JOURNAL OF COMPUTATIONAL BIOLOGY
Volume 6, Number 1, 1999

Mary Ann Liebert, Inc.

Pp. 65-75

On the Reduction of Errors in DNA Computation

SAM ROWEIS and ERIK WINFREE

ABSTRACT

In this paper, we discuss techniques for reducing errors in DNA computation. We investigate
several methods for achieving acceptable overall error rates for a computation using basic
operations that are error prone. We analyze a single essential biotechnology, sequence-specific
separation, and show that separation errors theoretically can be reduced to tolerable levels
by invoking a tradeoff between time, space, and error rates at the level of algorithm design.
These tradeoffs do not depend upon improvement of the underlying biotechnology which
implements the separation step. We outline several specific ways in which error reduction can
be done and present numerical calculations of their performance.

Key words: DNA computations, error reduction, errors, molecular computation

1. REDUCING SEPARATION ERROR RATES

IN THIS PAPER, we address the issue of how to perform reliable computation using an unreliable separation
operator. The separation operation is a fundamental operation in proposals for DNA based computation. It
was originally used as a part of the algorithm for solving the Hamiltonian Path Problem in Adleman (1994);
in Lipton (1995), separation was used almost exclusively for solving the Formula Satisfiability problem;
in Boneh et al. (1996), the algorithm for solving the Circuit Satisfiability problem relies heavily upon. the
separation operation; and the sticker model of Roweis et al. (1998b) shows that separation alone could suffice
for making a general purpose molecular computer. Unfortunately, laboratory experience has shown separation
to be somewhat unreliable, which has led several researchers to investigate models of computation that do not
use the separation operation (Amos et al., 1998; Liv et al., 1998). However, the algorithmic flexibility which
the separation operation permits motivates us to investigate ways of making the separation operation more
reliable. One approach would be to directly improve the biotechnology. Another approach would be to use
redundancy—more DNA—provided by PCR amplification (Boneh and Lipton, 1998). The approach taken in
this paper, on the other hand, is to increase the reliability of computation by algorithmic means.

Some of the methods we suggest were proposed independently and analyzed in mathematical detail by Karp
et al. (1996). Their algorithm for error-resilient bit evaluation is-essentially (though not exactly) equivalent
to our compound separator. Their work emphasizes the mathematical analysis of the error probabilities,
they consider unequal atomic false-positive and false-negative probabilities, and they are able to prove some
remarkable upper and lower bounds. Our work, on the other hand, emphasizes and numerically illustrates
the application of these ideas at the “practical” level. We also introduce the pipelined, fully parallel refinery
model. This model shows that the time and space parallelism required to obtain acceptable error rates may be
used simultaneously for performing additional computation.

Computation and Neural Systems Option, California Institute of Technology, Pasadena, California.
Present address: Department of Molecular Biology, Princeton University, Princeton, NJ.

65

66 . - ROWEIS AND WINFREE

This paper consists of five parts. First, we introduce a framework for discussing errors in separation-
based molecular computation. Second, we analyze previous suggestions to reduce errors by repetition, and
show these methods to be insufficient. Third, we introduce the compound separator and show that reliable
computation can be achieved at the expense of a time and space tradeoff. Fourth, with the refinery model we
introduce the principle of pipelining, whereby a large volume of memory complexes can be processed by
small capacity operators with minimal slowdown. These advantages come at the cost of a time-space tradeoff
which we find reasonable. Finally, we discuss how these improvements can be integrated with general-purpose
models of computation, such as the sticker model (Roweis et al., 1998b).

2. AN ERROR FRAMEWORK

Our model of a molecular computer is a machine that takes as input a tube encoding a large number of
potential solutions to some problem and produces as output two tubes, one of which is intended to contain
valid solutions. Potential solutions (bitstrings). may be encoded into physical molecules (often DNA) in a
variety of ways. Whichever encoding is employed, we will use the term complex to refer to the molecule(s)
which represent an individual bitstring; (for an example, see Rowelis et al., 1998b). The separation operation
takes as input a tube containing many complexes and produces as output two tubes. It attempts to place in
one tube all input complexes with a particular bit on, and in the other tube those with that bit off’

There are three fundamental types of errors that might be made by any molecular computer which attempts,
by use of the separation, to sort a huge library of initial candidate solution complexes into those which encode a
solution to a problem and those which do not. It may give some false positives, namely some of the complexes
that it classifies as solving the problem actually may not. It may also have false negatives which occur when
complexes that are classified as not solving the problem actually do solve it. Finally, the machine may incur
some strand losses—some of the complexes which were present in the input may not appear in the output
at all: they may simply get lost somewhere inside the machine. What are the error requirements to do useful
computation? It is clear that we want low false positive and false negative rates and few strand losses, but how
low do they need to be?

