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S1. Quasi-steady state (QSS) derivation of the BM rate constant

Validity of QSS

Many systems of chemical reactions obey QSSA in all but the initial moments of the reaction [1]. QSSA

treats the rates of change of the intermediates’ concentrations (d[I]
dt and d[J]

dt in our system) as small enough

to be approximated as 0. The validity of QSSA is ensured when the timescale of the overall reaction

is slower than the timescale at which I and J reach their quasi-steady state values. For all experiments

presented in this paper except for those in Fig. 7, the timescale of the overall reaction is at least 15 minutes,

while the timescale of intermediate equilibration is estimated to be on the order of 20 seconds:

The value of parameter kb was fitted to be 1.0 s−1, so I and J equilibrate with each other on a time

scale faster than 1 s. The time constant τ of the initial rise of [I] from 0 to its quasi-steady state value

[I]qss is estimated by τ ≈
[I]qss

kf [X(m,n)][S] . In time τ , the concentration of [I] rises to [I]qss(1 −
1
e ) ≈ 0.6[I]qss.

For convenience, define x = kr(βm) and y = kr(γn). In equation (7) in the next section, the expression

for [I]qss is seen to be
kf (kb+kr(βm))[X(m,n)][S]

kr(γn)kr(βm)+kr(γn)kb+kr(βm)kb
.

τ ≈
[I]qss

kf [X(m,n)][S]

=
kf (kb + x)[X(m,n)][S]

xy + xkb + ykb
·

1

kf [X(m,n)][S]

=
kb + x

xy + xkb + ykb

If x > kb, τ = kb+x
xy+xkb+ykb

< 2x
xy+xkb+ykb

< 2x
xkb

= 2
kb

. Since the value of kb was numerically fitted to be

1.0 s−1, this corresponds to a time constant of less than 2 seconds.

If x < kb, τ = kb+x
xy+xkb+ykb

< 2kb

xy+xkb+ykb
< 2kb

xkb
= 2

x . From our calculated binding energy of β7 =

−10.17 kcal/mol and kf ≈ 3 · 106 M−1 s−1, x ≡ kr(β7) ≈ 0.106 s−1, and the time scale is less than

2
0.106 ≈ 20 s.

Thus, QSS is valid for the conditions presented in this paper as well as in similar laboratory circum-

stances.
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Derivation of the BM rate constant

X(m,n) + S
kf

−−−⇀↽−−−
kr(γn)

I
kb
⇋

kb

J

kr(βm)

−−−⇀↽−−−
kf

Y + L(m,n)

We aim to use the three-step model of toehold exchange to derive forward and reverse BM rate constants:

X(m,n) + S

k(βm,βm,γn)

−−−⇀↽−−−
k(γn,βm,βm)

Y + L(m,n)

d[Y]

dt
=

d[L(m,n)]

dt
= k(βm,βm,γn)[X(m,n)][S] (1)

d[X(m,n)]

dt
=

d[S]

dt
= k(γn,βm,βm)[Y][L(m,n)] (2)

To derive the expression for k(βm,βm,γn), we use QSS to analyze the production rate of Y in the absence

of the reverse reaction. We first set up the steady state conditions on the intermediates I and J:

d[I]

dt
= kf [X(m, n)][S] + kb[J] − kb[I] − kr(γn)[I] ≈ 0 (3)

d[J]

dt
= kb[I] + kf [Y][L(m, n)] − kb[J] − kr(βm)[J] ≈ 0 (4)

In assuming no reverse reaction, we remove the kf [Y][L(m,n)] term in the expression for d[J]
dt . Experi-

mentally, this is achieved by quickly removing Y from the system (using the fluorescence reporter complex),

so that the reverse reaction in negligible. Rearranging the simplified equation (4),

[J] =
kb[I]

kb + kr(βm)

(5)

Substituting this expression for [J] back into equation (3) and rearranging,

kf [X(m, n)][S] = [I](
kr(γn)kr(βm) + kr(γn)kb + kr(βm)kb

kb + kr(βm)

) (6)

[I] =
kf (kb + kr(βm))[X(m, n)][S]

kr(γn)kr(βm) + kr(γn)kb + kr(βm)kb

(7)

[J] =
kfkb[X(m, n)][S]

kr(γn)kr(βm) + kr(γn)kb + kr(βm)kb

(8)

Finally, the rate of production of Y is calculated:

d[Y ]

dt
= kr(βm)[J ]

