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Abstract. Chemical reaction networks (CRNs) and DNA strand dis-
placement systems have shown potential for implementing logically and
physically reversible computation. It has been shown that CRNs on a sur-
face allow highly scalable and parallelizable computation. In this paper,
we demonstrate that simple rearrangement reactions on a surface, which
we refer to as swaps, are capable of physically reversible Boolean com-
putation. We present designs for elementary logic gates, a method for
constructing arbitrary feedforward digital circuits, and a proof of their
correctness.

1 Introduction

In traditional digital logic, information is lost, making computation logically irre-
versible. For example, an AND gate transforms two inputs into a single output,
where the inputs cannot be deduced from the output. Landauer argued that irre-
versible logic, implemented by physically irreversible systems, dissipate at least
a minimum energy, kT log 2, with each binary computational step [1]. Charles
Bennett countered that computation could be done in a logically reversible fash-
ion, indicating that physically reversible systems could compute with arbitrarily
little energy expenditure [2]. A surprising flip side to this discovery was that
several simple models of constant-energy reversible systems, such as perfect bil-
liard balls [3,4] and even a microscopic model of heat diffusion within molecular
aggregation [5], were shown to be capable of carrying out arbitrary compu-
tations. The connections between computation and thermodynamics are now
richly developed [6,7]. However, despite considerable effort [8], practical com-
puting systems that perform reversible computing with asymptotically minimal
energy expenditure have not been demonstrated.

In his seminal work, Bennett references biological nucleic acid systems as
examples of logically and physically reversible computing [2,9]. Recently, build-
ing on techniques for compiling arbitrary formal chemical reaction networks
(CRNs) into DNA strand displacement systems (DSDs) [10–12], the poten-
tial of synthetic nucleic acid systems to implement reversible computing has
been explored theoretically and shown to be feasible for polynomial-space prob-
lems [13–15]. By further storing information in a DNA polymer based system,
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a scheme for physically and logically reversible Turing-universal computing has
been proposed [16]. However, neither of these approaches allow for parallel com-
puting, and they require many distinct species.

This motivated a framework for computing using chemical reaction networks
on a surface (surface CRNs) [17]. In a surface CRN, a bimolecular reaction
A + B → C + D can occur if a molecule of species A is adjacent to a molecule
of species B on the surface. A C molecule will replace the A molecule, and a D
molecule will replace the B molecule. Note that the molecules can be adjacent in
any orientation, such that A + B → C + D ≡ B + A → D + C; both are distinct
from A + B → D + C. The surface CRN framework can be used to construct
massively parallelizable space-bounded Turing machines and continuously active
logic circuits of different sizes with a constant set of species [17].

In the proposed DNA implementation of surface CRNs [17], species are bound
to a DNA origami surface, and free-floating fuel molecules are consumed (and
waste molecules produced) to facilitate irreversible reactions between two neigh-
boring species via DNA strand displacement [17]. While one could simulate a
reversible surface CRN by utilizing pairs of irreversible reactions of the form
{A + B → C + D;C + D → A + B}, it is plausible that a genuinely reversible
implementation could be devised such that the waste of the forward reaction
is the fuel of the reverse reaction, and vice versa (as is the case for some DSD
implementations of well-mixed solution CRNs [16]). Implementing such a surface
CRN in DNA would involve using one fuel molecule for the forward reaction,
and a different fuel molecule for the reverse reaction. In a closed system, where
there is no external power maintaining fuels and wastes at constant concentra-
tions, an occurrence of the forward reaction would bias the system toward the
reverse direction, as the amount of fuel for the forward direction decreases, while
the amount of fuel for the reverse reaction increases. Computation using these
pseudo-reversible reactions would be difficult to drive forward unless the system
guarantees that each reaction is used equally in each direction, on average [13–
15]. Such restrictions impose difficult design constraints.

Another approach to constructing reversible surface CRNs is to use only
reactions of the form A + B → B + A, which are implicitly reversible because
surface CRNs do not consider absolute orientation. When the forward reaction’s
waste is the reverse reaction’s fuel, there is therefore no net change in fuels or
wastes – the implementation is effectively catalytic. These reactions are simply
the rearrangement of two neighboring molecules, henceforth referred to as swaps,
and abbreviated as A ↔ B.

Swap reactions were previously discussed as a way to simulate diffusion on
a surface [17], but we have found that they can exhibit much more complex
programmable behavior. One may initially think that systems built using only
swap reactions cannot perform useful computation. No new species can be intro-
duced after computation begins, so NOT gates and signal fanout may at first
seem infeasible. Furthermore, since reactions are completely reversible, it may
also seem that computation cannot be biased to proceed forward. Indeed, if swap
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reactions were implemented in a well-mixed solution rather than on a surface,
they would be utterly useless.

However, because we are considering swap reactions on a surface, we can
take advantage of the geometry of the surface and local nature of the swaps. We
are able to obtain behavior that is far more controlled than random diffusion.
In this paper, we will show that by carefully designing initial configurations and
swap reactions, arbitrary digital logic circuits can be computed using reversible
reactions on a surface.

2 Computing Paradigm

We seek to construct a set of species, along with a set of permissible swap rules
and a starting arrangement of those species on the lattice, that is able to compute
logical functions.

