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Abstract

Many applications require optimizing an un-
known, noisy function that is expensive to
evaluate. We formalize this task as a multi-
armed bandit problem, where the payoff function
is either sampled from a Gaussian process (GP)
or has low RKHS norm. We resolve the impor-
tant open problem of deriving regret bounds for
this setting, which imply novel convergence rates
for GP optimization. We analyze GP-UCB, an
intuitive upper-confidence based algorithm, and
bound its cumulative regret in terms of maximal
information gain, establishing a novel connection
between GP optimization and experimental de-
sign. Moreover, by bounding the latter in terms
of operator spectra, we obtain explicit sublinear
regret bounds for many commonly used covari-
ance functions. In some important cases, our
bounds have surprisingly weak dependence on
the dimensionality. In our experiments on real
sensor data, GP-UCB compares favorably with
other heuristical GP optimization approaches.

1. Introduction

In most stochastic optimization settings, evaluating
the unknown function is expensive, and sampling
is to be minimized. Examples include choosing
advertisements in sponsored search to maximize
profit in a click-through model (Pandey & Olston,
2007) or learning optimal control strategies for robots
(Lizotte et al., 2007). Predominant approaches
to this problem include the multi-armed bandit
paradigm (Robbins, 1952), where the goal is to
maximize cumulative reward by optimally balancing
exploration and exploitation, and experimental design
(Chaloner & Verdinelli, 1995), where the function
is to be explored globally with as few evaluations
as possible, for example by maximizing information

1This is the longer version of our paper in ICML 2010;
see Srinivas et al. (2010)

gain. The challenge in both approaches is twofold: we
have to estimate an unknown function f from noisy
samples, and we must optimize our estimate over some
high-dimensional input space. For the former, much
progress has been made in machine learning through
kernel methods and Gaussian process (GP) models
(Rasmussen & Williams, 2006), where smoothness
assumptions about f are encoded through the choice
of kernel in a flexible nonparametric fashion. Beyond
Euclidean spaces, kernels can be defined on diverse
domains such as spaces of graphs, sets, or lists.

We are concerned with GP optimization in the multi-
armed bandit setting, where f is sampled from a GP
distribution or has low “complexity” measured in
terms of its RKHS norm under some kernel. We pro-
vide the first sublinear regret bounds in this nonpara-
metric setting, which imply convergence rates for GP
optimization. In particular, we analyze the Gaussian
Process Upper Confidence Bound (GP-UCB) algo-
rithm, a simple and intuitive Bayesian method (Auer
et al., 2002; Auer, 2002; Dani et al., 2008). While
objectives are different in the multi-armed bandit
and experimental design paradigm, our results draw
a close technical connection between them: our regret
bounds come in terms of an information gain quantity,
measuring how fast f can be learned in an information
theoretic sense. The submodularity of this function
allows us to prove sharp regret bounds for particular
covariance functions, which we demonstrate for com-
monly used Squared Exponential and Matérn kernels.

Related Work. Our work generalizes stochastic
linear optimization in a bandit setting, where the
unknown function comes from a finite-dimensional
linear space. GPs are nonlinear random functions,
which can be represented in an infinite-dimensional
linear space. For the standard linear setting, Dani
et al. (2008) provide a near-complete characterization
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(also see Auer 2002; Dani et al. 2007; Abernethy et al.
2008; Rusmevichientong & Tsitsiklis 2008), explicitly
dependent on the dimensionality. In the GP setting,
the challenge is to characterize complexity in a differ-
ent manner, through properties of the kernel function.
Our technical contributions are twofold: first, we
show how to analyze the nonlinear setting by focusing
on the concept of information gain, and second, we
explicitly bound this information gain measure using
the concept of submodularity (Nemhauser et al.,
1978) and knowledge about kernel operator spectra.

Kleinberg et al. (2008) provide regret bounds un-
der weaker and less configurable assumptions (only
Lipschitz-continuity w.r.t. a metric is assumed;
Bubeck et al. 2008 consider arbitrary topological
spaces), which however degrade rapidly with the di-

mensionality of the problem (Ω(T
d+1
d+2 )). In practice,

linearity w.r.t. a fixed basis is often too stringent
an assumption, while Lipschitz-continuity can be too
coarse-grained, leading to poor rate bounds. Adopting
GP assumptions, we can model levels of smoothness in
a fine-grained way. For example, our rates for the fre-
quently used Squared Exponential kernel, enforcing a
high degree of smoothness, have weak dependence on
the dimensionality: O(

√
T (log T )d+1) (see Fig. 1).

There is a large literature on GP (response surface)
optimization. Several heuristics for trading off explo-
ration and exploitation in GP optimization have been
proposed (such as Expected Improvement, Mockus
et al. 1978, and Most Probable Improvement, Mockus
1989) and successfully applied in practice (c.f., Lizotte
et al. 2007). Brochu et al. (2009) provide a comprehen-
sive review of and motivation for Bayesian optimiza-
tion using GPs. The Efficient Global Optimization
(EGO) algorithm for optimizing expensive black-box
functions is proposed by Jones et al. (1998) and ex-
tended to GPs by Huang et al. (2006). Little is known
about theoretical performance of GP optimization.
While convergence of EGO is established by Vazquez
& Bect (2007), convergence rates have remained elu-
sive. Grünewälder et al. (2010) consider the pure ex-
ploration problem for GPs, where the goal is to find the
optimal decision over T rounds, rather than maximize
cumulative reward (with no exploration/exploitation
dilemma). They provide sharp bounds for this explo-
ration problem. Note that this methodology would not
lead to bounds for minimizing the cumulative regret.
Our cumulative regret bounds translate to the first
performance guarantees (rates) for GP optimization.

Summary. Our main contributions are:

• We analyze GP-UCB, an intuitive algorithm for
GP optimization, when the function is either sam-

Kernel Linear 
kernel

RBF Matérn 
kernel Regret RT

�
T (log T )d+1
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2ν+d(d+1)d

√
T

Figure 1. Our regret bounds (up to polylog factors) for lin-
ear, radial basis, and Matérn kernels — d is the dimension,
T is the time horizon, and ν is a Matérn parameter.

pled from a known GP, or has low RKHS norm.

• We bound the cumulative regret for GP-UCB in
terms of the information gain due to sampling,
establishing a novel connection between experi-
mental design and GP optimization.

• By bounding the information gain for popular
classes of kernels, we establish sublinear regret
bounds for GP optimization for the first time.
Our bounds depend on kernel choice and param-
eters in a fine-grained fashion.

• We evaluate GP-UCB on sensor network data,
demonstrating that it compares favorably to ex-
isting algorithms for GP optimization.

2. Problem Statement and Background

Consider the problem of sequentially optimizing an un-
known reward function f : D → R: in each round t, we
choose a point xt ∈ D and get to see the function value
there, perturbed by noise: yt = f(xt)+ εt. Our goal is

to maximize the sum of rewards
∑T
t=1 f(xt), thus to

perform essentially as well as x∗ = argmaxx∈D f(x)
(as rapidly as possible). For example, we might want
to find locations of highest temperature in a building
by sequentially activating sensors in a spatial network
and regressing on their measurements. D consists of
all sensor locations, f(x) is the temperature at x, and
sensor accuracy is quantified by the noise variance.
Each activation draws battery power, so we want to
sample from as few sensors as possible.

Regret. A natural performance metric in this con-
text is cumulative regret, the loss in reward due to not
knowing f ’s maximum points beforehand. Suppose
the unknown function is f , its maximum point1

x∗ = argmaxx∈D f(x). For our choice xt in round
t, we incur instantaneous regret rt = f(x∗) − f(xt).
The cumulative regret RT after T rounds is the sum
of instantaneous regrets: RT =

∑T
t=1 rt. A desirable

asymptotic property of an algorithm is to be no-regret :
limT→∞RT /T = 0. Note that neither rt nor RT are
ever revealed to the algorithm. Bounds on the average
regret RT /T translate to convergence rates for GP
optimization: the maximum maxt≤T f(xt) in the first
T rounds is no further from f(x∗) than the average.

1 x∗ need not be unique; only f(x∗) occurs in the regret.



2.1. Gaussian Processes and RKHS’s

Gaussian Processes. Some assumptions on f are
required to guarantee no-regret. While rigid paramet-
ric assumptions such as linearity may not hold in prac-
tice, a certain degree of smoothness is often warranted.
In our sensor network, temperature readings at closeby
locations are highly correlated (see Figure 2(a)). We
can enforce implicit properties like smoothness with-
out relying on any parametric assumptions, modeling
f as a sample from a Gaussian process (GP): a col-
lection of dependent random variables, one for each
x ∈ D, every finite subset of which is multivariate
Gaussian distributed in an overall consistent way (Ras-
mussen & Williams, 2006). A GP (µ(x), k(x,x′)) is
specified by its mean function µ(x) = E[f(x)] and
covariance (or kernel) function k(x,x′) = E[(f(x) −
µ(x))(f(x′) − µ(x′))]. For GPs not conditioned on
data, we assume2 that µ ≡ 0. Moreover, we restrict
k(x,x) ≤ 1, x ∈ D, i.e., we assume bounded variance.
By fixing the correlation behavior, the covariance func-
tion k encodes smoothness properties of sample func-
tions f drawn from the GP. A range of commonly used
kernel functions is given in Section 5.2.

