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Abstract. A major challenge in practical DNA tile self-assembly is the
minimization of errors. Using the kinetic Tile Assembly Model, a theoret-
ical model of self-assembly, it has been shown that errors can be reduced
through abstract tile set design. In this paper, we instead investigate
the effects of “sticky end” sequence choices in systems using the kinetic
model along with the nearest-neighbor model of DNA interactions. We
show that both the sticky end sequences present in a system and their
positions in the system can significantly affect error rates, and propose
algorithms for sequence design and assignment.

1 Introduction

Self-assembly of DNA tiles is a promising technique for the assembly of com-
plex nanoscale structures. Assembly of tiles can be programmed by designing
short complementary single-stranded DNA “sticky ends.” While assembly using
unique tile types or simple lattices is often studied [26J16], algorithmic growth,
where small sets with few tile types can form complex assemblies, is particularly
powerful theoretically, and has been studied extensively through the abstract
Tile Assembly Model (aTAM) [288/17].

A number of different designs for tile structure are used for assembly [2612TI16].
As an example, the DAO-E tile design (Fig. [[a)) consists of two helices con-
nected by two crossovers, with four 5 nucleotide (nt) sticky ends, one at each
end of each helix. Experimentally, conditions are usually used such that tiles will
favorably attach by two bonds between sticky-end regions, adding cooperativity
to binding. In the abstract Tile Assembly Model, this is modelled by individual
tiles attaching to edges of the current assembly when they can make at least two
correct bonds to adjacent tiles (7" = 2), and never detaching once attached.

The Pascal mod 3 (PM3) system shown in Fig. Db) is a simple example. The
tiles implement addition modulo 3, akin to Pascal’s triangle. Tiles attach by
their two lower-left ends, and then provide ends for future tiles to attach that
sum the logical values of the two “input” ends. Growth proceeds to the upper-
right, controlled by a V-shaped seed of tiles that attach by strength-2 bonds and
provide edges of logical 1s.

A more sophisticated example, the counter system from Barish et al [3], is
shown in Fig. {l(c). In this system, a ribbon of tiles grows from a large seed
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Fig. 1. Tile systems, structures and the kinetic trapping model. (a) shows an example
DAO-E tile structure [21], along with examples of complementary and partially mis-
matched sticky end attachments. (b) shows the Pascal mod 3 tile system along with a
potential perfect assembly. Blue, green and red correspond to ends with logical values
0, 1, and 2, respectively, while black indicates double-strength bonds of the V-shaped
seed. (c) shows the tiles (top) in the Barish counter system, along with an illustration
of zig-zag ribbon growth (left) and an Xgrow simulation of growth from an origami
seed (blue), where each pixel represents one tile. Orange and brown tiles indicate tiles
with logical values of 1 and 0, respectively, while gray tiles are boundary and nucleation
barrier tiles, and incrementing tiles are green. (d) illustrates the states and transition
rates in the kinetic trapping model of growth errors.

structure of DNA origami. Rows of tiles grow in a zig-zag fashion, with each
new row being started by a double tile that is equivalent to two permanently-
attached single tiles. On “downward” rows tiles increment a bit string with two
tiles per bit from the previous row, while on “upward” rows, corresponding
tiles copy the newly-incremented row. These tiles implement a binary counter
starting from whatever bit string was specified on the original origami seed and
incrementing every two rows of tiles.

In examining algorithmic growth of experimental systems, the kinetic Tile
Assembly Model provides better physical relevance [28]. Tiles are assumed to
be in solution at a particular concentration, which is usually assumed to be
constant. Tiles attach to empty lattice sites at a rate r¢ dependent only on their
concentration, and detach at a rate r, (b =1,2,...) dependent upon the number
of correct “sticky end” attachments they have to the assembly:

Tp = ke~ Gme ry = ke PG (1)

Here G, is a dimensionless free energy analogue related to tile concentration
by [¢] = e~ Emeta G, is the sign-reversed dimensionless free energy of a single
bond, b is the number of correct bonds, and k is an adjusted forward rate constant
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k= kre®, where ky is the usual second-order mass action rate constant for tile
attachment, typically ky = 105 /M/s. This model has been used for numerous
theoretical and computational simulation studies of algorithmic tile assembly
[29J6ITOIRITT], and has fit well with experimental findings both qualitatively and
quantitatively [9/TT].