=
kr(βm)kfkb

kr(γn)kr(βm) + kr(γn)kb + kr(βm)kb

[X(m, n)][S]
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S2. Calculations of the critical concentration for the accuracy of the BM

rate constant

In the BM, every species that is not product (Y or L(m,n)) is still a reactant; thus, [X(m,n)]BM =

[X(m,n)]0 − [Y] and [S]BM = [S]0 − [Y], where [X(m,n)]0 and [S]0 denote the initial concentrations of

X(m,n) and S, and [Y] denotes the measured amount of product Y. In the three-step model [X(m,n)] =

[X(m,n)]0 − [Y] − [I] − [J] and [S] = [S]0 − [Y] − [I] − [J].

When conditions are such that [I] and [J] are low (i.e. [X(m,n)]BM = [X(m,n)] + [I] + [J] ≈ [X(m,n)]

and [S]BM = [S]+[I]+[J] ≈ [S]), the kinetics of toehold exchange is well-modeled by a bimolecular reaction

with the following BM rate constant:

k(βm,βm,γn) =
kr(βm)kfkb

kr(γn)kr(βm) + kr(γn)kb + kr(βm)kb
(9)

In contrast, when the concentrations of I and J are high, the above BM rate constant will overestimate the

kinetics of the toehold exchange reaction.

To evaluate the conditions under which the BM rate constant grossly overestimates the kinetics of

toehold exchange, we analyze the concentration of [I]: We arbitrarily define the condition [X(m,n)] ≈

[X(m,n)]BM = [X(m,n)] + [I] + [J] to be satisfied when [I]
[X(m,n)] ≤ 0.1. Because [J] = [I] kb

kb+kr(βm)
< [I],

[X(m,n)]BM < 1.2 · [X(m,n)]. Similarly, [S] ≈ [S]BM = [S] + [I] + [J] < 1.2 · [S] when [I]
[S] ≤ 0.1. The

expression for the quasi-steady steady production rate of Y depends on product of [X(m,n)] and [S]:

d[Y]

dt
= k(βm,βm,γn)[X(m,n)][S]

> k(βm,βm,γn)(
1

1.2
[X(m,n)]BM )(

1

1.2
[S]BM )

k(βm,βm,γn)[X(m,n)]BM [S]BM < 1.44
d[Y]

dt

Thus when [I]
[X(m,n)] ,

[I]
[S] ≤ 0.1, the rate of production of Y predicted by the derived BM rate constant is

overestimated by no more than 44%. Rearranging (4), we solve for the critical concentration of S below

which [I]
[X(m,n)] ≤ 0.1:

[S] ≤
0.1

kf

·
kr(γn)kr(βm) + kr(γn)kb + kr(βm)kb

kb + kr(βm)

(10)

Similar derivation on the condition [I]
[S] ≤ 0.1 leads to the same critical concentration for X(m,n). The crit-

ical concentration varies monotonically with the figure of merit; for example, the BM predicted kinetics are

off by no more than an order of magnitude when [X(m,n)] and [S] are below 1
kf

·
kr(γn)kr(βm)+kr(γn)kb+kr(βm)kb

kb+kr(βm)

(when [I]
[X(m,n)] ,

[I]
[S] ≤ 1).



4

S3. Calculation of Toehold Binding Energies

The binding energies of the toehold are calculated as:

∆G◦(γn) = ∆G◦(I(0,n)) − ∆G◦(S)

∆G◦(βm) = ∆G◦(J(m, 0)) − ∆G◦(L(m, 0))

Default calculation method

Here, we show a step-by-step method for calculating ∆G◦ of two complexes, S, and I(0,3), which is in

turn used to infer the binding energy of the toehold γ3. Calculation of ∆G◦ values for other complexes are

analogous.

∆G◦(S)

We start by calculating the ∆G◦ of S:

∆G◦(S) = 1 ∗ ∆G◦
init + ∆G◦

α dangle + ∆G◦
γ dangle + ∆G◦

stacks

For each of the ∆G◦ terms, ∆G◦ = ∆H◦ − T∆S◦.

Hybridization initiation. The ∆G◦
init refers to the energetic cost of initiating a helix. SantaLucia et al. [2]

report that ∆H◦
init = +0.2 kcal/mol and ∆S◦

init = −5.7 cal/mol·K, leading to ∆G◦
init = +1.90 kcal/mol at

25 ◦C.

