a program p that given n outputs some
coordinated shape S (as a list of locations) such that K(S̃) ≥ n by enumerating
shapes and testing with the lower bound, which we know must eventually exceed
n. But this results in a contradiction since p〈n〉 is a program outputting S ∈ S̃
and so K(S̃) ≤ |p| + dlog ne. But for large enough n, |p| + dlog ne < n. ut

5 Sketch of the Programmable Block Construction

5.1 Overview

The uniquely produced terminal assembly A of our tile system will consist of
square “blocks” of c by c tiles. There will be one block for each location in S.
Consider the coordinated shape in Fig. 1(a). An example assembly A is graph-
ically represented in Fig. 1(b), where each square represents a block containing
c2 tiles. Self-assembly initiates in the seed block, which contains the seed tile,
and proceeds according to the arrows illustrated between blocks. Thus if there

is an arrow from one block to another, it indicates that the growth of the second
block (a growth block) is initiated from the first. A terminated arrow indicates
that the block does not initiate the self-assembly of an adjacent block in that
direction. Fig. 1(c) describes our nomenclature: an arrow comes into a block on
its input side, arrows exit on propagating output sides, and terminated arrows
indicate terminating output sides. The seed block has four output sides, which
can be either propagating or terminating. Each growth block has one input and
three output sides, which are also either propagating or terminating.

The input/output connections of the blocks form a spanning tree rooted at
the seed block. During the progress of the self-assembly of the seed block, a
computational process determines the input/output relationships of the rest of
the blocks in the assembly. This information is propagated from block to block
(along the arrows in Fig. 1(b)) during self-assembly and describes the shape
of the assembly. By following the instructions each growth block receives in its
input, the block decides where to start the growth of the next block and what
information to pass to it in turn. The scaling factor c is set by the size of the
seed block. The computation in the seed block ensures that c is large enough
that there is enough space to do the necessary computation within the other
blocks.

We present a sketch of a general construction that represents a Turing–
universal way of guiding large scale self-assembly of blocks based on an input
program p. In the following section, we describe the architecture of seed and
growth blocks on which arbitrary programs can be executed. In section 5.3 we
discuss the programming of p that is required to grow the blocks in the form of
a specific shape. For a complete presentation of our construction, including the
proof that the terminal assembly is uniquely produced, see the full version of
this paper.

5.2 Architecture of the Blocks

The internal structure of a growth block is shown in Fig. 2(a). The first part is a
Turing machine simulation, which is based on [12, 7]. The machine simulated is a
universal Turing machine that takes its input from the propagating output side
of the previous block. This TM has an output alphabet {0, 1, S}

3
and an input

alphabet {(000), (111)} on a two-way tape. The output of the simulation, as 3-
tuples, is propagated until the diagonal. The diagonal propagates each member of
the 3-tuples crossing it to one of the three output sides, like a prism separating
the colors of the spectrum. This allows the single TM simulation to produce
three separate strings targeted for the three output sides. The “S” symbol in
the output of the TM simulation is propagated like the other symbols. However,
it acts in a special way when it crosses the boundary tiles at the three output
sides of the block, where it starts a new block. The output sides that receive
the “S” symbol become propagating output sides and the output sides that do
not receive it become terminating output sides. Obviously, the TM simulation
decides which among the three output sides will become propagating output
sides, and what information they should contain, by outputting appropriate

a) b)

halt

computation

…011S01...
input

o
u
tp

u
t

…
0

1
S

0
1…o

u
tp

u
t

n
o

 "
S

"

output
no "S"

s
e

c
o

n
d

 p
h

a
s
e

:
p

ris
m

firs
t p

h
a

s
e

:
T

M
 s

im
u

la
tio

n

halt

computation

…011S01...
output

o
u
tp

u
t

…
0

1
S

0
1…

o
u
tp

u
t

..
.0

0
1

S
0

1
..

.

output
no "S"

c
o
m

p
u
ta

ti
o
n c

o
m

p
u
ta

tio
n

computation

unpacking

input

unpacking

u
n

p
a

c
k
in

g u
n

p
a

c
k
in

g

h
a

lt

halt

h
a

lt

Fig. 2. Internal structure of a growth block (a) and seed block (b).

tuples. Subsequent blocks will use this information as a program, as discussed
in section 5.3.

An outline of the seed block is shown in Fig. 2(b). While growth blocks
contain a single TM simulation that outputs a different string to each of the
three output sides, the seed block contains four identical TM simulations that
output different strings to each of the four output sides. This is possible because
the border tile types transmit information selectively: the computation in the
seed block is performed using 4-tuples as the alphabet in a manner similar to the
growth blocks, but only one of the elements of the 4-tuple traverses the border
of the seed block. As with growth blocks, if the transmitted symbol is “S”, the
outside edge initiates the assembly of the adjoining block. The point of having
four identical TM simulations is to ensures that the seed block is square: while a
growth block uses the length of its input side to set the length of its output sides
(via the diagonal), the seed block does not have any input sides. (Remember
that it is the seed block that sets the size of all the blocks.)

The initiation of the Turing machine simulations in the seed block is done
by tile types encoding the program p that guides the block construction. The
natural approach to provide this input is using 4 rows (one for each TM) of
unique tiles encoding one bit per tile; however, this does not result in an asymp-
totically optimal encoding. We follow Adleman et al [3] and encode on the order
of log n/ log log n bits per tile where n is the length of the input. This repre-
sentation is then unpacked into a one-bit-per-tile representation used by the
TM simulation (Fig. 2(b)). Adleman et al’s method requires O(n/ log n) tiles to
encode n bits, leading to the asymptotically optimal result of Theorem 1.