As the kinetic model allows any tile to attach regardless of correctness, it is
challenging to design tile systems that exhibit algorithmic behavior while keep-
ing erroneous growth low enough to obtain high yields of correct assemblies.
Growth errors in the kinetic model are well studied, and often modelled by the
kinetic trapping model. The model considers tiles attaching and detaching at a
single lattice location, while having a rate for an attached tile to become “frozen”
in place by further growth. This rate, r* = ke=Gme — ;;6726‘5@, is related to the
overall growth rate of the system [28]. As tiles that attach without any correct
bonds (“doubly-mismatched” tiles) will detach very quickly, to first approxima-
tion, the only states that need to be considered are empty (E), correct tile (C),
and “almost correct tile” (A)—a tile that is attached by one correct bond—along
with frozen states for correct and almost correct tiles (FC and FA). These states
are described in Fig. [[Id).

Numerous techniques have been studied to reduce such error rates, especially
“proofreading” transformations that transform individual tiles into multiple tile
blocks or sets of tiles [29J6/4J20]. These techniques have been shown to signifi-
cantly reduce error rates both in simulation and experimentally [ITI6/3]. Such
techniques rely on changing tile systems at an abstract level, and reduce error
rates of even ideal systems. However, in implementing the abstract logic of a tile
system in actual DNA tiles, design complexities cause the system’s kinetics to
deviate from the default KTAM parameters. In particular, the single-stranded
“sticky ends” that implement the abstract ends must be chosen from a finite
sequence space to be both as uniform in binding energy and as orthogonal as
possible. Deviations here can introduce further errors [10].

2 Theoretical Model

In the kKTAM, G, and G,,. are by default considered to be constant and inde-
pendent of both tiles and sticky ends. A more detailed model cannot assume this.
G is dependent upon tile concentration: the value may be different for each
tile type, and may change as free tiles are depleted by attachment. However, as
experimental techniques exist to keep tile concentrations approximately constant
throughout assembly [23], we will assume a time-invariant (but possibly tile type
dependent) G-

Gse, on the other hand, will depend upon the bonds between sticky ends.
Ends with different sequences will have different free energies for binding to
their complements, and some ends may be able to partially bind to ends that
are only partially complementary (Fig. [i(a)). This results in a G%, for each pair
of sticky ends (4, 7). In the default kTAM, all non-diagonal terms will be zero, and
all diagonal terms will be equal. G%, can thus be defined in terms of deviations
from a reference Gge:
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Gl =Gee +6; G = 5;;Gye for i #j . (2)

Non-uniform sticky ends, with non-zero ¢;, will affect the detachment rate
of correct and almost-correct tile attachments, while spurious non-orthogonal
binding strengths s;; will only decrease detachment rates for almost-correct and
doubly-mismatched tile attachments. In the following theoretical analysis, the
much lower likelihood doubly-mismatched interactions are ignored. For simula-
tions, done with the Xgrow kTAM simulator [2], these interactions are taken
into account when there is non-orthogonal binding.

2.1 Uniformity

Non-uniform sticky end energies have been simulated previously [10], but have
not been studied analytically. In the KTAM, the growth rate of an assembly
depends on the difference between on and off rates [28], which we approximate
for a uniform system as r* = ke=Gme — ke2Cse,

For a system with non-uniform energies, a tile attaching by two i bonds will have

,,,* _ kB_Gmc _ ke—?Gse—Q&, _ ke—?Gse (66 _ 6—2573)

where we define € = 2G5, — Gme, a measure of supersaturation: for an ideal
system, € = 0 results in unbiased growth, whereas ¢ > 0 results in forward
growth and € < 0 causes crystals to shrink. As can be seen, the growth rate will
depend on the §;’s of the bonds in the growth region. With ¢; < —%e (negative
d corresponds to weaker binding), growth in a region won’t be favorable.

In the worst case, where tiles attaching by two bonds with the smallest §;
form a sufficiently large region, growth can only be ensured if € > —2 min {4;},
and error rates can be approximated by the kTAM with this minimum e value.
The kinetic trapping model in the default kTAM results in an error rate Ppor &
me~%s<*€ for m possible incorrect tile attachments [28], so the worst-case error
rate for a given i, = min {§;} would be

Poror & me*Gse*QJmin . (3)

Fig. 2l(a) shows simulations of the PM3 system with e adjusted along the lines
of our worst-case growth requirements. For positive deviations, where most ends
remain at the same strength, assembly time is largely unchanged, while the error
rate increases. For negative (weaker bond) deviations, where € is adjusted, the
error rate rises per Eq. Bl while the assembly time decreases sharply as most
tiles attach with the same G% but are at a higher concentration.

