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Abstract. Algorithmic DNA tile systems have the potential to allow
the construction by self-assembly of large structures with complex
nanometer-scale details out of relatively few monomer types, but are
constrained by errors in growth and the limited sequence space of orthog-
onal DNA sticky ends that program tile interactions. We present a tile
set optimization technique that, through analysis of algorithmic growth
equivalence, potentially sensitive error pathways, and potential lattice
defects, can significantly reduce the size of tile systems while preserv-
ing proofreading behavior that is essential for obtaining low error rates.
Applied to systems implementing multiple algorithms that are far beyond
the size of currently feasible implementations, the optimization technique
results in systems that are comparable in size to already-implemented
experimental systems.

1 Introduction

Self-assembling DNA tile systems provide a mechanism for implementing com-
plex self-assembly behaviors at a molecular scale [22,30]. Both simple periodic
structures with a range of attachment and lattice configurations, and “uniquely-
addressed” structures of single copies of thousands of different monomers, have
been demonstrated experimentally [21,26,32,33]. In between, algorithmic tile
systems can employ a small number of monomer types that perform potentially
arbitrary computation during growth to construct large structures with com-
plex, small-scale details [7,34]. Additionally, using the choice of initial seed or
presence of a particular monomer type as an input to a computation, the same
algorithmic tile system can grow substantially different assemblies.

The number of monomer types in a tile system affects its cost and is a
frequently-used measure of complexity [23,31]. The number of glues, however,
is a potentially more limiting constraint. Implemented as short, single-stranded
“sticky ends” of DNA, glues are limited by sequence space and spurious binding
between subsequences of non-complementary sticky ends [10], particularly for
the 5 to 6 nucleotide sticky ends in the widely-used double-crossover (DX) tile
motifs [12]. Uniquely-addressed systems can assemble largely-correct structures
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Fig. 1. An example of an algorithmic tile system designed for DNA tiles, simultaneously
implementing 3 separate algorithms, reduced in size with and without preservation of
proofreading behavior, and corresponding simulation results.

even if some tiles attach incorrectly: they may thus be less affected by non-
complementary interactions, and sticky ends of inhomogeneous strengths may
actually assist growth [15]. For algorithmic systems, however, a single incorrect
tile attachment could completely change further growth, and thus spurious inter-
actions can strongly limit the number of glues, limiting the complexity of imple-
mentable algorithms. A method to reduce the number of glues in a tile system
could thus significantly increase the complexity of experimentally-implementable
algorithms.

Ma and Lombardi defined the Pattern Assembling Tile-Set Synthesis (PATS)
problem to consider the minimal algorithmic tile system required to assemble
a unique terminal assembly of a given pattern, with research resulting in algo-
rithms for finding such systems [6,23,24], but also establishing the problem as
NP-hard [16,17,19,20,23]. These methods consider abstract tile systems in a
model not allowing errors that assemble to unique final assemblies from single
seeds, with all single-strength glues, in a single growth direction. While G&6s
et al. developed a measure of reliability for such systems in a more physically-
relevant model that allows errors [14], as discussed in Sect. 4, model limitations
prevented the measure from being preserved during optimization and from han-
dling proofreading error reduction behavior [4,5,27,31,35]. Without proofread-
ing behavior through either accident or design, systems will have error rates that
decrease only with the square root of assembly speed. Thus, systems without
proofreading have far higher error rates, whereas with basic proofreading, error
rates decrease linearly with assembly speed. For simulations of our XOR exam-
ple in Sect. 6, a reduced-size version preserving proofreading could grow a 1,000
tile assembly in 200 min with 99.7% probability, while one not preserving proof-
reading succeeded in the same conditions in only 26% of the trials. For slower
assembly speeds, the difference becomes even more pronounced: thus, proofread-
ing has become a practical necessity for complex tile systems used in experiments,
along with other design principles such as nucleation control [9,28,29,35].
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Fig. 2. Abstract tiles implemented by two distinct structures of DX tiles (a) and some
of their rotations (b); (c¢) shows a hypothetical seed.

In this paper, we present a series of criteria and methods for reducing the size
of experimentally-implementable tile systems while preserving desirable physical
behavior. In contrast to the PATS, we do not seek minimal tile systems for a
single terminal assembly, but instead seek to find smaller equivalents of given
tile systems that behave equivalently for all producible assemblies from a set of
different seeds. To do so, we provide equivalence criteria for such behavior in
the abstract Tile Assembly Model (aTAM) that addresses seeded growth, tile
growth in arbitrary directions, and permanently-bonded “double tiles” filling two
lattice sites that are commonly used in experimental systems. We then present a
tile-based analysis method of “sensitivity profiles” to characterize proofreading
error rate behavior in the kinetic Tile Assembly Model (kTAM), allowing the
preservation of error rate scaling in reduced systems. To address two potential
physical concerns beyond the kTAM that could affect experimental systems, we
also develop simple methods to algorithmically avoid lattice defect formation
and spurious attachments of two assemblies in solution. We use these criteria
and methods with a simple algorithm for attempting merges of different tiles
and glues on three implementable example systems, showing that the systems
can be reduced significantly in complexity while preserving behavior in kTAM
simulations. These size reductions are significant enough that, by combining
three example systems, the combined and reduced-size system can implement
all three algorithms simultaneously while using a comparable or smaller number
of glues than the original designs of the individual algorithms.