Let us label the two output tubes produced by the molecular computer as the Yes tube and the No tube. In the
Yes tube are all those complexes which the machine has decided encode solutions to the problem, in the No tube
are all those complexes which it has decided do not encode solutions. Call a good complex one which actually
does encode a solution and a bad complex one which actually does not. Because the machine is not perfect, there
may be some good complexes in the No output, some bad complexes in the Yes output, as well as some losses.

Now we are in a position to state our requirements for error rates. We want two things to be true with high
probability (say 1 — ¢) each time we run the molecular computer: there is at least one good complex in the
Yes tube and the ratio of good to bad complexes in the Yes tube is reasonable (say > 1). Informally, when we
get the answer tube, we will fish around in it, pull out a random complex (if there are any), and read the solution
that it encodes. We will be disappointed if either (@) we do not find any complexes in the answer tube or (b)
the complex we read does not actually encode a solution. Our goal is to be disappointed with low probability.

We would like to be able to answer the question: “How good do individual operations have to be for
disappointment to be rare?” Unfortunately, it is very complicated to express the above requirements in terms
of conditions on the fidelity of the individual operations such as separate. In fact, even for reasonably simple
error models, the answers are extremely dependent on the particular architecture of the molecular computer
and on the problem being solved.! Instead we will work with a model which allows us to characterize the
expected fraction of complexes not yet correctly processed at some time T after we begin the computation. We

IFor example, one could imagine a simple model of errors which is characterized by only three numbers (each between

0 and 1): a false positive rate Ry, a false negative rate Rr, and a loss rate Rjoss. Any given complex is “lost” with

probability Rjoss- If not lost, good complexes go to the Yes tube with probability (1 — R ;) and bad complexes go to the

No tube with probability (1 — R r,) regardless of the specific bit string they encode. Under such a model, if our input tube

contains G good complexes and B bad complexes (typically G << B) then we require a false negative rate R fn Which is

- less than some function f1(G, B, €), a false positive rate R fp which is less than f>(G, B, €), and a loss rate Rj,ss Which

is less than f3(G, B, €), where ¢ is the fraction of runs of the experiment that will result in disappointment. However, it

turns out that even when f1, f2, and f3 have been determined, the conversion from these three numbers to a requirement

on the fidelity of individual operations is highly problem dependent; compare for example the simple OR of all bits in a
bit string with the simple AND.

REDUCTION OF ERRORS IN DNA COMPUTATION 67

vym call this fraction &. This quantity can be easily understood as follows: we turn on our molecular computer

at time 0 and feed it its input. It works away, placing some complexes in the Yes tube and some in the No
tube. At time 7 we stop the machine and collect the Yes and No tubes. At this point, original input complexes
fall into three categories: (1) those which have been correctly placed? into either Yes or No, (2) those which
have been incorrectly placed into Yes or No, and (3) those which were either lost or were still being processed
by the machine when we turned it off. The expected fraction of complexes not yet correctly processed (§)
is the expected fraction of the original input complexes which fall into either categories (2) or (3) at time T.
We would like § to be very near zero. Below we develop a model which allows us to compute § for various
error-correction strategies and also various time and space tradeoff factors in terms of only the fidelity of the
atomic operations which are used by the machine, independent of the problem being solved.

3. ERROR RATES AND TIME-SPACE TRADEOFFS

For error analysis, we will consider a very simple mathematical model of a molecular computation as a
series of exactly S separation operations. This model assumes that the algorithm used to process complexes
has the effect of passing each one throtigh at most S separations (an assumption which is true for all algorithms
that terminate within a known time).3 It further assumes that complexes do not interact with one another, nor
‘do different bit positions on a single strand. In developing the results that follow, we do not consider strand
losses; techniques for dealing with strand loss by PCR amplification are discussed in Boneh and Lipton (1998).

To see that the model assumption is not as restrictive as it may seem, consider algorithms that are of the
form of feed-forward layered circuits with S layers (with separation operations at each layer and combine
operations between layers). Each layer receives some number of input tubes from the previous layer and
produces some (possibly different) number of output tubes which it passes to the next layer. No tube may go
through more than one separation per layer. In this way, for any individual complex such algorithms look like
a series of S identical separation operations, although different complexes may take different paths through
the circuit. The first layer receives as its input the single tube which was the input to the entire problem. The
final layer (S) produces as its output the final output tubes for the problem. Any (terminating) algorithm for
doing a separation-based computation can be converted into a feed-forward circuit of this kind. Thus the error
probabilities for the algorithm can be modeled simply by the series of separations.

