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S1 Introduction

The phenomenological model of Zhang and Winfree
(1) directly treats reversible toehold exchange (Fig-
ure S1), which is a generalization of strand displace-
ment. In the main text, we restricted their model to
irreversible strand displacement without any funda-
mental changes.

S2 Intuitive Energy Landscape model

Zero toehold case. The IEL for the zero toehold
case (h = 0) is illustrated in Figure S2. The main
modification is the addition of a fraying step (state
A to A′, at the cost of one base pair stack - |∆Gbp|),
which permits a collision leading to the formation of
a base pair between the substrate-incumbent duplex
and the invader. Such a collision essentially results
in the displacement of one incumbent base by the
invader (state B′). The remaining states are identi-
cal to the case with a toehold at least 1-base long,
except that the branch migration domain is shorter
by one base (length b − 1 rather than b). Since the
substrate-incumbent duplex needs to fray at either
end to permit strand displacement from that end,
the collision rate includes a multiplicative factor of
2× e−|∆Gbp|/RT , which accounts for the average frac-
tion of duplexes frayed at either end. So, the com-
plexes join at a rate kbi×u×(2×e−|∆Gbp|/RT ) rather
than just kbi × u, where u is the concentration.

We now approximate keff(0) in terms of keff(1),
which will prove useful once we derive expressions for
keff(h) for h > 0. As we pointed out earlier, once the
first base pair forms between the frayed substrate-
incumbent duplex and the invader, the situation is

identical to the h = 1 case with the toehold just
bound, except with a branch migration domain of
length b−1 rather than b. Assuming b is long enough
that b− 1 ≈ b,

keff(0) ≈ (2 e−|∆Gbp|/RT ) keff(1) . (1)

Choosing kuni. We choose kuni such that the rate
of dissociation of the last base pair of the toehold is
approximately equal to the rate of fraying of every
other base pair. So, we set

kuni e
−|∆Gbp|/RT ≈ kbi e

(−|∆Gbp|+|∆Gassoc|)/RT u0,
(2)

which yields

kuni ≈ kbi e
|∆Gassoc|/RT u0 (3)

where u0 = 1 M is the reference concentration.
Modeling keff. Conceptually, we may split the

kinetics of strand displacement into two parts: the
concentration-dependent, bimolecular part involving
collision and formation of the first base pair of the
toehold (state A to B) and the unimolecular part
comprising the formation of the remaining base pairs
of the toehold (states B to C) and branch migration
(states C to F). The unimolecular part is modeled as
a random walk on the free energy landscape starting
at B, and ending either at A (no displacement) or at
E (successful displacement). In the low-concentration
regime, the unimolecular part finishes (one way or the
other) much faster than the rate of collision; so, we
model the effective rate constant of strand displace-
ment, keff, as

keff = kv × p (4)
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Figure S1: The phenomenological model of Zhang and Winfree (1) for reversible toehold exchange. For simplicity, they assume
the hybridization rate constants for both toeholds to be the same (kf ). kf and kb are fitted to the data.

where kv is the rate constant for the forma-
tion of the first toehold base pair and p =
P(reaching E before A starting at B) is the probabil-
ity of successful displacement starting at B. Since the
IEL assumes a collision rate of kbi × u, kv = kbi.
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Figure S2: IEL free energy landscape at 25 ◦C for a 0-base
toehold. First, the invader and the substrate-incumbent com-
plex are unconstrained by each other (A). Then, the substrate-
incumbent complex frays at one end (A′). This fraying step, at
the cost of one base pair stack (|∆Gbp|), is necessary to enable
a collision leading to a base pair, since no toehold is present.
Once such a collision occurs, the first base of the incumbent has
effectively been displaced by the invader (B′). The remaining
states are identical to the positive toehold case.

Calculating p. First, given the rates of the in-
dividual transitions as specified in the kinetic model,
the probabilities of transition from each state to its
neighbors can be calculated. Let pi,j be the probabil-
ity of going from state i to state j. Then, we choose

pi,i+1 =
ki,i+1

ki,i+1 + ki,i−1
, (5)

pi,i−1 =
ki,i−1

ki,i+1 + ki,i−1
. (6)

Since we are interested in the probability that the
random walk finishes at one end rather than the
other, we use absorbing boundaries:

pi,i = 1 for i = A, E (A′ for 0 toehold) . (7)

Given these transition probabilities, p can be cal-
culated analytically using the method of Rudolph
(2) for calculating absorption probabilities for a 1-
dimensional random walk with absorbing boundaries.

Alternate unimolecular rate model. We also
considered the Kawasaki (3) method for assigning
unimolecular transition rates in the IEL:

kij = kuni × e−(∆Gbox(j)−∆Gbox(i))/2RT (8)

kji = kuni × e−(∆Gbox(i)−∆Gbox(j))/2RT (9)

As with the Metropolis rate model, this choice guar-
antees detailed balance and thus that the system
eventually converges to a Boltzmann distribution:

Prob(i) =
1

Q
e−

∆Gbox(i)

RT where Q =
∑
i

e−
∆Gbox(i)

RT .

Once again, we choose kuni such that the rate of
dissociation of the last base pair of the toehold is
approximately equal to the rate of fraying of every
other base pair. For the Kawasaki method, we have

kuni e
−|∆Gbp|/2RT ≈ kbi e

(−|∆Gbp|+|∆Gassoc|)/RT u0,
(10)

which yields

kuni ≈ kbi × e(−|∆Gbp|/2 + |∆Gassoc|)/RT u0 . (11)

With kuni ≈ 1.8 × 107 /s as calculated above, the
Kawasaki method consistently predicts a slightly
smaller acceleration in keff with toehold length than
the Metropolis (4) method (see Figure S3); therefore
our conclusions about constraints on IEL parame-
ters that are necessary to match experimental data
are robust to this choice. In the analysis below, the
Metropolis method is assumed throughout.

Analytical approximations for keff(h). The
IEL is simple enough to yield itself to an approximate
analysis that permits intuitive understanding of the
model. For h > 1, we may approximate keff(h) as:

keff(h) ≈ kbi × pzip × pbm|toe(h) (12)

where pzip is the probability that the full toehold
“zips up” once the first base pair is formed, kbi×pzip is
the bimolecular rate constant for all the base pairs in
the toehold to form and pbm|toe(h) is the probability
that, once the toehold has zipped up, the incumbent
is displaced before the toehold dissociates.

For h = 1, there are no other bases in the toehold
to zip up, so keff(1) may simply be approximated as

keff(1) ≈ kbi × pbm|toe(1). (13)
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Figure S3: Strand displacement kinetics predicted by the IEL under varying conditions, for both Metropolis and Kawasaki
unimolecular rate models. (A) IEL (2.6, 0) (B) IEL (2.6, 1.2) (D) for the sequence dependent free energy landscape predicted
by the NUPACK energy model with Dangles = “Some” (shown in (C)). None of these variations is consistent with experimental
data (1). (C) States A–F pertain to Figure 3 in the main text. The sequence dependent landscape is much “rougher” than the
IEL, but this “roughness” goes no further in accounting for the data (D).

We shall now estimate pbm|toe(h). Let kfirst be the
rate at which the first base of the incumbent is dis-
placed by the invader, once the toehold is bound. Let
kr(h) be the rate at which the toehold of length h dis-
sociates from the state in which it is fully bound (i.e.
state C of Figure 3 in the main text). We estimate
kfirst and kr(h) later. The probability of displacing
the first base of the incumbent before the toehold
dissociates is simply kfirst/(kfirst + kr(h)).

For simplicity, we assume that once (b − 1) bases
of the incumbent have been displaced, the last base
always dissociates. This approximation allows us to
think about branch migration as a flat random walk.
Our approximation is reasonable because the proba-
bility that the invader dissociates without completing
strand displacement after displacing (b − 1) bases of
the incumbent can only be 0.5, in the worst case (for
a 0-base toehold, with kuni >> kbi), and hence intro-
duces negligible error on a logarithmic scale. More-
over, if branch migration is indeed significantly slow
relative to fraying, we would expect that the last few
bases of the incumbent would fray, leading to the dis-
sociation of the incumbent even before branch migra-
tion completes. Once the first base of the incumbent
has been displaced, the probability of displacing the
remaining bases of the incumbent before going back

to the toehold-only-bound state is 1/(b− 1), accord-
ing to the gambler’s ruin analysis (see Section 14.2 of
Feller (5)). With a probability of (b− 2)/(b− 1), we
return to the toehold bound state - from where, by
definition, displacement succeeds with a probability
of pbm|toe(h).

Therefore, we have pbm|toe(h) ≈(
kfirst

kfirst + kr(h)

)[
1

b− 1
+
b− 2

b− 1
× pbm|toe(h)

]
(14)

which yields

pbm|toe(h) ≈ kfirst

kfirst + (b− 1)kr(h)
. (15)

Therefore, equation 12 yields

keff(h) ≈ kbi × pzip ×
kfirst

kfirst + (b− 1)kr(h)
. (16)

With some algebra, equation 16 yields

keff(h) ≈ kbi × pzip

1 + (b− 1)kr(h)
kfirst

(17)

for h > 1.
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Analyzing equation 17 provides intuition about the
dependence of keff(h) on h. For long toeholds, i.e. in

the saturation limit, (b − 1) kr(h)
kfirst

<< 1; this yields
the saturation value

keff(∞) ≈ kbi × pzip. (18)

For short toeholds, i.e in the “sloping” part of the

keff(h) curve, (b− 1) kr(h)
kfirst

>> 1 and this yields

keff(h) ≈ kbi pzip kfirst

(b− 1) kr(h)
. (19)

We now estimate pzip. For h > 1, we assume, for
simplicity, that the formation of a second base pair of
the toehold will guarantee zippering. Then, pzip may
be approximated as

pzip ≈
kuni

kuni + kr(1)
. (20)

Note that kr(1) is just the rate for the simple bimolec-
ular dissociation step, and so we have

kr(1) ≈ kbi λ (21)

where λ is defined as

λ = e−(|∆Gbp|−∆Gassoc)/RT u0 . (22)

We now estimate kr(h) for h > 1. Once a toehold
of length h is fully bound, (h−1) uphill fraying steps
and 1 dissociation step need to occur for the toehold
to dissociate. Therefore,

kr(h) ≈ kfray(h− 1)× (1− pzip) (23)

where kfray(h − 1) is the rate at which (h − 1) base
pairs of the toehold fray, starting from the toehold
fully bound state, to leave the invader bound by 1
base of the toehold (state C to B in Figure 3 in the
main text).