Terminal dangles. For S, the terminal dangle on the α domain is a 5’ T dangle with a C nearest neighbor.

Bommarito et al. [3] report ∆H◦
α dangle = −4.0 kcal/mol and ∆S◦

α dangle = −10.9 cal/mol·K, leading to

∆G◦
α dangle = −0.75 kcal/mol at 25 ◦C.

For S, the terminal dangle on the γ domain is a 5’ A dangle with a C nearest neighbor. Bommarito

et al. [3] report ∆H◦
γ dangle = −6.3 kcal/mol and ∆S◦

γ dangle = −17.1 cal/mol K, leading to ∆G◦
γ dangle =

−1.20 kcal/mol at 25 ◦C. For Ss and Sw, the γ dangle would be a 5’ G and a 5’ T, respectively.

Stacks. There are 20 base pairs in the β domain of S, leading to 19 total stack terms. Summing these

using the values reported by SantaLucia et al. [2] yield a total ∆H◦
stacks = −152.4 kcal/mol and ∆S◦

stacks =

−409.4 cal/mol·K, leading to ∆G◦
stacks = −30.40 kcal/mol at 25 ◦C.

Total standard free energy. Summing all the previous terms, ∆G◦(S) = −30.45 kcal/mol.

∆G◦(I(0,3))

The binding energy of I(0,3) is calculated as:

∆G◦(I(0,3)) = 2 ∗ ∆G◦
init + ∆G◦

α dangle + ∆G◦
γ dangle + ∆G◦

stacks

+∆G◦
AT termination + ∆G◦

nick + ∆G◦
coaxial dangle
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Initiation. ∆G◦
init = +1.90 kcal/mol as calculated before, but we multiply it by 2 in this calculation

because I(0,3) is composed of three strands of DNA.

Terminal dangles. The α dangle is exactly the same, so ∆G◦
α dangle = −0.75 kcal/mol. The γ dangle in

this case is a 5’ G with a A nearest neighbor, which is reported to contribute ∆H◦
γ dangle = −1.1 kcal/mol

and ∆S◦
γ dangle = −1.6 cal/mol·K, leading to ∆G◦

γ dangle = −0.62 kcal/mol.

Stacks. I(0,3) has 23 total base pairs, and consequently 22 stacks, but one of these stacks is the coaxial

stacking term at the nick. Summing the remaining 21 stacks yields ∆H◦
stacks = −168.4 kcal/mol and

∆S◦
stacks = −452.6 cal/mol·K, leading to ∆G◦

stacks = −33.53 kcal/mol.

AT termination. The ∆G◦
AT termination is a special energetic penalty term that is added for helices

terminating in an A-T base pair. This term is part of the commonly accepted energy parameters presented

by SantaLucia et al. [2]. ∆H◦
AT termination = +2.2 kcal/mol and ∆S◦

AT termination = +6.9 cal/mol·K, leading

to ∆G◦
AT termination = +0.14 kcal/mol.

Coaxial stacking. The ∆G◦
nick is the coaxial stacking term at the boundary of the β and γ domains. The

bases flanking the nick are 5’-G and T-3’. Protozanova et al. [4] report the ∆G◦ of this coaxial stack to

be −2.04 kcal/mol at 37 ◦C [4]. Unfortunately, this work did not provide explicit ∆H◦ and ∆S◦ values,

so the ∆G◦ value at 25 ◦C cannot be directly calculated.

Protozanova et al. [4] suggested the approximation that ∆S◦ ≈ −25 cal/mol·K for all coaxial stacks in

order to estimate ∆G◦ at other temperatures. This would imply that ∆G◦
25 = ∆G◦

37 − 0.3 kcal/mol for all

coaxial stacks.

Observing the distribution of ∆S◦ and ∆H◦ values for standard stacks [2, 5, 6], we felt that ∆S◦ ≈

a∆H◦ was a better approximation than ∆S◦ ≈ 25 cal/mol·K, where a is a fitted constant (see Fig. S1). A

standard least squares fit yielded a = 0.0027 K−1.

Because ∆G◦ = ∆H◦ − T∆S◦, ∆G◦
37 ≈ (1 − 310 ∗ 0.0027)∆H◦ = 0.163∆H◦ and ∆G◦

25 ≈ (1 − 298 ∗

0.0027)∆H◦ = 0.195∆H◦. Dividing the two equations and rearranging, ∆G◦
25 = 1.2·∆G◦

37. For the coaxial

stack in question, ∆G◦
nick ≈ 1.2 · −2.04 = −2.45 kcal/mol.