Assume that (regardless of which bit is being used to separate and of the values of any other bits) each
separation operation takes one unit of time to complete, and each complex has a probability p of being correctly
processed (independent of the other complexes, because we have assumed they do not interact).* Notice that
we expect p to be near unity. In every separation, we assume that each complex ends up in one or the other of
the output tubes; no strands are physically lost. Now any computation will take S units of time and when it is
done, the expected fraction of complexes not yet correctly processed will be a depressingly high § = (1 — p5).
Forexample, if p=0.9 and S = 100, then § = 0.99997. Our main point is that without changing p (i.e., without
improving the basic biotechnology used to implement operations) and without reducing S (i.e., without moving
to easier problems) the fraction § can be made much smaller using intelligent space and time tradeoffs.

Imagine that we have in hand enough hardware (i.e., units that perform separations and test tubes) to
perform a given computation. A space increase of factor H involves obtaining H — 1 extra identical copies
of that hardware, which may be used in parallel. A time slowdown of factor M involves taking M - S units of
time instead of merely S to perform the computation. How can these factors be used to reduce errors? Given
any algorithm A for performing a computation and factors H and M we would like to investigate algorithm
transformations which give us a new algorithm A’ (that runs in no more than M - § time and requires no more
than H copies of the hardware) having a smaller § than the original A.

2Note that good complexes can be incorrectly processed at some step(s), yet still end up in the “Yes” tube; similarly
bad complexes can end up in “No” after incorrect processing. We still count these cases as incorrect.

3We will not consider “answer readout” and “strand detection” during the course of the computation, so the machine
that controls the processing cannot get any feedback and cannot do any “if then else” type branching.

“In practice, operations like separation have a much higher probability of correctly processing some inputs than others.
-For example if hybridization is used, it is much harder for probes to erroneously capture complexes than it is for them to let
through complexes which they should capture. All of the mathematics that follows can easily be done for the asymmetric
probability case although it is somewhat more complicated (for example, see Adleman, 1996; Karp et al., 1996).

68 ROWEIS AND WINFREE
4. REPEATING THE COMPUTATION

* A basic transformation, called repeating, was proposed by Adleman (1996). It makes use of a slowdown
factor of M by proposing A’ as follows:
® Repeat M times:
Run A on input /, producing tubes Y and N.
Discard tube N and rename tube Y to tube l.
® Return tube I as the ‘‘Yes’’ tube and an empty tube as ‘‘No.”’
This approach is of value when the original algorithm A was known to very reliably place good complexes
into its Yes output (i.., low false negatives) but to often also place bad complexes into Yes (i.e., high false
positives). Note that if the original algorithm was known instead to have high false negatives and low false
positives then the following version of repeating can be used:
® Make an empty tube Z.
® Repeat M times:
Run A on input 7, producing tubes Y and N.
Combine tube Y into tube Z, destroying Y.
Rename tube N to tube /.

® Return tube Z as the ‘‘Yes’’ tube and tube] as ‘‘No.’’

By how much does repeating reduce §? The performance of either repeating transformatxon is bounded by
the performance of an imaginary transformation called repeating with an oracle which makes use of a new -
oracle operation. The oracle takes as input two tubes ¥ and N-and produces as output three tubes: ¥/, N/, and
X.In Y’ are all the good complexes that were in the input tube Y, in'N’ are all the bad complexes that were
in the input tube N, and in X are all the bad complexes from Y along with all the good complexes from N.
In other words, the oracle “fixes-up” Y and N by putting any incorrectly processed complexes into X. Using
this magical operation, repeating with an oracle transforms A into the followmg A
® Make an empty tube Z.
® Repeat M times:

Run A on input /, producing tubes Y and N.
Run the oracle on Y and N, producing Y’, N’, and X.
Discard tube N’and combine tube Y’ into tube Z, destroying Y’
Rename tube X to tube /.
® Return tube Z as the ‘‘Yes’’ tube and tube [as ‘‘No.’’

This transformation improves 8 from 1 — p5 to (1 — p%)™. The vanilla repeating transformations can
approach but never exceed this improvement. The reason that plain repeating works well at all is that for
very disparate false positive and negative rates, one can approximate the action of the oracle easily. While
these transformations do yield some reduction in § they require enormous slowdowns to improve even modest
sized problems. For larger problems, the slowdowns these transformations require are enormous. Figure 1
shows the slowdown factors required to achieve various performance levels for the case in which p = 0.9 and
§=100 or § =1,000.