In this work, GPs play multiple roles. First, some of
our results hold when the unknown target function is a
sample from a known GP distribution GP(0, k(x,x′)).
Second, the Bayesian algorithm we analyze generally
uses GP(0, k(x,x′)) as prior distribution over f . A
major advantage of working with GPs is the exis-
tence of simple analytic formulae for mean and co-
variance of the posterior distribution, which allows
easy implementation of algorithms. For a noisy sam-
ple yT = [y1 . . . yT ]T at points AT = {x1, . . . ,xT },
yt = f(xt)+εt with εt ∼ N(0, σ2) i.i.d. Gaussian noise,
the posterior over f is a GP distribution again, with
mean µT (x), covariance kT (x,x′) and variance σ2

T (x):

µT (x) = kT (x)T (KT + σ2I)−1yT , (1)

kT (x,x′) = k(x,x′)− kT (x)T (KT + σ2I)−1kT (x′),

σ2
T (x) = kT (x,x), (2)

where kT (x) = [k(x1,x) . . . k(xT ,x)]T and KT is
the positive definite kernel matrix [k(x,x′)]x,x′∈AT

.

RKHS. Instead of the Bayes case, where f is sam-
pled from a GP prior, we also consider the more ag-
nostic case where f has low “complexity” as measured
under an RKHS norm (and distribution free assump-
tions on the noise process). The notion of reproduc-
ing kernel Hilbert spaces (RKHS, Wahba 1990) is in-
timately related to GPs and their covariance func-
tions k(x,x′). The RKHS Hk(D) is a complete sub-
space of L2(D) of nicely behaved functions, with an

2This is w.l.o.g. (Rasmussen & Williams, 2006).

inner product 〈·, ·〉k obeying the reproducing property:
〈f, k(x, ·)〉k = f(x) for all f ∈ Hk(D). It is literally
constructed by completing the set of mean functions
µT for all possible T , {xt}, and yT . The induced
RKHS norm ‖f‖k =

√
〈f, f〉k measures smoothness of

f w.r.t. k: in much the same way as k1 would generate
smoother samples than k2 as GP covariance functions,
‖·‖k1 assigns larger penalties than ‖·‖k2 . 〈·, ·〉k can be
extended to all of L2(D), in which case ‖f‖k < ∞ iff
f ∈ Hk(D). For most kernels discussed in Section 5.2,
members of Hk(D) can uniformly approximate any
continuous function on any compact subset of D.

2.2. Information Gain & Experimental Design

One approach to maximizing f is to first choose
points xt so as to estimate the function globally
well, then play the maximum point of our estimate.
How can we learn about f as rapidly as possible?
This question comes down to Bayesian Experimental
Design (henceforth “ED”; see Chaloner & Verdinelli
1995), where the informativeness of a set of sampling
points A ⊂ D about f is measured by the information
gain (c.f., Cover & Thomas 1991), which is the mutual
information between f and observations yA = fA+εA
at these points:

I(yA; f) = H(yA)−H(yA|f), (3)

quantifying the reduction in uncertainty about f
from revealing yA. Here, fA = [f(x)]x∈A and
εA ∼ N(0, σ2I). For a Gaussian, H(N(µ,Σ)) =
1
2 log |2πeΣ|, so that in our setting I(yA; f) =
I(yA;fA) = 1

2 log |I + σ−2KA|, where KA =
[k(x,x′)]x,x′∈A. While finding the information gain
maximizer among A ⊂ D, |A| ≤ T is NP-hard (Ko
et al., 1995), it can be approximated by an efficient
greedy algorithm. If F (A) = I(yA; f), this algorithm
picks xt = argmaxx∈D F (At−1∪{x}) in round t, which
can be shown to be equivalent to

xt = argmax
x∈D

σt−1(x), (4)

where At−1 = {x1, . . . ,xt−1}. Importantly, this
simple algorithm is guaranteed to find a near-optimal
solution: for the set AT obtained after T rounds, we
have that

F (AT ) ≥ (1− 1/e) max
|A|≤T

F (A), (5)

at least a constant fraction of the optimal infor-
mation gain value. This is because F (A) satisfies
a diminishing returns property called submodularity
(Krause & Guestrin, 2005), and the greedy approxima-
tion guarantee (5) holds for any submodular function
(Nemhauser et al., 1978).

While sequentially optimizing Eq. 4 is a provably good
way to explore f globally, it is not well suited for func-



tion optimization. For the latter, we only need to iden-
tify points x where f(x) is large, in order to concen-
trate sampling there as rapidly as possible, thus exploit
our knowledge about maxima. In fact, the ED rule
(4) does not even depend on observations yt obtained
along the way. Nevertheless, the maximum informa-
tion gain after T rounds will play a prominent role
in our regret bounds, forging an important connection
between GP optimization and experimental design.

3. GP-UCB Algorithm
For sequential optimization, the ED rule (4) can be
wasteful: it aims at decreasing uncertainty globally,
not just where maxima might be. Another idea is to
pick points as xt = argmaxx∈D µt−1(x), maximizing
the expected reward based on the posterior so far.
However, this rule is too greedy too soon and tends
to get stuck in shallow local optima. A combined
strategy is to choose

xt = argmax
x∈D

µt−1(x) + β
1/2
t σt−1(x), (6)

where βt are appropriate constants. This latter objec-
tive prefers both points x where f is uncertain (large
σt−1(·)) and such where we expect to achieve high
rewards (large µt−1(·)): it implicitly negotiates the
exploration–exploitation tradeoff. A natural interpre-
tation of this sampling rule is that it greedily selects
points x such that f(x) should be a reasonable upper
bound on f(x∗), since the argument in (6) is an upper
quantile of the marginal posterior P (f(x)|yt−1). We
call this choice the Gaussian process upper confidence
bound rule (GP-UCB), where βt is specified depending
on the context (see Section 4). Pseudocode for
the GP-UCB algorithm is provided in Algorithm 1.
Figure 2 illustrates two subsequent iterations, where
GP-UCB both explores (Figure 2(b)) by sampling an
input x with large σ2

t−1(x) and exploits (Figure 2(c))
by sampling x with large µt−1(x).

The GP-UCB selection rule Eq. 6 is motivated by the
UCB algorithm for the classical multi-armed bandit
problem (Auer et al., 2002; Kocsis & Szepesvári,
2006). Among competing criteria for GP optimization
(see Section 1), a variant of the GP-UCB rule has
been demonstrated to be effective for this application
(Dorard et al., 2009). To our knowledge, strong
theoretical results of the kind provided for GP-UCB in
this paper have not been given for any of these search
heuristics. In Section 6, we show that in practice
GP-UCB compares favorably with these alternatives.

If D is infinite, finding xt in (6) may be hard: the
upper confidence index is multimodal in general.
However, global search heuristics are very effective in
practice (Brochu et al., 2009). It is generally assumed

Algorithm 1 The GP-UCB algorithm.

Input: Input space D; GP Prior µ0 = 0, σ0, k
for t = 1, 2, . . . do

Choose xt = argmax
x∈D

µt−1(x) +
√
βtσt−1(x)

Sample yt = f(xt) + εt
Perform Bayesian update to obtain µt and σt

end for

that evaluating f is more costly than maximizing the
UCB index.

UCB algorithms (and GP optimization techniques
in general) have been applied to a large number of
problems in practice (Kocsis & Szepesvári, 2006;
Pandey & Olston, 2007; Lizotte et al., 2007). Their
performance is well characterized in both the finite
arm setting and the linear optimization setting, but
no convergence rates for GP optimization are known.

4. Regret Bounds

We now establish cumulative regret bounds for GP
optimization, treating a number of different settings:
f ∼ GP(0, k(x,x′)) for finite D, f ∼ GP(0, k(x,x′))
for general compact D, and the agnostic case of arbi-
trary f with bounded RKHS norm.

GP optimization generalizes stochastic linear opti-
mization, where a function f from a finite-dimensional
linear space is optimized over. For the linear case, Dani
et al. (2008) provide regret bounds that explicitly de-
pend on the dimensionality3 d. GPs can be seen as
random functions in some infinite-dimensional linear
space, so their results do not apply in this case. This
problem is circumvented in our regret bounds. The
quantity governing them is the maximum information
gain γT after T rounds, defined as:

γT := max
A⊂D:|A|=T

I(yA;fA), (7)

where I(yA;fA) = I(yA; f) is defined in (3). Recall
that I(yA;fA) = 1

2 log |I + σ−2KA|, where KA =
[k(x,x′)]x,x′∈A is the covariance matrix of fA =
[f(x)]x∈A associated with the samples A. Our regret
bounds are of the form O∗(

√
TβT γT ), where βT is the

confidence parameter in Algorithm 1, while the bounds
of Dani et al. (2008) are of the form O∗(

√
TβT d) (d

the dimensionality of the linear function space). Here
and below, the O∗ notation is a variant of O, where
log factors are suppressed. While our proofs – all pro-
vided in the Appendix – use techniques similar to those
of Dani et al. (2008), we face a number of additional

3 In general, d is the dimensionality of the input space
D, which in the finite-dimensional linear case coincides
with the feature space.
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Figure 2. (a) Example of temperature data collected by a network of 46 sensors at Intel Research Berkeley. (b,c) Two
iterations of the GP-UCB algorithm. It samples points that are either uncertain (b) or have high posterior mean (c).

significant technical challenges. Besides avoiding the
finite-dimensional analysis, we must handle confidence
issues, which are more delicate for nonlinear random
functions.