Protozanova et al.’s reported values for the ∆G◦
37 of coaxial stacks [4] range from -0.12 kcal/mol to

-2.70 kcal/mol. Using our approximation leads to ∆G◦
25 ranging from -0.144 to -3.24 kcal/mol, while using

∆S◦ ≈ 25 cal/mol·K leads to ∆G◦
25 ranging from -0.42 to -3.00 kcal/mol. Thus, the two approximations

should differ by no more than 0.3 kcal/mol in all cases.

Coaxial stack dangles. The ∆G◦
coaxial dangle term refers to the energy contribution of the last G on the

β domain of input X(m,n), when the latter is bound to S by only the toehold. As explained in the main

paper, the value of this parameter has not been characterized, and is assumed to be 0.

Total standard free energy. Summing the terms above, ∆G◦(I(0,3)) = −33.41 kcal/mol. The binding

strength of toehold γ3 is inferred to be ∆G◦(I(0,3)) − ∆G◦(S) = −2.95 kcal/mol. This value is then
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FIG. S1: Distribution of ∆H◦ and ∆S◦ values for standard nearest-neighbor stacks, as reported by ref. [2]. The black line

indicates the approximation ∆S◦ = 0.0027K−1∆H◦.

rounded to 1 decimal point and are shown in Table 2 and Table S1.

Pyshnyi’s coaxial stacking terms

For this energetics model, calculations were performed completely analogously to the default method,

except using the coaxial stacking parameters reported by Pyshnyi et al. [7]. Pyshnyi et al. did report

∆H◦ and ∆S◦ values for all of their coaxial stacking terms, so ∆G◦
25 was directly calculated for the coaxial

stack. The infered toehold binding energies are shown in column 3 of Table S1.

NUPACK + Protozanova

For energetics calculations using the NUPACK folding software [8], we used the “energy” program in

the downloadable NUPACK 2.1 software. This program computes the standard free energy of a particular

microstate entered by the user, entered in dot-paren notation. For example, our input file for I(0,3) was

the following:

CCACATACATCATATTCCCTCATTCAATACCCTACG

CCCTCATTCAATACCCTACGTCT

GAAGTGACATGGAGACGTAGGGTATTGAATGAGGG

1 2 3

................((((((((((((((((((((+....................(((+............)))))))))))))))))))))))

According to the user’s manual for NUPACK, calculations using the “dangles = some” option (the

recommended default) calculates dangle energies “for each unpaired base flanking a duplex (a base flanking

two duplexes contributes only the minimum of the two possible energies).” Thus, the “dangles = some”

option does not include any coaxial stacking energetics term, but does include the coaxial stacking dangle

term (with energy equivalent to an analogous terminal dangle). We thus manually add our modified
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Protozanova et al. coaxial stacking terms to the standard free energy of complexes predicted by NUPACK,

where applicable.

Additionally, as of this writing, NUPACK calculates the standard free energy of complexes to satisfy

the thermodynamic equilibria of the molecules in mole fraction, rather than concentration (in molar). This

means that an additional corrective term needs to be manually added for calculating the toehold binding

energy.

As an example, consider ∆G◦(S):

∆G◦
NUPACK = −RT ln(KNUPACK)

KNUPACK =
χS

χYχV

where V is the heretofore unnamed bottom strand of the S complex (containing the domains γ̄ and β̄. To

convert the equilibrium constant K to expressed in terms of M−1, a correction RT ln(c) term needs to be

added, where c is the total concentration of all species in solution. The total concentration of all species is

solution is dominated by the solvent water molecules, which exist at 55 M, implying that the correction is

roughly RT ln(55) ≈ 2.38 kcal/mol. Note that this correction is to be multiplied by the N − 1, where N is

the total number of strands in the complex. For the energies listed in column 4 in Table S1, we manually

added the correction where applicable.

NUPACK, dangles = all

According to the user’s manual for NUPACK, calculations using the “dangles = all” option calculates

dangle energies “for each base flanking a duplex regardless of whether it is paired.” Thus, the “dangles =

all” option includes not only the coaxial stacking dangle term as before, but also approximates the coaxial

stack energy as the sum of the two dangles. For example, in I(0,n), the nick is “G / T”; the energetics of

this nick is approximated by NUPACK as the sum of that of 5’ A dangle with nearest neighbor C, and a 3’

C dangle with nearest neighbor A. This method of approximation is not scientifically justified, but rather

exists as a placeholder until coaxial stacking energetics are better understood.