Slowdown vs. Performance (Atomic = 90%, 100 layers) , Slowdown vs. Performance (Atomic = 90%, 1000 layers)

S
N

— ~

£ R
Q- - ’ = ? ¢ = 2 g
S0 B : ; i ; 5
9 9

5102 a1

8o 8

g1o g1

&~ oy

%,10 >l

= =

] Q

gm B,

O h S

s 3!

T L

310 El

= =]

Z 107 <z

§ ol
- &

Q <10

2 F E

g

10 = 10

SlszFth tired (in 't7f10’\58' -2 4 6, . & .10 12
owdown Factor Required (in units o H Slowdown Factor Required (in units of 1046 !!)

FIG. 1. Performance versus slowdown for repetition with an oracle.

REDUCTION OF ERRORS IN DNA COMPUTATION 69
5. ANEW OPERATION: COMPOUND SEPARATION

It is possible to make much better use of space and time tradeoffs than the above transformations do. Shortly,
we will develop new transformations which do this, but first we must introduce a new operation which we
call the compound separation.

The central observation is that the following algorithm, analogous to “countercurrent cascade stages” in
chemical engineering (Wankat, 1988), will exponentially improve upon the accuracy of the Separation step:

¢ Begin with a tube 7 whose contents we wish to separate based on bit k.
® Begin also with 2N extra tubes calledT_y,...,T_jand Ti,..., Ty, initially empty.
® for t=1 to @
for j=—N+1 to N—1 s.t. t+j=1 (mod 2)
Separate T; into T, and T,ybased on bitk
Combine T,,, and Tj 1 into T
Combine Toﬁ and Tj _1 into Tj -1

(Notice that for odd t, odd numbered tubes start off empty and for even t, even numbered tubes start off
empty. Therefore at each timestep we need to perform either N or N — 1 separations.)

Thus each complex will perform a biased random walk in tubes 7_y through T, with absorption at the
boundaries. Most memory complexes which have bit k£ on will end up in Ty, while most memory complexes
which have bit k off will end up in 7_y. A graphical illustration of the process is shown in Figure 2. The
statistics of such processes have been thoroughly worked out (see the “Gambler’s Ruin” problem in Feller,
1968). Let p be the probability that a separation step correctly moves a complex into Tp, or Ty At the end
of the algorithm, we would like to know the probabilities that a complex with bit £ on (or off) will either be
in tube T_y, Ty, or still stuck in some other tube. Let us first consider the case Q = o0; i.e., each complex
continues to be processed until it absorbed at either T__y or Ty. Then a complex has probability pe, of being
correctly processed (Feller, 1968), where

1

For example, if p =0.9, we choose N =5, and then py, ~ 1 — 107>, It is critical to this argument that no
memory complexes are permanently lost. However, it is not crucial that Q be co. The expected time (compouna)
for a complex to arrive in either T_py or Ty is (Feller, 1968)

N 1—r¥
(tcompound) = 2p—1 (1 - 21 _ r2N)

where r = 1—f-. In the example, (f;ompouna) =~ 6.25. Not only is the average time small, but the variance is also
reasonable. In fact, in this example, Q = 20 ensures that fewer than 10~# of the complexes are not correctly
processed. Figure 3 shows the performance (8) of compound separation as a function of number of steps (Q)
for various chain lengths (N).

Original | Input

- 2N-1 >
identical
units

FIG. 2. A compound separator.

70 ROWEIS AND WINFREE

Compound Separator Performance (Atomic = 90%)

S

y Processed (delta)

<

Fraction Not Yet Correctl

2050 60 70 80 90 100
Steps Performed
FIG. 3. Compound separation performance. The bars on the left show the mean time + one standard deviation for

0 10 20 30

complexes to be absorbed at a boundary.

We have shown that, by applying the compound separation algorithm above, a linear slowdown (and a
few extra tubes) results in an exponential decrease in the error rates, even when the fundamental separation
operation is not reliable.)