While this method to adjust tile concentrations ensures crystal growth, it may
not obtain the optimal trade-off between growth rate and error rate. This trade-
off has been addressed for perfect sticky ends [BI12], but is more complicated
with imperfect sticky ends and complex tile sets. Rather than simply adjusting
all concentrations uniformly, the assumption can be made, which is not neces-
sarily optimal, that error rates for a complex tile set can be reduced by ensuring
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Fig. 2. Error rates for Pascal mod 3 systems with non-uniform end interactions sim-
ulated in Xgrow. In both (a) and (b), single sticky ends have been changed so that
Gife = Gse + 0;, while all others have remained at Gse. In (a), the € for the system has
been uniformly changed to always allow forward-growth by two of the weakest bond
types by setting Gimc. In (b), the tiles with deviating ends have had their concentration
adjusted so that all tiles have the same growth rate r* = ke~ Cme — /Acef(fsﬂfcjsjc7 where
tile type n attaches using sticky end types ¢ and j. Blue circles show error rates; green
triangles show the time taken to construct an 8000 tile assembly, the line in (a) shows
Eq. Bl For these simulations, we set base parameters of Gs. = 10 and G, = 19.2.

that the overall growth rate remains uniform throughout the crystal. This can
be achieved by modifying the concentrations of tiles to modify their G,,. val-
ues such that the r* for each tile type is the same. Fig. 2(b) shows simulations
of this form of concentration-adjustment with the PM3 system. As expected,
assembly time remains almost completely unchanged across a large range of de-
viations. Meanwhile negative deviations do not significantly increase error rates,
and positive deviations increase error rates in a manner similar to Fig. 2fa).

2.2  Orthogonality

Unlike non-uniformity, the kinetic trapping model for growth errors can be easily
extended to account for non-orthogonality. Assuming s;; < 1, growth errors will
be primarily caused by almost-correct tiles attaching by one correct and one
incorrect bond, as in the ideal case. A uniform incorrect bond strength of s, and
m possible almost-correct tiles for a given lattice site, then gives the following
rates of change between the different states shown in Fig. [[d):

E C A FC FA
E 72Tf T2 T(1+5) 0 0
. C Tf —T2 — r* 0 0 0
P(t) = A mry 0 —Tr(4s) =17 0 0 P(t) . (4)
FC 0 r* 0 0 0
FA 0 0 r* 0 0

Here P(t) is a vector of probabilities at time ¢ that the site will be in a state
[E,C, A, FC, F A]. The steady state of this is not useful, as any combination of
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Fig. 3. Error rates with non-orthogonal interactions. (a) shows interactions for the PM3
system; circles and solid lines show simulated and theoretical error rates, respectively,
with single pairs interacting. Squares and dashed lines show error rates for a uniform
non-orthogonal interaction between every pair. (b) shows error rates for sensitive single
non-orthogonal pairs in the Barish counter system, along with lines showing e (570)Gse
for various values of o chosen to roughly follow the worst pairs of each sensitivity. Small
dots represent individual pairs, while large dots show averages for sensitivity classes.
For (a) Gse = 10 and Gme = 19.2, for (b) Gse = 8.35 and Gme = 17.8.

FC and F A will be a steady state. Instead, the eventual probability of being in
F A after starting only in state E at t = 0 will provide an error rate per additional
tile in an assembly. This can be treated as a flow problem, where we consider the
differential accumulation into F'C and F A from E, as in Winfree [2§8]. From this,
the probability of an almost-correct tile being trapped in place is:

m 1

TE+Ti4s ~ 1 ,(1-8)Gse—e¢
+ T 1+ e

~ me(s—l)G’se+e )

(5)

Perror =

While tile systems will have a different number of possible almost-correct tiles
for different lattice sites, making this result less applicable, the PM3 system has
an equal number for every possible lattice site. Fig. [B(a) shows error rates in
simulations with interactions between single pairs of ends and for a uniform
non-orthogonal interaction energy between every pair. In both cases, error rates
largely follow Eq.