Clearly,

kfray(h− 1) = kuni e
−(h−1) |∆Gbp|/RT . (24)

From equations 20, 23 and 24, we get

kr(h) ≈ e−(h−1) |∆Gbp|/RT × 1

1/kuni + 1/kr(1)
.

(25)
We also recall that in our particular parameterization
we chose kuni such that kr(1) ≈ kfray(1), although we
do not use or need that condition in this analysis.

Lastly,

kfirst =
1

2
× kuni × e−∆Gs+p/RT (26)

where ∆Gs+p is defined as

∆Gs+p = ∆Gs + ∆Gp (27)

and ∆Gs is the sawtooth amplitude and ∆Gp is the
plateau height.

Substituting for kr(h) from equation 25, kfirst from
equation 26 and pzip from equation 20 into equa-
tion 19, we may approximate keff(h) for h > 1 in
the pre-saturation regime. We also assume that b is
long enough that b − 1 ≈ b. With some algebra, we
get

keff(h) ≈ kuni e
−(∆Gs+p−h|∆Gbp|)/RT η

2 b
(28)

where η is defined as

η =
1

e∆Gassoc/RT u0
. (29)

We now approximate keff(1) using equation 13. Us-
ing equations 15, 21 and 26, we get

keff(1) ≈ ρ kbi

ρ+ 2 b λ e∆Gs+p/RT
(30)

where ρ is defined as

ρ = kuni/kbi. (31)

Having already assumed that b−1 ≈ b, we may ap-
proximate keff(0) in terms of keff(1) using equation 1.
Along with equation 30, this yields

keff(0) ≈ 2 e−|∆Gbp|/RT ρ kbi

ρ+ 2 b λ e∆Gs+p/RT
. (32)

Although equations 30 and 32 seem different
in form from equation 28, that is only because
equation 28 assumes the pre-saturation (“sloping”)
regime, whereas equations 30 and 32 are more gen-
eral. For reasonable values of ρ and long enough b,
such as the default IEL values (ρ ≈ 25, b = 20), we
may use the approximation

ρ+ 2 b λ e∆Gs+p/RT ≈ 2 b λ e∆Gs+p/RT . (33)

This yields

keff(1) ≈ kuni e
−(∆Gs+p−|∆Gbp|)/RT η

2 b
(34)

and

keff(0) ≈ kuni e
−∆Gs+p/RT η

b
(35)

which are consistent in form with equation 28, but
for the factor of two for h = 0.
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Figure S4: The influence of kuni/kbi on the orders of mag-
nitude acceleration in keff between toehold lengths 15 and 0
(A15,0) predicted by IEL(2.6, 0). The red circle indicates the
default value of kuni/kbi. The IEL exhibits sigmoidal response
to log10(kuni/kbi) and even implausibly low values of kuni/kbi

do not result in acceleration that matches the experimentally
observed value of 6.5 orders of magnitude.

We define

Ah2,h1
= log10(keff(h1))− log10(keff(h2)) (36)

to be the orders of magnitude acceleration in keff as
toehold length increases from h1 to h2. We now use
equations 18 and 32 to study the dependence of A∞,0
on ρ, ∆Gs+p and b. With some algebra, equations 18
and 32 yield

A∞,0 ≈ µ+ log10

(
ρ+ 2 b λ e∆Gs+p/RT

ρ+ λ

)
(37)

where µ is defined as

µ = log10

(
e|∆Gbp|/RT /2

)
≈ 0.9 . (38)

Dependence on ρ = kuni/kbi. To analyze the
effect of changing ρ on A∞,0, let us choose a priori
reasonable values for the other parameters: b = 20,
∆Gs = 1.5 stacks (2.6 kcal/mol) and ∆Gp = 0. Then,
equation 37 becomes

A∞,0 ≈ 0.9 + log10

(
ρ+ 4000

ρ+ 1.4

)
(39)

whose behavior is qualitatively similar to the numer-
ical curve plotted in Figure S4. Moreover, the differ-
ence between A∞,0 at ρ =∞ and ρ = 0 as predicted
by equation 39 is approximately 3.5, which is consis-
tent with the total variation in A15,0 as numerically
plotted in Figure S4.

Dependence on ∆Gs+p. For the default kuni

and kbi values used in the IEL, ρ/(ρ + λ) may be
neglected in equation 37 to yield

A∞,0 ≈ µ+ log10

(
2 b e∆Gs+p/RT λ

ρ+ λ

)
. (40)

This yields an approximately linear dependence on
∆Gs+p:

A∞,0 ≈ c1 + c2 ∆Gs+p (41)

where

c1 = µ+ log10

(
2 b λ

ρ+ λ

)
(42)

and

c2 =
1

RT loge(10)
. (43)

Dependence on b. From equation 40, we have

A∞,0 ≈ log10(b) + c3 (44)

where

c3 = µ+ log10

(
2 e∆Gs+p/RT λ

ρ+ λ

)
. (45)

The logarithmic dependence of A∞,0 on b is qualita-
tively similar to the numerical curve of A15,0 plotted
in Figure S5.

Estimating branch migration step times. In
order to compare with experimentally inferred val-
ues (6, 7), we define average branch migration step
time (tbm) as the average time taken for a single step
of branch migration in either direction. For the IEL
and AEL, tbm is calculated as

tbm =
1

kbm
(46)

where
kbm = kuni × e−∆Gs/RT . (47)

S3 Augmented Energy Landscape
model

The IEL assumes the initial attachment of all toe-
holds occurs at the same rate. It is possible to con-
sider alternatives, such as an attachment rate that is
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Figure S5: Orders of magnitude acceleration in keff between
toehold lengths 15 and 0 (A15,0), as a function of the length of
the branch migration domain, as predicted by IEL(5.3, 2.0).
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linear in toehold length. At the cost of some of its
intuitive simplicity, the IEL can be augmented to in-
clude such a linear dependence of the binding rate on
toehold length. We outline the Augmented Energy
Landscape model (AEL) below. The state space of
the model is identical to the IEL, although we now in-
clude a multiplicity factor in the free energy of states
with a partially formed toehold. This accounts for
the fact that there are several ways in which to form
an incomplete toehold. Note that the AEL represents
the 0-base toehold system in an identical fashion to
the IEL.

Free-energy model. The AEL free-energy model
is identical to that of the IEL except for states in
which the toehold is partially formed. We adjust the
free energy of these states by a factor

∆Gmult(n) = −RT ln(h− n+ 1), (48)

where n is the number of base pairs present and h is
the total toehold length. This factor accounts for the
multiplicity of states with n base pairs (assuming the
toehold base pairs form a continuous helix).

Rate model. The AEL has an identical rate
model to the IEL, except for transitions involving
states in which the toehold is partially formed. The
transition from n to n − 1 base pairs with the toe-
hold could occur by fraying a base pair at either end
of the partially formed duplex. We therefore assign
these processes a rate

kn,n−1 = 2kuni e−|∆Gbp|/RT . (49)

The requirement of detailed balance fixes the rates in
the opposite direction:

kn−1,n = 2kuni
h+ 1− n
h+ 2− n

. (50)

Attachment to the toehold is assumed to occur in
h equally likely ways: the rate of attachment is then

k0,1 = h kbi u0 e−∆Gvolume/RT , (51)

where u0 = 1 M is the reference concentration. Once
again, detailed balance fixes the reverse rate.

k1,0 = kbi u0 e(−|∆Gbp|+∆Gassoc)/RT . (52)

The remaining consideration is the relation between
kuni and kbi. Once again, we assume that breaking of
the final base pair in the toehold occurs at the same
rate as other base pairs are disrupted, giving

kuni = kbiu0 e∆Gassoc/RT . (53)

The AEL is simulated in a manner exactly analogous
to Multistrand (see Supplementary Section S4), us-
ing a Gillespie algorithm (8) and utilizing “first step”

Toehold length kAEL
eff (/M/s) kexpt

eff (/M/s)
0 1.4 1.4
1 12 8.2
2 214 144
3 3.7× 103 1.1× 103

4 6.2× 104 5.1× 104

5 6.7× 105 9.6× 105

6 1.7× 106 2.4× 106

15 4.8× 106 4.8× 106

Table S1: Comparison of AEL predictions and experimental
results from Zhang and Winfree (1) for the rate of displacement
as a function of toehold length.

mode in which the strands are initialized in the state
with 1 base pair, and the system is evolved to see
if displacement is successful. The success probabil-
ity is then multiplied by the initial binding rate to
find the overall reaction rate. The probability is es-
timated using at least 104 successful trajectories for
each case.

Performance of the AEL. Overall, these modi-
fications to the IEL result in a self-consistent model
with an initial binding rate that is linear in the
length of the toehold. As with the IEL, the AEL
has free parameters kbi, ∆Gs and ∆Gp, and the
overall acceleration with increased toehold length is
largely determined by ∆Gs + ∆Gp. We fix ∆Gp =
2.0 kcal/mol in accordance with experiment (Figure
7 of the main text), and adjust kbi and ∆Gs to fit
the data of Zhang and Winfree (1). We find that
kbi = 3.30× 105/M/s and ∆Gs = 3.60 kcal/mol (im-
plying kuni = 8.17× 106/s) give a good fit to experi-
ment, as summarised in Table S1.