2 Background: Tile Systems and Merge Transformations

We consider a glue g as an object having some glue structure, and bond strength
b(g). A glue can form a bond of strength b(g) with a glue of the same structure
that is its complement, which we denote as gx, with (g%)x = g and b(gx) = b(g).
For DX tiles [12], a glue is implemented by a glue structure of a short single-
stranded region, with a set length and one of two orientations, as shown in Fig. 2.
Complementary glues have Watson-Crick complement sequences; for practicality,
we will require that glues not be self-complementary.

We consider a tile T' (sometimes referred to as a “tile type” in other papers)
to be (o,¢,(g;)), where o is the tile structure, c is the tile’s color, and g; is the
glue on the i*" edge of the tile. Each tile, as determined by its structure, will fill
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one or more sites in a regular lattice and will have a set number of edges facing
adjacent lattice sites. In physical systems, tiles can rotate and attach in multiple
orientations, but in our model, tile orientation is fixed. We include the rotations
of tiles as separate tiles with fixed orientations: we define rotation functions RY,
which map a tile T' of structure o to a rotation of T' that may have a different
structure o”.

A seed is some structure that presents a certain number of glues on certain
edges of sites on a lattice: every producible assembly will grow from a seed. For

the purposes of this paper, a tile system S is a set of tiles and potential seeds,
{T:} U {X;}; a rotatable tile system is the closure of a tile system under all

rotations.

As in the PATS problem, we will attempt to reduce the size of a tile system

by making different glues, or tiles, equivalent.

Definition 1. The glue merge transformation, for mnon-
complementary glues a and b of the same glue structure and bond
strength, is defined as Mgy, ,(X) = X', where every instance of a
or b in X s considered to be an identical glue in X', and every
instance of ax or bx is considered to be an identical glue. X may
be any object containing glues, such as a glue, a tile, a seed, or a
tile system (Fig. 3).

Some tiles or seeds in a tile system S may be mapped to iden-
tical tiles or seeds in Mgy, ,(5), if they are already identical except
for glues a and b or ax and b+. Thus tile merges can be defined as
compositions of glue merges (here [, M; = M; o Mo ... denotes
composition):

Definition 2. The tile merge transformation, for tiles T and
U of the same tile structure and color, is defined as Mty =
[1; Mg, v),g: (1), where gi(T') is the glue on the it" edge of T
(Fig. 4).

As not all pairs of glues can be merged, not all pairs of tiles
have a defined tile merge transformation.

For abstract, idealized growth, we will first consider whether
a series of merges will continue to result in equivalent growth in
the abstract Tile Assembly Model (aTAM). In this model, starting
from an initial seed, tiles attach to empty lattice sites adjacent to
an assembly if they can bind by matching (complementary) glues
with bond strengths that sum to at least some threshold 7, some-
times called the temperature in other papers. Once attached, tiles
never detach [34]. After establishing equivalence criteria at this
abstract level, more physically-accurate models can be considered.
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3 aTAM Equivalence

Since different tile systems will not have the same tiles, we first define equivalence
between assemblies in different tile systems. We define two assemblies A and A’
as color equivalent if every lattice site is either empty in both or filled with a tile
of the same structure and color in both (irrespective of glues and bonds). We
similarly define two tile systems S and S’ as color equivalent if, for every assembly
A that is producible by one system, there exists a corresponding assembly A’
producible by the other that is color equivalent with A. We will define the set of
all assemblies that S can produce through correct growth as PA(S). Then, after
some composition of merges M, we can state

Lemma 1. If M(PA(S)) = PA(M(S)), i.e., if M applied to the set of producible
assemblies of S is equal to the set of every producible assembly of M(S), then
tile systems S and M(S) are color equivalent.

