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Monte Carlo Bayesian inference

Using the mathematical model described in Box 1, we chose to explore the parameter space in the vicinity of
the best fit to data through Monte Carlo Bayesian inference, as outlined in [1]. The experimental data shown in
Figure 8A is used as the training set; other experimental data are reserved as the test set. The cost function is
calculated as

E =

N
∑

n=1

([rA]final,n
exp − [rA]final,n

sim )2,

where the concentration of rA is measured at 210 min in µM scale both for the experiment and simulation (n: exper-
iment number). The training set contained fifty experimentally measured [rA] values (N = 50). To estimate errors
in experimental measurements, most experimental conditions were measured in duplicate. For certain experimental
conditions — e.g. in the transition region of blue curve in Figure 8A — the duplicate measurements differed as much
as 0.65 µM. We chose σ = 0.25 µM as a reasonable estimate of the standard deviation of repeated experimental
measurements.

The kinetic model has a total of 11 parameters: five hybridization parameters (kTA, kAI, krAI, kTAI, and kAIrA),
and six enzyme parameters (KM,ON, KM,OFF, kcat,ON, kcat,OFF, KM,H, and kcat,H). We used pre-specified bounds
for these parameters as shown in Box 1. In order to minimize the effect of these widely separated scales and avoid
numerical issues, we deal with the logarithms of the parameters for all our calculations — i.e., ~θ is a vector of natural
logs of rate constants.

Following the approaches of [1, 2], we want to obtain an ensemble parameter set to explore the model’s behavior
when all parameter combinations consistent with the available data are considered. First, consider the conditional
probability P (D|M(~θ)) that our model with parameter ~θ would generate the observed data D = {Yn} given the
initial condition I1, I2, ..., Ip. If we model repeatability variance as Gaussian random measurement errors σ, for each

experimental time course Yn, P (Yn|M(~θ)) = 1√
2πσ

exp
(

− (y(tn,~θ)−Yn)2

2σ2

)

. Also, if we assume that each experiment is

independent, by converting the product to a sum and substituting for our cost function, we find

P (D|M(~θ)) =
∏

n

1√
2πσ

exp

(

− (y(tn, ~θ)− Yn)2

2σ2

)

,

∝ exp

(

−
∑

n(y(tn, ~θ)− Yn)2

2σ2

)

,

∝ exp

(

− E

2σ2

)

,

where Yn = [rA]final,n
exp and y(tn, ~θ) = [rA]final,n

sim . We can identify the formula above with a Boltzmann distribution
with energy E and temperature T = 2σ2 in units where Boltzmann’s constant is unity.

Next, we would like to estimate the conditional probability P (M(~θ)|D) of our model with parameter ~θ given the
observed data, using Bayesian inference. Since we assumed a uniform a priori distribution for model parameters, we
find the same Boltzmann distribution as above for P (M(~θ)|D).

P (M(~θ)|D) =
P (M(~θ)) · P (D|M(~θ))

P (D)

∝ P (D|M(~θ))

∝ exp

(

− E

2σ2

)

Thus, our task is to generate a thermal ensemble of parameter sets that is consistent with the Boltzmann
distribution above using Metropolis criteria. We initiated the parameter set ~θ as a random 11×1 vector within the
prescribed bounds. For each iteration, we generated a random 11×1 vector of −1, 0, or +1 (with equal probabilities)
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to decide whether to decrease, remain, or increase each parameter in the next step. The step size for each parameter
was set as 1/100th of the range for that parameter in a log scale. If the simultaneous updates of 11 parameters resulted
in lower cost function (i.e., ∆E < 0), the updates are accepted. On the other hand, if the simultaneous updates of
parameters resulted in higher cost function (i.e., ∆E > 0), the updates are accepted with a probability of P = e−∆E/T

following Metropolis criteria. Parameter values beyond the pre-specified bounds are considered as high energy states
(i.e., ∆E ≫ 0) such that the updates resulting in parameter values exceeding bounds are not accepted. For physical
plausibility, two additional bounds were implemented analogous to pre-specified bounds: KM,ON < KM,OFF and
kcat,ON > kcat,OFF. Time is incremented without regard to acceptance or rejection of parameter updates. This
sampling procedure ensures that the number of neighboring states are the same even when some parameter values
are at the upper or lower bounds. To summarize, the probability of moving to parameter space i from parameter
space j is as follows.

P (i← j) = e−(Ei−Ej)/T if ∆E = Ei − Ej > 0

P (i← j) = 1 otherwise

At equilibrium, detailed balance requires P (i← j) · P (j) = P (j ← i) · P (i) such that

P (i)

P (j)
=

P (i← j)

P (j ← i)
= e−(Ei−Ej)/T .

The Boltzmann distribution P (i) = 1
Z e−Ei/T with Z =

∑

i e−Ei/T satisfies the detailed balance requirement at
equilibrium. Therefore, accepting or rejecting the parameter updates based on the Metropolis criteria with T =
0.125 (= 2σ2) would ensure that our sample parameters should result, when equilibrium is established, in the
Boltzmann distribution.

Following these sampling procedures, 440,000 iterations were performed for trajectories 1 through 12 starting
from 12 random initial conditions. This took about two weeks of simulation using 12 cores on a personal computer.
The time evolution of cost function associated with each sampling trajectory is shown (Figure S1). Cost functions
associated with all trajectories converge to a low-error basin (E = 2 to 3 µM2) prior to 50,000 iterations. To assess
whether there are multiple attractor basins for parameter values, we plotted parameter values for all 12 trajectories
(excluding the initial 50,000 transient iterations) as histograms (Figure 9A). The parameter distributions for all 11
parameters for individual trajectories achieved similar ranges and shapes irrespective of their initial values (data not
shown). Therefore, we conclude that the Monte Carlo sampling with Metropolis criteria has converged for these
trajectories.
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Figure S1: Error history for the 12 Monte Carlo sampling trajectories. For clarity, the initial transients with errors higher
than 20 are not shown. Sampling has apparently reached equilibrium within 50,000 steps.