As in the previous method, manual corrective terms of 2.38 kcal/mol per extra strand was added to

convert ∆G◦ for mole fractions to ∆G◦ for molar units. The corrected inferred toehold binding energies

are shown in column 5 of Table S1.

Owczarzy’s Mg2+ correction

Owczarzy et al.’s correction formula [9] modifies ∆S◦ based on the ∆H◦ of the structure in 1 M Na+.

The formula depended on the length of the helix involved; for our calculations, we assumed that the nick

does not disrupt the helix (e.g. I(0,3) would contain a helix of length 23, rather than 2 helices of lengths

20 and 3). Furthermore, since this study did not characterize the salt corrections for energy contributions

from dangles, we used Bommarito et al.’s dangle values (for 1 M Na+) [3].
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Mathematically, the formula we used was:

∆H◦
Mg2+ = ∆H◦

Na+

∆S◦
Mg2+ = ∆S◦

Na+ + ∆H◦
stacks,Na+ · (a + bx + fGC(c + dx) +

e + fx + gx2

2(Nbp − 1)
)

where x = ln[Mg2+] = −4.465, and fGC is the fraction of the bases in the helix that are purines. Parameters

a = 3.92 · 10−5 K−1, b = −9.11 · 10−5 K−1, c = 6.26 · 10−5 K−1, d = 1.42 · 10−5 K−1, e = −4.82 · 10−4 K−1,

f = 5.25 · 10−4 K−1, and g = 8.31 · 10−5 K−1 are fitted values reported by Owczarzy et al. [9]. The toehold

binding energies calculated using this model are shown in column 6 of Table S1.
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Toehold Default Pyshnyi coaxial NUPACK, dangles=some NUPACK, dangles=all Owczarzy Mg2+

γ0 +1.9 +1.9 +1.9 +2.5 +1.9

γ1 +0.2 +0.2 +0.5 +1.5 +0.3

γ2 -1.7 -1.6 -1.2 -0.3 -1.4

γ3 -3.0 -2.9 -2.6 -1.6 -2.5

γ4 -4.7 -4.7 -4.3 -3.4 -4.1

γ5 -6.9 -6.9 -6.5 -5.5 -6.1

γ6 -8.3 -8.3 -7.9 -6.9 -7.3

γ7 -9.2 -9.2 -8.8 -7.9 -8.0

γ8 -11.9 -11.9 -11.4 -10.5 -10.5

γ9 -12.9 -12.9 -12.5 -11.5 -11.3

γ10 -14.8 -14.8 -14.3 -13.4 -13.0

γ15 -21.8 -21.8 -21.4 -20.4 -19.1

γs0 +1.9 +1.9 +1.9 +2.5 +1.9

γs1 -1.1 -1.0 -2.0 +0.2 -1.0

γs2 -3.2 -3.1 -4.1 -1.9 -2.9

γs3 -5.0 -5.0 -6.0 -3.8 -4.6

γs4 -8.0 -7.9 -8.9 -6.7 -7.3

γs5 -10.3 -10.2 -11.2 -9.0 -9.4

γs6 -12.1 -12.0 -13.1 -10.9 -11.0

γs7 -15.1 -15.0 -16.0 -13.8 -13.8

γs8 -17.3 -17.3 -18.3 -16.1 -15.8

γs9 -19.2 -19.1 -20.2 -18.0 -17.5

γs10 -21.2 -21.2 -22.2 -20.0 -19.3

γw0 +1.9 +1.9 +1.9 +2.5 +1.9

γw1 +0.2 -0.6 -0.4 +1.2 +0.2

γw2 -0.8 -1.5 -1.4 +0.2 -0.6

γw3 -2.1 -2.8 -2.6 -1.1 -1.6

γw4 -3.8 -4.5 -4.4 -2.8 -3.2

γw5 -4.3 -5.0 -4.9 -3.3 -3.5

γw6 -5.3 -6.0 -5.9 -4.3 -4.3

γw7 -7.0 -7.7 -7.6 -6.0 -5.9

γw8 -7.5 -8.2 -8.1 -6.5 -6.2

γw9 -8.9 -9.7 -9.6 -8.0 -7.5

γw10 -8.9 -9.6 -9.4 -7.9 -7.2

Table S1: Comparison of toehold binding energies using various methods (in kcal/mol)
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FIG. S2: Comparison of different energy models and their effects on the model-predicted BM rate constant. The dots represent