Proof. M preserves tile color and structure, so every assembly A is color equiv-
alent to M (A). For every assembly A in PA(S), M(PA(S)) = PA(M(S)) means
that M(A) will be in PA(M(S)), and for every assembly A’ in PA(M(S)), it
means that there will be an assembly A in PA(S) such that M(A) = A" O

Intuitively, all bonds between tiles possible in S will remain possible in M (.5),
and thus all of the same assemblies will remain producible. However, with merged
glues, there may be growth possible in S’ that would not be possible in S. There
may also be different growth pathways that construct color equivalent assemblies.
To limit equivalence to tile systems with equivalent growth pathways, we define
a more restrictive goal, which is a form of bisimulation [18,25]:

Definition 3. Tile systems S and M(S) are growth equivalent if for every
assembly A € PA(S), every attachment site that has Q C S as the set of possible
correct tile attachments has M(Q) as the set of possible attachments in M(A).

Lemma 2. If tile systems S and M(S) are growth equivalent, then they are
color equivalent.

Proof. For growth equivalent S and M (S), at every attachment site p in every
assembly A in PA(S), if tile T in S can attach to form an assembly A+, T, then
M(T) can attach to the corresponding site in M (A), resulting in an assembly
M(A) +, M(T). Similarly, for every tile 7" that can attach to an attachment
site p in M (A), resulting in M (A)+, T’, growth equivalence requires that there
must be a tile 7" in S that can attach to the corresponding site in A where
M(T) = T'. Thus if A is in PA(S), every attachment step A +, T' will be in
PA(S), and if M(A) is in PA(M(S)), every possible attachment step will result
in as assembly of the form M(A) +, M(T) = M(A +, T). Every seed X in S
is in PA(S) and corresponds to a seed M (X) in PA(M(S)), there are no other
seeds in PA(M(S)), and all assemblies start from seeds; therefore by induction,
growth equivalence requires that M (PA(S)) = PA(M(S5)). O
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Fig. 5. (a) shows an assembly and potential attachment sites, which can be viewed as
local neighborhoods (b) allowing certain tiles to attach. For a subset of tile systems, use
annotations allow (c) the generation of input neighborhoods for each used tile, though
for systems with double tiles, assemblies of two tiles (d) must also be considered.

Growth equivalence implies something stronger than just color equivalence:
the set of assemblies producible from a specific assembly A will always be equiv-
alent to those producible from M (A). As a special case, A is a terminal assembly
(i.e., no further tiles can attach) if and only if M(A) is, which is not necessarily
the case for color equivalence.

Since the aTAM assumes that tiles attach on a regular lattice and glues are
additive and have non-negative strengths, whether a tile can attach to an attach-
ment site can be determined by just the local neighborhood of edges adjacent to
the attachment site (Fig.5(b)). For systems of single and double tiles, a local
neighborhood will be a subset of the edges adjacent to either one empty lat-
tice site (potentially allowing attachment of a single tile) or two empty lattice
sites (potentially allowing attachment of a double tile of one orientation), each
labeled with a glue as if from a pre-existing tile in an assembly. An attachment
site adjacent to an assembly may have multiple local neighborhoods, each with
different subsets of edges. We define PN(S) to be the set of local neighborhoods
present in every producible assembly of .S, and PTg(L) for a local neighborhood
L to be the set (possibly empty) of tiles that can correctly attach. Then,

Lemma 3. For tile system S and merge M, if for all L € PN(S), M(PTg(L)) =
PTyr(s)(M(L)), then S and M(S) are growth equivalent.

Proof. Every attachment site in an assembly A in PA(S) will have some local
neighborhood L, which will be in PN(S), and so at that attachment site, Q =
PTg(L) will be the set of tiles that can attach. The corresponding site in M (A)
will have local neighborhood M (L), where PTy;(s)(M (L)) can attach. Thus, if
PT a5y (M(L)) = M(Q) = M(PTs(L)), growth equivalence will be satisfied. [J

Whether a local neighborhood is present in any producible assembly of a
tile system is undecidable: considering a tile system that implements an arbi-
trary program and produces a particular local neighborhood only if the program
halts, the question can be reduced to the halting problem. Thus, we only consider
tile systems satisfying additional constraints. First, we require that the system
include (correct) use annotations for each tile actually used in producible assem-
blies, designating edges on tiles as being used as inputs (edges with which the tile
attaches to assemblies) or outputs (edges where other tiles attach): while tiles in
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a system may have multiple use annotations, we do not consider systems where
tiles attach with intentionally mismatched glues, leaving certain edges with glues
unused. Second, we require that for every local neighborhood L € PN(S) with
glues of total bond strength of at least 7, there exists a tile T' € S that can attach
to L with no mismatched glues, and with attachments of only input edges on
the tile to output edges on the local neighborhood.