Notice that this algorithm can be easily parallelized: if N “atomic” separator units are available instead
of just one then the slowdown factor can be reduced to Q by performing all the separations simultaneously
(i.e., do all iterations of the inner for j...loop in parallel). We will call this parallelized algorithm parallel
compound separation. ‘

6. EVEN BETTER TRANSFORMATIONS: THE REFINERY IDEA

What if we were to replace every separate operation in our original algorithm A with a compound separa-
tion? This would incur a slowdown factor of M = Q - N but would give an enormous reduction in 8 since the
fidelity of each separation has improved exponentially. This is exactly the idea behind what we call the serial
refinery transformation, which exploits a slowdown factor of M. It proposes A’ to be:

® Run Aon input], replacing each separation operation with acompound separation operation
of chain size N and duration Q where Q- N <M.

Notice that if a space increase factor of H is also available then we can employ what we call the one-layer re-
finery transformation, which makes use of the available parallelism H and slowdown M by specifying A’ to be:

® Run A on input I, replacing each separation operation with a parallel compound separation
operation of chain size N and duration Q where Q- N <M - H and Q<M.

The one-layer refinery is so named because if A originally processed one layer in parallel before moving
on to the next layer, with sufficient parallelism A’ may now process each layer in parallel for Q steps, and
then move on to the next Jayer. '

If we are granted parallelism H and slowdown M, there arises the issue of which allowable values of
Q<M and N <(M - H)/Q result in the smallest §. In this paper, we only consider the choice N = H and
Q =M. Let us find out how much improvement in § this transformation buys us. The exact expression for § is
complicated’ but easily computable. The plots in Figure 4 show the performance (8) of the one-layer refinery

SFor the afficionado, § =1 — [A(p, N, Q)] where p is the probability of getting absorbed at the correct boundary
in Q steps or less in a biased random walk (bias probability = p) with absorption at boundaries N and —N. In turn,
p(p, N, Q)= Zig___o[%(l — p)E—N2pG+N)/2 Z%Zl_l cosi 1 Ty sinsinZ] where the expression in square brackets
is the probability of absorption in exactly i steps. All of the mathematics can be extended to the case when the random

walk bias is different in each direction (Feller, 1968).

REDUCTION OF ERRORS IN DNA COMPUTATION 71

One Layer Performance (Atomic = 90%, 100 steps) One Layer Performance

(Atomic = 90%, 1000 steps)

L T - L

=
=

[T

s
S,

!
[

>
=

5 I
s

o
=,
ES

ﬂ)!‘\!!!!!!!liilmHHIIH!!

Fraction Not Yet Correctly Processed (delta)
Fraction Not Yet Correctly Processed (delta)

0 10 20 30 40 50 60 0 10 20

30 40 50 60
Slowdown Factor Slowdown Factor
FIG. 4. One-layer refinery performance for §=100 and S = 1,000. Plots assume that we have chosen Q =M and

N=H.

transformation as a function of slowdown factor (M) for various compound separator chain lengths (V) and
for § = 100 and S = 1,000. The plots assume that we have chosen Q=Mand N=H. :

7. A FULLY PARALLEL REFINERY ARCHITECTURE

In the remainder of this paper, we show how, by exploiting the ideas above, a new transformation can
achieve the same low error rates as the one-layer refinery with greater speed-up. The transformation, called
the parallel refinery, continuously processes all steps in the computation—at the cost, of course, of additional
space. The refinery architecture has other advantages as well, on which we will comment below.

As shown in Figure 3, the mean time for a complex to get through a single compound separation chain is
considerably less than the Q required to obtain maximal performance, by a factor of about 5 in the examples
we show. Most of the time during a computation is spent waiting for a few straggling complexes to come

‘out of a separator chain. We can avoid this wasted time by proceeding to process complexes as soon as they
are absorbed in T_y or Ty. The parallel refinery transformation creates A’ by replacing each separation
operation in A by a parallel compound separation of chain length N, and then iteratively processing the
entire computation in parallel for T iterations.

Specifically, suppose A has S - W separations (S feed-forward layers, at most W per.layer) and employs
W atomic separators in parallel. The original A uses tubes T°... T7, where separation i separates 77 into
Tioni and TJert based on bit k;. Then the parallel refinery transformation defines A’ to be:

e Begin with3-S-W.(2N —1) tubes 7/, and T}, and T(jﬁ for —-N+1<n<N-—1.
¢ Initially, TO1 contains the input tube complexes. '
® for t=1 toT
for j=1 toS-W (do all j in parallel)
for n=—N+1 to N—1 (do all n in parallel)
Separate T, into T, . and Tojjf,n based on bit k;
for j=1 toS-W (do all j in parallel)
for n=—N+2 to N—2 (do all n in .parallel)
Combine 7) , and To’ﬁf,r£+1 into T/

on,n—

: J
Combine Toﬁ, N+l
jan,j

. j .
Combine Tlm'N _1 into.Tj

into Toj"’f'j

Compared to the original A, the fully parallel refinery requires a space increase factor of H=(2N —1)-§
(since every separation is expanded) and a slowdown factor (not necessarily integer) of M = % The question
is, what parallelism H and slowdown M are required to obtain a desired performance §? We answer this
question by calculating § given N and T, as before. First we note that the probability that a given complex
is correctly processed after T steps can be decomposed into the probability pgone(N, T) that it is in either