2.3 Sticky End Sensitivity

When non-orthogonal sticky end interactions are not uniform, the degree of
their influence on error rates may depend on which tile types they appear on
and the logical interactions within the tile set. In systems where a tile never has
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the opportunity to attach with strength 1 + s;;, interactions between ¢ and j
may be less relevant, whereas other pairs of ends in the system may allow tiles
to erroneously attach during correct growth and be simply locked in place by
continued growth. For example, Fig.[B((b) shows error rates for the Barish counter
system when non-orthogonal interactions are introduced between single pairs of
sticky ends. These pairs have been organized into sets (INGO, 2NGO, 1GO, and
2GO) based on a model described below of how interactions between them may
affect the tile system. As can be seen, this model has some success in predicting
the impact different pairs will have on error rates.

We start by assuming that all attachments in growth occur with single tiles
attaching by exactly two correct strength-1 bonds. Assuming that each tile in
the system can have its ends labelled as inputs or outputs, and that every growth
site has a unique tile that can attach by inputs, all lattice locations possible in
the system will eventually be filled by a specific tile. Rather than looking at lat-
tice sites that actually appear in correct growth, which would require simulation,
we can combinatorially investigate all possible local neighborhoods that might
appear, and conservatively examine them for possible problems. For example,
whether there exists a tile that can attach with strength 1 4 s;; can be approx-
imated by whether there are two tiles that share a common input bond on one
side but not the other, so that when one tile incorrectly attaches where the other
could attach correctly, it forms a strength 1 bond for the common bond and a
strength s;; bond for the mismatch (as in Fig. @{(a)).

We describe end pairs where such tiles exist as being in the set of “first-
order sensitive” end pairs. If the sides of the tiles are inputs for at least one tile
type, and thus the tiles can attach in normal forward growth, the end pair is
in the set of first-order growth oriented sensitive (1GO) pairs, whereas without
consideration of input and output sides, the end pair is in the set of first-order
non-growth-oriented sensitive (INGO) pairs. End pairs (4, 5) that are in INGO
but not 1GO have tiles that can attach with strength 14 s;; only during growth
after an error or at sites where there is no correct tile.

While end pairs in these sets have tiles that allow the first, erroneous tile
attachment in the kinetic trapping model, the model also requires that a second
tile be able attach by two correct bonds to the erroneous tile and adjacent tiles to
trap the error in place. This is also not necessarily possible: an incorrect attach-
ment could result in there being no adjacent correct attachment, and designing
systems where this is the case is in fact the goal of proofreading systems [29].

Thus we can devise “second-order sensitive” sets of end pairs that allow this
second, correct tile attachment, and are therefore expected to be more likely to
cause errors. Consider a pair of tiles A and X with a common bond on one side
but not the other, satisfying the criteria for a first-order sensitive pair. Whether
a further tile can attach with strength 2 can be approximated by whether there
is some second pair of tiles, B and Y, that can each attach to some third side of
their respective original tiles, and also share a common bond on another side. In
a plausible local neighborhood where A and B could attach correctly in sequence,
it is possible for X to first attach erroneously, with strength 14-s;; (in the location
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Fig. 4. Illustration of end pair sensitivity sets. For simplicity, all left and bottom sides
are considered inputs. (a) shows, for given tiles, examples of possible local neighbor-
hoods they could attach to and tiles that could erroneously attach via first-order sensi-
tivity. (b) shows, for given pairs of tiles A and B, examples of local neighborhoods the
pair could attach to in sequence, and a pair of tiles X and Y that could erroneously
attach via second-order sensitivity. (c) shows examples of tiles satisfying various crite-
ria for the shown end pairs to be in different sensitivity sets; arrows show examples of
required input sides for growth-oriented sets.

where A could have bound), then for Y to attach with strength 2 (where B could
have bound after A) owing to the second commond bond, as in Fig. E(b).

As with first-order sensitivity, if the common and differing sides of the first
pair of tiles are inputs, and sides of the second pair of tiles that are shared or
attach to the first pair are also inputs, then the end pair involved is in the set of
second-order growth oriented sensitive (2GO) pairs, whereas without considera-
tion of inputs, the pair is in the set of second-order non-growth-oriented sensitive
(2NGO) pairs.

These sets can be summarized more formally as follows, while examples of
satisfying tiles are shown in Fig. l(c):

— An end pair (4,4) is in the set of first-order sensitive end pairs if there exist
at least two tiles in the tile system where both tiles share a common end k
on one side, and on some other side, one tile has end ¢ and the other has end
j. If at least one of the two tiles has k and either 7 or j as inputs, then the
end pair is in 1GO and INGO, otherwise, it is only in INGO.