Importantly, note that the information gain is a prob-
lem dependent quantity — properties of both the ker-
nel and the input space will determine the growth of
regret. In Section 5, we provide general methods for
bounding γT , either by efficient auxiliary computa-
tions or by direct expressions for specific kernels of
interest. Our results match known lower bounds (up
to log factors) in both the K-armed bandit and the
d-dimensional linear optimization case.

Bounds for a GP Prior. For finite D, we obtain
the following bound.

Theorem 1 Let δ ∈ (0, 1) and βt =
2 log(|D|t2π2/6δ). Running GP-UCB with βt for
a sample f of a GP with mean function zero and
covariance function k(x,x′), we obtain a regret bound
of O∗(

√
TγT log |D|) with high probability. Precisely,

Pr
{
RT ≤

√
C1TβT γT ∀T ≥ 1

}
≥ 1− δ.

where C1 = 8/ log(1 + σ−2).

The proof methodology follows Dani et al. (2007) in
that we relate the regret to the growth of the log
volume of the confidence ellipsoid — a novelty in our
proof is showing how this growth is characterized by
the information gain.

This theorem shows that, with high probability over
samples from the GP, the cumulative regret is bounded
in terms of the maximum information gain, forging a
novel connection between GP optimization and exper-
imental design. This link is of fundamental technical
importance, allowing us to generalize Theorem 1 to
infinite decision spaces. Moreover, the submodularity
of I(yA;fA) allows us to derive sharp a priori bounds,

depending on choice and parameterization of k (see
Section 5). In the following theorem, we generalize
our result to any compact and convex D ⊂ Rd under
mild assumptions on the kernel function k.

Theorem 2 Let D ⊂ [0, r]d be compact and convex,
d ∈ N, r > 0. Suppose that the kernel k(x,x′) satisfies
the following high probability bound on the derivatives
of GP sample paths f : for some constants a, b > 0,

Pr {supx∈D |∂f/∂xj | > L} ≤ ae−(L/b)
2

, j = 1, . . . , d.

Pick δ ∈ (0, 1), and define

βt = 2 log(t22π2/(3δ)) + 2d log
(
t2dbr

√
log(4da/δ)

)
.

Running the GP-UCB with βt for a sample f of a
GP with mean function zero and covariance function
k(x,x′), we obtain a regret bound of O∗(

√
dTγT ) with

high probability. Precisely, with C1 = 8/ log(1 + σ−2)
we have

Pr
{
RT ≤

√
C1TβT γT + 2 ∀T ≥ 1

}
≥ 1− δ.

The main challenge in our proof (provided in the Ap-
pendix) is to lift the regret bound in terms of the
confidence ellipsoid to general D. The smoothness
assumption on k(x,x′) disqualifies GPs with highly
erratic sample paths. It holds for stationary kernels
k(x,x′) = k(x − x′) which are four times differen-
tiable (Theorem 5 of Ghosal & Roy (2006)), such as the
Squared Exponential and Matérn kernels with ν > 2
(see Section 5.2), while it is violated for the Ornstein-
Uhlenbeck kernel (Matérn with ν = 1/2; a stationary
variant of the Wiener process). For the latter, sam-
ple paths f are nondifferentiable almost everywhere
with probability one and come with independent in-
crements. We conjecture that a result of the form of
Theorem 2 does not hold in this case.

Bounds for Arbitrary f in the RKHS. Thus far,
we have assumed that the target function f is sampled



from a GP prior and that the noise is N(0, σ2) with
known variance σ2. We now analyze GP-UCB in an
agnostic setting, where f is an arbitrary function
from the RKHS corresponding to kernel k(x,x′).
Moreover, we allow the noise variables εt to be an ar-
bitrary martingale difference sequence (meaning that
E[εt | ε<t] = 0 for all t ∈ N), uniformly bounded by σ.
Note that we still run the same GP-UCB algorithm,
whose prior and noise model are misspecified in this
case. Our following result shows that GP-UCB attains
sublinear regret even in the agnostic setting.

Theorem 3 Let δ ∈ (0, 1). Assume that the true
underlying f lies in the RKHS Hk(D) corresponding
to the kernel k(x,x′), and that the noise εt has zero
mean conditioned on the history and is bounded by σ
almost surely. In particular, assume ‖f‖2k ≤ B and
let βt = 2B + 300γt log3(t/δ). Running GP-UCB with
βt, prior GP (0, k(x,x′)) and noise model N(0, σ2),
we obtain a regret bound of O∗(

√
T (B
√
γT +γT )) with

high probability (over the noise). Precisely,

Pr
{
RT ≤

√
C1TβT γT ∀T ≥ 1

}
≥ 1− δ,

where C1 = 8/ log(1 + σ−2).

Note that while our theorem implicitly assumes that
GP-UCB has knowledge of an upper bound on ‖f‖k,
standard guess-and-doubling approaches suffice if no
such bound is known a priori. Comparing Theorem 2
and Theorem 3, the latter holds uniformly over all
functions f with ‖f‖k <∞, while the former is a prob-
abilistic statement requiring knowledge of the GP that
f is sampled from. In contrast, if f ∼ GP(0, k(x,x′)),
then ‖f‖k = ∞ almost surely (Wahba, 1990): sample
paths are rougher than RKHS functions. Neither
Theorem 2 nor 3 encompasses the other.

5. Bounding the Information Gain

Since the bounds developed in Section 4 depend on the
information gain, the key remaining question is how to
bound the quantity γT for practical classes of kernels.

5.1. Submodularity and Greedy Maximization

In order to bound γT , we have to maximize the infor-
mation gain F (A) = I(yA; f) over all subsets A ⊂ D of
size T : a combinatorial problem in general. However,
as noted in Section 2, F (A) is a submodular function,
which implies the performance guarantee (5) for max-
imizing F sequentially by the greedy ED rule (4). Di-
viding both sides of (5) by 1−1/e, we can upper-bound
γT by (1 − 1/e)−1I(yAT

; f), where AT is constructed
by the greedy procedure. Thus, somewhat counterin-
tuitively, instead of using submodularity to prove that
F (AT ) is near-optimal, we use it in order to show that

γT is “near-greedy”. As noted in Section 2, the ED
rule does not depend on observations yt and can be
run without evaluating f .

The importance of this greedy bound is twofold.
First, it allows us to numerically compute highly
problem-specific bounds on γT , which can be plugged
into our results in Section 4 to obtain high-probability
bounds on RT . This being a laborious procedure, one
would prefer a priori bounds for γT in practice which
are simple analytical expressions of T and parameters
of k. In this section, we sketch a general procedure
for obtaining such expressions, instantiating them for
a number of commonly used covariance functions,
once more relying crucially on the greedy ED rule
upper bound. Suppose that D is finite for now, and
let f = [f(x)]x∈D, KD = [k(x,x′)]x,x′∈D. Sampling
f at xt, we obtain yt ∼ N(vTt f , σ

2), where vt ∈ R|D|
is the indicator vector associated with xt. We can
upper-bound the greedy maximum once more, by
relaxing this constraint to ‖vt‖ = 1 in round t of the
sequential method. For this relaxed greedy procedure,
all vt are leading eigenvectors of KD, since successive
covariance matrices of P (f |yt−1) share their eigenba-
sis with KD, while eigenvalues are damped according
to how many times the corresponding eigenvector is
selected. We can upper-bound the information gain
by considering the worst-case allocation of T samples
to the min{T, |D|} leading eigenvectors of KD:

γT ≤
1/2

1− e−1
max
(mt)

∑|D|

t=1
log(1 + σ−2mtλ̂t), (8)

subject to
∑
tmt = T , and spec(KD) = {λ̂1 ≥ λ̂2 ≥

. . . }. We can split the sum into two parts in order
to obtain a bound to leading order. The following
Theorem captures this intuition:

Theorem 4 For any T ∈ N and any T∗ = 1, . . . , T :

γT ≤ O
(
σ−2[B(T∗)T + T∗(log nTT )]

)
,

where nT =
∑|D|
t=1 λ̂t and B(T∗) =

∑|D|
t=T∗+1 λ̂t.

Therefore, if for some T∗ = o(T ) the first T∗ eigenval-
ues carry most of the total mass nT , the information
gain will be small. The more rapidly the spectrum
of KD decays, the slower the growth of γT . Figure 3
illustrates this intuition.