~
[

ROWEIS AND WINFREE

Refinery Performance (Atomic = 90%, 100 layers)

Refinery Performance (Atomic = 90%, 1000 layers)

~~ —_—~
=0 s’
Q [}
Z °
] 10 -
2 : 2
Q1o I T, Q
e =5 £
A - -}
> 10 >l
1

Fraction Not Yet Correctl

=
Fraction Not Yet Correctl

g 16

Slowdown Factor
FIG. 5. Fully parallel reﬁnery' performance for § =100 and S = 1,000. The bars on the left show the mean time + one
standard deviation for complexes to emerge from the entire refinery.

S 10 15 0
Slowdown Factor

the “Yes” tube or the “No” tube after T steps (i.e., not still in the machine when we stop) and the probability
Dcorrect(N) that a complex arriving in a final tube has been correctly processed.® Recall that a complex
has probability p, =1/(1 + (—;—")N) of having been correctly separated every time it leaves a compound
separator, so we conclude that peorrec;(N) = (pos)S. The distributi,qn of emergence times from the S layer
can be obtained by convolving the distribution for a single compound separation’ with itself S times, thus
numerically calculating pg,n. (N, T). Intuitively (by the Law of Large Numbers), we expect this distribution
to have a narrow peak centered at § - {tcompouna) and consequently M is not much more than {tcompound)-
Using the formulas for py,n, and peorrect, we can calculate § = 1 ~Pdone Pcorrect- The result of doing such a
computation for p=0.9, N=1---10 and § = 100 and S = 1000 are shown in Figure 5.

8. ADVANTAGES OF THE FULL REFINERY

With the full parallel refinery, we can obain the same target etror performance and a smaller slowdown
factor (roughly fivefold smaller when p = 0.9) than the one layer refinery, at the cost of S-fold more space
and parallelism. This may not seem like a beneficial tradeoff since S can be potentially large and the speedup
in small.® The large amount of parallelism is being wasted since most of the hardware is unused most of
the time. If we consider where the complexes are at some time ¢, we see that the vast majority of them are
near layer ¢/(tcompouna), leaving the rest of the machine empty. There are two possible responses to this
observation.

One response is to attempt to gain the same speedup using less parallelism. Because most of the strands
are near layer ¢/ {tcormpouna) We only need enough hardware to process the layers which hold the width of this
distribution. This observation leads to an intermediate class of refinery algorithms in which a moving window
of L < § layers of the circuit are being continually processed as in the full parallel refinery algorithm. Since
the spatial distribution of complexes at any time is fairly thin, L can be small, thus requiring much less space
while achieving nearly identical performance.

However the other respone is to make better use of the large parallelism required. The key insight is that
if we wish to process a large volume of complexes, we can keep the entire machine busy by “pipelining” the
computation. For example, suppose our atomic separation units can only handle a limited amount of material,
but we need to process a K -fold larger volume. Instead of running the original (or one-layer refinery) algorithm
K times, we can input a small aliquot of material into the beginning of the parallel refinery at each timestep.
Now most of the machine is being utilized most of the time instead of idly pumping solution around.

8This second probability is independent of when the complex emerges.

"The distribution of emergence times from a single compound separator can be obtained from the formula given in
footnote 5: pyere(T)=p(p, N, T) + p(1— p, N, T). "

8The numerical value of the speedup (e.g., 5) does depend upon the atomic separation probability p (e.g., 0.9).