Our next goal is choosing an ensemble of parameter sets, {~θj}Sj=1, in such a way that they are independent of
each other. These parameter sets cannot be randomly chosen from the above sampling trajectories because the
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parameters at neighboring iterations may be highly correlated. To estimate the decorrelation time of parameter
values so as to obtain independent samples, we analyzed the autocorrelation functions of parameter values between
the 100,000th and 300,000th iteration steps averaged over 12 trajectories (Figure S2). If a random process Xt has
time-independent mean and variance, the autocorrelation function is defined as follows:

R(τ) =
E[(Xt − E(X))(Xt+τ − E(X))]

V ar(X)
.

To estimate autocorrelation function from sampling trajectories Xn of length L (X1,X2, ...,XL), we compute the
following:

R̂(l) =
L−l
∑

n=1

(Xn − E(X))(Xn+l − E(X)),

for l = 0, 1, 2, ..., L − 1, which is further normalized to have maximum value 1 at zero lag. Note that R̂(−l) = R̂(l).
For many parameters, the autocorrelation function quickly decays to zero — e.g., KM,H, kcat,H, and kTAI. On the
other hand, for some parameters such as KM,ON and kAIrA, for which the parameter values were poorly constrained
in the histogram analysis, the averaged autocorrelation functions did not completely decay to zero even after 50,000
steps; typically, slight negative autocorrelations were observed for time lags longer than 50,000 steps possibly due to
numerical undersampling issues. Nevertheless, all the autocorrelation functions cross zero at time lags of less than
50,000 steps. Thus, we used 50,000 iterations as the decorrelation time.
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Figure S2: Autocorrelation functions for Monte Carlo sampling trajectories. The log-scale parameter values (~θ) between
the 100,000th and 300,000th iteration steps are plotted as autocorrelation functions averaged over 12 trajectories. Decor-
relation time for each parameter can be estimated by measuring lag times beyond which the autocorrelation function is
close to zero.

For sampling trajectories 1 through 12 (with 440,000 iterations each), we discarded the first 50,000 iterations (the
transients) because not all the trajectories have reached low energy basin before 50,000 iterations; therefore, 390,000
iterations remain “usable” after removing the transients. One parameter set was selected per 50,000 iterations,
resulting in 8 parameter sets per trajectory. This collection of parameter sets — 96 in total (S = 96) with E ranging
from 2.03 to 2.43 µM2 — was used for simulation and compared with the experimental results (Figure 8).
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To identify important parameter combinations that can explain the variability of training data and parameter
inference, following the procedures outlined in previous studies [1, 2], one can start by constructing an empirical

covariance matrix Θ from the ensemble of parameters {~θj}Sj=1,

Θ = 〈(~θ − 〈~θ〉)(~θ − 〈~θ〉)T 〉,

where the angle brackets denote ensemble average. Consider ~θ as Gaussian random vector of size 11×1, then its joint
probability density function is given by:

P (~θ) =
1

(2π)
11

2 |Θ| 12
exp

(

−1

2
(~θ − 〈~θ〉)T

Θ
−1(~θ − 〈~θ〉)

)

,

where we used the empirical covariance matrix Θ. Also recall that ~θ was sampled according to a Boltzmann
distribution as follows:

P (~θ) = P (M(~θ)|D) ∝ exp

(

−E

T

)

,

with T = 2σ2. If we assume that the ensemble average 〈~θ〉 corresponds to the minimum of the cost function E/T and
that E/T should be approximately quadratic in the vicinity of the minimum, the Hessian H defined as the second

derivatives of E/T (Hij = ∂2(E/T )
∂θi∂θj

) can be used to approximate the shape of the cost surface:

E

T
=

Emin

T
+

1

2
(~θ − 〈~θ〉)T H(~θ − 〈~θ〉).

Comparing terms in P (~θ), we can see that in this approximation H = Θ
−1 (cf. [3]). An eigenvalue decomposition of

the inverse of the covariance matrix Θ (called principal component analysis (PCA)) can be used to obtain information
about soft and stiff modes analogous to using the Hessian H — i.e., eigenvectors corresponding to large eigenvalues
of H (or small eigenvalues of Θ) indicate stiffness (little variability) of such parameter combinations. Mode spectrum
and eigenvector projections are shown with eigenvalue-eigenvector correspondence indicated by the numbers 1–11
(Figure 9B).
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Figure S3: Eigenvectors from PCA of the inverse of the covariance matrix Θ projected on paired parameter planes
(cf. Figure 9B). Eigenvector-eigenvalue correspondence is indicated by the numbers 1–11: small numbers correspond to
large eigenvalues (stiff modes) and large numbers correspond to small eigenvalues (soft modes). Note that zeros correspond

to 〈~θ〉 in the parameter space.

Here, we chose to explore the projections of eigenvectors on paired parameter planes (Figure S3); these parameter
pairs are chosen based on whether their corresponding weights on eigenvectors are correlated. First, we note that
planes of paired enzyme parameters typically contain small numbers (stiff modes) as compared to planes of paired
hybridization parameters, indicating that enzyme parameters contribute to stiff modes significantly. Second, for any
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given paired parameters, eigenvector projections with smaller numbers appear in the second and fourth quadrants as
compared to projections with larger numbers that appear in the first and third quadrants — these parameter pairs
change in opposite directions for stiff modes, while they change in the same direction for soft modes (cf. Figure 9D).
More discussions on stiff and soft modes are found in the Results section.
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