5.2. Bounds for Common Kernels

In this section we bound γT for a range of commonly
used covariance functions: finite dimensional linear,
Squared Exponential and Matérn kernels. Together
with our results in Section 4, these imply sublinear
regret bounds for GP-UCB in all cases.
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Finite dimensional linear kernels have the form
k(x,x′) = xTx′. GPs with this kernel correspond to
random linear functions f(x) = wTx, w ∼ N(0, I).

The Squared Exponential kernel is k(x,x′) =
exp(−(2l2)−1‖x − x′‖2), l a lengthscale parameter.
Sample functions are differentiable to any order
almost surely (Rasmussen & Williams, 2006).

The Matérn kernel is given by k(x,x′) =
(21−ν/Γ(ν))rνBν(r), r = (

√
2ν/l)‖x − x′‖, where ν

controls the smoothness of sample paths (the smaller,
the rougher) and Bν is a modified Bessel function.
Note that as ν → ∞, appropriately rescaled Matérn
kernels converge to the Squared Exponential kernel.

Figure 4 shows random functions drawn from GP dis-
tributions with the above kernels.

Theorem 5 Let D ⊂ Rd be compact and convex, d ∈
N. Assume the kernel function satisfies k(x,x′) ≤ 1.

1. Finite spectrum. For the d-dimensional Bayesian
linear regression case: γT = O

(
d log T

)
.

2. Exponential spectral decay. For the Squared
Exponential kernel: γT = O

(
(log T )d+1

)
.

3. Power law spectral decay. For Matérn kernels
with ν > 1: γT = O

(
T d(d+1)/(2ν+d(d+1))(log T )

)
.

A proof of Theorem 5 is given in the Appendix, , we
only sketch the idea here. γT is bounded by Theo-
rem 4 in terms the eigendecay of the kernel matrix
KD. If D is infinite or very large, we can use the
operator spectrum of k(x,x′), which likewise decays
rapidly. For the kernels of interest here, asymptotic
expressions for the operator eigenvalues are given
in Seeger et al. (2008), who derived bounds on the
information gain for fixed and random designs (in
contrast to the worst-case information gain considered
here, which is substantially more challenging to
bound). The main challenge in the proof is to ensure

the existence of discretizations DT ⊂ D, dense in the
limit, for which tail sums B(T∗)/nT in Theorem 4 are
close to corresponding operator spectra tail sums.

Together with Theorems 2 and 3, this result guaran-
tees sublinear regret of GP-UCB for any dimension
(see Figure 1). For the Squared Exponential kernel,
the dimension d appears as exponent of log T only, so

that the regret grows at most as O∗(
√
T (log T )

d+1
2 )

– the high degree of smoothness of the sample paths
effectively combats the curse of dimensionality.

6. Experiments

We compare GP-UCB with heuristics such as the
Expected Improvement (EI) and Most Probable
Improvement (MPI), and with naive methods which
choose points of maximum mean or variance only,
both on synthetic and real sensor network data.

For synthetic data, we sample random functions from a
squared exponential kernel with lengthscale parameter
0.2. The sampling noise variance σ2 was set to 0.025 or
5% of the signal variance. Our decision set D = [0, 1]
is uniformly discretized into 1000 points. We run
each algorithm for T = 1000 iterations with δ = 0.1,
averaging over 30 trials (samples from the kernel).
While the choice of βt as recommended by Theorem 1
leads to competitive performance of GP-UCB, we
find (using cross-validation) that the algorithm is
improved by scaling βt down by a factor 5. Note that
we did not optimize constants in our regret bounds.

Next, we use temperature data collected from 46 sen-
sors deployed at Intel Research Berkeley over 5 days at
1 minute intervals, pertaining to the example in Sec-
tion 2. We take the first two-thirds of the data set to
compute the empirical covariance of the sensor read-
ings, and use it as the kernel matrix. The functions f
for optimization consist of one set of observations from
all the sensors taken from the remaining third of the
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Figure 5. Comparison of performance: GP-UCB and various heuristics on synthetic (a), and sensor network data (b, c).

data set, and the results (for T = 46, σ2 = 0.5 or 5%
noise, δ = 0.1) were averaged over 2000 possible
choices of the objective function.

Lastly, we take data from traffic sensors deployed along
the highway I-880 South in California. The goal was to
find the point of minimum speed in order to identify
the most congested portion of the highway; we used
traffic speed data for all working days from 6 AM to
11 AM for one month, from 357 sensors. We again
use the covariance matrix from two-thirds of the data
set as kernel matrix, and test on the other third. The
results (for T = 357, σ2 = 4.78 or 5% noise, δ = 0.1)
were averaged over 900 runs.

Figure 5 compares the mean average regret incurred
by the different heuristics and the GP-UCB algorithm
on synthetic and real data. For temperature data,
the GP-UCB algorithm and EI heuristic clearly
outperform the others, and do not exhibit significant
difference between each other. On synthetic and traf-
fic data MPI does equally well. In summary, GP-UCB
performs at least on par with the existing approaches
which are not equipped with regret bounds.

7. Conclusions

We prove the first sublinear regret bounds for GP
optimization with commonly used kernels (see Fig-
ure 1), both for f sampled from a known GP and f of
low RKHS norm. We analyze GP-UCB, an intuitive,

Bayesian upper confidence bound based sampling rule.
Our regret bounds crucially depend on the information
gain due to sampling, establishing a novel connection
between bandit optimization and experimental design.
We bound the information gain in terms of the kernel
spectrum, providing a general methodology for obtain-
ing regret bounds with kernels of interest. Our exper-
iments on real sensor network data indicate that GP-
UCB performs at least on par with competing criteria
for GP optimization, for which no regret bounds are
known at present. Our results provide an interesting
step towards understanding exploration–exploitation
tradeoffs with complex utility functions.
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A. Regret Bounds for Target Function
Sampled from GP

In this section, we provide details for the proofs of
Theorem 1 and Theorem 2. In both cases, the strategy

is to show that |f(x)−µt−1(x)| ≤ β1/2
t σt−1(x) for all

t ∈ N and all x ∈ D, or in the infinite case, all x in
a discretization of D which becomes dense as t gets
large.

A.1. Finite Decision Set

We begin with the finite case, |D| <∞.

Lemma 5.1 Pick δ ∈ (0, 1) and set βt =
2 log(|D|πt/δ), where

∑
t≥1 π

−1
t = 1, πt > 0. Then,

|f(x)− µt−1(x)| ≤ β1/2
t σt−1(x) ∀x ∈ D ∀t ≥ 1

holds with probability ≥ 1− δ.



Proof Fix t ≥ 1 and x ∈ D. Conditioned on yt−1 =
(y1, . . . , yt−1), {x1, . . . ,xt−1} are deterministic, and
f(x) ∼ N(µt−1(x), σ2

t−1(x)). Now, if r ∼ N(0, 1),
then

Pr{r > c} = e−c
2/2(2π)−1/2

∫
e−(r−c)

2/2−c(r−c) dr

≤ e−c
2/2 Pr{r > 0} = (1/2)e−c

2/2

for c > 0, since e−c(r−c) ≤ 1 for r ≥ c. Therefore,

Pr{|f(x) − µt−1(x)| > β
1/2
t σt−1(x)} ≤ e−βt/2, using

r = (f(x)−µt−1(x))/σt−1(x) and c = β
1/2
t . Applying

the union bound,

|f(x)− µt−1(x)| ≤ β1/2
t σt−1(x) ∀x ∈ D

holds with probability ≥ 1 − |D|e−βt/2. Choosing
|D|e−βt/2 = δ/πt and using the union bound for
t ∈ N, the statement holds. For example, we can use
πt = π2t2/6.

Lemma 5.2 Fix t ≥ 1. If |f(x) − µt−1(x)| ≤
β
1/2
t σt−1(x) for all x ∈ D, then the regret rt is

bounded by 2β
1/2
t σt−1(xt).

Proof By definition of xt: µt−1(xt)+β
1/2
t σt−1(xt) ≥

µt−1(x∗) + β
1/2
t σt−1(x∗) ≥ f(x∗). Therefore,

rt = f(x∗)− f(xt) ≤ β1/2
t σt−1(xt) + µt−1(xt)− f(xt)

≤ 2β
1/2
t σt−1(xt).

Lemma 5.3 The information gain for the points se-
lected can be expressed in terms of the predictive vari-
ances. If fT = (f(xt)) ∈ RT :

I(yT ;fT ) =
1

2

∑T

t=1
log
(
1 + σ−2σ2

t−1(xt)
)
.

Proof Recall that I(yT ;fT ) = H(yT ) −
(1/2) log |2πeσ2I|. Now, H(yT ) = H(yT−1) +
H(yT |yT−1) = H(yT−1) + log(2πe(σ2 + σ2

t−1(xT )))/2.
Here, we use that x1, . . . ,xT are deterministic con-
ditioned on yT−1, and that the conditional variance
σ2
T−1(xT ) does not depend on yT−1. The result fol-

lows by induction.