the best-fit rate constants from data in the main paper. The dotted lines show the model-predicted BM rate constants based

on the toehold binding energies listed in the main paper. (A) The solid lines show the BM rate constants predicted using

coaxial stacking terms reported by Pyshnyi et al. [7], but otherwise identical to the default model. For this set of energy

parameters, kb = 0.5 s−1. (B) The solid lines show the BM rate constants predicted using energies predicted by NUPACK [8],

using “dangles = some,” so that the coaxial stack dangle are calculated as terminal dangles. The modified Protozanova et

al. [4] coaxial stacking parameter was manually added, as well as a +2.377 kcal/mol conversion term to convert the standard

free energy to molar units (from mole fraction). See Text S3 for details on how NUPACK was used. For this set of energy

parameters, kb = 1 s−1. (C) The solid lines show the BM rate constants predicted using energies predicted by NUPACK,

using “dangles = all.” The coaxial stack dangles are calculated as terminal dangles, and the coaxial stacking parameter is

calculated as two overlapping dangles. A +2.377 kcal/mol conversion term to convert the standard free energy to molar units

(from mole fraction). For this set of energy parameters, kb = 7 s−1. (D) The solid lines show the BM rate constants predicted

using toehold binding energies as calculated by the default model, corrected for magnesium concentration using the method

by Owczarzy et al. [9]. For this set of energy parameters, kb = 4 s−1.
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m n [S] [X(m, n)] [R]

0 0-1 100 nM 2 µM, 4 µM, and 6 µM 300 nM

0 2 100 nM 200 nM, 400 nM, and 600 nM 300 nM

0 3 10 nM 20 nM, 40 nM, and 60 nM 30 nM

0 4 10 nM 2 nM, 4 nM, and 6 nM 30 nM

0 5-10, 15 1 nM 0.2 nM, 0.4 nM, and 0.6 nM 3 nM

1-7 10 1 nM 0.4 nM 3 nM

5-7 9 1 nM 0.4 nM 3 nM

4-7 8 1 nM 0.4 nM 3 nM

4-7 7 1 nM 0.4 nM 3 nM

2-5 6 1 nM 0.4 nM 3 nM

6-7 6 10 nM 4 nM 30 nM

1-4 5 1 nM 0.4 nM 3 nM

5-6 5 10 nM 4 nM 30 nM

7 5 10 nM 40 nM 30 nM

1-7 4 10 nM 40 nM 30 nM

1-3 3 10 nM 40 nM 30 nM

4-5 3 10 nM 400 nM 30 nM

6 3 10 nM 40 nM 30 nM

1-5 2 10 nM 400 nM 30 nM

1-3 1 10 nM 4 µM 30 nM

4 1 10 nM 400 nM 30 nM

Table S2: Concentrations used for toehold exchange reactions using X(m, n)

m n [Sw] [Xw(m, n)] [R]

0 1 10 nM 2 µM, 4 µM, and 6 µM 30 nM

0 2 10 nM 200 nM, 400 nM, and 600 nM 30 nM

0 3-5 10 nM 20 nM, 40 nM, and 60 nM 30 nM

0 6 1 nM 2 nM, 4 nM, and 6 nM 3 nM

0 7-10 1 nM 0.2 nM, 0.4 nM, and 0.6 nM 3 nM

Table S3: Concentrations used for toehold mediated strand displacement using Xw(m, n)

m n [Ss] [Xs(m, n)] [R]

0 1 10 nM 2 µM, 4 µM, and 6 µM 30 nM

0 2 10 nM 20 nM, 40 nM, and 60 nM 30 nM

0 3 10 nM 2 nM, 4 nM, and 6 nM 30 nM

0 4-10 1 nM 0.2 nM, 0.4 nM, and 0.6 nM 3 nM

Table S4: Concentrations used for toehold mediated strand displacement using Xs(m, n)
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S4. Sample Matlab code used for fitting rate constants.