S4 Secondary structure kinetics
model

Multistrand (9) essentially employs a Gille-
spie algorithm (8) for generating statistically
correct trajectories of a stochastic Markov
process. Code implementing the Multi-
strand model is available for public download
(http://www.dna.caltech.edu/Multistrand/).

Choice and timing of next transition. Sup-
pose the box is in state i. Then, the next state m
is chosen randomly from the states j which are ad-
jacent to i (i.e. they differ from i by only one base
pair), weighted by the rate of transition to each.

P(state m is chosen) =
kim∑
j kij

(54)

The time taken for the transition from i to m to occur
(∆t) is chosen randomly from an exponential distri-
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bution with rate parameter λ, where λ is the total
rate of transitioning from the current state i. That
is,

P(time taken is ∆t) = λe−λ∆t (55)

where λ =
∑
j kij .

First step mode. We will describe first step mode
for a general reaction of the form:

A+B
keff−−→ C +D (56)

For a strand displacement reaction, which involves
intermediate steps, this model assumes a low-
concentration regime where the bimolecular step oc-
curs on a much longer timescale than the unimolecu-
lar steps; equation 56 may then be used to accurately
capture the dynamics.

The first step simulation mode begins with the
bimolecular join step where A and B collide and
form a base pair. The secondary structures of A
and B are obtained by Boltzmann sampling the non-
pseudoknotted secondary structure space for each
molecule. If the bimolecular reaction rates are slow
enough for the reactants to be in equilibrium, this
sampling is valid. Once the secondary structures of
A and B have been sampled, one of the available join
steps is chosen at random and the simulation pro-
ceeds. As more trajectories are run, different initial
secondary structures for A and B and different join
steps are explored.

Note that we are not directly simulating the bi-
molecular join steps, whose rates are proportional
to the simulated concentration (and are hence much
slower than the unimolecular steps). This allows Mul-
tistrand to focus on the trajectories where a collision
does occur, rather than spending most of the time
simulating unimolecular reactions while waiting for
the rare bimolecular reaction.

As simulation of a trajectory proceeds, two distinct
end states are tracked: the molecules falling apart
into the reactants (one of the A + B configurations),
or forming the products (one of the C + D configu-
rations). Each trajectory simulated may be classified
as one that failed (if the former happens) or one that
reacted (if the latter happens).

Our simulations yield the following data: first
passage times for trajectories that reacted (∆tireact),
first passage times for trajectories that failed (∆tifail),
the number of trajectories that reacted (Nreact) and
failed (Nfail), and the estimated average rate of col-
lision (kcoll in /M/s) of the reactants A and B. For
each trajectory, the rate of collision is calculated as
Nfirst × kbi × u, where Nfirst is the number of pos-
sible first base pairs between the sampled secondary
structures of A and B for that trajectory and u is

the simulated concentration. kcoll is estimated as the
mean of the rates of collision for the trajectories sim-
ulated.

The following model is used to analyze simulation
data. We assume that molecules A and B collide to
either form a reactive molecule that will yield the
products C and D (in our case, successful displace-
ment) or a nonreactive molecule that will fall apart
into the reactants A and B in some time (in our case,
unsuccessful displacement).

A+B
k1−→ AB

k2−→ C +D (57)

A + B
k′1−−⇀↽−−
k′2

AB
′

(58)

Our model (equations 57, 58) is fitted as follows.

k1 =
Nreact

Nreact +Nfail
× kcoll (59)

k′1 =
Nfail

Nreact +Nfail
× kcoll (60)

k2 =
1

E[∆tireact]
(61)

k′2 =
1

E[∆tifail]
(62)

Assuming equation 56 is valid, keff may be pre-
dicted (9) based on our model as follows.

keff =
1

∆tcorrect
× 1

u
(63)

where ∆tcorrect is the expected time taken for a suc-
cessful reaction to occur. ∆tcorrect is calculated from
the expected time for a failed collision to fall apart
into the reactants (∆tfail), and the expected time for
a reactive collision to produce the products (∆treact).
∆tfail and ∆treact depend on the expected time for
any collision to occur (∆tcoll). These quantities are
calculated as follows.

∆tcorrect = ∆tfail ×
k′1
k1

+ ∆treact (64)

∆tfail = ∆tcoll +
1

k′2
(65)

∆treact = ∆tcoll +
1

k2
(66)

∆tcoll =
1

(k1 + k′1)× u
(67)

In the low-concentration regime, the resolution of
the three-stranded complex (resulting in successful
displacement of the incumbent or dissociation of the
invader) may be assumed to be effectively instanta-
neous compared to the rate of the bimolecular colli-
sion step. That is, we may assume kcoll×u << k2, k

′
2.
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Indeed, we make this assumption since we are in-
ferring a bimolecular rate constant (equation 56).
With that assumption, the general formulation (equa-
tion 63) may be reduced to

keff = kcoll × p (68)

where p is the probability that the collision results in
successful displacement of the incumbent.

Simulation details. We simulated the “average
strength toehold” experimental system of Zhang and
Winfree (1), measuring strand displacement rates as
a function of toehold length at 25 ◦C. We omitted
the downstream step used for experimental detection
purposes, and deleted the extra domain in the incum-
bent which was used only in that step. The sequences
we used are provided in Table S2. Simulations were
performed in first step mode.

Multistrand variations. The experimental sys-
tem of Zhang and Winfree (1) employs a substrate
strand with a 15-base overhang. Depending on the
length of the invading toehold, a subset of this over-
hang is complementary to the toehold. The fact that
the substrate overhang is longer than the toehold it
binds to could conceivably have two effects: (i) stabi-
lizing the first toehold base pair between the invader
and the substrate through a dangle free energy con-
tribution and/or (ii) allowing unexpected pathways
of displacement through a larger set of possible first
base pairs. Multistrand simulations with a matching
length substrate overhang (truncated to match the
length of the invading toehold) are closer to experi-
ment by only 0.6 orders of magnitude (Figure S6(A)).
This suggests that possible effects (i) and (ii) are not
large enough to explain the discrepancy between Mul-
tistrand predictions and experimental measurements
of strand displacement kinetics.

Because the energy models used by Multi-
strand (9), NUPACK (11), Mfold (13), and Vienna
RNA (14) do not have a consensus method for han-
dling dangle energy terms, we ran Multistrand simu-
lations with each of the three options (Figure S6(A)).
For each dangles option, kbi and kuni were separately
calibrated to the same data (hybridization, zipper-
ing) used for calibrating the Metropolis method, as
described in Schaeffer (9). Only minor differences
were observed.

We also performed Multistrand simulations using
the Kawasaki (3) method for assigning unimolecular
transition rates, for which kbi and kuni were also re-
calibrated; again this yielded nearly identical results
(Figure S6(B)).

Dependence on the ratio kuni/kbi. When the
invader is bound to the substrate by just one base of

the toehold, it can either dissociate, leading to unsuc-
cessful displacement, or form another base pair of the
toehold and proceed towards zippering. Since disso-
ciation is a bimolecular process, its rate is influenced
by kbi, while the rate of the unimolecular zippering
process is influenced by kuni. Decreasing kuni/kbi in-
creases the rate of the former relative to the latter.
Although this is true for both short and long toeholds,
short toeholds reach the state where the invader is
bound to the substrate by just one base more often
than long toeholds. So, decreasing kuni/kbi dispro-
portionately reduces the displacement rate of short
toeholds and increases the orders of magnitude ac-
celeration due to toehold length predicted by Multi-
strand (Figure S7).

S5 Measuring relative stability of
strand displacement intermediates

DNA sequence design. DNA oligonucleotide se-
quences were designed by modifying sequences from
Zhang and Winfree (1) by hand to get orthogonal
domains d and e. Secondary structures of oligonu-
cleotides and complexes were verified using the NU-
PACK web server (11) to be as intended.

Buffer conditions. DNA oligonucleotides were
stored at 4 ◦C in TE buffer (10 mM Tris.HCl pH
balanced to 8.0, with 1 mM EDTA.Na2, purchased
as 100x stock from Sigma-Aldrich). Prior to experi-
mentation, TE buffer containing 62.5 mM MgCl2 was
added at a ratio of 1:4 to the sample, resulting in a
final MgCl2 concentration of 12.5 mM, out of which
1 mM is bound to EDTA. This buffer was used to
prepare and store all oligonucleotide complexes, and
to conduct all temperature dependent absorbance ex-
periments, and will be referred to as “TE/Mg2+”
buffer.

Annealing and purification of complexes.
All DNA oligonucleotides were purchased from In-
tegrated DNA Technologies (IDT). Oligonucleotides
of length 60 bases or less were ordered with HPLC
purification, while those longer than 60 bases were
ordered with IE-HPLC purification. Concentrations
were estimated from absorbance at 260 nm (mea-
sured using a Thermo Scientific NanoDrop cuvette-
free spectrophotometer) using calculated extinction
coefficients (15).

All complexes Xi:Yj were prepared by annealing
Xi (at an approximate concentration of 25 µM) with
Yj (at 20% excess) in TE/Mg2+ buffer. All anneal-
ing operations were performed in an Eppendorf Mas-
tercycler Gradient thermocycler. The samples were
cooled at a constant rate from 95 ◦C to 20 ◦C in 90
min.

All complexes were purified by nondenaturing
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Figure S6: Multistrand simulations at 25 ◦C with different choices: (A) (i) in treating free energy contributions due to
dangles (10) (options “Some”(default), “None” and “All” in the NUPACK (11) energy model (12)) and (ii) with substrate
overhangs only as long as the toehold on the invader - i.e. matching length bottom toeholds on the substrate, rather than the
full 15 base overhang used by Zhang and Winfree (1) (B) different ways of assigning absolute transition rates for unimolecular
steps while satisfying detailed balance. Note that none of the variations are able to account for the experimental data points
(in black) from Zhang and Winfree (1); solid black line is their phenomenological model. Standard errors for Multistrand
simulations are under 1% (not shown).