To represent bits, we will use two species, denoted 1 and 0. Each lattice point
will be shown as a square. Within an arrangement of species on a surface, certain
lattice points will be designated as input locations and certain lattice points will
be designated as output locations. We will denote the input locations with arrows
pointing towards them and outputs with arrows pointing away (e.g. see the
arrows in the leftmost and rightmost locations in Fig. 1a). In our constructions,
if the input lattice locations are replaced with any permutation of bits, then
it is possible to reach an arrangement (through the permissible swaps) where
the output locations are filled with bits. We can think of this abstractly as the
arrangement computing some Boolean function f : {0, 1}n → {0, 1}m, where
n,m are the number of input and output lattice locations respectively, so long
as a unique set of output values are reachable.

Consider the task of constructing a wire. Let’s define a species w that is
permitted to swap both with 0 and 1 (i.e. we permit the reactions 0 ↔ W and
1 ↔ W ). Imagine a line of W , as shown in Fig. 1.

If we let the leftmost lattice point be the input location and rightmost be
the output location, then this arrangement computes the identity function. The
input bit will randomly walk along the line of W , eventually occupying the
output location. Any line of W is a wire, as it simply transmits a signal. In order
to develop more complex systems, we will introduce more species and rules,
and use larger layouts. With this paradigm in mind, we design composable logic
gates, which allow us to construct arbitrary digital logic circuits.

(a) (b) (c)

Fig. 1. Basic wire operation. (a) Wire starting configuration. (b) Initial loaded con-
figuration. (c) Computation in progress.
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3 Building Logic Circuits with Swaps

We have designed a constant set of 16 species and 23 swap rules, shown in
Table 1, that are capable of universal Boolean logic, through the composition of
NOT, AND, OR, fanout, and wirecross gate layouts on a surface.

Table 1. List of swap rules required to implement NOT, AND, OR, fanout and wire-
cross. No species beyond those that appear in these swap rules are necessary. Recall
that the rule A ↔ B is equivalent to the implicitly reversible surface CRN reaction
A + B → B + A

3.1 NOT, AND, OR

For these gates, we had several important goals in mind, the most important
being that the gates had to be logically reversible. Fredkin and Toffoli demon-
strate in [3] a set of universal logic gates that are reversible called the Fredkin
and the Toffoli gates. Each of them is a three input - three output gate in which
it is uniquely possible to determine the input from the output.

In the case of AND, OR logic, this is impossible (since the gate is not injec-
tive). However for our systems, it is sufficient to be able to uniquely determine
the input to a gate from the output plus the final configuration of the gate. The
idea is that even though different inputs give the same output, the way in which
inputs rearrange in the gate will be unique.

NOT Logic. Initially, it may seem impossible to construct a NOT gate using
only swap reactions, as the output of a NOT gate is not present in the input, and
swap reactions cannot generate new species. However, we are able to implement
a NOT gate by instead storing both a 1 and a 0 inside the gate, and releasing
the appropriate bit depending on the input.

The starting configuration of a NOT gate is shown in Fig. 2a. In this config-
uration, no swaps are possible. Upon the arrival of a bit in the input location,
it goes either right or left depending on its value, as 1 swaps with W1 and not
W0, and 0 swaps with W0 and not W1. Upon this first transition, the bit may
now swap with the I species, which may now travel down the two consecutive J
species, and release the appropriate output bit. The output bit can then swap
into the output location. This motif is symmetric for both inputs, as shown in
Fig. 2b. An example trajectory for the 0 input case is shown in Fig. 2c.
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Statespace. In order to give a more quantitative explanation of what is hap-
pening in this swap system, we have to introduce the notion of the state space
as a graph. The nodes of said graph are unique configurations on the 2D surface.
Two nodes are connected by an edge if a single swap can take one vertex to the
other. From this point forward this graph will be referred to as the statespace
graph. For instance, the state space graph for the NOT gate can be seen in
Fig. 2d. It is simply a linear graph of 7 nodes, which corresponds to the sequence
of states shown in Fig. 2c.

(a) (b)

(c)

(d)

Fig. 2. NOT gate implementation via swap reactions. The unidirectional black arrows
indicate the input and output locations. (a) Gate layout and swap rules. (b) Condensed
representation of computation. Blue lines represent the initial movement of the input
bit. The red represents the trajectory of the I species. The purple line is the movement
of the output bit, which occurs after interacting with the I species. Dotted lines refer
to when the input is 1, while solid lines are for input 0. (c) Computation trajectory
on input 0. The bidirectional black arrows represent transition via swap rule. (d)
Statespace of the NOT gate. (Color figure online)
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All of our logic gates (AND, OR, NOT) have the property that there is
only one state in which a correct output is in the output square. This means
that in whatever circuit we embed our gates into, when the output leaves the
gate, the remainder of the gate can only be in one possible configuration. In
particular with the logic gates that we have constructed, after the output bit
leaves, the remainder of the gate is stable (where stable means that no swaps
can happen between the species in the remaining configuration). Furthermore,
the gates are stable before any inputs arrive. This stability property is achieved
without sacrificing reversibility by leveraging spatial separation.