Lemma 5.4 Pick δ ∈ (0, 1) and let βt be defined as in
Lemma 5.1. Then, the following holds with probability
≥ 1− δ:∑T

t=1
r2t ≤ βTC1I(yT ;fT ) ≤ C1βT γT ∀T ≥ 1,

where C1 := 8/ log(1 + σ−2) ≥ 8σ2.

Proof By Lemma 5.1 and Lemma 5.2, we have that
{r2t ≤ 4βtσ

2
t−1(xt) ∀t ≥ 1} with probability ≥ 1 − δ.

Now, βt is nondecreasing, so that

4βtσ
2
t−1(xt) ≤ 4βTσ

2(σ−2σ2
t−1(xt))

≤ 4βTσ
2C2 log(1 + σ−2σ2

t−1(xt))

with C2 = σ−2/ log(1 + σ−2) ≥ 1, since
s2 ≤ C2 log(1 + s2) for s ∈ [0, σ−2], and
σ−2σ2

t−1(xt) ≤ σ−2k(xt,xt) ≤ σ−2. Noting that
C1 = 8σ2C2, the result follows by plugging in the
representation of Lemma 5.3.

Finally, Theorem 1 is a simple consequence of
Lemma 5.4, since R2

T ≤ T
∑T
t=1 r

2
t by the Cauchy-

Schwarz inequality.

A.2. General Decision Set

Theorem 2 extends the statement of Theorem 1 to
the general case of D ⊂ Rd compact. We cannot
expect this generalization to work without any as-
sumptions on the kernel k(x,x′). For example, if
k(x,x′) = e−‖x−x

′‖ (Ornstein-Uhlenbeck), while sam-
ple paths f are a.s. continuous, they are still very er-
ratic: f is a.s. nondifferentiable almost everywhere,
and the process comes with independent increments, a
stationary variant of Brownian motion. The additional
assumption on k in Theorem 2 is rather mild and is
satisfied by several common kernels, as discussed in
Section 4.

Recall that the finite case proof is based on Lemma 5.1
paving the way for Lemma 5.2. However, Lemma 5.1
does not hold for infinite D. First, let us observe that
we have confidence on all decisions actually chosen.

Lemma 5.5 Pick δ ∈ (0, 1) and set βt = 2 log(πt/δ),
where

∑
t≥1 π

−1
t = 1, πt > 0. Then,

|f(xt)− µt−1(xt)| ≤ β1/2
t σt−1(xt) ∀t ≥ 1

holds with probability ≥ 1− δ.

Proof Fix t ≥ 1 and x ∈ D. Conditioned on
yt−1 = (y1, . . . , yt−1), {x1, . . . ,xt−1} are determin-
istic, and f(x) ∼ N(µt−1(x), σ2

t−1(x)). As before,

Pr{|f(xt) − µt−1(xt)| > β
1/2
t σt−1(xt)} ≤ e−βt/2.

Since e−βt/2 = δ/πt and using the union bound for
t ∈ N, the statement holds.

Purely for the sake of analysis, we use a set of dis-
cretizations Dt ⊂ D, where Dt will be used at time



t in the analysis. Essentially, we use this to obtain a
valid confidence interval on x∗. The following lemma
provides a confidence bound for these subsets.

Lemma 5.6 Pick δ ∈ (0, 1) and set βt =
2 log(|Dt|πt/δ), where

∑
t≥1 π

−1
t = 1, πt > 0. Then,

|f(x)− µt−1(x)| ≤ β1/2
t σt−1(x) ∀x ∈ Dt, ∀t ≥ 1

holds with probability ≥ 1− δ.

Proof The proof is identical to that in Lemma 5.1,
except now we use Dt at each timestep.

Now by assumption and the union bound, we have that

Pr {∀j, ∀x ∈ D, |∂f/(∂xj)| < L} ≥ 1− dae−L
2/b2 .

which implies that, with probability greater than 1 −
dae−L

2/b2 , we have that

∀x ∈ D, |f(x)− f(x′)| ≤ L‖x− x′‖1 . (9)

This allows us to obtain confidence on x? as follows.

Now let us choose a discretization Dt of size (τt)
d so

that for all x ∈ Dt

‖x − [x]t‖1 ≤ rd/τt

where [x]t denotes the closest point in Dt to x. A suf-
ficient discretization has each coordinate with τt uni-
formly spaced points.

Lemma 5.7 Pick δ ∈ (0, 1) and set βt =
2 log(2πt/δ) + 4d log(dtbr

√
log(2da/δ)), where∑

t≥1 π
−1
t = 1, πt > 0. Let τt = dt2br

√
log(2da/δ)

Let [x∗]t denotes the closest point in Dt to x∗. Hence,
Then,

|f(x∗)− µt−1([x∗]t)| ≤ β1/2
t σt−1([x∗]t) +

1

t2
∀t ≥ 1

holds with probability ≥ 1− δ.

Proof Using (9), we have that with probability
greater than 1− δ/2,

∀x ∈ D, |f(x)− f(x′)| ≤ b
√

log(2da/δ)‖x− x′‖1 .

Hence,

∀x ∈ Dt, |f(x)− f([x]t)| ≤ rdb
√

log(2da/δ)/τt .

Now by choosing τt = dt2br
√

log(2da/δ), we have that

∀x ∈ Dt, |f(x)− f([x]t)| ≤
1

t2

This implies that |Dt| = (dt2br
√

log(2da/δ))d. Using
δ/2 in Lemma 5.6, we can apply the confidence bound
to [x∗]t (as this lives in Dt) to obtain the result.

Now we are able to bound the regret.

Lemma 5.8 Pick δ ∈ (0, 1) and set βt =
2 log(4πt/δ) + 4d log(dtbr

√
log(4da/δ)), where∑

t≥1 π
−1
t = 1, πt > 0. Then, with probability greater

than 1 − δ, for all t ∈ N, the regret is bounded as
follows:

rt ≤ 2β
1/2
t σt−1(xt) +

1

t2
.

Proof We use δ/2 in both Lemma 5.5 and Lemma 5.7,
so that these events hold with probability greater
than 1 − δ. Note that the specification of βt in the
above lemma is greater than the specification used in
Lemma 5.5 (with δ/2), so this choice is valid.

By definition of xt: µt−1(xt) + β
1/2
t σt−1(xt) ≥

µt−1([x∗]t)+β
1/2
t σt−1([x∗]t). Also, by Lemma 5.7, we

have that µt−1([x∗]t)+β
1/2
t σt−1([x∗]t)+1/t2 ≥ f(x∗),

which implies µt−1(xt)+β
1/2
t σt−1(xt) ≥ f(x∗)−1/t2.

Therefore,

rt = f(x∗)− f(xt)

≤ β1/2
t σt−1(xt) + 1/t2 + µt−1(xt)− f(xt)

≤ 2β
1/2
t σt−1(xt) + 1/t2 .

which completes the proof.

Now we are ready to complete the proof of Theorem 2.
As shown in the proof of Lemma 5.4, we have that with
probability greater than 1− δ,∑T

t=1
4βtσ

2
t−1(xt) ≤ C1βT γT ∀T ≥ 1,

so that by Cauchy-Schwarz:∑T

t=1
2β

1/2
t σt−1(xt) ≤

√
C1TβT γT ∀T ≥ 1,

Hence,∑T

t=1
rt ≤

√
C1TβT γT + π2/6 ∀T ≥ 1,

(since
∑

1/t2 = π2/6). Theorem 2 now follows.

Finally, we now discuss the additional assumption on
k in Theorem 2. For samples f of the GP, consider
partial derivatives ∂f/(∂xj) of this sample path for
j = 1, . . . , d. Theorem 5 of Ghosal & Roy (2006)



states that if derivatives up to fourth order exists
for (x,x′) 7→ k(x,x′), then f is almost surely con-
tinuously differentiable, with ∂f/(∂xj) distributed as
Gaussian processes again. Moreover, there are con-
stants a, bj > 0 such that

Pr

{
sup
x∈D
|∂f/(∂xj)| > L

}
≤ ae−bjL

2

. (10)

Picking L = [log(da2/δ)/minj bj ]
1/2, we have that

ae−bjL
2 ≤ δ/(2d) for all j = 1, . . . , d, so that for

K1 = d1/2L, by the mean value theorem, we have
Pr{|f(x)−f(x′)| ≤ K1‖x−x′‖ ∀ x,x′ ∈ D} ≥ 1−δ/2.

Also, note that K1 = O((log δ−1)1/2).

This statement is about the joint distribution of f(·)
and its partial derivatives w.r.t. each component. For
a certain event in this sample space, all ∂f/(∂xj) ex-
ist, are continuous, and the complement of (10) holds
for all j. Theorem 5 of Ghosal & Roy (2006), together
with the union bound, implies that this event has prob-
ability ≥ 1− δ/2. Derivatives up to fourth order exist
for the Gaussian covariance function, and for Matérn
kernels with ν > 2 (Stein, 1999).