5.3 Programming Blocks and the Value of the Scaling Factor c

In order for our tile system to produce some assembly whose shape is S̃, in-
structions encoded in p must guide the construction of the blocks by deciding on
which side of which block a new block begins to grow and what is encoded on

the edge of each block. For our purposes, we take p = psb〈s〉 (i.e. psb takes s as
input), where s is a program that outputs the list of locations in the shape S. psb

runs s to obtain this list and plans out a spanning tree t over these locations (it
can just do a depth-first search) starting from some arbitrarily chosen location
that will correspond to the seed block. The information passed along the arrows
in Fig. 1(b) is pgb〈t, (i, j)〉 which is the concatenation of a program pgb to be ex-
ecuted within each growth block, and an encoding of the tree t and the location
(i, j) of the block into which the arrow is heading. When executed, pgb〈t, (i, j)〉
evaluates to a 3-tuple encoding of pgb〈t, D(i, j)〉 together with symbol “S” for
each propagating output side D. Thus, each growth block passes pgb〈t, D(i, j)〉
to its Dth propagating output side as directed by t. Note that program psb in
the seed tile must also run long enough to ensure that c is large enough that the
computation in the growth blocks has enough space to finish without running
into the sides of the block or into the diagonal. Nevertheless, the scaling factor
c is dominated by the building of t in the seed block, as the computation in the
growth blocks takes only poly(|S|). Since the building of t is dominated by the
running time of s, we have c = poly(time(s)).

6 Discussion and Open Questions

Because the Kolmogorov complexity of a string depends on the universal Tur-
ing machine chosen, the complexity community adopted a notion of additive
equivalence, where additive constants are ignored. However, Theorem 1 includes
multiplicative constants as well, which are not customarily discounted. It might
be possible to use a more clever method of unpacking (Sect. 5.2) and a seed
block construction that reduces the multiplicative constant a1 of Theorem 1.
Correspondingly, there might be a more efficient way to encode any tile system
than described in the proof of the theorem, and thereby increase a0.

It is most likely that our block construction can be easily adapted to use
a different encoding of the input, leading to a different form of Theorem 1 for
variations on the Tile Assembly Model. Recent work by Aggarwal et al [4] shows
that allowing non-diagonal strength functions allows a dramatic change in tile
complexity.

The programmable block construction may have other applications as well.
For instance, it is easy to reprogram it to simulate, using few tile types, a large
deterministic τ = 1 tile system for which a short algorithmic description of the
tile set exists. We believe a slightly extended version of the block construction
can also be used to provide compact tile sets that simulate other τ = 2 tile
systems that have short algorithmic descriptions.

The scaling factor c = poly(time(s)) is extremely large since |S| is presum-
ably enormous for cases where our results are of interest and s must output every
location in S. Are there special instances where it is not necessary to run the
program s outputting S to completion but query it in a few locations relevant
to the immediate block being built?

Acknowledgements. We thank Len Adleman, members of his group, and Paul

Rothemund for fruitful discussions and suggestions. We thank Rebecca Schulman and

David Zhang for useful and entertaining conversations about descriptional complexity

of tile systems. This work was supported by NSF CAREER Grant No. 0093486.

References

1. L. Adleman, Q. Cheng, A. Goel, M.-D. Huang, D. Kempe, P. M. de Espanes, and
P. W. K. Rothemund. Combinatorial optimization problems in self-assembly. In
Proc. of STOC, 2002.

2. L. M. Adleman. Toward a mathematical theory of self-assembly (extended ab-
stract). Technical report, University of Southern California, 1999.

3. L. M. Adleman, Q. Cheng, A. Goel, and M.-D. A. Huang. Running time and pro-
gram size for self-assembled squares. In ACM Symposium on Theory of Computing,
pages 740–748, 2001.

4. G. Aggarwal, M. Goldwasser, M. Kao, and R. T. Schweller. Complexities for
generalized models of self-assembly. In Symposium on Discrete Algorithms, 2004.

5. M. Cook, P. W. K. Rothemund, and E. Winfree. Self-assembled circuit patterns.
In DNA Based Computers 9, pages 91–107, 2004.

6. P. W. K. Rothemund. Theory and Experiments in Algorithmic Self-Assembly. PhD
thesis, University of Southern California, Los Angeles, 2001.

7. P. W. K. Rothemund and E. Winfree. The program-size complexity of self-
assembled squares (extended abstract). In ACM Symposium on Theory of Com-

puting, pages 459–468, 2000.
8. T. H. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J. H. Reif, and N. C.

Seeman. Construction, analysis, ligation, and self-assembly of DNA triple crossover
complexes. Journal of the Americal Chemical Society, 122:1848–1860, 2000.

9. M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and Its Appli-

cations. Springer, second edition, 1997.
10. C. Mao, T. H. LaBean, J. H. Reif, and N. C. Seeman. Logical computation using

algorithmic self-assembly of DNA triple-crossover molecules. Nature, 407:493–496,
2000.

11. C. Mao, W. Sun, and N. C. Seeman. Designed two-dimensional DNA holliday
junction arrays visualized by atomic force microscopy. Journal of the Americal

Chemical Society, 121:5437–5443, 1999.
12. R. M. Robinson. Undecidability and nonperiodicity of tilings of the plane. Inven-

tiones Mathematicae, 12:177–209, 1971.
13. H. Wang. Proving theorems by pattern recognition. II. Bell Systems Technical

Journal, 40:1–42, 1961.
14. E. Winfree. Simulations of computing by self-assembly, Caltech CS TR 1998.22.
15. E. Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, California Institute

of Technology, Pasadena, 1998.
16. E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman. Design and self-assembly of

two dimensional DNA crystals. Nature, 394:539–544, 1998.