AND Logic. Next, we will show how a small change in the NOT gate con-
struction yields an AND gate. Consider a gate with the same layout as NOT
except that the 1 and 0 species that are stored inside the gate are switched. If
this gate receives an input 1, the output will be 1. Similarly, if the gate receives
input 0, the output with be 0. Now, further modify this gate by removing the
stored 1 and turning it into another input location, as shown in Fig. 3a. Observe
that an AND gate will return 0 whenever there is a 0 in the input. Thus, in
this construction, if the top input receives a 0, the gate will correctly output 0,
regardless of what value arrives at the side input. It remains to verify that this
gate works correctly when the top input receives a 1. Whenever the top input
receives a 1, the side input will appear in the output location. Thus, if the side
input receives 0, the output will be 0, as it should. Similarly, if the side input
and top input both receive 1, the output will be 1, as desired.

OR Logic. Even though AND and NOT are sufficient for expressing any logical
formula, it is convenient to also have a simple way of computing OR directly.
Observe that in an OR gate, whenever there is a 1 in the input, the output should
be 1. Thus, we can create OR analogously to AND, by fixing 1 as a stored input
that always appears if the top input is 1. The layout is shown in Fig. 3b.

(a) (b)

Fig. 3. Gate layout of AND and OR. For these two gates we have two inputs, denoted
by the arrows pointing into the system. (a) AND gate. (b) OR gate.
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Selector Motif. If no bits are stored in the previously described gates such that
they have three input locations (top, left, and right), then the gate is equivalent
to a data selector (or multiplexer), a device frequently used by electrical engineers
that outputs one of two values determined by an additional input signal. We
have shown the implementation of AND, OR, and NOT by fixing certain inputs,
but we can also implement several other functions with this strategy, including
strictly less than and strictly greater than. However, in our constructions, we
use only the canonical AND, OR, and NOT gates.

The selector design was originally inspired by the Fredkin gate [3]. The Fred-
kin gate works by switching signals two and three in the output if signal one is
1, else the signals are output unchanged. A Fredkin gate can be programmed by
fixing one or two of the three input signals and observing the output value of
either signal two or three to compute AND, OR and NOT. Here, we effectively
construct a Fredkin gate that only outputs the relevant signal that stores the
value of AND, OR, or NOT.

3.2 Fanout, Wirecross

Although they are not essential for universality, wirecross and fanout are very
helpful in creating compact circuits. It has been shown that it is possible to
construct a wirecross from just fanout and elementary logic gates [18]. Wirecross
seems challenging on a two dimensional surface, as wires cannot use the third

(a) (b)

Fig. 4. Fanout mechanism. (a) Fanout layout. The input arrives on the left side indi-
cated by the arrow. The two outputs leave on the right at the specified locations. (b)
Fanout computation. The dotted lines represent the computation when a 0 bit serves
as the input and the solid lines represent computation when a 1 bit serves as the input.
The red lines represent the trajectory of the input. The yellow lines are the trajectory
of the I1 and I species for the cases in which the input is 1 and 0 respectively. The
green lines are the movement of the top output bit and the blue lines are the movement
of the bottom output bit. (Color figure online)
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dimension to avoid intersection. Fanout also seems challenging since we cannot
create new species via swaps. We are able to implement wirecross by effectively
constructing two unique wire types, and we are able to implement fanout by
storing the additional bits inside the gate.

Fanout. In Fig. 4a we demonstrate our design for a fanout gate. The key idea is
to store an additional copy of the bit inside the gate to simulate bit duplication.
Overall, the gate consists of two interconnected columns, each of which is capable
of copying a bit. One column will duplicate the input bit if it is 1 and the other
will duplicate the input if it is 0. The bit is “duplicated” by freeing the extra
stored bit of the same value.

If the input bit is a 1, then the first column duplicates it, and the two outputs
travel on wires parallel to the W0 wire. We introduce a new species K that can
both carry the 1 bit and the indicator I species. We also have to introduce a
new species I1 to allow the 1 bit to duplicate. Refer to Table 1 for the associated
swap rules.

Wirecross. Designing a wirecross that allows two bits to cross paths is chal-
lenging because if the signals are travelling along identical wire types, there is
nothing stopping them from trading places and going down the wrong wires. In
order to get around this issue, we translate the bits into intermediates that travel
on distinct wire types and then release the appropriate bit once the crossing has
taken place. We see this design in Fig. 5. At the top, we translate the input bit
a ∈ {0, 1} to Wa ∈ {W0,W1}. This Wa then travels along a path specified by
the P species. The other input b is translated to Ib ∈ {I0, I1}, which travels
along a path specified by the J species. The center species is initially occupied

Fig. 5. Wirecross layout.
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with a J , which means the input coming in from the left can pass, while the
input from the top must wait. We introduce a final new species X which can
swap with both Ib and Wa. First the Ib traverses the intersection and places
the X species in the center. Then the displaced Wa can traverse the intersection
point.

3.3 Compiling a Feedforward Circuit to a Surface Layout

With our gate constructions, we can compile arbitrary feedforward logic circuits
(involving only AND, OR, NOT, fanout and wirecross) into surface layouts that
evaluate the same functions via swap reactions. Here we describe one method of
compilation of a circuit to a layout, following a standard crossbar array archi-
tecture [19]. This is not a spatially efficient way of constructing a surface layout;
it is merely here to demonstrate that any feedforward circuit can be laid out on
a surface.