Strand Sequence
Substrate 5′- GAAGTGACATGGAGA CGTAGGGTATTGAATGAGGG -3′

Incumbent 5′- CCCTCATTCAATACCCTACG -3′

Invader 5′- CCCTCATTCAATACCCTACG TCTCCATGTCACTTC -3′

Table S2: Sequences used in Multistrand simulations of strand displacement, with toeholds in italics. For toehold lengths less
than 15, the toehold of the invader is truncated to the appropriate length, measured from the 5’ end. For simulations with a
matching length substrate overhang, the toehold of the substrate was also truncated to match the toehold of the invader.

(ND) polyacrylamide gel electrophoresis (PAGE) by
running the samples on 12% gel at 150 V for approxi-
mately 6h. The acrylamide (19:1 acrylamide:bis) was
diluted from 40% acrylamide stock purchased from
Ambion. ND loading dye containing xylene cyanol
FF in 50% glycerol was added to all samples, result-
ing in a final gycerol concentration of 10% by volume.
The appropriate bands were cut out and eluted in 1
mL of TE/Mg2+ buffer for 2 days. Purified complexes
were quantitated from absorbance at 260 nm (mea-
sured using a Thermo Scientific NanoDrop cuvette-
free spectrophotometer) using calculated extinction
coefficients (15). Typical yields ranged from 40% to
60%.

Temperature-dependent absorbance exper-
iment protocols. Temperature-dependent ab-
sorbance experiments were performed using a Model
14 UV-Vis spectrophotometer, equipped with a water
bath temperature controller, from AVIV Biomedical,
Lakewood, NJ. UV absorbance at 260 nm between
20 ◦C and 90 ◦C was measured with a 1 nm band-
width using 1.6 mL quartz cuvettes. The tempera-
ture step was set at 0.1 ◦C/min with a 0.1 ◦C dead-
band and an equilibration time of 0.25 minutes. All
cuvettes were thoroughly cleaned before each exper-
iment: each cuvette was washed 15 times in distilled
water, once in 70% ethanol, another five times in dis-
tilled water, and finally once more in 70% ethanol.

One temperature-dependent absorbance experi-

ment consisted of: (i) heating from 20 ◦C to 90 ◦C,
before taking any measurements; (ii) annealing from
90 ◦C to 20 ◦C while measuring absorbance every
0.1 ◦C; (iii) holding for 2h at 20 ◦C; (iv) melting
from 20 ◦C to 90 ◦C while measuring absorbance ev-
ery 0.1 ◦C. All heating and annealing steps in an
experiment were at the temperature step mentioned
above (0.1 ◦C/min). An example of raw temperature-
dependent absorbance data at 200 nM obtained while
annealing (step ii) is provided in Figure S8.

For each complex, one sample was prepared at each
of four different concentrations. For each of those
samples, two runs of the temperature-dependent
absorbance experiment described above were per-
formed.

Two state model. We analyze the temperature-
dependent absorbance data using a two-state
model (16): each molecule is assumed to be either
in the fully bound state (Xi:Yj) or the fully dissoci-
ated state (Xi + Yj).

The raw absorbance data was smoothed by a mov-
ing average of 30 points (corresponding to a tem-
perature interval of 3 ◦C). The “melt fraction” or
fraction of complex dissociated at temperature T
(f(T )) was calculated by normalizing the average ab-
sorbance of the bound state (between [20 ◦C, 35 ◦C])
to 0 and that of the dissociated state (between a
concentration-dependent upper normalization range
- see Table S3) to 1. Note that the upper normaliza-
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Figure S7: The dependence of Multistrand predictions on kuni/kbi (red circles indicate default value of kuni/kbi). Error bars
are 3∗SE long where SE is the standard error. (A) Orders of magnitude acceleration in keff between toehold lengths 15 and 0
(A15,0), as predicted by Multistrand, as a function of log10(kuni/kbi). IEL(2.6, 0) predictions are shown for comparison. Even
implausibly low values of kuni/kbi do not result in acceleration that matches the experimentally observed value of 6.5 orders
of magnitude. (B) log10(keff) vs log10(kuni/kbi) for toehold lengths 15 and 0. The surprising non-monotonicity in (A) at the
lowest value of kuni/kbi is observed to arise from the disproportionately large decrease in log10(keff) for toehold length 15 in
(B). We hypothesize that this is likely a sequence dependent effect.
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Figure S8: Raw absorbance data (at 260 nm), while annealing, at a concentration of 200 nM. Measurements were taken every
0.1 ◦C between 20 ◦C and 90 ◦C. The lower temperature transition is the (bimolecular) formation of the complex, while the
higher temperature transition is the (unimolecular) formation of the hairpin. Data acquired by annealing and melting are
essentially superimposable.

tion range at a given concentration is the same for
all complexes. Our results are robust to the choice
of upper normalization range; this was verified by
repeating the analysis with [65, 67] ◦C as the upper
normalization range across all concentrations.

Given the initial concentration c of the complex
Xi:Yj, the melt fraction f(T ) at temperature T in the
two-state model can be calculated from (∆H◦,∆S◦)
as follows. Consider the reaction Xi + Yj � Xi:Yj,
at temperature T . Let us assume that the initial
concentration c of Xi:Yj dissociates to Xi and Yj at
concentration x each. Then, Xi:Yj is at concentra-
tion c − x. We know that the equilibrium constant
Keq(T ) is related to f(T ) as

Keq(T ) =
c− x
x2

=
1− f(T )

cf(T )2
(69)

Solving the quadratic equation for f(T ) ≥ 0, we get

f(T ) =
−1 +

√
1 + 4cKeq(T )

2cKeq(T )
(70)

Since Keq(T ) = exp(−∆G◦(T )
RT ), we may predict the

entire temperature-dependent melt fraction curve by
varying T appropriately.

For each complex, we infer (∆H◦,∆S◦) (and hence
∆G◦25, ∆G◦55) by fitting the predicted melt fraction
curves to smoothed and normalized absorbance data
across different concentrations. By comparing the
free energies of different complexes, we can infer the
contribution of the poly-T overhangs. We do this
in two ways: a Bayesian analysis and a descriptive
“leave-one-concentration-out” fit.

Bayesian analysis. We essentially discretize the
(∆H◦,∆S◦) space into a grid and calculate the like-
lihood that our experimental data for each complex

10



Concentration (nM) Upper normalization range ( ◦C)
100 [61, 63]
150 [63, 65]
200 [64, 66]
300 [65, 67]
400 [65, 67]
500 [65, 67]

Table S3: Melt fraction for each complex is calculated from smoothed absorbance data by normalizing the absorbance in the
[20, 35] ◦C range to 0 and the absorbance in the concentration-dependent upper normalization range, specified in this Table, to
1. Our results are robust to this choice; this was verified by repeating the analysis with [65, 67] ◦C as the upper normalization
range across all concentrations.
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Figure S9: Example posterior probability distributions obtained by Bayesian analysis over (A) (∆H◦,∆S◦) space and marginals
over (B) ∆G◦ at 55 ◦C, (C) ∆H◦ and (D) ∆S◦ for complex X10:Y10. All ∆G◦55 and ∆H◦ values are in kcal/mol while ∆S◦

values are in kcal/K/mol. Note that the 99% confidence interval is much more narrow for ∆G◦55 compared to ∆H◦ and ∆S◦.
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(all data traces at four concentrations) arose from
each candidate pair in the discretization, assuming
an independent Gaussian noise model. Normaliz-
ing the likelihood yields the posterior distribution for
∆H◦, ∆S◦ and ∆G◦ (e.g. Figure S9). We calcu-
late posterior means and 99% confidence intervals,
under the assumptions of the two-state model and
our Bayesian framework.

In other words, given candidate values of
the standard enthalpy and entropy of formation,
(∆H◦0 ,∆S

◦
0 ), for a particular complex, smoothed and

normalized absorbance data DTi,cj at a certain tem-
perature Ti and concentration cj is assumed to be
related to the predicted melt fraction fTi,cj as fol-
lows:

DTi,cj = fTi,cj + ξTi,cj (71)

where

ξTi,cj ∼ N (0, σ2
Ti,cj )

is independent additive Gaussian noise. That is,
ξTi,cj and ξTl,ck are assumed to be independent if
Ti 6= Tl or cj 6= ck. σ2

Ti,cj
is calculated as the sam-

ple variance of smoothed and normalized absorbance
data points at concentration cj in a neighborhood
around Ti (three points on either side of Ti).

With these assumptions, the likelihood of observ-
ing the data given the estimate (∆H◦0 ,∆S

◦
0 ) is simply

L(∆H◦0 ,∆S
◦
0 ) =

∏
Ti,cj

φfTi,cj
,σ2

Ti,cj
(DTi,cj ) (72)

where φµ,σ2 is the probability density function of the
Gaussian distribution with mean µ and variance σ2.

Starting with a uniform prior over the (∆H◦, ∆S◦)
grid, the posterior probability distribution is propor-
tional to the likelihood (this standard result from
Bayesian statistics is justified later). So, normalizing
the likelihood of observing our data, we can calculate
the posterior distribution:

P (∆H◦0 ,∆S
◦
0 ) =

L(∆H◦0 ,∆S
◦
0 )∑

∆H◦i ,∆S
◦
j

L(∆H◦i ,∆S
◦
j )

(73)

In practice, we first perform a coarse discretization
of (∆H◦,∆S◦) space in order to identify the region
containing non-zero values of the posterior probabil-
ity; we then perform a fine discretization of that re-
gion and evaluate the posterior probability over it.