REDUCTION OF ERRORS IN DNA COMPUTATION 73

We can estimate the amount of material processed using this pipelining strategy. Assume the atomic
separators can process no more than C complexes without overflowing. Bach complex moves away from the
input tube at an average speed of N/ (tcompound) tubes per timestep. Therefore, we can inject an aliquot of
C - N/{tcompound) complexes into the input tube at each timestep. Suppose thata single aliquot can be processed
in T timesteps, achieving our target 8. Recall that T~ (tcompound)S- After (K + 1)T timesteps, K - T aliquots
will have been fully processed. Thus, we have processed K - T - C - N/{tcompound) ¥C-N - K - S complexes
using (K + 1)T/S more time and (2N — 1) - .S more space than the original error-prone algorithm A would
have taken to process a single aliquot of size C. So we have incurred a space-time penalty of roughly 2N - T - K
but processed N - K - § more material. In other words, the space-time cost of correcting errors is only about
2(tcompound) - For comparison, processing C complexes with the one-layer refinery requires a space-time
product of roughly SN - T/S~5N {tcompound)- In other words, the pipelined parallel refinery gives a reduction
of roughly %N in cost. In conclusion, we are now exploiting for computation the additional parallelism and
time employed beyond that used by the naive algorithm, while gaining vastly improved error rates.

The parallel refinery model does not require re-use of any separation unit to serve at multiple points in
the algorithm, and thus a general purpose robotic workstation—such as the one proposed in Roweis et al.
(1998b)—is unnecessary. We envision a special-purpose refinery system being assembled, from standard
units, for each problem to be solved. For example, a separation unit could consist of a reservoir into which
complexes are received, an affinity column with DNA probes on solid support, pumps and heaters for the
wash and elution, and two exit channels (labeled “on” and “off””) which lead permanently (through piping
or tubing) to the reservoirs of other separation units. It is our hope that a refinery architecture will alleviate
the problem of “lost strands,” because the physical permanence of all connections allows temporarily stuck
strands to eventually become unstuck and still complete the computation.

Note that the performance of the operations other than separation can also be improved using these ideas.
For example, the set operation, as described in Roweis et al. (1998b), can be implemented by two compound
separations, the first separating based on the universal tag, and the second separating based on the bit being
set, as diagrammed in Figure 6. The starting tube is seeded at the beginning of the computation with an excess
of stickers, which the universal separation recycles. Complexes which failed to acquire the sticker are returned
to the starting tube, where they have another chance to hybridize with a sticker.

9. CONCLUSIONS

It is illustrative to consider using the refinery to solve a particular problem. We will consider breaking
DES, for which the naive algorithm A has S = 6,500 and W =32. Let’s suppose p = 0.9. Using the one-layer

Original | Input

Recycle Stickers

’ . ~

.
’ \

PR -
\
(78 ¥,
universal ? \ |universal 7
‘\ ‘\
T NS LN
no yes J no_yes

Stickers
Reservoir

.
’ . N
‘ ’ v

/
/
/
'
,
: ‘ ¥ \
' \ .
. . .
' + | universal ? universal ?
\
i no yes no yes
\
'
)
\
\
\
\ .
\
\

universal ?
4
TR A
no yes

Final
. "Bit Set"”
off Output

FIG. 6. A reliable ser operation.

74 ROWEIS AND WINFREE

refinery algorithm and N = 10, we incur a space increase factor of 10 and a slowdown factor of 260 (no further
slowdown helps); this achieves § ~ 1.9 x 1075, We started with 2% keys, exactly one of which is good. We
can be sure (except for 1.9 in a million) that the good key will end up in the “Yes” tube, but 256§ ~ 1.4 x 10!!
bad keys will be incorrectly processed. Will the incorrectly processed complexes also end up in the “Yes” tube
as distractors? In the case of the DES algorithm, we argue that they won’t end up in the “Yes” tube (Adleman
et al., 1999). ’ ,

However, we cannot make the same argument for generic algorithms, and so we consider the worst case
scenario in which all of the incorrectly processed complexes are distractors. In this case, we need to achieve
8~ 107" to get the number of distractors below 1. With the one-layer refinery, this could either be realized by
increasing the space factor to N =22 and the slowdown to ~125, or by simply re-running the N = 10 version
mentioned above three times in a row® (giving a space increase factor of 19 and a slowdown of ~180). This
last approach is an interesting example of what can be further achieved by composing the various algorithm
transformations we discussed above, since it uses repeating.

We have shown that separation errors theoretically can be reduced to tolerable levels by invoking a tradeoff
between time, space, and error rates at the level of algorithm design; we have also illustrated several specific
ways in which this can be done and presented encouraging numerical calculations of their performance.