We define a feedforward circuit as a graph by associating a circuit with a
directed graph in the following way (for an explicit example of such a graph see
Fig. 6a). Let the nodes denote inputs, outputs and gates (AND, OR, NOT). The
in-edge at node b from node a indicates that output of node a is fed as input to
the gate at node b. Similarly, an out-edge from node a to node b indicates that
output of a is fed into the gate at node b. If such a graph is acyclic, then we say
that the corresponding circuit is feedforward.

For simplicity, assume that all gate, fanout and wirecross layouts fit within
a square of dimensions s × s lattice points, with sufficient space to route inputs
on the top and left to outputs on the bottom and right. Our construction places
the inputs regularly along the top of a rectangular region, and places the gates
regularly along an offset diagonal, with inputs and gates each providing their
output along vertical wires directly below them, extending to the bottom of the
rectangle. To route the appropriate inputs to each logic gate, we use horizontal
wires extending left from the gate, using the wirecross to pass through undesired
wires and using the fanout to acquire the desired input signal while leaving that
signal available for downstream gates that might also want it. The feedforward
order of the circuit ensures that we can order the gates along the diagonal such
that the inputs for a gate are always available to its left. As shown in Fig. 6b,
this leads to a complete circuit layout of size not much larger than (n + m)s ×
2ms lattice points for a circuit with n input and m gates, which is worst-case
asymptotically optimal [20].

3.4 4-Bit Square Root Circuit

Following the examples in refs. [21] and [17], we designed a system that computes
the floor of the square root of a 4-bit binary number. The layout, shown in
Fig. 7, was not created using the procedure described in Sect. 3.3, but rather
was designed by hand to be more compact. The correctness of the circuit was
verified through exhaustive enumeration of the state space for every input, with
long wires abbreviated in order to reduce simulation time. Since the system is
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Fig. 6. A systematic feedforward circuit layout compilation. The circuit analyzed
here computes G2(G1(IN1, IN2), IN2) and G3(G1(IN1, IN2), IN3). G1, G2, G3 are
gates, IN1, IN2, IN3 are inputs, and OUT1, OUT2 are outputs. (a) Directed acyclic
graph specification of the desired circuit. (b) Surface layout of the given circuit gener-
ated according to procedure described in Sect. 3.3. Filled circles indicate fanout. Empty
squares indicate wirecross.

stochastic, parallel, and reversible, correctness was evaluated not with respect
what the system does do, but rather with respect to what it could do, i.e. which
states are reachable from a given input state. There was no combination of inputs
for which the exhaustive enumeration found a state in which any incorrect output
was produced, and for all input combinations the enumeration found a state in
which all correct outputs were produced. Therefore, for all input combinations,
the circuit will (with probability 1) eventually reach a state where all outputs
are correct, and will never reach a state where any output is incorrect (though
perhaps most of the time the outputs will be empty).

4 Proving Circuit Correctness

Leaving aside the question of kinetics for now, we will proceed to argue for
the general correctness of feedforward circuit layouts, in the above sense. Our
argument relies on establishing the composability of our gates in a surface CRN
using strong and weak bisimulation similar to as in [22,23]. We start by showing
that each gate is equivalent to a simple stochastic CRN. Then, we show that
a composition of the stochastic CRNs for individual gates is equivalent to a
composition of gates in a surface CRN. Finally, we will show that the composed
stochastic CRN is logically equivalent to the intended function. In other words,
when gates are composed on the surface CRN, the function they compute is
exactly the logical composition of the gates.

When constructing an equivalent stochastic CRN for each gate in the surface
CRN, we require that, upon starting with the set of species corresponding to
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bits being loaded into the input locations in the gate, the set of states of the
stochastic CRN will be in bisimulation with the configuration of the gate on the
surface when the same input bits are loaded. Observe that each gate’s operation
involves a set of independent random walks that come together at particular
points. For example if we consider the OR gate, the top input takes a random
walk and ends up in the top right corner. Meanwhile the indicator species I
takes a random walk from its original location in the top right to the bottom
right. If we give each of these random walks a label, then the entire state of the
gate can be described by how far each random walk trajectory has progressed
and which bit is being expressed on the trajectory. The species of our stochastic
CRN will have the form Ab

i where A is the label of the trajectory, i the index of
the trajectory (how far it has progressed) and b is the bit that is being expressed
on the trajectory. We also allow i to be S or F indicating respectively that the
trajectory has not started yet (it is in the starting configuration) or that the
trajectory is finished.

The most basic reaction of the stochastic CRN is Ab
i ↔ Ab

i+1 indicating
progress on trajectory A (provided Ab

i+1 is an allowed species). When we have
one trajectory lead unconditionally into another we see a reaction that looks like
Ab

n + BS ↔ Ab
F + Bb

1. When two trajectories come together in the surface CRN
layout, this corresponds to reactions consuming the final numbered species of
two trajectories and producing the first numbered species of a new trajectory.