Once we have the posterior probability over
(∆H◦,∆S◦) space, we find the smallest region con-
taining 99% of the probability, and then evaluate
marginal posterior probability distributions for ∆H◦,

∆S◦, ∆G◦25 and ∆G◦55 (Figure S9). The 99% confi-
dence intervals are relatively much narrower for ∆G◦55

than ∆H◦ or ∆S◦. This shows that our data per-
mits accurate comparison of the stability of our com-
plexes through ∆G◦, but cannot easily separate the
enthalpic and entropic contributions. Also note that
error bars and 99% confidence intervals are much
narrower for ∆G◦55 (Figure S10) compared to ∆G◦25

(Figure 8 in the main text). This is to be expected
because the former temperature is closer to the ex-
perimental melting temperature of our complexes.
With the assumptions in the two-state model and
our Bayesian framework, we report posterior means
and 99% confidence intervals for quantities of interest
(Table S5, Figure S10).

Relationship between posterior probability
and likelihood. We now recall that with a uni-
form prior, the posterior probability distribution is
proportional to the likelihood. For a more detailed
introduction, see Gelman et al. (17). Suppose θ is a
vector of parameters we want to infer, and that we
have data D which is informative about θ. Then, we
know

P(θ,D) = P(θ)× P(D|θ) = P(D)× P(θ|D) (74)

Therefore the posterior distribution P(θ|D) is ob-
tained by

P(θ|D) =
P(θ)× P(D|θ)

P(D)
(75)

Here, P(θ) is constant because we start with a uni-
form prior. P(D) =

∑
θ P(θ) × P(D|θ) is also inde-

pendent of θ. P(D|θ) is nothing but the likelihood.
Hence, with a uniform prior, the posterior distribu-
tion is proportional to the likelihood.

Leave-one-concentration-out analysis. This is
a simple and descriptive way of analyzing the data,
which essentially serves as a sanity check. Data
from each complex is analyzed separately to infer
the free energy of formation of that complex. We
measured temperature-dependent absorbance data at
four concentrations. Here, we sequentially leave out
data from one concentration at a time, thus gener-
ating four datasets, each containing data from three
concentrations. For each dataset, we perform a si-
multaneous nonlinear least squares fit (using the
Levenberg-Marquardt algorithm, implemented by a
built-in MATLAB function) of the predicted melt
fraction curves to the smoothed and normalized ab-
sorbance data across all three concentrations present
in the dataset. This procedure generates four esti-
mates of (∆H◦,∆S◦) of formation for each complex,
one for each leave-one-concentration-out dataset. We
then calculate ∆G◦25 and ∆G◦55 for each of those four
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Figure S10: ∆G◦ of formation (at 55 ◦C) of complexes in the strand displacement snapshot study (A) or the local overhang
study (B). Error bars in black indicate Bayesian posterior means and 99% confidence intervals. Error bars in red indicate means
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Complex ∆G◦25, avg ∆G◦25, sd ∆G◦55, avg ∆G◦55, sd

X20:Y00 -18.00 0.15 -10.35 0.023
X19:Y01 -16.48 0.14 -9.66 0.013
X18:Y02 -16.15 0.11 -9.62 0.031
X10:Y10 -16.03 0.14 -9.19 0.033
X02:Y18 -16.36 0.08 -9.32 0.029
X01:Y19 -16.44 0.16 -9.49 0.014
X00:Y20 -17.96 0.09 -10.24 0.027
X00:Y00 -19.17 0.31 -11.02 0.058
X01:Y01 -17.78 0.06 -9.98 0.017
X02:Y02 -16.92 0.27 -9.54 0.008
X05:Y05 -16.22 0.28 -9.32 0.028

Table S4: Leave-one-concentration-out mean and standard deviation for ∆G◦ at 25 ◦C and 55 ◦C, for each complex. All values
in kcal/mol.

Complex E[∆H◦] ∆H◦CI E[∆S◦] ∆S◦CI E[∆G◦25] ∆G◦25, CI

X20:Y00 -93.2 [-97.8, -88.8] -0.252 [-0.266, -0.239] -17.99 [-18.42, -17.56]
X19:Y01 -84.9 [-89.1, -81.0] -0.229 [-0.242, -0.217] -16.49 [-16.85, -16.16]
X18:Y02 -80.9 [-84.8, -77.3] -0.217 [-0.229, -0.206] -16.15 [-16.49, -15.84]
X10:Y10 -83.2 [-86.2, -80.4] -0.226 [-0.234, -0.217] -15.98 [-16.25, -15.73]
X02:Y18 -83.9 [-92.8, -80.1] -0.227 [-0.255, -0.215] -16.21 [-16.84, -15.87]
X01:Y19 -87.5 [-91.6, -83.5] -0.238 [-0.250, -0.226] -16.54 [-16.99, -16.19]
X00:Y20 -97.0 [-99.8, -89.8] -0.264 [-0.273, -0.242] -18.16 [-18.47, -17.54]
X00:Y00 -100.3 [-104.6, -96.2] -0.272 [-0.285, -0.260] -19.18 [-19.63, -18.74]
X01:Y01 -95.8 [-103.5, -88.1] -0.262 [-0.285, -0.238] -17.82 [-18.49, -17.16]
X02:Y02 -89.9 [-94.3, -85.6] -0.245 [-0.258, -0.232] -16.92 [-17.30, -16.55]
X05:Y05 -83.9 [-92.0, -78.7] -0.227 [-0.252, -0.211] -16.17 [-16.78, -15.75]

Table S5: Bayesian posterior means and 99% confidence intervals for ∆H◦, ∆S◦ and ∆G◦25 for each complex. ∆H◦ and ∆G◦25
values are in kcal/mol while ∆S◦ is in kcal/K/mol.
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estimates and report the mean and standard devia-
tion, for each complex (Table S4).

S6 Coarse-grained molecular model-
ing

A Coarse-grained molecular model. OxDNA
and its interaction potentials have been described
in detail by Ouldridge. (18) Code implement-
ing OxDNA is available for public download
(http://dna.physics.ox.ac.uk/). OxDNA represents
DNA as a string of nucleotides, where each nucleotide
(sugar, phosphate and base group) is a rigid body
with interaction sites for backbone, stacking and
hydrogen-bonding interactions. The potential energy
of the system can be decomposed as

V =
∑
〈ij〉

(
Vb.b. + Vstack + V

′

exc

)
+

∑
i,j /∈〈ij〉

(VHB + Vcr.st. + Vexc + Vcx.st.) , (76)

where the first sum is taken over all nucleotides that
are nearest neighbors on the same strand and the
second sum comprises all remaining pairs. The inter-
actions between nucleotides are schematically shown
in Figure S11. The backbone potential Vb.b. is an
isotropic spring that imposes a finite maximum dis-
tance between backbone sites of neighbours, mimick-
ing the covalent bonds along the strand. The hy-
drogen bonding (VHB), cross stacking (Vcr.st.), coax-
ial stacking (Vcx.st.) and stacking interactions (Vstack)
are anisotropic and explicitly depend on the relative
orientations of the nucleotides as well as the distance
between the relevant interaction sites. This orien-
tational dependence captures the planarity of bases,
and drives the formation of helical duplexes. The
coaxial stacking term is designed to capture stacking
interactions between bases that are not immediate
neighbours along the backbone of a strand. Bases
and backbones also have excluded volume interac-
tions Vexc or V

′

exc.
Hydrogen-bonding interactions are only possible

between complementary (A-T and C-G) basepairs,
but no other sequence-dependence is included in
oxDNA. Consequently, the interactions were fitted to
reproduce melting temperatures of ‘average’ oligonu-
cleotides, obtained by averaging over the parameters
of SantaLucia’s nearest-neighbour model (19), and
the structural and mechanical properties of double-
and single-stranded DNA.

oxDNA does not have any explicit electrostatic in-
teractions. It was fitted to reproduce DNA behavior
at salt concentration [Na+] = 0.5M, where the elec-
trostatic properties are strongly screened, and it may

Vcoaxial stack

Vbackbone

Vstack

VH.B.

Vcross stack

Figure S11: A model DNA duplex, with stabilising interac-
tions depicted schematically. The backbone sites are shown as
spheres, the bases as ellipsoids. Backbone colouring indicates
strand identity. All nucleotides also interact with repulsive ex-
cluded volume interactions. The coaxial stacking interaction
acts like a stacking interaction between bases that are not im-
mediate neighbours along the backbone of a strand.

be reasonable to incorporate them into a short-ranged
excluded volume. Possible issues related to salt con-
centrations are discussed in the main text. It should
be noted that the oxDNA neglects several features of
the DNA structure and interactions due to the high
level of coarse-graining. Specifically, the double helix
in the model is symmetrical rather than the grooves
between the backbone sites having different sizes (i.e.,
major and minor grooving), and all four nucleotides
have the same structure.

Simulation Techniques. The thermodynamic
properties of the molecular model are obtained by
averaging over the Boltzmann distribution

ρ(rN ,pN ,qN ,LN ) ∝ e(−βH(rN ,pN ,qN ,LN )). (77)

Here H is the system Hamiltonian, which is a func-
tion of positional and angular particle coordinates
rN and qN and their generalized momenta pN and
LN . As the terms containing pN and LN in H
are separable and can be analytically integrated out,
the probability of a certain configuration is propor-
tional to a Boltzmann factor for its potential energy,
exp(−βV (rN ,qN )). Obtaining kinetic properties re-
quires an additional choice of dynamics. The Virtual
Move Monte Carlo (VMMC), and Langevin Dynam-
ics (LD) algorithms used for thermodynamic and ki-
netic properties respectively are outlined in the fol-
lowing sections.