B. Regret Bound for Target Function
in RKHS

In this section, we detail a proof of Theorem 3. Recall
that in this setting, we do not know the generator of
the target function f , but only a bound on its RKHS
norm ‖f‖k.

Recall the posterior mean function µT (·) and posterior
covariance function kT (·, ·) from Section 2, conditioned
on data (xt, yt), t = 1, . . . , T . It is easy to see that the
RKHS norm corresponding to kT is given by

‖f‖2kT = ‖f‖2k + σ−2
∑T

t=1
f(xt)

2.

This implies that Hk(D) = HkT (D) for any T , while
the RKHS inner products are different: ‖f‖kT ≥ ‖f‖k.
Since 〈f(·), kT (·,x)〉kT = f(x) for any f ∈ HkT (D) by
the reproducing property, then

|µt(x)− f(x)| ≤ kT (x,x)1/2‖µt − f‖kT
= σT (x)‖µt − f‖kT

(11)

by the Cauchy-Schwarz inequality.

Compared to our other results, Theorem 3 is an agnos-
tic statement, in that the assumptions the Bayesian
UCB algorithm bases its predictions on differ from
how f and data yt are generated. First, f is not
drawn from a GP, but can be an arbitrary function

from Hk(D). Second, while the UCB method assumes
that the noise εt = yt − f(xt) is drawn independently
from N(0, σ2), the true sequence of noise variables εt
can be a uniformly bounded martingale difference se-
quence: εt ≤ σ for all t ∈ N. All we have to do in order
to lift the proof of Theorem 1 to the agnostic setting
is to establish an analogue to Lemma 5.1, by way of
the following concentration result.

Theorem 6 Let δ ∈ (0, 1). Assume the noise vari-
ables εt are uniformly bounded by σ. Define:

βt = 2‖f‖2k + 300γt ln3(t/δ),

Then

Pr
{
∀T, ∀x ∈ D, |µT (x)− f(x)| ≤ β1/2

T+1σT (x)
}
≥ 1−δ.

B.1. Concentration of Martingales

In our analysis, we use the following Bernstein-type
concentration inequality for martingale differences,
due to Freedman (1975) (see also Theorem 3.15 of Mc-
Diarmid 1998).

Theorem 7 (Freedman) Suppose X1, . . . , XT is a
martingale difference sequence, and b is an uniform
upper bound on the steps Xi. Let V denote the sum of
conditional variances,

V =
∑n

i=1
Var (Xi |X1, . . . , Xi−1).

Then, for every a, v > 0,

Pr
{∑

Xi ≥ a and V ≤ v
}
≤ exp

(
−a2

2v + 2ab/3

)
.

B.2. Proof of Theorem 6

We will show that:

Pr
{
∀T, ‖µT − f‖2kT ≤ βT+1

}
≥ 1− δ.

Theorem 6 then follows from (11). Recall that εt =
yt − f(xt). We will analyze the quantity ZT =
‖µT − f‖2kT , measuring the error of µT as approxi-
mation to f under the RKHS norm of HkT (D). The
following lemma provides the connection with the in-
formation gain. This lemma is important since our
concentration argument is an inductive argument —
roughly speaking, we condition on getting concentra-
tion in the past, in order to achieve good concentration
in the future.

Lemma 7.1 We have that∑T

t=1
min{σ−2σ2

t−1(xt), α} ≤
2α

log(1 + α)
γT , α > 0.



Proof We have that min{r, α} ≤ (α/ log(1 +
α)) log(1+r). The statement follows from Lemma 5.3.

The next lemma bounds the growth of ZT . It is for-
mulated in terms of normalized quantities: ε̃t = εt/σ,

f̃ = f/σ, µ̃t = µt/σ, σ̃t = σt/σ. Also, to ease nota-
tion, we will use µt−1, σt−1 as shorthand for µt−1(xt),
σt−1(xt).

Lemma 7.2 For all T ∈ N,

ZT ≤ ‖f‖2k + 2
∑T

t=1
ε̃t
µ̃t−1 − f̃(xt)

1 + σ̃2
t−1

+
∑T

t=1
ε̃2t

σ̃2
t−1

1 + σ̃2
t−1

.

Proof If αt = (Kt + σ2I)−1yt, then µt(x) =
αTt kt(x). Then, 〈µT , f〉k = fTTαT , ‖µT ‖2k =
yTTαT − σ2‖αT ‖2. Moreover, for t ≤ T , µT (xt) =

δTt KT (KT + σ2I)−1yT = yt − σ2αt. Since ZT =
‖µT −f‖k+σ−2

∑
t≤T (µT (xt)−f(xt))

2, we have that

ZT = ‖f‖2k − 2fTTαT + yTTαT − σ2‖αT ‖2

+ σ−2
∑T

t=1
(εt − σ2αt)

2 = ‖f‖2k
− yTT (KT + σ2I)−1yT + σ−2‖εT ‖2.

Now, −yTT (KT +σ2I)−1yT
.
= 2 logP (yT ), where “

.
=”

means that we drop determinant terms, thus con-
centrate on quadratic functions. Since logP (yT ) =∑
t logP (yt|y<t) =

∑
t logN(yt|µt−1(xt), σ

2
t−1(xt) +

σ2), we have that

− yTT (KT + σ2I)−1yT = −
∑

t

(yt − µt−1)2

σ2 + σ2
t−1

= 2
∑

t
εt
µt−1 − f(xt)

σ2 + σ2
t−1

−
∑

t

ε2t σ̃
2
t−1

σ2 + σ2
t−1
−R

with R =
∑
t(µt−1 − f(xt))

2/(σ2 + σ2
t−1) ≥ 0.

Dropping −R and changing to normalized quantities
concludes the proof.

We now define a useful martingale difference sequence.
First, it is convenient to define an “escape event” ET
as:

ET = I{Zt ≤ βt+1 for all t ≤ T}
where I{·} is the indicator function. Define the random
variables Mt by

Mt = 2ε̃tEt−1
µ̃t−1 − f̃(xt)

1 + σ̃2
t−1

.

Now, since ε̃t is a martingale difference sequence with
respect to the histories H<t and Mt/ε̃t is determinis-
tic given H<t, Mt is a martingale difference sequence
as well. Next, we show that with high probability,
the associated martingale

∑T
t=1Mt does not grow too

large.

Lemma 7.3 Given δ ∈ (0, 1) and βt as defined in in
Theorem 6, we have that

Pr

{
∀T,

T∑
t=1

Mt ≤ βT+1/2

}
≥ 1− δ,

The proof is given below in Section B.3. Equipped
with this lemma, we can prove Theorem 6.

Proof [of Theorem 6] It suffices to show that the high-
probability event described in Lemma 7.3 is contained
in the support of ET for every T . We prove the latter
by induction on T .

By Lemma 7.2 and the definition of β1, we know that
Z0 ≤ ‖f‖k ≤ β1. Hence E0 = 1 always. Now suppose
the high-probability event of Lemma 7.3 holds, in par-
ticular

∑T
t=1Mt ≤ βT+1/2. For the inductive hypoth-

esis, assume ET−1 = 1. Using this and Lemma 7.2:

ZT ≤ ‖f‖2k + 2

T∑
t=1

ε̃t(µ̃t−1 − f̃(xt))

1 + σ̃2
t−1

+

T∑
t=1

ε̃2t σ̃
2
t−1

1 + σ̃2
t−1

= ‖f‖2k +

T∑
t=1

Mt +

T∑
t=1

ε̃2t
σ̃2
t−1

1 + σ̃2
t−1

≤ ‖f‖2k + βT+1/2 +

T∑
t=1

min{σ̃2
t−1, 1}

≤ ‖f‖2k + βT+1/2 + (2/ log 2)γT ≤ βT+1.

The equality in the second step uses the inductive
hypothesis. Thus we have shown ET = 1, completing
the induction.

B.3. Concentration

What remains to be shown is Lemma 7.3. While the
step sizes |Mt| are uniformly bounded, a standard ap-
plication of the Hoeffding-Azuma inequality leads to
a bound of T 3/4, too large for our purpose. We use
the more specific Theorem 7 instead, which requires
to control the conditional variances rather than the
marginal variances which can be much larger.

Proof [of Lemma 7.3] Let us first obtain upper bounds



on the step sizes of our martingale.

|Mt| = 2|ε̃t|Et−1
|µ̃t−1 − f̃(xt)|

1 + σ̃2
t−1

≤ 2|ε̃t|Et−1
β
1/2
t σ̃t−1

1 + σ̃2
t−1

≤ 2|ε̃t|Et−1β1/2
t min{σ̃t−1, 1/2}, (12)

where the first inequality follows from the definition
of Et. Moreover, r/(1 + r2) ≤ min{r, 1/2} for r ≥ 0.

Therefore, |Mt| ≤ β1/2
T , since |ε̃t| ≤ 1 and βt in nonde-

creasing. Next, we bound the sum of the conditional
variances of the martingale:

VT :=
∑T

t=1
Var (Mt |M1 . . .Mt−1)

≤
∑T

t=1
4|ε̃t|2Et−1βt min{σ̃2

t−1, 1/4}

≤ 4βT
∑T

t=1
Et−1 min{σ̃2

t−1, 1/4} |ε̃t| ≤ 1

≤ 9βT γT .