— To determine if a first-order sensitive end pair (i, ) is in the set of second-
order sensitive end pairs, consider a pair of tiles that satisfy the first-order
criteria, and additional pairs of tiles that can attach to the first pair by
bonds | and m (possibly the same) on a third side. If there exist a pair of
these additional tiles that also share a common bond n, then the end pair is
second-order sensitive. If at least one of the first tiles has k and either 7 or
j as inputs, and one of the additional tiles attaching to it has n and either
[ or m as an input, then the end pair is in 2GO and 2NGO, otherwise, it is
only in 2NGO.
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Note that this analysis is done without determining what assemblies and thus
what local neighborhoods actually form, so the combinations of inputs being
considered might never appear during the growth of a correct assembly. As such,
it is conceivable that, for example, an end pair could be in 2GO without ever
having an effect in correct growth of an assembly. While this is a significant
limitation, determining if a combination of inputs ever occurs, or if two tiles are
ever assembled adjacent to each other, is in general undecidable by reduction to
the Halting problem [27]. Furthermore, our current software treats all bonds as
strength-1, and all tiles as single tiles, with double tiles being represented by a
pair of single tiles with a fake bond that is then excluded from the sets; whilst
the set definitions could be extended to account for double tiles and strength-2
bonds, we have not yet investigated the complexities involved.

Also, while pairs may be in either or both of 1GO or 2NGO, in all systems
we have considered, all pairs in 1GO have also been in 2NGO, and there have
been no pairs that are only in INGO. End pairs that aren’t in any of these sets,
and can be described as “zeroth-order,” should have interactions between them
that have a negligible effect on error rates in the kinetic trapping model.

Very rough theoretical estimates of the contributions that sensitive end pairs
will have on a system can be obtained by considering the number of tiles that
need to attach incorrectly. For pairs in 2GO, as only the initial tile will need
to attach incorrectly before it can be locked in place by a correct attachment,
the probablity of an error every time such a situation occurs is ~ e(s=1Gse,
For those in 1GO but not 2GO, since there is no correct attachment after the
first tile attaches incorrectly, at least one further incorrect attachment will be
required, giving a probability of error ~ e(*=2)¢%¢ or lower. For pairs only in
2NGO or INGO, the probability that the first tile can attach incorrectly will
depend upon the likelihood that growth is proceeding in an incorrect direction,
which in turn will depend upon numerous factors, but will usually require at
least one previous incorrect attachment, giving another factor of ~ e~%*¢ on top
of their GO counterparts.

For the Barish counter, there are 342 pairs of ends (helix direction prevents
around half the ends from attaching to the other half). Of these, 22 are 2NGO,
9 are both 1GO and 2NGO, and 3 are also 2GO. Fig. Blb) shows error rates
for increasing values of s;; where one pair has its value increased and all other
spurious pairs are left with s;; = 0. Each pair has been classified by its “worst”
set. As can be seen, 2NGO pairs have little impact on error rates beyond those
seen in the ideal kTAM, 1GO pairs start to have an effect after around s;; > 0.4,
and 2GO pairs are the most sensitive. In the case of the three 2GO pairs in
the Barish counter, two cause errors that prevent correct growth in the next
row without an additional error, explaining the significant difference between
the most sensitive 2GO pair and the two less sensitive pairs.



70 C.G. Evans and E. Winfree

3 Sequence Design and Assignment

3.1 Sequence Design

DNA sequence set design for molecular computation is a widely-studied problem.
Different applications necessitate different constraints and approaches: longer se-
quences with less stringent requirements can be constrained with combinatorial
methods like Hamming distance [13], while work on sequences with more strin-
gent requirements have used thermodynamic constraints [25]. However, the basic
goal shared throughout most of these algorithms is to find the largest set of DNA
sequences that hybridize to their complements significantly better than to any
other sequences in the set, or to find a set of a certain size with the best pos-
sible “quality”; in this the problem is similar to the maximum independent set
problem, which is NP complete [7T§].

For sticky ends, the sequence lengths required, especially the 5 to 6 nt ends
of DAO-E tiles, are shorter, and provide a smaller sequence space, than most
other work has considered, with a few exceptions that have largely generated
very small sets [25]. Using the end pair sensitivity model, we can reduce errors
from non-orthogonal interactions by changing the assignment of sequences to
abstract ends, as described later. However, we have no corresponding model to
allow us to compensate for non-uniform energies.