Virtual Move Monte Carlo. Monte Carlo tech-
niques involve randomly generating trial moves of a
system consisting of a set of particles, and accepting
those moves with probabilities that ensure the simula-
tion samples from the distribution given in equation
77. The widely used Metropolis Monte Carlo algo-
rithm (MMC) (4) attempts random moves of single
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Figure S12: Examples of initial ‘single particle’ seed moves at-
tempted in our implementation of the VMMC algorithm. (A)
Initial state. (B) New state obtained from (A) after rotating
the central nucleotide about its backbone site. (C) New state
obtained from (A) after translating the central nucleotide. In
each of the new states, the flanking nucleotides act as a ref-
erence: they have exactly the same position and orientation
as in (A). Once an initial ‘seed’ move such as (B) or (C) has
been selected, clusters are grown from this seed in the manner
outlined by Whitelam et al. (20)

particles, and accepts those moves with a probability

Pacc(µ→ ν) = min{1, exp (−β(V ν − V µ))}, (78)

where µ and ν represent initial and final states re-
spectively. Although simple to implement, MMC can
struggle to equilibrate strongly interacting systems
as moves of single particles tend to generate large in-
creases in energy, and are therefore rejected.

The VMMC algorithm (21, 20) overcomes this
problem by generating clusters that depend on en-
ergy changes resulting from attempted moves (we use
the variant presented in the appendix of Whitelam et
al. (20)). A random single particle move is chosen,
and energy changes due to that move are calculated
with all neighbours of the seed particle. Those par-
ticles for which the energy is increased are proba-
bilistically added to the cluster, and move together
with the seed particle. The process is then repeated
with neighbours of the newly added particles, until no
more new links are formed. Due to the statistical bi-
ases introduced during cluster building, a more com-
plex acceptance factor than equation 78 is required
in order to satisfy detailed balance.

In the context of the molecular model studied in
this work, a ‘single particle’ is a nucleotide, and
the attempted moves are translation of a whole nu-
cleotide and rotation of a nucleotide about its back-
bone site. These moves are illustrated in Figure S12.

Umbrella sampling. Despite the efficiency of
VMMC, obtaining accurate statistics for the free-
energy landscape of displacement and the stability of
a duplex can be difficult. Equilibration can be accel-
erated by flattening free-energy barriers with an arti-
ficial biasing weight W (rN ,qN ) (22). A lower barrier
means transitions occur more quickly, and equilibra-
tion is accelerated. The thermodynamic expectation
of any variable A follows from the biased sample ob-
tained as

〈A〉 =

∫
drNdqNA(rN ,qN )e−βV (rN ,qN )∫

drNdqNe−βV (rN ,qN )

=

∫
drNdqN A(rN ,qN )

W (rN ,qN )
W (rN ,qN )e−βV (rN ,qN )∫

drNdqN 1
W (rN ,qN )

W (rN ,qN )e−βV (rN ,qN )

=
〈A(rN ,qN )/W (rN ,qN )〉W

〈1/W (rN ,qN )〉W
. (79)

Here 〈〉W indicates the expectation found
by sampling from the biased distribution
W (rN ,qN ) exp(−βV (rN ,qN )). For simulations
in this paper an initial W (rN ,qN ) was chosen from
experience, and improved by hand as required.

Langevin Dynamics. Langevin Dynamics is an
approach for generating diffusive motion of coarse-
grained models with implicit solvent. The principle
is that the solvent exerts both random forces and dis-
sipative drag on the solute, and that the two are re-
lated by a fluctuation-dissipation relation to ensure
that the steady-state distribution is given by equation
77. Newton’s equations, with the addition of these
solvent-mediated forces, can then be integrated to
give dynamical trajectories. In this work, we use the
quaternion-based algorithm of Davidchack et al. (23)
as an efficient methodology for simulating rigid bod-
ies.

To use this algorithm, it is necessary to specify a
friction tensor relating the drag forces experienced
by a particle to its momenta. For simplicity, we as-
sume each nucleotide interacts with the solvent in
a spherically symmetric manner, meaning that the
task is reduced to identifying linear and rotational
damping coefficients, γ and Γ. We choose values
of γ = 0.59 ps−1 and Γ = 1.76 ps−1. These values
are around one to two orders of magnitude smaller
than would be inferred for a objects the size of nu-
cleotides in a fluid with the viscosity of water. Lower
friction coefficients accelerate dynamics, which would
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have been prohibitively slow otherwise, but still re-
produce diffusive motion. It is reasonable to assume
that, for the comparison of relative rates of similar
processes, this choice will not be overly important
given the number of approximations already inherent
in the oxDNA. Indeed, simulations with γ = 5.9 ps−1

and Γ = 17.6 ps−1 showed no measurable difference in
the probability of successful displacement for a 3-base
toehold once attached. Furthermore, the sequence
of states visited during unbiased VMMC simulations
provides another (less rigorous) approximation to dy-
namics. These simulations give a somewhat lower
success rate of displacement from a toehold-bound
state than LD. The net effect, however, is simply a
shifting of the start of the plateau by around half
a base pair, and the qualitative arguments are still
valid. These results suggest the findings presented
here are not strongly sensitive to the choice of dy-
namics. Simulations reported in this work were per-
formed with a time step of 5.13 fs. As shown by
Ouldridge (18), such a time step reproduces the av-
erage energies of a duplex and the hairpin-folding ki-
netics obtained with much smaller integration time
steps.

Forward flux sampling. Forward flux sampling
(FFS) allows the calculation of the flux between two
local minima of free energy, and also sampling from
the ensemble of trajectories that link the two minima
(24, 25). The term ‘flux’ from (meta)stable state A
to state B has the following definition.

Given an infinitely long simulation in
which many transitions are observed, the
flux of trajectories from A to B is ΦAB =
NAB/(τfA), where NAB is the number of
times the simulation leaves A and then
reaches B, τ is the total time simulated and
fA is the fraction of the total time simulated
for which state A has been more recently
visited than state B.

The concept of flux is therefore a generalization of
a transition rate for processes that are not instanta-
neous: it incorporates the time spent in intermediate
states between A and B. In our simulations of dis-
placement, state A is the initial configuration of in-
cumbent bound to substrate, with invading strand
unattached, and B is the state with the invading
strand bound to the substrate with the incumbent
strand unattached. The three-stranded complexes in-
volved in branch migration are intermediate states.

In the experimental work of Zhang and Winfree (1),
bimolecular rate constants for strand displacement

Figure S13: Schematic illustration of FFS. The space is di-
vided into different values of the order parameter Q by inter-
faces, with Q values indicated by numbers in the figure. We
wish to estimate the flux from Q = −2 to Q = Qmax = 3.
(A) First stage, estimating the flux across the interface λ0

−1
between Q = −1 and Q = 0. Circles indicate crossings of the
interface that contribute to the flux; only positive crossings are
counted, and only the first crossing since leaving Q = −2. (B)
Subsequent stages, estimating the probability of reaching in-

terface λQQ−1 from λQ−2
Q−1. In this example, two trajectories are

launched from each point at the prior interface. These trajec-

tories end either by successfully reaching λQQ−1 , or by failing

and returning to λ−1
−2.

are measured using bulk systems at low concentra-
tions (∼nM). In our simulations, we use three strands
in a periodic cell of volume 1.67 × 10−20 L. The pe-
riodic boundary conditions allow us to mimic a bulk
system, and the volume used corresponds to a con-
centration of approximately 100 µM for each strand.
If the simulation time spent in intermediate states
were negligible, fluxes could then be taken directly
as instantaneous reaction rates, allowing bimolecular
rate constants to be inferred and compared to experi-
ments. At such a high concentration as 100 µM, how-
ever, we find that the time scale for resolving a three-
stranded complex (when either displacement is com-
pleted, or the invading strand detaches) can be a sig-
nificant contribution to the overall displacement re-
action time. It is reasonable to assume that the time
required to resolve the three-stranded complex does
not scale with simulation concentration, and there-
fore should not contribute to rate constants at the
low concentrations typical of experiment. To make
a fair comparison to experiment, therefore, we must
not include time spent in three-stranded complexes in
our estimate of the flux. Mathematically, this corre-
sponds to redefining fA so that it doesn’t include time
spent in three-stranded intermediates. The measure-
ments of flux thus recorded are reported in the main
text as transition rates, as the assumption of instan-
taneous transitions for a dilute solution is implicit in
the measurement process.

FFS is illustrated schematically in Figure S13. We
first discuss FFS generally, before specifying the im-
plementation for our system. We require an order
parameter Q that measures the extent of the reac-
tion, such that non-intersecting interfaces λQQ−1 can
be drawn between consecutive values of Q. We de-
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fine the lowest value of Q as Q = −2 because the
procedure for interfaces λQQ−1 with Q > 0 is distinct
from that for Q ≤ 0. Initially, simulations are per-
formed that begin in the lowest value of Q and the
flux of trajectories crossing the surface λ0

−1 (for the
first time since leaving Q = −2) is measured. Note
that the simulation is not restarted when trajectories
cross λ0

−1.
The total flux of trajectories from Q = −2 to the

alternative minima (Q = Qmax) is then calculated
as the flux across λ0

−1 from Q = −2, multiplied
by the conditional probability that these trajecto-
ries reach Q = Qmax before returning to Q = −2,
P (λQmax

Qmax−1|λ0
−1). This probability can be factorized

into the product of the probabilities of trajectories
starting from the interface λQQ−1 reaching the inter-

face λQ+1
Q before returning to Q = −2

P (λQmax

Qmax−1|λ
0
−1) = ΠQmax

Q=1 P (λQQ−1|λ
Q−1
Q−2). (80)

The simulation then proceeds by randomly loading
microstates which correspond to the crossing of λ0

−1,
and using these as initial points from which to es-
timate P (λ1

0|λ0
−1). The process is then iterated for

successive interfaces, allowing the estimation of flux
and the construction of trajectories sampled from the
distribution of transition pathways.