With these assumptions, for systems containing only single tiles, every
L € PN(S) will consist of output edges that bind to complementary glues on
corresponding input edges of some tile T', so we can enumerate all possible local
neighborhoods of S, at the cost of possibly including some that are not actu-
ally producible, by examining each tile in S with input-annotated edges. To do
so, we will define IN(T') to be the local neighborhood (or neighborhoods, if the
tile bound with strength greater than 7) corresponding to the input edges of T
(Fig.5(c)). Since IN(S) D PN(5), it is clear from Lemma 3 that

Theorem 1. For tile system S (that uses only single tiles) and merge M, if for
all L € IN(S), M(PTs(L)) = PTyys)(M(L)), then S and M(S) are growth
equivalent.

All parts of the requirement in this theorem—Iocal neighborhoods from input
annotations on tiles, and whether other tiles can correctly attach to them—are
computable, so it can be used to verify that M and M (S) are growth equivalent.

In the case of a system including double tiles, since double tiles may attach
to local neighborhoods with edges adjacent to two lattice sites (Fig. 5(b)), IN(S)
must be extended to include input neighborhoods constructed from two single
tiles with matching glues and use annotations (Fig.5(d)).

Theorem 1 provides a way of determining whether a tile system S, after a
series of merges M, will continue to have only equivalent correct attachments,
and thus equivalent growth in the aTAM. In more physically-relevant models,
however, tiles can attach incorrectly, resulting in errors. To ensure that error
behavior remains similar after a series of merges, further criteria, in a more
physically-relevant model, will be needed.

4 Sensitivity Profiles and kTAM Equivalence

In the kinetic Tile Assembly Model (kTAM), any tile can attach to any potential
site, and will do so at a rate ry = lAcfe*GmC for a constant I%f, where G, is an
analogue of the tile concentration [c] oc e~%m<. Instead of determining whether an
attachment is possible, the total bond strength of matching glues b will instead
determine the rate at which a tile detaches, 7., = kre s, where Gy, is the
(sign-reversed and unitless) free energy of a single bond. Thus, tiles will attach at
the same rate, but will fall off faster if b is smaller. To approximate 7 = 2 aTAM,
G is typically set to 2G5, — € for some small €, such that tiles bound by b < 2
will fall off faster than they attach, and tiles bound by b = 2 will attach slightly
faster than they detach. In this regime, the growth rate of an assembly will be
dependent upon the bond free energy Gy, scaling approximately as e ~2Cse



44 C. G. Evans and E. Winfree

The design of tile systems that robustly exhibit the same growth in the kTAM
as in the aTAM is itself an area of continuing research. In the limit of infinitely
slow growth, growth in the kTAM and aTAM is equivalent, as tiles attaching
by bond strength 0 or 1 will fall off far faster than they attach [34]. Moving
away from this limit, however, incorrect attachments may provide pathways
for the growth of assemblies that could not be produced by the system in the
aTAM, where the attachments remain as errors, and further undesired growth
can continue via correct attachments [11].

One approach to approximating aTAM growth in the kTAM is to minimize
the rate at which errors occur in some error rate model so that assemblies of
a desired size assemble perfectly with high probability. The kinetic trapping
model (KTM) provides a model for one type of error, a growth error, where a
tile attaches incorrectly to a site where another tile could attach correctly, and
allows further growth that effectively locks the error in place [11,34]. Another
type of error, a facet nucleation error, can occur when a tile incorrectly attaches
to a location where not all adjacent output edges are present yet [4], but these
errors are beyond the scope of our analysis.

For a tile system at 7 = 2 containing only single tiles and where all glues
have bond strengths of one, the KTM considers kTAM transition rates between
empty and filled states for a single local neighborhood (Fig. 6(a)). Starting from
an empty state (E), the correct tile can attach, resulting in the “correct” state C,
or a tile attaching by one correct bond and one mismatch can attach, resulting in
the “almost-correct” state A. C or A can revert to E by the tile falling off at the
kTAM detachment rate, or, at some rate r* related to the growth rate, can be
trapped in place by further tiles correctly attaching to the tile and surrounding
assembly, resulting in the trapped correct (TC) and trapped almost-correct (TA)
states. When there are m possible almost-correct attachments at a site and only
one possible correct attachment, the KTM predicts a growth error rate (the
probability of reaching TA from E) of Poyror = me™ ¢, with G = 2G40 — €;
as the growth rate of a system usually scales as e 2% this means the error rate
scales as the square root of the growth rate.

The validity of the KTM error rate estimate depends on two critical assump-
tions, which may not always be true and may depend on the tile system or the
attachment site: first, that every attachment site during the growth of an assem-
bly has exactly m almost-correct tiles that can attach instead of the correct
tile attachment, and second, that both a correct and an almost-correct tile will
become kinetically trapped at the same rate by subsequent attachments. We will
consider the effect of these two assumptions in turn.