The goal for our sequence design, therefore, is to find a requested number of
sequences that (a) have non-orthogonal interactions less than a set constraint,
and (b) have binding energies (melting temperatures) as uniform as possible
given the orthogonality constraints. This contrasts with many sequence design
algorithms, where a minimum melting temperature is of primary importance [24],
and from algorithms that simply constrain melting temperatures to be within
set constraints [25], in that our algorithm chooses a sequence with the closest
melting temperature at each step.

All Interactions Complementary Interactions
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Fig. 5. Histograms of end pair interactions with the original Barish sequences (red)
and newly designed sequences (blue). (a) shows all end pairs, (b) shows a zoomed-in
area containing all end-complement pairs. All energies were calculated using the energy
model in our sequence designer at 37 °C.
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As the lengths of sticky end sequences are short, complex secondary structure
is limited, and thus our algorithm uses an approximation of minimum free en-
ergy (MFE) for thermodynamic calculations. Similar to the “h-measure” used
in Phan et al [I8], the algorithm considers hybridization between two sequences
with every possible offset, and uses the nearest-neighbor interaction data from
SantaLucia et al [22], including values for symmetric loops, dangles, single-base
mismatched pairs, and coaxial stacking with core sequences. Furthermore, for
DAO-E tiles, core helix bases adjacent to the sticky ends affect energetics, and
need to be designed alongside the sticky end sequences.

Our algorithm works as follows, for length L sticky ends.

1. Generate a set of all possible available sequences A that fit user requirements.

With adjacent bases considered, this could be as many as 4%2 sequences.

2. Calculate end-complement binding energies G?e/ for all sequences in A, and

(to speed up computation) remove any sequence that falls outside a user-

specified range around the median Ggi of all sequences initially in A, which

we call Gge.
3. For each sequence needed:

(a) Randomly choose a sequence i from all sequences in A that are closest
to Gse, and add this to the set of chosen sequences C.

(b) Calculate the G%, between i and every remaining sequence j in A, and
remove all sequences from A with a G greater than a user-specified
value.

4. Stop when either A is empty, or a sufficient number of sequences have been
generated.

G, is chosen as the desired ideal Gs. in order to ensure a large number of
sequences with similar G%s will be available, for 5 nt ends, the desired value
is Gse - RT = 8.35 keal/mol at 37°C. By adjusting parameters, the maximum
number of sequences that can be chosen can be changed as shown in Table [}
running the algorithm repeatedly will also find different numbers of sequences.

Sets chosen by this algorithm are guaranteed to have all ends interact less
than a set amount s;; < Sdesired With ends other than their complements, and
to deviate from the desired correct interaction by less than a set amount |d;| <
Odesired, though when generating sets of a fixed size the largest §;s will often be
much smaller, as the software selects for the smallest §; values possible.

Fig. Bl shows a comparison between end pair interactions in the original Bar-
ish counter system and new sequences designed with our sequence design soft-
ware. As can be seen, our software prevents large non-orthogonal interactions of
4 kecal/mol < G¥ - RT < 6 kcal/mol, but does not significantly reduce interac-
tions with G% - RT < 4 kcal/mol. However, for complementary interactions, our
software is able to find a significantly more uniform set of ends.

The practical value of this designer depends on the accuracy of the under-
lying energy model, of course, but the same algorithm can be used with differ-
ent energy models as understanding of sticky end energetics is improved. The
algorithm, with some energy model modifications, may also be of use in other
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Table 1. Examples of the number of sticky ends found by our designer for varying
user-specified parameters (bold). For lengths 5 and 6, examples are the best out of 100
runs, while for length 10, the example is a single run.

Length (nt)|Gs. - RT|max(sij)|# found| std(d;) | max 0;
5 8.354 0.2 5 0.04Gse | 0.1Gse
5 8.354 0.4 21 0.01Gse [0.038G e
5 8.354 0.5 40 0.01Gse [0.036G s
6 9.818 0.4 29 0.004G 5 |0.015G s
10 15.454 0.4 183 0.01Gse | 0.05G se
Random Assignment Sequences Optimized Assignment
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Fig. 6. Illustration of end assignment for the Barish counter set with new sequences.
For conciseness, only a portion of the ends are shown.

areas of DNA computation where very short sequences with very similar melting
temperatures and low non-orthogonal interactions are needed, such as toehold
regions in strand displacement systems. However, it does not consider a number
of factors important for actual strand displacement regions, and starts to become
computationally intractable for sequences longer than 10 or 11 nt.