Simulation implementation.
Kinetics of displacement. Three strands of DNA

(substrate, incumbent and invading strand, with se-
quences as given in the Table S6) were simulated in
a periodic cubic cell of 1.67× 10−20 l, at a tempera-
ture of T = 25◦C, using the LD algorithm with FFS.
Strands were initialized with the incumbent bound to
the substrate and the invading strand separate, and
equilibrated for 0.513 µs. Given the diffusion con-
stant of model DNA (∼ 10−9 m2s−1 for our system
with γ = 0.59 ps−1 and Γ = 1.76 ps−1), this is ap-
proximately the time required for the reactant DNA
molecules to diffuse by the length of the simulation
cell. It is also far longer than the decorrelation time
of the potential energy of the reactants (around 1 ns).

To simplify the sampling, we used an approach in
which only the expected base pairs between the in-
cumbent and the substrate or the invading strand and
the substrate are given non-zero binding strength - we
shall refer to these base pairs as correct base pairs. In
a full system, incorrect base pairs can potentially con-
tribute to association processes, typically through the
formation of metastable misbonded structures that
then relax into the intended configuration (26). The
metastability of these misbonded structures would
make them difficult to incorporate into the FFS sim-
ulations of displacement. As the sequences used by

Zhang and Winfree (1) were deliberately designed
to minimize the occurrence of misbonded configura-
tions, we expect that this simplification should have
minor systematic effects on our measurements. We
also tested this assumption by measuring the rate at
which two strands, corresponding to a full invader
with a toehold of six bases and the 15-base toehold
domain of the substrate, formed the intended 6-base-
pair toehold. In one case we considered only native
interstrand interactions, in the other we allowed all
possible complementary base pairs. We found that
allowing non-native base pairs increased association
rates by approximately 50%, a small effect given the
range of relative displacement rates considered in this
work. More details are provided in the following sec-
tions.

The order parameter Q used for FFS up to the
attachment of the invading strand to the substrate is
the same for all toehold lengths, and the definition
is given in Table S7. For this parameter, a potential
correct base pair between the invading and substrate
strands is counted as nearly formed if

• The separation of hydrogen bonding sites is ≤
0.85 nm.

• The hydrogen-bonding potential consists of a
separation dependent factor multiplied by a
number of modulating angular factors. At most
one of these factors that contributes multiplica-
tively to the hydrogen-bonding energy is zero.

• The hydrogen-bonding energy is less negative
than −2.98 kcal mol−1.

In this context, a ‘correct’ base pair is a base pair
that is expected in the final substrate/invading strand
duplex. Physically, these conditions mean that the
bases are close and fairly well aligned, but not form-
ing a strong base pair.

For higher values (Q > 4), the order parameter
definition depends on toehold length. For shorter
toeholds, a greater number of interfaces are needed
to measure the flux accurately. Successive values of
Q correspond to increasing numbers of correct base
pairs (with a hydrogen-bonding energy more negative
than −2.98 kcal mol−1) between the invading strand
and the substrate. Finally, the maximum value of Q
corresponds to the invading strand having the max-
imum number of base pairs with the substrate, and
all correct base pairs for the incumbent and substrate
strand having a distance of at least 2.56 nm between
hydrogen-bonding sites. The explicit definitions of
Q > 4 for each toehold are given in Table S8.

For each toehold length, 100 independent simula-
tions were performed to measure the initial flux. In
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Duplex Sequence (5′–3′)
Substrate GACATGGAGACGTAGGGTATTGAATGAGGG
Incumbent TCCCTCATTCAATACCCTACG

Invader CCCTCATTCAATACCCTACG[TCTCCAT]

Table S6: Sequences used in simulations of strand displacement. Bases in italics constitute the primary branch migration
domain. The bases in square brackets indicate those that are added to create a toehold.

Order parameter Q Separation d/nm Nearly-formed bp n Formed bp b

Q = −2 d > 5.11 0 0
Q = −1 5.11 ≥ d > 3.42 0 0
Q = 0 3.42 ≥ d > 2.56 0 0
Q = 1 2.56 ≥ d > 1.71 0 0
Q = 2 1.71 ≥ d > 0.85 0 0
Q = 3 d ≤ 0.85 0 0
Q = 4 d ≤ 0.85 n ≥ 1 0

Table S7: Order parameter definitions for early stages of FFS simulations of displacement, up to the stage of attachment of the
invading strand to the substrate. The separation d is the minimum distance between hydrogen-bonding sites over all potential
correct base pairs in the invading and substrate strands.

Q 0,1 2 3 4

5 b = 1 b = 1 1 ≤ b < 3 1 ≤ b < 4
6 2 ≤ b < 4 2 ≤ b < 5 3 ≤ b < 8 4 ≤ b & Q 6= Qmax

7 4 ≤ b < 10 5 ≤ b < 9 8 ≤ b & Q 6= Qmax Q = Qmax

8 10 ≤ b & Q 6= Qmax 9 ≤ b & Q 6= Qmax Q = Qmax

9 Q = Qmax Q = Qmax

Q 5 6 7

5 1 ≤ b < 5 1 ≤ b < 6 1 ≤ b < 7
6 5 ≤ b & Q 6= Qmax 6 ≤ b & Q 6= Qmax 7 ≤ b & Q 6= Qmax

7 Q = Qmax Q = Qmax Q = Qmax

Table S8: Order parameter definitions for the later stages of FFS simulations of displacement. b is the number of base pairs
between substrate and invading strand with hydrogen-bonding energy more negative than −2.98 kcal mol−1. Q = Qmax is
defined as b having its maximum value (toehold length plus branch migration domain length) and all correct base pairs for the
incumbent and substrate strand having a distance of at least 2.56 nm between hydrogen-bonding sites.
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each simulation, 10 states at the interface λ0
−1 were

collected, giving 1000 in total (a typical number in
FFS simulations (24, 25)). Crossings of the λ0

−1 inter-
face were saved with a 10 % probability, meaning that
∼ 100 crossings were observed in total for each inde-
pendent simulation. Saving states with only a 10 %
probability ensures that the 1000 states collected are
more statistically independent than otherwise. For
each subsequent interface, a large number of trajec-
tories were launched and those that reached the next
interface before returning to Q = −2 were saved. The
number of attempts and successes for each interface
are given in Table S9.

Uncertainties in the measurements can be esti-
mated in the following manner. As 100 independent
simulations were performed for each toehold length
to measure the initial flux, the standard error can be
estimated in the usual way. Assuming we have ob-
tained a representative set of states at each interface,
the later stages can be modelled as Bernoulli trials –
the probability of success measured after N attempts
has a variance of p(1−p)/N , where p is the true prob-
ability of success. The measured p can then be used
to estimate the standard error on p for each stage.
The errors for individual stages can then be added
in quadrature, and overall errors are given alongside
the overall fluxes in Table S9. Note that this estima-
tion of errors assumes that the set of states at each
interface is a representative sample of the true distri-
bution. As such, this error estimate is a lower bound
on the true uncertainty. In particular, the assump-
tion will be weakest for the 0-base toehold, where the
number of completely independent reactive trajecto-
ries is small. However, given that the relative rates
for different toehold lengths in the exponential regime
are approximately consistent with what would be ex-
pected from the known thermodynamics of oxDNA,
and that the overall difference between the shortest
and longest toeholds is larger than six orders of mag-
nitude, errors due to measurement uncertainty are
unlikely to affect our conclusions.

In some simulations involving the longer toeholds,
complete (and long-lived) binding to the toehold oc-
curred during the initial measurements of the flux
across λ0

−1. In a conventional implementation of
FFS (24, 25), the time spent in these states would
be included in the estimate of the flux. As stated in
the main text, however, for comparison to dilute sys-
tems we wish to ignore time spent in three-stranded
complexes. Therefore these simulations were ended
early, and the time spent bound to the toehold was
disregarded. These binding events are not useless,
however: the frequency with which they occurred can
be compared to the predictions of FFS. The number

of unsolicited binding events (9 in total for ∼ 0.63 ms
of total simulation time for toeholds of length 4, 5,
6 and 7) is consistent with the predictions of FFS
(∼ 15 ms−1), suggesting that the implementation of
FFS is reliable.

Simulations of association allowing non-native base
pairs. We measured the rate at which two strands,
corresponding to a full invader with a toehold of six
bases and the 15-base toehold domain of the sub-
strate (see Table S6) formed the intended 6-base-pair
toehold, both with and without non-native interac-
tions between the strands (intrastrand hairpins were
allowed in both cases). The order parameters used,
which are very similar to those used in the initial
stages of the displacement simulations, and the re-
sults, are given in Table S10. 20 initial flux simula-
tions were initialized for 0.86µ s each before sampling
was started, and simulations that reached Q = 7 were
restarted to avoid including the time taken to resolve
a misbonded complex in the flux calculation (as such
a time would be negligible compared to diffusional
time scales at the low concentrations relevant to ex-
periment). Errors are estimated analogously to those
for displacement.

As can be seen from Table S10, although the
rate of formation of structures with six base pairs is
much faster when non-native interactions are present,
many of these structures involve misbonds that sub-
sequently melt. The overall result is that non-native
interactions accelerate binding by only 50%, suggest-
ing that the systematic effect of ignoring non-native
base pairs on the relative rates of displacement for
different toehold lengths is small.

Free energy profiles of displacement. Free energy
profiles of displacement were sampled using VMMC
simulations of the three strands at a temperature T =
25◦C. In this work, the trial moves used to generate
VMMC clusters were:

• Rotation of a nucleotide about its backbone site,
with the axis chosen from a uniform random dis-
tribution and the angle from a normal distribu-
tion with mean of zero and a standard deviation
of 0.12 radians.

• Translation of a nucleotide with the direction
chosen from a uniform random distribution and
the distance from a normal distribution with
mean of zero and a standard deviation of 1.02 Å.