In order for the stochastic CRN to be equivalent we must show that there
is a bisimulation between the state space of the surface CRN (given a specific
combination of inputs in the input locations) and the set of reachable states in the
stochastic CRN (from the corresponding set of starting species). To demonstrate

(a) Surface Layout (b) Circuit Diagram

Fig. 7. 4-bit square root circuit. (a) Layout of the surface CRN 4-bit square root (done
by hand in order to use less space than the general circuit layout scheme). Locations
marked in purple represent the fanout mechanism. Red represents an OR gate, blue
represents an AND, green a NOT, and grey a wirecross. Lattice points in light blue are
input locations for the circuit and orange represents output locations. Black represents
wires. (b) Abstract circuit diagram. (Color figure online)
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this we will have a paint function f that maps states of the stochastic CRN to
configurations (states) of the surface gate. This mapping will have the property
that the available swaps from a state f(s) on the surface correspond exactly to
the set of reactions available to the stochastic CRN state s. By this we mean
that applying the paint function f and then applying the swap will result in the
same thing as applying the CRN reaction corresponding to the swap, and then
applying the paint function. The paint function operates as follows, each species
will specify how to paint a part of the surface. The parts of the surface that
are not specified by any species will be the same as its initial configuration. We
demonstrate a paint function for the OR gate in Fig. 8.

Fig. 8. Paint functions for the OR gate. All species in the stochastic CRN that cor-
respond to the OR gate as well as their associated paint functions are shown. In each
table, the left hand column is the list of species. Each row is a paint function for a
particular species. Each column represents how a particular lattice point is painted.
For example, the A

(0)
F species would paint the lattice point C1 as W0, the lattice point

D1 as J , and so on. (a) Initial configuration of the gate with each lattice point labeled
with a row number and a column letter. (b) Paint function for A(0) including AS . (c)
Paint function for D. (d) Paint function for B. (e) Paint function for C. (f) Paint
function for A(1) excluding AS .
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The reactions for the stochastic CRN that correspond to the OR gate are

A
(0)
5 + B

(0)
1 + CS ↔ A

(0)
F + B

(0)
F + C

(0)
1

A
(0)
5 + B

(1)
1 + CS ↔ A

(0)
F + B

(1)
F + C

(1)
1

C
(0)
1 + DS ↔ C

(0)
F + D

(0)
1

C
(1)
1 + DS ↔ C

(1)
F + D

(1)
1

A
(1)
6 + DS ↔ A

(1)
F + D

(1)
1

X
(b)
i ↔ X

(b)
i+1 ∀X ∈ {A,D},∀b ∈ {0, 1},∀i

(1)

If we load the inputs b1, b2 on the top and on the right of the OR gate
respectively, the equivalent state in the stochastic CRN is to have one copy
each of A

(b1)
1 and B

(b2)
1 along with CS and DS . One can verify by hand that,

starting from these initial four species, reachable reactions in the stochastic CRN
correspond exactly to reachable swaps on the surface. In fact whenever at most
one input arrives at either input location, the stochastic CRN is in (strong)
bisimulation with the surface CRN. If for example b1 entered through the top
input, but nothing had entered through the right input, we can start the system
in the state {A

(b1)
1 , BS , CS ,DS}. We represent this CRN pictorially in Fig. 9a.

Now notice that if we drop all subscripts in our species formulation, then the
stochastic CRN reduces to

A(0) + B(0) + C ↔ A(0) + B(0) + C(0)

A(0) + B(1) + C ↔ A(0) + B(1) + C(1)

C(0) + D ↔ C(0) + D(0)

C(1) + D ↔ C(1) + D(1)

A(1) + D ↔ A(1) + D(1)

(2)

This simplification of the CRN has a nice interpretation. If we think of each
trajectory label A as some wire in part of the system, the species A(b) has the
interpretation of “wire A is hot and is carrying bit b”. Now having an input of
b1, b2 like described above is equivalent to starting with {A(b1), B(b2), C,D}. This
reduced stochastic CRN is in weak bisimulation with the full stochastic CRN,
for valid initial conditions. In Fig. 9b, we show a further simplified version of this
CRN. The nodes in this graph represent distinct species (written out explicitly in
Fig. 9a). Edges in this graph represent reactions with one node adjacent to that
edge being a product and the other a reactant that additionally involves species
C or D. Thus, Fig. 9b shows how different combinations of inputs A(b1), B(b2) are
combined to obtain DOR(b1,b2). Thus this reduced stochastic CRN makes it easy
to see that our gate works as expected, with A, B being the input trajectories
and D being the output trajectory.

The equivalent paint functions for the stochastic CRNs for AND and NOT
are straightforward extensions of the above. The equivalent paint function for
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the stochastic CRNs for them and for fanout and wirecross can be found in the
Appendix. What happens now when we have a composition of gates in which
the output lattice points of certain gates are linked with input lattice points
of other gates via a (possibly bent) linear wire? We can create a “stitched”
version of the stochastic CRN. We start with the stochastic CRN for each gate,
and we relabel the species so that the same trajectories from two different OR
gates, for example, are syntactically different. Next, we consider each wire in the
composition. Suppose a given wire W links the output trajectory O of some gate
to the input trajectory I of some other gate. Then we create a new trajectory
for the movement of bits on a wire—let us call it W—and add the following
reactions:

O(b)
n + WS ↔ O

(b)
F + W

(b)
1

W
(b)
l + IS ↔ W

(b)
F + I

(b)
1

W
(b)
i ↔ W

(b)
i+1 ∀b ∈ {0, 1},∀i s.t. 1 ≤ i < l

(3)

where l is the length of the wire and O
(b)
n is the last state of the output

trajectory. In the reduced CRN this is effectively O(b) ↔ I(b), which makes
sense. Since we have already established every reaction in each gate’s individual

(a) (b)

Fig. 9. Pictorial representation of the stochastic CRN for the OR gate.(a) The full
stochastic CRN. Species and arrows shown in gray correspond to species that serve
as indicators of whether a certain trajectory is in an initial or a final configuration.
(b) A graph representation of the CRN without the grey indicator species. All species
that only differ in their subscript are associated with each other. Note that the node
above D(1) that appears to have two possible predecessors is actually deterministically
reversible when the indicator species are accounted for.
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stochastic CRN corresponds to some swap on the surface, its fairly clear that
within this stitched stochastic CRN, all reactions still correspond to reachable
swaps on the surface. What is left to show is that no reachable swaps cannot be
expressed as some reaction in the stitched stochastic reaction. First, we claim
that if the circuit is feedforward and each of its input locations is loaded with
exactly one bit, then the circuit as a whole receives exactly 1 input per input
wire. Consider what happens if this is not the case. Suppose a gate receives two
inputs at an input lattice. Consider the first such occurrence. Let g be the first
gate this happened to. g must have received two inputs from a previous gate,
some g′ that it was connected to. But g′ could not have produced two outputs
since we know g′ received at most one input per lattice (by our selection of g).
Therefore we have a contradiction, and so no such g can exist. If each gate will
receive at most one input per input wire, the behavior of each gate is entirely
captured by its individual stochastic CRN. Because the stochastic CRN for the
circuit is a stitching of individual stochastic CRNs it must capture all possible
swaps. Therefore the stitched stochastic CRN is in bisimulation with the surface
CRN.

5 Kinetics and Entropics

As discussed above, for each gate there is only one state with correct output.
Therefore, in a circuit in which every wire leads toward an output lattice point
(such as the one in Fig. 7a), there is also only one state with all outputs simulta-
neously occupied. This is problematic for large circuits because the probability
of observing an output state becomes extremely small as the circuit increases in
size. The source of the issue is that forward and reverse reaction rates are iden-
tical for a single swap reaction. Thus, every possible configuration of the surface
has the same energy. As a result, at equilibrium each reachable surface configu-
ration is equally likely. In the case of the 4-bit square root, there is exactly one
state in which we have outputs, and > 106 states in which we do not. As such,
probability that the surface is in the output state is very low.

Conveniently, the reduced stochastic CRN provides a framework for quan-
titatively assessing entropic factors, which in turn suggests a solution to the
problem. Consider a “wire” of length n that is represented in the full stochas-
tic CRN by {XS ,X1, . . . , Xn,XF } and is represented in the reduced stochastic
CRN by {XS ,X,XF }. We say that a signal is on the wire if some Xi with
1 ≤ i ≤ n is present in the full stochastic CRN, and if X is present in the
reduced stochastic CRN. A state α of the reduced stochastic CRN with signals
on m wires X1,X2, . . . , Xm (of respective lengths n1, n2, . . . , nm) will therefore
correspond to exactly wα =

∏
1≤k≤m nk states of the full stochastic CRN. Con-

sequently, we consider α to be a macrostate with Boltzmann weight wα and thus
equilibrium probability pα = wα/Z where Z =

∑
α wα. Equivalently, we could

say that macrostate α has energy Eα = −kT
∑

1≤k≤m log nk.
As an initial application of this quantitative framework, we can determine

the effect of the “unnecessary” fanout gates in the construction of Fig. 6b. These
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gates were introduced in the construction as a convenience so that input signals
and computed signals can be propagated down vertical wires, just in case they
will be needed later on – and we did not bother to complicate the construction
by specifying how to remove the unnecessary wires and fanout gates. Yet they
have an interesting side effect: system states with signals on all the output loca-
tions will also have signals trapped on the unnecessary wires. Thus, rather than
there being exactly one such output state, there will be many—for example, the
product of the lengths of the unnecessary wires, in a simple case. These wires
therefore, by their presence, bias the computation forward. By introducing addi-
tional unnecessary fanout gates throughout the circuit, we could further bias
each step of the computation to ensure that there are no deep valleys in the
macrostate energy landscape that could kinetically trap the system. Noting that
a fanout gate can reverse itself only if both its output signals come back, we can
see that it provides a probabilistic kinetic ratchet as well.

As a more compact alternative to this use of fanout gates for their entropic
side-effects, we introduce a compact entropic driver mechanism (Fig. 10) that
biases computation forward. The mechanism results in an inflation of the number
of states after a bit has traversed the mechanism.

Consider loading the gadget in Fig. 10 with a 0 bit species on the left. There
is only one state in which there is a 0 bit species on the leftmost lattice point.
However, if that bit travels to the right side, then we observe that the number
of states in which the 0 bit species is on the rightmost point is 4. This is because
after the bit travels to the right side, each of the I and J species and can swap;
the entropy gadget has been “activated”. Thus each of the pairs can either swap
or not, which means we have 2 × 2 = 4 possible configurations.