In the last line, we used Lemma 7.1 with α = 1/4, not-
ing that 8α/ log(1 +α) ≤ 9. Since we have established
that the sum of conditional variances, VT , is always
bounded by 9βT γT , we can apply Theorem 7 with pa-

rameters a = βT+1/2, b = β
1/2
T+1 and v = 9βT γT to

get

Pr

{∑T

t=1
Mt ≥ βT+1/2

}
= Pr

{∑T

t=1
Mt ≥ βT+1/2 and VT ≤ 9βT γT

}
≤ exp

(
−(βT+1/2)2

2(9βT γT ) + 2
3 (βT+1/2)β

1/2
T+1

)

= exp

(
−βT+1

72γT + 4
3β

1/2
T+1

)

≤ max

{
exp

(
−βT+1

144γT

)
, exp

(
−3β

1/2
T+1

8

)}
.

Note that our choice of βT+1 satisfies:

max
{

144γT log(T 2/δ),
(
(8/3) log(T 2/δ)

)2} ≤ βT+1.

Therefore, the previous probability is bounded by
δ/T 2, whereas the last inequality follows from the def-
inition of βT+1. With a final application of the union

bound:

Pr

{∑T

t=1
Mt ≥ βT+1/2 for some T

}
≤
∑

T≥1
Pr

{∑T

t=1
Mt ≥ βT+1/2

}
≤
∑

T≥2
δ/T 2 ≤ δ(π2/6− 1) ≤ δ,

completing the proof of Lemma 7.3.

C. Bounds on Information Gain

In this section, we show how to bound γT , the max-
imum information gain after T rounds, for compact
D ⊂ Rd (assumptions of Theorem 2) and several com-
monly used covariance functions. In this section, we
assume4 that k(x,x) = 1 for all x ∈ D.

The plan of attack is as follows. First, we note that the
argument of γT , I(yA;fA) is a submodular function,
so γT can be bounded by the value obtained by greedy
maximization. Next, we use a discretization DT ⊂ D
with nT = |DT | = T τ with nearest neighbour distance
o(1), consider the kernel matrix KDT

∈ RnT×nT , and
bound γT by an expression involving the eigenvalues
{λ̂t} of this matrix, which is done by a further re-
laxation of the greedy procedure. Finally, we bound
this empirical expression in terms of the kernel opera-
tor eigenvalues of k w.r.t. the uniform distribution on
D. Asymptotic expressions for the latter are reviewed
in Seeger et al. (2008), which we plug in to obtain
our results. A key step in this argument is to ensure
the existence of a discretization DT , for which tails
of the empirical spectrum can be bounded by tails of
the process spectrum. We will invoke the probabilistic
method for that.

C.1. Greedy Maximization and Discretization

In this section, we fix T ∈ N and assume the existence
of a discretization DT ⊂ D, nT = |DT | on the order
of T τ , such that:

∀x ∈ D ∃[x]T ∈ DT : ‖x− [x]T ‖ = O(T−τ/d). (13)

We come back to the choice of DT below. We restrict
the information gain to subsets A ⊂ DT :

γ̃T = max
A⊂DT ,|A|=T

I(yA;fA).

Of course, γ̃T ≤ γT , but we can bound the slack.

4 Without loss in generality. We use this assumption
below to ensure that n−1

T trKDT =
∫
k(x,x) dx. If k(x,x)

is not constant, this is approximately true by the law of
large numbers, and our result below remains valid.



Lemma 7.4 Under the assumptions of Theorem 2,
the information gain FT ({xt}) = (1/2) log |I +
σ−2K{xt}| is uniformly Lipschitz-continuous in each
component xt ∈ D.

Proof The assumptions of Theorem 2 imply that
the kernel K(x,x′) is continuously differentiable.
The result follows from the fact that FT ({xt}) is
continuously differentiable in the kernel matrixK{xt}.

Lemma 7.5 Let DT be a discretization of D such that
(13) holds. Under the assumptions of Theorem 2, we
have that

0 ≤ γT − γ̃T = O(T 1−τ/d).

Proof Fix T ∈ N, and let A = {x1, . . . ,xT } be a
maximizer for γT . Consider neighbours [xt]T ∈ DT

according to (13), [A]T = {[xt]T }. Then,

0 ≤ γT−γ̃T ≤ γT−I(y[A]T ;f [A]T ) = FT (A)−FT ([A]T ),

where FT ({xt}) = (1/2) log |I + σ−2K{xt}|. By
Lemma 7.4, FT is uniformly Lipschitz-continuous
in each component, so that |γT − I(y[A]T ;f [A]T )| =

O(T maxt ‖xt − [xt]T ‖) = O(T 1−τ/d) by (13) and the
mean value theorem.

We concentrate on γ̃T in the sequel. Let KDT
=

[k(x,x′)]x,x′∈DT
be the kernel matrix over the en-

tire DT , and KDT
= U Λ̂UT its eigendecomposi-

tion, with λ̂1 ≥ λ̂2 ≥ · · · ≥ 0 and U = [u1 u2 . . . ]

orthonormal. Here, if T > nT , define λ̂t = 0 for
t = nT + 1, . . . , T . Information gain maximization
over a finite DT can be described in terms of a sim-
ple linear-Gaussian model over the unknown f ∈ RnT ,
with prior P (f ) = N(0,KDT

) and likelihood poten-
tials P (yt|f ) = N(vTt f , σ

2) with unit-norm features,
‖vt‖ = 1. With the following lemma, we upper-bound
γ̃T by way of two relaxations.

Lemma 7.6 For any T ≥ 1, we have that

γ̃T ≤
1/2

1− e−1
max

m1,...,mT

∑T

t=1
log(1 + σ−2mtλ̂t),

subject to mt ∈ N,
∑
tmT = T , where λ̂1 ≥ λ̂2 ≥ . . .

is the spectrum of the kernel matrix KDT
. Here, if

T > nT , then mt = 0 for t > nT .

Proof As shown by Krause & Guestrin (2005),
the function F (A) = I(yA;f ) is submodular. In

the particular case considered here, this can be seen
as follows: F (A) = H(yA) − H(yA | f ), where
the entropy H(yA) is a (not-necessarily monotonic)
submodular function in A, and since the noise is
conditionally independent given f , H(yA | f ) is
an additive (modular) function in A. Subtracting
a modular function preserves submodularity, thus
F (A) is submodular. Furthermore, the information
gain is monotonic in A (i.e., F (A) ≤ F (B) whenever
A ⊆ B) (Cover & Thomas, 1991). Thus, we can
apply the result of Nemhauser et al. (1978)5 which
guarantees that γ̃T is upper-bounded by 1/(1 − 1/e)
times the value the greedy maximization algorithm
attains. The latter chooses features of the form
vt = δxt = [I{x=xt}] in each round, xt ∈ DT . We
upper-bound the greedy maximum once more by
relaxing these constraints to ‖vt‖ = 1 only. In the
remainder of the proof, we concentrate on this relaxed
greedy procedure. Suppose that up to round t, it chose
v1, . . . ,vt−1. The posterior P (f |yt−1) has inverse

covariance matrix Σ−1t−1 = K−1DT
+ σ−2V t−1V

T
t−1,

V t−1 = [v1 . . . vt−1], and the greedy procedure
selects v so to maximize the variance vTΣt−1v : the
eigenvector corresponding to Σt−1’s largest eigenvalue
(by the Rayleigh-Ritz theorem). Since Σ0 = KDT

,
then v1 = u1. Moreover, if all vt′ , t

′ < t, have
been chosen among U ’s columns, then by the inverse
covariance expression just given, KDT

and Σt−1 have
the same eigenvectors, so that vt is a column of U as
well. For example, if vt = uj , then comparing Σt−1
and Σt, all eigenvalues other than the j-th remain
the same, while the latter is shrunk. Therefore,
after T rounds of the relaxed greedy procedure:
vt ∈ {u1, . . . ,umin{T,nT }}, t = 1, . . . , T : at most the
leading T eigenvectors of KDT

can have been selected
(possibly multiple times). If mt denotes the number
that the t-th column of U has been selected, we ob-
tain the theorem statement by a final bounding step.

C.2. From Empirical to Process Eigenvalues

The final step will be to relate the empirical spec-
trum {λ̂t} to the kernel operator spectrum. Since

log(1 + σ−2mtλ̂t) ≤ σ−2mtλ̂t in Theorem 7.6, we will
mainly be interested in relating the tail sums of the
spectra. Let µ(x) = V(D)−1I{x∈D} be the uniform
distribution on D, V(D) =

∫
x∈D dx, and assume that

k is continuous. Note that
∫
k(x,x)µ(x) dx = 1 by

our assumption k(x,x) = 1, so that k is Hilbert-

5While the result of Nemhauser et al. (1978) is stated
in terms of finite sets, it extends to infinite sets as long as
the greedy selection can be implemented efficiently.