3.2 Sequence Assignment

The sequence designer is able to find sets of ends with very similar complemen-
tary interactions, and low non-orthogonal interactions. However, by ensuring
that sequences are assigned to ends in a system such that end pairs with higher
sensitivity have lower interactions, errors can further be reduced, and perhaps
more importantly, the chance that a poor choice of sequences is made for a
critical pair of ends can be minimized.

We assigned ends using a simulated annealing algorithm that used, as a score,
the sum of rough error estimates for each end pair (see Fig. HI):

S (assignment) = Z e (s~ 1 1)Goe 4 Z e~ (835 1.5)Gee (6)
i,j€2GO 4,j€E1GO and ¢2GO
+ Z e—(sij—l.GS)Gse + Z e—(sij—Q)Gse .
,jE2NGO and ¢1GO i,JEINGO and ¢2NGO

We call the resulting assignment ‘optimized’, although of course it is not
guaranteed to be a global optimum. Offset values in the exponents were set
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Fig. 7. Error rates for the Barish counter system with different sticky end sequences.
Error rates are calculated from the percentage of correct assemblies formed of size 673.
G values are calculated from ends, or are uniformly Gs. - RT = 8.35 kcal/mol in the
ideal case. G values were varied between 17.6 and 17.9. 1000 simulations were run
for each G, value.

by rough estimates of the worst errors for different classes in the simulations
shown in Fig. [ and terms here for 2GO, 1GO and 2NGO are shown by solid
lines in that figure. For INGO, the —2 parameter is chosen simply to be lower
than other classes, as no system we have examined has end pairs that are only
INGO. Since the sequence designer chooses adjacent bases as well as sticky
end sequences, sequences can be consistently assigned to ends on all tiles, as in
Fig.[6l The sequences and tiles for the Barish counter cannot be assigned in the
same way, as different tiles with the same sticky end types often have different
adjacent base pairs, modifying their interactions. Furthermore, as the sequence
assignment algorithm only considers non-orthogonal interactions, results on a
system with significant non-uniformity will likely be inconsistent.

Fig. [1 shows simulated error rates and assembly time for counters using se-
quences from Barish et al [3], sequences designed by our sequence designer and
randomly assigned, and the same designed sequences assigned by our simulated
annealing algorithm to both minimize and maximize the score in Eq. [ along
with error rates and assembly time for the system under ideal kTAM conditions.
For a range of G,,. values and resultant assembly times, there is at least a 3-
fold improvement in error rate between new sequences that are pessimally and
optimally assigned by our scoring function, with increasing improvement as the
assembly rate, and thus ideal error rate, decreases. For optimally assigned se-
quences, error remains close to the ideal error rate. The original sequences and
assignment for the Barish counter perform slightly better than the pessimally
assigned new sequences.
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4 Conclusions and Discussion

These methods of sticky end design and assignment serve two purposes: firstly,
to design experimental systems with error rates as close to the ideal kTAM as
possible, and secondly, to reduce the chance that a poor choice of sequences, or
even a poor assignment of sequences to tiles, might significantly impact exper-
imental results. The methods should be relevant for most types of DNA tiles,
and most tile systems with deterministic algorithmic behavior. Our software for
these algorithms is available online [I].

The simulation results here, and the methods themselves, are reliant on the
accuracy of the energy model used. While some research has been done on sticky-
end energetics [IHITT409], usually for individual pairs of tiles, it is not known
how well nearest-neighbor models of DNA energetics apply to sticky ends on
DNA tiles in lattices. Different tile structures may also require slightly different
models, especially with regard to coaxial stacking with base pairs adjacent to
the sticky ends.

It is possible that extending end sensitivity definitions to higher orders, con-
sidering more than two tile attachments, may be a useful area of investigation,
especially when considering tile systems making use of similarly higher order
proofreading. Indeed, proofreading can counteract at a more fundamental level
some of the same errors that arise from non-orthogonal interactions. The ef-
fects of non-uniform sticky end energies, however, may still significantly impact
proofreading sets, and remain a potentially fruitful area of research beyond our
simplistic modeling and concentration adjustment technique.
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