As almost-correct tile attachments need one matching glue, the number of
almost-correct attachments will be determined by the tile system at an abstract
level, and may also depend on the local neighborhood. To analyze these attach-
ments, we will define first-order semsitivity, the first of a series of sensitivity
profiles, that will enumerate pairs of tiles (T,U) where U allows the E to A
pathway in the KTM to take place in the attachment site where T" would attach
correctly (i.e., in the input neighborhood of T'). These sensitivity profiles were



Optimizing Tile Set Size while Preserving Proofreading 45

= d) 2x2 uniform proofreadin
’7 ( P g
(a) q* ar Az
/) E \y‘\ ) first order -
11*

d g* (e) 2x2 senslt1v1ty
v ¢) second order Ve T [ e
a*¥ e < )+a ¥ T oF 4 T b+V1 dpg*gWI
N [ > d b ’ | ) i
ad 4b* TC afd ¢ ge TA LT V] RUEEW Vs bW

Fig. 6. (a) shows pathways in the KTM, while (b) shows potential first-order sensitive
pairs for a tile, (c) shows configurations resulting in second-order pairs (black boxes
represent unused edge annotations), (d) shows 2 X 2 uniform proofreading, and (e)
shows configurations resulting in 2 X 2 sensitive pairs.

originally derived from glue sensitivity classes developed to analyze the effect of
non-complementary glue interactions [10].

Definition 4. A pair of tiles (T,U) in S are first-order sensitive if and only
if some subset of the input edges of T contain glues that are the same as glues on
corresponding edges (regardless of use annotation) of U, with total bond strength
1 or more.

If an almost-correct attachment of a tile U in the KTM is possible in any
possible local neighborhood where a tile T' can attach correctly, then (T,U) is a
first-order sensitive tile pair (Fig.6(b)). For any producible local neighborhood
where a tile T can attach by bond strength b = 7, an almost-correct attachment
in the KTM requires a tile that can attach to that local neighborhood by b = 1.
By definition, any tile that can do so, in a system with complementary glues,
will be first-order sensitive with T'.

First-order sensitivity is similar to the tile system reliability of G6os et al.
defined within the context of the PATS problem—defined, for a system con-
structing only a single terminal assembly, as the probability of perfectly growing
that assembly in the kTAM [14]. This was calculated by combining the KTM
probability of correct growth at each site in the correct assembly, considering only
the C and A states and the number of potential almost-correct attachments at
each site, which resulted in a reliability that decreases as the number of possible
almost-correct attachments increases. Starting from uniquely-addressed systems
where no almost-correct attachments were possible, their reduction techniques
tended to first decrease, and then increase, their reliability measure. Similarly,
one option for our methods would be reduction that attempts to only apply
merges that do not add new first-order sensitive pairs, or that seeks to minimize
the number of pairs.

There are two limitations to approaches such as these, related to the two
assumptions underpinning the KTM error rate estimate. One, which G66s et
al. address and account for, is that the number of potential almost-correct tile
attachments, m, can vary from site to site. Thus, tile set reductions that decrease
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m will result in a lower KTM error rate estimate. However, for algorithmic self-
assembly to take advantage of the computational power at 7 > 2, there must
be some correct attachment determined by two glues rather than one, and thus
there must be some potential almost-correct attachments, and m > 1 for some
such sites. Otherwise, the tile system will be equivalent to a 7 = 1 system, with
its accompanying computational limitations [8]. Consequently, the lowest error
rate estimate provided by this use of the KTM will still be proportional to e~
while the growth rate is proportional to e~ 2% resulting in an error rate that
scales no better than /r as the growth rate r is decreased.

The second limitation concerns the assumption that all almost-correct tile
attachments have the potential to become trapped at the same rate as correct
tile attachments. G66s et al. do not address this issue, which accounts for the
main difference in our results. In particular, when an almost-correct attachment
occurs in some tile systems, there may be no tile that can attach by at least 7
bond strength in the resulting local neighborhoods to trap the error in place,
even for tile systems where every local neighborhood in correct growth will allow
tile attachment. In this case, another growth error would be required for growth
to continue, making it more likely that the initial error will detach instead—
and making the KTM error rate estimate invalid. Proofreading behavior [4,5,
27,31,35], where almost-correct attachments cause exactly such impediments to
further correct growth, can in principle reduce error rates, for a desired k > 1,
to scale as e ¥Cs_ or r¥/2 for a growth rate r. In practice, this is necessary for
experimental systems to have low error rates, and therefore proofreading needs
to be preserved in tile system reduction.

To this end, as with the E to A transition in the KTM, we can define a second-
order sensitivity to enumerate pairs where the A to TA transition is possible,
by considering shared glues on additional tiles that can attach to first-order
sensitive pairs (Fig.6(c)):

Definition 5. For a tile system containing only single tiles, a pair of tiles (T,U)
are second-order sensitive if they are first-order sensitive and, for some out-
put edge on T with glue b, some tile V' that can attach by an input edge with a glue
b*, and some tile W that can attach to the corresponding edge on U with a glue
g*, taking every glue g; that is on both an input edge of V' and the corresponding
edge of W, both g* and at least one g; are at least strength 1.