Schmidt on L2(µ). Then, Mercer’s theorem (Wahba,
1990) states that the corresponding kernel operator
has a discrete eigenspectrum {(λs, φs(·))}, and

k(x,x′) =
∑

s≥1
λsφs(x)φs(x

′),

where λ1 ≥ λ2 ≥ · · · ≥ 0, and Eµ[φs(x)φt(x)] =
δs,t. Moreover,

∑
s≥1 λ

2
s < ∞, and the expan-

sion of k converges absolutely and uniformly on D ×
D. Note that

∑
s≥1 λs =

∑
s≥1 λs Eµ[φs(x)2] =∫

K(x,x)µ(x) dx = 1. In order to proceed from The-
orem 7.6, we have to pick a discretization DT for which
(13) holds, and for which

∑
t>T∗

λ̂t is not much larger
than

∑
t>T∗

λt. With the following lemma, we deter-
mine sizes nT for which such discretizations exist.

Lemma 7.7 Fix T ∈ N, δ > 0 and ε > 0. There
exists a discretization DT ⊂ D of size

nT = V(D)(ε/
√
d)−d[log(1/δ)+d log(

√
d/ε)+logV(D)]

which fulfils the following requirements:

• ε-denseness: For any x ∈ D, there exists [x]T ∈
DT such that ‖x − [x]T ‖ ≤ ε.

• If spec(KDT
) = {λ̂1 ≥ λ̂2 ≥ . . . }, then for any

T∗ = 1, . . . , nT :

n−1T
∑T∗

t=1
λ̂t ≥

∑T∗

t=1
λt − δ.

Proof First, if we draw nT samples x̃j ∼ µ(x) in-
dependently at random, then DT = {x̃j} is ε-dense
with probability ≥ 1 − δ. Namely, cover D with
N = V(D)(ε/

√
d)−d hypercubes of sidelength ε/

√
d,

within which the maximum Euclidean distance is ε.
The probability of not hitting at least one cell is upper-
bounded by N(1 − 1/N)nT . Since log(1 − 1/N) ≤
−1/N , this is upper-bounded by δ if nT ≥ N log(N/δ).

Now, let S = n−1T
∑T∗
t=1 λ̂t. Shawe-Taylor et al.

(2005) show that E[S] ≥
∑T∗
t=1 λt. If C is the

event {DT is ε−dense }, then Pr(C) ≥ 1 − δ. Since
S ≤ n−1T trKDT

= 1 in any case, we have that

E[S|C] ≥ E[S] − Pr(Cc) ≥
∑T∗
t=1 λt − δ. By the

probabilistic method, there must exist some DT for
which C and the latter inequality holds.

The following lemma, the equivalent of Theorem 4 in
the context here, is a direct consequence of Lemma 7.6.

Lemma 7.8 Let DT be some discretization of D,

nT = |DT |. Then, for any T∗ = 1, . . . ,min{T, nT }:

γ̃T ≤
1/2

1− e−1
max

r=1,...,T

(
T∗ log(rnT /σ

2)

+ (T − r)σ−2
∑nT

t=T∗+1
λ̂t

)
.

Proof We split the right hand side in Lemma 7.6
at t = T∗. Let r =

∑
t≤T∗ mt. For t ≤ T∗:

log(1 + mtλ̂t/σ
2) ≤ log(rnT /σ

2), since λ̂t ≤ nT . For

t > T∗: log(1+mtλ̂t/σ
2) ≤ mtλ̂t/σ

2 ≤ (T−r)λ̂t/σ2.

The following theorem describes our “recipe” for ob-
taining bounds on γT for a particular kernel k, given
that tail bounds on Bk(T∗) =

∑
s>T∗

λs are known.

Theorem 8 Suppose that D ⊂ Rd is compact, and
k(x,x′) is a covariance function for which the ad-
ditional assumption of Theorem 2 holds. Moreover,
let Bk(T∗) =

∑
s>T∗

λs, where {λs} is the operator
spectrum of k with respect to the uniform distribution
over D. Pick τ > 0, and let nT = C4T

τ (log T ) with
C4 = 2V(D)(2τ + 1). Then, the following bound holds
true:

γT ≤
1/2

1− e−1
max

r=1,...,T

(
T∗ log(rnT /σ

2)

+ C4σ
−2(1− r/T )(log T )

(
T τ+1Bk(T∗) + 1

))
+O(T 1−τ/d)

for any T∗ ∈ {1, . . . , nT }.

Proof Let ε = d1/2T−τ/d and δ = T−(τ+1).
Lemma 7.7 provides the existence of a dis-
cretization DT of size nT which is ε-dense,
and for which n−1T

∑T∗
t=1 λ̂t ≥

∑T∗
t=1 λt − δ.

Since n−1T
∑nT

t=1 λ̂t = 1 =
∑
t≥1 λt, then∑

t>T∗
λ̂t ≤ Bk(T∗) + δ. The statement follows

by using Lemma 7.8 with these bounds, and finally
employing Lemma 7.5.

C.3. Proof of Theorem 5

In this section, we instantiate Theorem 8 in order to
obtain bounds on γT for Squared Exponential and
Matérn kernels, results which are summarized in The-
orem 5.

Squared Exponential Kernel

For the Squared Exponential kernel k, Bk(T∗) is given
by Seeger et al. (2008). While µ(x) was Gaussian



there, the same decay rate holds for λs w.r.t. uniform
µ(x), while constants might change. In hindsight, it
turns out that τ = d is the optimal choice for the
discretization size, rendering the second term in The-
orem 5 to be O(1), which is subdominant and will be

neglected in the sequel. We have that λs ≤ cBs
1/d

with B < 1. Following their analysis,

Bk(T∗) ≤ c(d!)α−de−β
∑d−1

j=0
(j!)−1βj ,

where α = − logB, β = αT
1/d
∗ . Therefore, Bk(T∗) =

O(e−β βd−1), β = αT
1/d
∗ .

We have to pick T∗ such that e−β is not much larger
than (TnT )−1. Suppose that T∗ = [log(TnT )/α]d, so
that e−β = (TnT )−1, β = log(TnT ). The bound be-
comes

max
r=1,...,T

(
T∗ log(rnT /σ

2)

+ σ−2(1− r/T )(C5β
d−1 + C4(log T ))

)
with nT = C4T

d(log T ). The first part dominates,
so that r = T and γT = O([log(T d+1(log T ))]d+1) =
O((log T )d+1). This should be compared with
E[I(yT ;fT )] = O((log T )d+1) given by Seeger et al.
(2008), where the xt are drawn independently from
a Gaussian base distribution. At least restricted to
a compact set D, we obtain the same expression to
leading order for max{xt} I(yT ;fT ).

Matérn Kernels

For Matérn kernels k with roughness parameter ν,
Bk(T∗) is given by Seeger et al. (2008) for the uni-
form base distribution µ(x) on D. Namely, λs ≤
cs−(2ν+d)/d for almost all s ∈ N, and Bk(T∗) =

O(T
1−(2ν+d)/d
∗ ). To match terms in the γ̃T bound,

we choose T∗ = (TnT )d/(2ν+d)(log(TnT ))κ (κ chosen
below), so that the bound becomes

max
r=1,...,T

(
T∗ log(rnT /σ

2) + σ−2(1− r/T )

× (C5T∗(log(TnT ))−κ(2ν+d)/d + C4(log T ))
)

+O(T 1−τ/d)

with nT = C4T
τ (log T ). For κ = −d/(2ν + d), we ob-

tain that the maximum over r is O(T∗ log(TnT )) =
O(T (τ+1)d/(2ν+d)(log T )). Finally, we choose τ =
2νd/(2ν+d(d+1)) to match this term withO(T 1−τ/d).
Plugging this in, we have γT = O(T 1−2η(log T )),
η = ν

2ν+d(d+1) . Together with Theorem 2 (for ν > 2),

we have that RT = O∗(T 1−η) (suppressing log fac-
tors): for any ν > 2 and any dimension d, the GP-

UCB algorithm is guaranteed to be no-regret in this
case with arbitrarily high probability.

How does this bound compare to the bound on
E[I(yT ;fT )] given by Seeger et al. (2008)? Here, γT =
O(T d(d+1)/(2ν+d(d+1))(log T )), while E[I(yT ;fT )] =
O(T d/(2ν+d)(log T )2ν/(2ν+d)).

Linear Kernel

For linear kernels k(x,x′) = xTx′, x ∈ Rd with ‖x‖ ≤
1, we can bound γT directly. LetXT = [x1 . . . , xT ] ∈
Rd×T with all ‖xt‖ ≤ 1. Now,

log |I + σ−2XT
TXT | = log |I + σ−2XTX

T
T |

≤ log |I + σ−2D|

with D = diag diag−1(XTX
T
T ), by Hadamard’s in-

equality. The largest eigenvalue λ̂1 of XTX
T
T is O(T ),

so that

log |I + σ−2XT
TXT | ≤ d log(1 + σ−2λ̂1),

and γT = O(d log T ).