These trial moves are illustrated in Figure S12. The
variances are chosen from experience to provide ef-
ficient sampling. Umbrella sampling was performed
using a biasing of the system according to the num-
ber of base pairs between the substrate and the in-
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Target Toehold length
interface 0 1 2 3

λ0
−1 9581 (181 µs) 10400 (201 µs) 10532 (191 µs) 9851 (175 µs)

λ1
0 10000 / 4031 10000 / 4406 10000 / 4187 10000 / 4264
λ2

1 10000 / 4607 10000 / 4716 10000 / 4588 10000 / 4627
λ3

2 10000 / 2304 10000 / 2468 10000 / 2635 10000 / 2721
λ4

3 10000 / 1415 10000 / 1973 10000 / 2436 10000 / 2405

λ5
4 50000 / 179 30000 / 745 25000 / 728 20000 / 765

λ6
5 30000 / 526 15000 / 1877 3000 / 942 4500 / 1036

λ7
6 60000 / 289 50000 / 315 16001 / 462 2000 / 261
λ8

7 10000 / 1025 5000 / 325 2500 / 319 200 / 50
λ9

8 300 / 149 300 / 131 300 / 92

flux and 4.97× 10−3 0.292 7.06 210
error / s−1 6.5× 10−4 3.4× 10−3 0.89 31

Target Toehold length
interface 4 5 6 7

λ0
−1 10179 (168 µs) 9859 (163 µs) 9617 (158 µs) 9148 (143 µs)

λ1
0 10000 / 4316 10000 / 4497 10000 / 4229 10000 / 4327
λ2

1 10000 / 4632 10000 / 4778 10000 / 4642 10000 / 4768
λ3

2 10000 / 2732 10000 / 2920 10000 / 2999 10000 / 2966
λ4

3 10000 / 2575 10000 / 2785 10000 / 3151 10000 / 3227

λ5
4 20000 / 797 10000 / 408 10000 / 490 10000 / 490

λ6
5 3000 / 767 3000 / 967 1000 / 289 1000 / 290

λ7
6 200 / 51 199 / 177 100 / 100 100 / 100

flux and 2.22× 103 1.24× 104 1.61× 104 1.81× 104

error / s−1 300 840 1.2× 103 1.4× 103

Table S9: Trajectories attempted/successful at each stage of FFS for all toehold lengths. For λ0
−1, values are given for the total

number of trajectories crossing λ0
−1 (for the first time since leaving Q = −2), and the total simulation time taken. The interfce

corresponding to the formation of the first base pair is highlighted in yellow, and the interface corresponding to the formation
of the full toehold in green (when this is distinct from the first bp).
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Order parameter Q Definition Native interactions only Non-native interactions permitted

Q = −2 d > 5.11
Q = −1 5.11 ≥ d > 3.42 Crossings of λ0

−1 (simulation time / µs)
Q = 0 3.42 ≥ d > 2.56 8195 (69.3) 8145 (66.9)

Attempts/successes at reaching λQQ−1 from λQ−1
Q−2

Q = 1 2.56 ≥ d > 1.71 10000/4327 10000/4416
Q = 2 1.71 ≥ d > 0.85 10000/5186 10000/5167
Q = 3 0.85 ≥ d & n = 0 10000/5333 10000/5152
Q = 4 n ≥ 1 & b = 0 & c = 0 10000/968 10000/5333
Q = 5 b = 1 & c = 0 12000/852 12000/2094
Q = 6 b ≥ 2 & 6 > c ≥ 1 7500/3468 12000/3213
Q = 7 c ≥ 6 [& cnat < c ] 2500/1879 5850/2251
Q = 8 c ≥ 6 & cnat = c 277/104

Overall flux (and error) / s−1

3.83× 104 (1.57× 103) 5.15× 104 (3.28× 103)

Table S10: Order parameter definitions FFS simulations of association for an invader with a 6-base toehold and the 15-base
toehold domain of the substrate, and simulation results. The separation d is the minimum distance between hydrogen-bonding
sites over all pairs of bases in the invading and substrate strands. n is the number of nearly formed base pairs, as defined in
the text. b is the number of base pairs with energy more negative than −1.43 kcal/mol, and c the number of base pairs with
energy more negative than −1.79 kcal/mol. cnat is the number of those base pairs which are native (i.e., the intended toehold
base pairs). In the native-only simulations, cnat = c by definition, and Q = 7 is the maximal value in this case.

cumbent strand, and the substrate and the invad-
ing strand. The umbrella biasing potential forbade
complete detachment of any strand. States were
recorded in histograms according to the intact base
pairs between invading and substrate strands clos-
est to the 3′ end of the substrate. Further, states
were divided between coaxially stacked and unstacked
macrostates according to the configurations of the
nucleotides between the final base to which the in-
vading strand was paired and the first base to which
the incumbent was bound. If any of these sub-
strate bases was not stacked with its neighbour, the
state was deemed to be coaxially unstacked. For the
purpose of these simulations, an interaction energy
(hydrogen-bonding or stacking energy) more negative
than −0.60 kcal mol−1 was counted as an instance of
hydrogen-bonding or stacking, as appropriate. Final
data was obtained from 10 simulations of 4 × 1010

attempted VMMC moves.

Duplex formation. To measure the effect of ssDNA
overhangs on melting equilibria, simulations of the
hybridization of a strand to the single-stranded over-
hang of a hairpin were performed. Dangling poly(dT)
overhangs of various lengths were included to indicate
the destabilizing effect of excess ssDNA at a junction.
Hairpin stems of length 12, with a loop of length 6,

were used. Complementary sections of length 6 and
8 were used to allow accurate estimates of the desta-
bilization at 25◦C and 55◦C. The sequences used are
provided in Table S11.

In this case, all complementary base pairs were al-
lowed to form hydrogen bonds. VMMC simulations
were performed in periodic simulation cells of volume
1.67× 10−20l at a range of temperatures in the vicin-
ity of 25◦C and 55◦C. Histogram reweighting (27) was
used to infer the results at the desired temperatures.
4 simulations of 4 × 1010 steps each were performed
in a periodic cubic cell of volume 3.96×1020 l for each
system, with attempted moves identical to those used
for the displacement landscape (except that rotations
were drawn from a distribution with a standard de-
viation of 0.2 radians and displacements from a dis-
tribution with standard deviation 1.7 Å) . Umbrella
sampling as a function of the number of interstrand
base pairs was used to accelerate sampling. The ra-
tio of bound to unbound states in simulations, φ,
was recorded (any state with at least one interstrand
hydrogen-bond more negative than −0.60 kcal mol−1

was counted as bound). The free-energy of formation
follows as ∆G = −RT lnφ: values for various com-
binations of ssDNA overhangs are reported in Ta-
ble 2. For each system, free energies inferred from
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Molecule Sequence
Hairpin 5′-(TTTTTTTTTT) [GTACATCTGAAG] TTTTTT [CTTCAGATGTAC] TACCGT{AG}-3′
ssDNA 5′- {CT}ACGGTA(TTTTTTTTTT) -3′

Table S11: Sequences used in simulations of the hybridization of a strand to the single-stranded overhang of a hairpin to measure
the effect of ssDNA overhangs on melting equilibria. Bases in brackets “()” represent the overhangs, which are not present in
every simulation. Bases enclosed by “{}” are only used in simulations of the 8-base hybridization. Square brackets “[]” enclose
the stem of the sequence.

the 4 separate simulations were consistent to within
∼ 0.1 kcal mol−1.

S7 Notes on 1D Landscape Models
A sequence-dependent free energy landscape
for RNA strand displacement. Figure S14 shows
the sequence-dependent free energy landscape for
strand displacement with a 10-base toehold at 25◦C
predicted by efn2 (28, 29). From this we infer that
their model accounts for junction-context only when
the junction is part of an ‘interior multiloop’; dur-
ing branch migration, the overhangs at the junction
form an ‘exterior loop’, for which it appears that the
coaxial stacking terms are not calculated.

Comparing IEL predictions to a prior phe-
nomenological model. We present below the for-
mulae derived by Zhang and Winfree (1) using their
phenomenological model of reversible toehold ex-
change, restricted to the irreversible strand displace-
ment case. We use their equations 1 and 2, in the
limit where the 0-length “reverse toehold” dissocia-
tion rate is arbitrarily large, as further described in
their Figure 8. Denoting their effective bimolecular
rate constant for strand displacement by kZW

eff (h), we
have

kZW
eff (h) ≈ kf kb

krev(h) + kb
(81)

where

krev(h) ≈ 2 kf
b
e−|∆G

◦(h)|/RT (82)

and

kb ≈
400

b2
. (83)

kf ≈ 3 × 106 /M/s is their fitted rate constant for
toehold hybridization, kb is their fitted rate constant
for crossing the “half-way point” of branch migration,
krev(h) is the calculated unimolecular rate constant
for toehold dissociation, b is the length of the branch
migration domain, and |∆G◦(h)| is the absolute free
energy of binding between the toehold and its com-
plement.

We compared the dependence of strand displace-
ment kinetics on branch migration domain length as
predicted by IEL(5.3, 2.0) and the phenomenologi-
cal model of Zhang and Winfree (1) (Figure S15).
Numerically, predictions of their phenomenological

model are quite consistent with the IEL’s predictions
in the cases we examined.
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Figure S14: The sequence-dependent free energy landscape of
strand displacement for a 10-base toehold at 25◦C predicted
by efn2 for RNA molecules. States A–F correspond to those
in the IEL analysis, Figure 3 of the main text.
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Figure S15: Predicted dependence of keff on toehold length
for various lengths of the branch migration domain. IEL(5.3,
2.0)’s predictions are marked by filled circles and solid lines,
while predictions of the phenomenological model of Zhang and
Winfree (1) are indicated by crosses and dashed lines.
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