Theorem 2. For a tile system of only single tiles, only second-order sensitive
pairs as defined above will have a potentially valid pathway in the KTM between
almost-correct attachment and o trapped almost-correct attachment.

Proof. Consider an almost-correct state in the KTM of a tile U attaching where
T would have attached correctly. As shown previously, the almost-correct tile
U must be first-order sensitive with 7. In order to reach the trapped-almost-
correct state, an additional tile must be able to attach to U and the surrounding
assembly. If T" had attached instead, as a correct attachment, it would have done
so by input edges, and any available glues on edges adjacent to empty lattice sites
would be output edges. For any of those output edges, by our requirement that
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correct growth in sites with glues on adjacent output edges always be possible,
there must be a tile V' that attaches to that output edge by an input edge
and, unless the glue on the output edge has strength b = 7, at least one other
adjacent output edge in the local neighborhood by some input edge on V. Thus,
if U were to attach instead of T, then for a tile W to lock U in place by filling the
site where V' would have attached, W must share a sufficient total strength of
matching glues on edges of V' labeled as inputs (as the local neighborhood where
V' could attach must have corresponding outputs available). These constraints,
considered for each output edge of T', are the same as the criteria for second-order
sensitivity. (I

In short, the KTM error rate estimate only applies for tiles that have second-
order sensitivity; the true error rate in cases that have only first-order sensitivity
will be insignificant in comparison. If a tile set reduction technique were to
ensure that there are no second-order sensitive tile pairs, excellent proofreading
error rates could be achieved. This is the aim of our methods, although we will
somewhat soften this goal below.

The second-order definition and Theorem 2 above are valid only for single
tiles; double tiles add additional complexity in that tile edges further away from
the initial error may be involved in allowing the trapping second attachment to
occur. Defining second-order sensitivity that accounts for double tiles is possible,
but would require consideration of a large number of potential local configura-
tions. Our current second-order sensitivity implementation treats double tiles as
two single tiles with edges that can be inputs or outputs depending upon which
results in second-order sensitivity; by doing so, it does not account for certain
error pathways, but for many systems with few double tiles that do not have all
six glues, it is sufficient to find most pathways.

In the ideal case of a system with any number of first-order pairs, but no
second-order pairs, applying the KTM only where it is valid would predict no
growth errors: no almost-correct attachment could be trapped in place. Proof-
reading transformations, however, usually satisfy the weaker constraint of requir-
ing that an error prevent correct growth at some later point (rather than immedi-
ately), such that breathing of the growth front is still likely to remove the initial
error. For 2 x 2 uniform proofreading [35], which is the simplest to implement
experimentally, an initial almost-correct attachment of a tile U can, at worst,
allow a further attachment on one edge of U, but will not allow any correct
attachment on a second edge. To attempt to preserve such behavior, we can
construct a further sensitivity profile to find pairs that could violate it:

Definition 6. A pair of tiles (T,U) are 2 x 2 sensitive if they are second-order
sensitive and the second-order criteria can be simultaneously satisfied on two
different output edges of T', or the second-order criteria can be satisfied on one
output edge of T', and U is a double tile that extends out along a second output
edge of T.

Intuitively, for tile systems with only strength-1 glues, only tile pairs that are
2 x 2 sensitive will allow growth to continue with no further impediment after an
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almost-correct attachment. While a perfect 2 x 2 uniform proofreading design will
have second-order sensitive pairs, it will have no 2 X 2 sensitive pairs, and thus the
sensitivity profile is also useful for checking proofreading implementation. How-
ever, the sensitivity profile has no rigorous significance with respect to the KTM.

5 Considerations Beyond the kTAM: Lattice Defects and
Spurious Hierarchical Assembly

The aTAM and kTAM both assume that tiles assemble into perfect regular
lattices. Physical DNA tile lattices, however, have some degree of flexibility, and
tiles can form bonds with other tiles that fall outside of a perfect lattice, creating
lattice defects, as shown in Fig. 7. In general, lattice defect formation depends on
numerous physical factors, and would be difficult to model rigorously. However, it
would be beneficial to have a method for avoiding their formation, and ensuring
that in reducing tile system size, their likelihood is not increased.

To do so, in an approach similar to sensitivity profiles, we search for small
assemblies of tiles that could create neighborhoods where a tile could attach by
two correct bonds and form a lattice defect. For tile systems of DAO-E tiles, we
speculate that the simplest, smallest lattice defects, in the orientations likeliest to
allow bonds to form between non-adjacent tiles, will be the likeliest, as shown in
Fig.7(b) and (c). If in every possible combination of tiles in the pattern of one of
these defects, no tile can attach by two correct bonds, then lattice defects of that
size should not be possible without previous errors or other growth directions.