If we have an entropic gadget placed after a gate G1 connected via a wire to
gate G2, the output bit is less likely to return into G1 and more likely to enter G2,
than if there was no entropic gadget present. This happens for two reasons. First,
the J species could be blocking the wire for the bit to move backwards, favoring
progression of computation forward. Second, the presence of the entropic gadget
quadruples the number of states in which the bit has entered G2, thus increasing
the probability that the bit is in G2. Thus, the entropic gadget can be used to
increase the likelihood of observing the output state of a circuit.

Fig. 10. The entropic driver gadget. The blue line indicates the trajectory of the pri-
mary bit traveling down the wire. The red and green lines represent the movement of
the I and J species after the primary bit has passed. (Color figure online)
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By adjusting the size or the number of entropic driver mechanisms, we can
control the increase in number of states, and bias computation forward to an
arbitrary degree. For instance, if we change the number of Js from 1 to n by
adding more Js on top and bottom, on the left and the right of the entropic
gadget, respectively, the number of states of the entropic gadget will be (n +
1)2. With larger n, we further increase the likelihood that computation moves
forward. Alternatively, we can put many entropic gadgets next to each other. A
wire consisting of n gadgets in series will have 4n states at the end of the wire. As
computation proceeds, more entropy gadgets become activated and the number
of possible configurations is exponential in the number of gadgets activated.
Thus, by including sufficiently many entropy gadgets or increasing the number
of J species, we can drive computation forward to an arbitrary extent.

By judiciously introducing entropy driver gadgets, it should be possible to
modify any circuit such that the energies of the macrostates are decreasing
roughly linearly as a function of number of gates completed, and thus computa-
tion is thermodynamically driven forward. Note that the entropy thus produced
by circuit operation entails a corresponding energetic cost to performing the
computation.

6 Future Directions

In this work, we constructed arbitrary feedforward circuits using reversible swap
reactions on a surface. We also devised a entropic driver mechanism to tun-
ably drive computation forward. However, many fascinating questions regarding
swap reaction systems remain unanswered. For instance, the circuits we con-
struct above are not reusable. Might it be possible to devise renewable swap
systems that, for example, implement reversible sequential logic or reversible
Turing machines using swap reactions?

When we first thought about swap reactions, a primary motivation was that
due to the simplicity of such a reaction, there may exist a simple molecular
implementation. The DNA strand displacement mechanism that was originally
proposed for implementing arbitrary bimolecular reactions on a surface [17] is
complex and potentially not suitable for experimental implementation. Now that
the computational potential of swap rules has been established, the search for a
simpler, more experimentally feasible mechanism is well motivated.
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Appendix

(a)

Species C3 C4
BS W W
B

(1)
1 1 W

B
(1)
2 W 1

B
(0)
1 0 W

B
(0)
2 W 0

(b)
Species C1 D1 E1 D2 D3 E3
AS W
A

(0)
1 0 W0 I J J 1

A
(0)
2 W0 0 I J J 1

A
(0)
3 W0 I 0 J J 1

A
(0)
4 W0 J 0 I J 1

A
(0)
5 W0 J 0 J I 1

A
(0)
6 W0 J 0 J 1 I

A
(0)
F W0 J 0 J W I

(c)

Species C1 B1 A1 B2 B3 A3
A

(1)
1 1 W1 I J J 0

A
(1)
2 W1 1 I J J 0

A
(1)
3 W1 I 1 J J 0

A
(1)
4 W1 J 1 I J 0

A
(1)
5 W1 J 1 J I 0

A
(1)
6 W1 J 1 J 0 I

A
(1)
F W1 J 1 J W I

(d)

A
(b)
i ↔ A

(b)
i+1 ∀b ∈ {0, 1}

A
(b)
6 +BS ↔ A

(b)
F +B

(¬b)
1 ∀b ∈ {0, 1}

(e)

Fig. 11. Paint functions for the NOT gate. All species in the stochastic CRN that
corresponds to the NOT gate as well as their associated paint functions are shown. In
each table, the left hand column is the list of species. Each row is a paint function for
a particular species. Each column represents how a particular lattice is painted. (a)
Initial configuration of the NOT gate with each lattice point labeled with a row number
and a column letter. (b) Paint function for B. (c) Paint function for A(0) including
AS . (d) Paint function for A(1) excluding AS . (e) Stochastic CRN equivalent to the
NOT gate.
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(a)

Species C1 B1 A1 B2 B3
A

(1)
1 1 W1 I J J

A
(1)
2 W1 1 I J J

A
(1)
3 W1 I 1 J J

A
(1)
4 W1 J 1 I J

A
(1)
5 W1 J 1 J I

A
(1)
F W1 J 1 J

(b)

Species C3 C4
DS W
D

(0)
1 0 W

D
(0)
2 W 0

D
(1)
1 1 W

D
(1)
2 W 1

DF W W

(c)

Species A3
BS W
B

(0)
1 0

B
(1)
1 1

BF I

(d)

Species B3
CS

C
(0)
1 0

C
(1)
1 1
CF W

(e)

Species C1 D1 E1 D2 D3 E3
AS W
A

(0)
1 0 W0 I J J 0

A
(0)
2 W0 0 I J J 0

A
(0)
3 W I 0 J J 0

A
(0)
4 W0 J 0 J I 0

A
(0)
5 W0 J 0 J I 0

A
(0)
6 W0 J 0 J 0 I

A
(0)
F W0 J 0 J W I

(f)