ACKNOWLEDGMENTS

We would like to express our appreciation to Professor John.Baldeschwieler for his contributions to this
paper through early discussions of this work. We are also grateful to our advisor, Professor John Hopfield,
for his perpetual wisdom and long-term advice. A preliminary version of this paper previously appeared as
Section 5 of Roweis et al. (1998a). The MATLAB code used to generate all the figures in this paper is also
available by request from roweis@cns.caltech.edu. S.R. is supported in part by the Center for Neuromorphic
Systems Engineering as a part of the National Science Foundation Engineering Research Center Program
under grant EEC-9402726 and by the Natural Sciences and Engineering Research Council of Canada. E.W.
is supported in part by National Institute for Mental Health (NIMH) training grant no. 5 T32 MH 19138-06
and also by General Motors’ Technology Research Partnership program.

REFERENCES

Adleman, L.M. 1994. Molecular computation of solutions to combinatorial problems. Science 266, 1021-1024.

Adleman, L.M. 1996. On constructing a molecular computer. /n Lipton, R.J., and Baum, E.B., eds., DNA-Based Computers.
DIMACS workshop, April 4, 1995, Volume 27, American Mathematical Society, Providence, RI, pp. 1-21.

Adleman, L.M., Rothemund, P.W.K., Roweis, S., and Winfree, E. 1999. On applying molecular computation to the data
encryption standard. J. Comput. Biology 6(1).

Amos, M., Gibbons, A., and Hodgson, D. 1998. Error-resistant implementation of DNA computations. Jn: Landweber, L.F,
and Baum, E.B., eds., 1998. DNA-Based Computers II: DIMACS workshop, June 10-12, 1996, Volume 44, American
Mathematical Society, Providence, RI.

Boneh, D., Dunworth, C., Lipton, R.J., and Sgall, J. 1996. On the computational power of DNA. Discrete Appl. Math. 71,
79-94.

Boneh, D., Dunworth, C., Lipton, R.J., and Sgall, J. 1998. Making DNA computers etror resistant. In: Landweber, L.F,
and Baum, E.B., eds., 1998. DNA-Based Computers II: DIMACS workshop, June 10-12, 1996, Volume 44, American
Mathematical Society, Providence, RI.

Cai, W, Condon, A.E., Corn, RM,, et al. 1997. The power of surface-based DNA computation. In: Proceedings of the
First International Conference on Computational Molecular Biology (RECOMB ’97).

Feller, W. 1968. An Introduction to Probability Theory and Its Applications. Volume 1. 3rd ed. John Wiley & Sons, New
York.

Karp, R.M., Kenyon, C., and Waarts, O. 1996. Error-resilient DNA computation. In: Proceedings of the Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 458467, AMS/SIAM, Providence, RL

Landweber, L.F,, and Baum, E.B., eds., 1998. DNA-Based Computers II: DIMACS workshop, June 10-12, 1996, Volume
44, American Mathematical Society, Providence, RI.

9Thus the expected number of distractors will be 1.4 x 1011 (first run), 2.7 x 10° (second run), 0.5 (third run).

REDUCTION OF ERRORS IN DNA COMPUTATION 75

Lipton, R.J. 1995. DNA solutions of hard computational problems. Science 268, 542-544.

Lipton, R.J. and Baum, E.B., eds. 1996. DNA-Based Computers: DIMACS workshop, April 4, 1995, Volume 27, American
Mathematical Society, Providence, RI. .

Liu, Q., Guo, Z., Fei, Z., Condon, A.E., Corn, R M., Legally, M.G., and Smith, L.M. 1998. A surface-based approach to
DNA Computation. In: Landweber, L.F., and Baum, E.B., eds., 1998. DNA-Based Computers II: DIMACS workshop,
June 1012, 1996, Volume 44, American Mathematical Society, Providence, RI, pp. 123-132.

Roweis, S., Winfree, E., Burgoyne, R., Chelyapov, N.V., Goodman, M.F., Rothemund, PW.K., and Adleman, L.M. 1998a.
A sticker-based architecture for DNA computation. In: Landweber, L.F,, and Baum, E.B., eds., 1998. DNA-Based
Computers II: DIMACS workshop, June 1012, 1996, Volume 44, American Mathematical Society, Providence, RI, pp.
1-2.

Roweis, S., Winfree, E., Burgayne, R., Chelyapov, N.V., Goodman, M.E,, Rothemund, PW.X., and Adleman, L.M. 1998b.
A sticker-based architecture for DNA computation. J. Comput. Bio. 5(4), 615-629.

Wankat, P.C. 1988. Separations in Chemical Engineering: Equilibrium Staged Separations. Elsevier Science Publishing
Co., New York.

Address reprint requests to:

Erik Winfree

Computation and Neural Systems Option
California Institute of Technology
Pasadena, CA 91125

winfree @ hope.caltech.edu

Received for publication November 9, 1997; accepted as revised December 13, 1998.