Another potential concern beyond the kTAM is that, for growth in solution,
assemblies may bind to other assemblies, a process that has been utilized in
other “hierarchical” models of self-assembly [3], but is generally undesirable in
the systems designed to grow by single tile attachments. Such spurious hierar-
chical attachments have been seen in some experiments [13], but the importance
of design criteria to avoid them is unclear. Many systems designed by hand,
for simplicity, use each glue consistently on only input or output edges of tiles,
thus avoiding assembly-assembly interactions because no glue on the edges of

(d)

Fig. 7. (a) shows an AFM image of a DAO-E tile system lattice defect, while (b)
shows a layout of a simple DAO-E lattice defect. (c) illustrates a simple algorithm
for enumerating potential small lattice defects, in two orientations: circles represent
arbitrary bonds of non-zero strength. (d) shows a spurious hierarchical attachment.
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assemblies, which will be outputs, will be complementary to glues on edges of
other assemblies. Such a distinction can be broken when merging glues, poten-
tially allowing assemblies, while at lower concentrations than tiles, to attach by
numerous bonds. The distinction can be preserved, however, by requiring that
merges do not result in any glue being on both input and output edges of tiles.

6 Algorithm and Results

With the combination of criteria for aTAM equivalence, sensitivity profiles, lat-
tice defect pathways, and spurious hierarchical attachment, a simple algorithm to
attempt merges and check the resulting tile systems can be implemented. While
more optimized search algorithms could improve performance [14,24], this sim-
ple algorithm suffices to demonstrate our reduction methods. In principle, as
tile merges are simply the compositions of glue merges, a search through all
potential glue merges could minimize a tile system, as tile merges would result
automatically. In practice, for our non-exhaustive searches, we have found that
first attempting possible tile merges and then glue merges is most effective at
reducing the numbers of both tiles and glues.

For both searches, our algorithm is the same. For every pair of tiles, or pair
of glues (filtered, if desired, by spurious hierarchical attachment criteria), we
attempt to merge the pair with a transformation M. We then perform checks
for aTAM equivalence per Theorem 1, and for a desired set of sensitivity pro-
files, check whether every pair of sensitive tiles (M(A), M(B)) in the merged
system has a corresponding pair (A, B) of the same profile in the initial sys-
tem. If either criteria fails because of a pair of tiles, the algorithm attempts,
recursively, to merge those two tiles until either the criteria are satisfied or the
necessary merge would be impossible. If satisfied, the resulting tile system is
checked for new potential lattice defects. If all these criteria are satisfied, sub-
sequent merge attempts are applied to the resulting system. However, in all
merges, use annotations and input neighborhoods are used from the original tile
system for sensitivity profile and aTAM equivalence: if they are used to generate
input neighborhoods from an equivalent merged system, they will result in more
local neighborhoods that will not be present in any producible assembly, thus
overly constraining reduction.

This reduction algorithm is currently implemented in Alhambra, a software
package for tile system design and compilation [1]. To examine the effect of the
reductions on physically-implementable tile systems, we used three tile systems
we had previously designed in Alhambra: XOR, Crosshatch, and Rule 110, all
shown in Fig. 8. Each of the three implements 2 x 2 uniform proofreading, and
grows from an origami seed. Additionally, we combined the three reduced sys-
tems into a “Combined” tile system implementing all three simultaneously, and
reduced this system again with the same parameters.

As the algorithm can preserve different sets of sensitivity profiles, size results
for several choices are shown in Table 1. Ignoring sensitivity entirely results in
aTAM-equivalent systems that are similar to what might be found by PATS
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Fig. 8. Structures from example tile systems. The XOR system implements a ribbon
of constant, seed-defined width, with the center of the ribbon implementing the XOR
function to create a Sierpinski triangle pattern, and boundaries that reflect bits. The
Crosshatch (XH) system implements a ribbon with “signals” that bounce back and
forth diagonally: when a signal reaches the “north” boundary, it causes the ribbon
to shrink, resulting in assemblies of a finite, input-specified size. The Rule 110 system
(P110) implements the cellular automata system Rule 110 using expanding boundaries,
one of which uses a zig-zag growth order.

methods applied to systems that are not uniquely-addressed [14,24]: they do
not preserve proofreading error rates, and, as seen in simulation results in Fig. 9
(Fig. 1 for the Combined system), have error rates that scale as e~%=. Regardless
of whether spurious hierarchical attachments are avoided, preserving either 2 x 2
sensitivity or both second-order and 2 x 2 almost always results in systems that
are significantly reduced in size but preserve proofreading error rate scaling of
e~ 2@ with error rates orders of magnitude below the sets that ignore sensitivity.
The exceptions to this scaling, P110 with second-order and 2 x 2 preserved, both
have results that fail to preserve proofreading by chance because of a pathway
for errors through double tile attachments, illustrating the need for a theory
and implementation of second-order sensitivity that addresses double tiles in
order to most effectively reduce the size of systems such as P110 which make
more extensive use of them. Fortunately, although again by chance, reductions
of P110 with less stringent criteria avoided the problems with double tiles—and
resulted in smaller tile systems as well.