A
(0)
6 +DS ↔ A

(0)
F +D

(0)
1

A
(1)
5 +B

(0)
1 +CS ↔ C

(0)
1 +A

(1)
F +BF

A
(1)
5 +B

(1)
1 +CS ↔ C

(1)
1 +A

(1)
F +BF

C
(b)
1 +DS ↔ D

(b)
1 +CF ∀b ∈ {0, 1}

X
(b)
i ↔ X

(b)
i+1 ∀X ∈ {A,D} ∀b ∈ {0, 1}

(g)

Fig. 12. Paint functions and the stochastic CRN for the AND gate. (a) Initial AND
gate surface layout with each lattice labeled with a row number and a column letter.
(b) Paint function for A(1). (c) Paint function for D. (d) Paint function for B. (e)
Paint function for C. (f) Paint function for A(0). (g) Stochastic CRN equivalent to
AND gate.
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(a)

Species B1 B2 B3 B4
AS W W
A

(1)
1 1 W

A
(1)
2 W 1

A
(1)
F W

A
(0)
1 0 W W0 W0

A
(0)
2 W 0 W0 W0

A
(0)
3 W W0 0 W0

A
(0)
4 W W0 W0 0

A
(0)
F W W0 W0

(b)

Species A2 A3 A4 A5
BS I1 W1 I W
B

(1)
1 1 W1 I W

B
(1)
2 W1 1 I W

B
(1)
3 W1 I 1 W

B
(1)
4 W1 I W 1

B
(1)
F W1 I W W

B
(0)
1 0 W

B
(0)
2 W 0

B
(0)
F W W

(c)
Species B2 C2 D2 C3 C4 C5
CS J 1 W1 K W
C

(1)
1 I1 J 1 W1 K W

C
(1)
2 J I1 1 W1 K W

C
(1)
3 J 1 I1 W1 K W

C
(1)
4 J W1 I1 1 K W

C
(1)
5 J W1 I1 K 1 W

C
(1)
6 J W1 I1 K W 1

C
(1)
F J W1 I1 K W W

(d)

Species B4 C4 D4 E4 D5 C5
C

(0)
1 I K J 0 W0 W

C
(0)
2 K I J 0 W0 W

C
(0)
3 K J I 0 W0 W

C
(0)
4 K J 0 I W0 W

C
(0)
5 K J W0 I 0 W

C
(0)
6 K J W0 I W 0

C
(0)
F K J W0 I W W

(e)

A
(1)
2 +BS+CS ↔ A

(1)
F +B

(1)
1 +C

(1)
1

A
(0)
4 +BS+CS ↔ A

(0)
F +B

(0)
1 +C

(0)
1

X
(b)
i ↔ X

(b)
i+1 ∀X ∈ {A,B,C}, ∀b ∈ {0, 1}

(f)

Fig. 13. Paint functions for the fanout gate. (a) Initial configuration of the fanout gate
with each lattice labeled with a row number and a column letter. (b) Paint function
for A. (c) Paint function for B. (d) Paint function for C(1) including CS . (e) Paint
function for C(0) excluding CS . (f) Stochastic CRN equivalent to fanout.
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(a)

Species A3 B3 C3
AS J J J
A

(1)
1 I1 J J

A
(1)
2 J I1 J

A
(1)
3 J J I1

A
(1)
F J J

A
(0)
1 I0 J J

A
(0)
2 J I0 J

A
(0)
3 J J I0

A
(0)
F J J

(b)

Species D3 E3 E2 E4
BS X J J0 J1
B

(1)
1 I1 J J0 J1

B
(1)
2 J I1 J0 J1

B
(1)
3 J J1 J0 I1

B
(1)
F J J0 I1

B
(0)
1 I0 J J0 J1

B
(0)
2 J I0 J0 J1

B
(0)
3 J J0 I0 J1

B
(0)
F J I0 J1

(c)

Species C1 C2
CS P P
C

(1)
1 W1 P

C
(1)
2 P W1

C
(1)
F P

C
(0)
1 W0 P

C
(0)
2 P W0

C
(0)
F P

(d)

Species C3 C4 C5
DS X P P
D

(1)
1 W1 P P

D
(1)
2 P W1 P

D
(1)
3 P P W1

D
(1)
F P P

D
(0)
1 W0 P P

D
(0)
2 P W0 P

D
(0)
3 P P W0

D
(0)
F P P

(e)

X
(b)
i ↔ X

(b)
i+1 ∀X ∈ {A,B,C,D} ∀b ∈ {0, 1}

A
(b)
3 +BS ↔ A

(b)
F +B

(b)
1 +DS ∀b ∈ {0, 1}

C
(b)
2 +DS ↔ C

(b)
F +D

(b)
1 ∀b ∈ {0, 1}

(f)

Fig. 14. Paint function for partial wirecross. Truncated portions are equivalent to
trajectories found in AND/OR/NOT gates. (a) Initial configuration of the central
portion of wirecross with each lattice labeled with a row number and a column letter.
(b) Paint function for A. (c) Paint function for B. (d) Paint function for C. (e) Paint
function for D. (f) Stochastic CRN equivalent to central portion of wirecross.
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