7 Discussion

The results from our reduction methods suggest that it may be possible to
implement tile systems of considerable algorithmic complexity in experimentally-
viable ways using numbers of tiles and glues that are comparable with existing
experimental systems. In considering experimental implementations, the unre-
duced Combined system, with 173 glues, uses more glues than we speculate is
currently experimentally feasible for algorithmic DX tile systems. The number
has been approached in uniquely-addressed DX tile systems using 152 glues [32],
but uniquely-addressed systems are much less sensitive to glue quality, and so
the numbers are not directly comparable. The 2 x 2-preserving combined system,
however, preserves proofreading behavior while having fewer glues (36) than the
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Table 1. Sizes of tile systems before and after reduction preserving different sets of sen-
sitivity profiles: SHA refers to preventing spurious hierarchical attachments by restrict-
ing glue usage. Each reduction used 350 tile reduction trials, then 35 glue reduction
trials on each of the 10 results with the least glues. “Combined” combines XOR, XH,
and P110. Tile counts are of tiles needed for implementation, while glue are counted
as sequence/complement pairs

XOR XH P110 Combined

Tiles | Glues | Tiles | Glues | Tiles | Glues | Tiles | Glues
Before reduction 32 44 41 56 46 73 119 | 173
Preserve 2nd, 2 x 2, SHA | 30 25 38 31 38 30 103 62
Preserve 2nd, 2 x 2 29 18 36 23 36 23 99 46
Preserve 2 x 2, SHA 27 22 33 28 31 24 91 50
Preserve 2 x 2 25 15 30 17 32 17 88 36
Ignore sensitivity 13 6 15 6 24 9 58 13

unreduced XOR system (44), which is well within the range of experimental feasi-
bility of DX tile systems. Previously published algorithmic DX tile systems have
used 35 [9], 34 [29], and 23 [2] glues, and sequence space searches have found sets
around 80 glue sequences of comparable quality [10]. For systems compiled into
other physical implementations, such as single-stranded tiles (SST), the larger
sequence space could make even larger systems experimentally viable; uniquely-
addressed SST assemblies have been demonstrated using over 10,000 glues [26].
Yet even with DX tiles, our reductions could allow experimental implementation
of tile systems, using current experimental methods, far beyond the complexity
of those we would otherwise be able to implement.

There are a number of other potential directions for optimizations in a tile
system compiler. Preserving larger uniform proofreading transformations (e.g.
k x k for k > 3) would require expanded sensitivity profiles. Other tile sys-
tem properties, such as avoidance of facet nucleation errors [4] and barriers to
spurious nucleation [28], would also be desirable to preserve, and it may be pos-
sible to develop similar criteria. Additionally, while our methods are intended
for optimizing tile systems that are already algorithmic, it may be interesting to
consider the combination of sensitivity criteria with uniquely-addressed systems
and more sophisticated PATS search methods. Uniquely-addressed tile systems
have no error pathways in the KTM and no sensitive pairs of any order; it is only
in merging tiles that the KTM becomes applicable. Thus, preserving sensitivity
profiles while reducing a uniquely-addressed assembly could result in systems
that exhibit strong proofreading behavior without any need for a proofreading
transformation, and avoid e~%s error rate scaling.

Another approach might be to go beyond preserving desirable properties in
tile systems that have already incorporated proofreading, and search for changes
that add them to tile systems designed without proofreading. Rather than trying
to reduce the size of a system, an optimizing compiler could try to split tiles and
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Fig. 9. Per-tile error rates in kTAM simulations, in Xgrow via Alhambra, varying Gse,
with Gme = 2Gse — log 2. Assembly time in this regime scales approximately as e2Cse.
at Gse = 7, a 1,000 tile assembly will grow in about 4 min, and at Gsc = 9, in about
4h. Per-tile error rates were determined from the percentage of perfect assemblies.

glues to preserve aTAM behavior while improving or introducing proofreading,
barriers to spurious nucleation, facet nucleation error rates, and lattice defect
formation. Such a tile-system-specific approach could find systems with behav-
iors similar to those provided by general tile system transformations and design
principles while being smaller, easier to design, and possibly more effective.
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