The main program for fitting the BM rate constant of toehold exchange using input X(4,8) is as follows:

k0 = log(1E6);

scale0 = log(4e13);

[k, fval] = fminunc(@TE_4_8, [k0, scale0]);

The variable k0 shows an initial “guess” of the rate constant (set to 106 M−1 s−1 here), while scale0

shows an initial guess of the scaling constant (set to 4 · 1013 counts per mole of unquenched fluorophore).

Both variables are fitted during runtime.

The error function TE 4 8 for this is as follows:

function err_func = TE_4_8(input)

data = load(’/Users/daveyzhang/Desktop/work/expt/Fluorescence/20080229/004m.txt’);

k = exp(input(1));

scalingconst = exp(input(2));

err_func = 0;

options = odeset(’RelTol’, 1e-4, ’AbsTol’, 1e-30);

datasize = size(data, 1);

%(4,8) data

t = data(6:datasize,1)-300;

y0 = [1e-9, 4e-10, 0, 3e-9, 0];

[t, y2] = ode23s(@rdy, t, [k, y0], options);

ye = y2(:,6) * scalingconst + data(5,2);

for i = 7:size(data, 1)

err_func = err_func + (ye(i-5) - data(i,2))^2/ye(i-5);

end

The variable y0 sets the initial conditions of the simulation, and the Matlab function ode23s is used to

simulated the reactions defined in the function rdy. Note that we use ode23s rather than ode45 because

the system is “stiff,” containing reactions with very different time scales.

The rdy function is as follows:

function dy = rdy(t, y)

%S + X -> OB

%OB + OF_OQ -> OF

krep = 1.30e6; %fitted earlier
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dy = zeros(6,1);

dy(2) = -y(1) * y(2) * y(3);

dy(3) = -y(1) * y(2) * y(3);

dy(4) = y(1) * y(2) * y(3) - krep * y(4) * y(5);

dy(5) = -krep * y(4) * y(5);

dy(6) = krep * y(4) * y(5);

The parameter krep denotes the rate constant of the reaction between the output product Y and the

reporter complex R (previously fitted to be 1.3 · 106 M−1 s−1.

S5. Approximation of the BM rate constants and critical concentrations.

In Fig. 8 of the main text, we show a simplified approximation flowchart for estimating the BM rate

constant and the critical concentration below which the BM rate constant is a valid predictor of kinetics.

Here, we justify the results in those figures.

Approximating the BM rate constant

Recall equation (7), the expression for the BM rate constant:

k{m,n} ≡ k(βm,βm,γn)

=
kfkr(βm)kb

kr(γn)kr(βm) + kr(γn)kb + kr(βm)kb

At room temperature of 25 ◦C, with 11.5 mM Mg2+, and average distribution of base pairs for toeholds βm

and γn, each base contributes on average approximately 1.4 kcal/mol to the binding energy of the toehold.

Numerical substitution yields:

∆G◦(βm) ≈ 1.9 − 1.4m[kcal/mol]

kr(βm) = kf
2

b − m
e∆G◦(βm)/RT

= 3 · 106 2

20 − m
(e−2.36)(m−1.35)[M−1 s−1]

= 3 · 106 2

20 − m
(10.6)1.35−m[M−1 s−1]

≈ 6 · 106−m[M−1 s−1]

Similarly, kr(γn) ≈ 6 · 106−n[M−1 s−1]. Compared to the empirically measured value of kb = 1.0 s−1, kr(βm)

and kr(γn) are smaller than kb when m and n are greater than 6, respectively.

For situations where n ≥ m, kr(βm) ≥ kr(γn), and the expression for k{m,n} can be approximated as:

k{m,n} ≈
kfkr(βm)kb

(kr(γn) + kb)kr(βm)
=

kfkb

kr(γn) + kb
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When n > 6, kr(γn) < kb, and the expression for k{m,n} is approximated as kf ≈ 3 · 106 M−1 s−1. When

n ≤ 6, kr(γn) > kb, and the expression for k{m,n} is approximated as
kf kb

kr(γn)
= 5 · 10n−1 M−1 s−1.

For situations where n < m, kr(βm) < kr(γn), and the expression for k{m,n} can be approximated as:

k{m,n} ≈
kfkr(βm)kb

(kr(βm) + kb)kr(γn)

When m > 6, kr(βm) < kb, and the expression for k{m,n} can be approximated as
kf kr(βm)

kr(γn)
= kf · 10n−m ≈

3 · 106+n−m M−1 s−1. When m ≤ 6, kr(βm) > kb, and the expression for k{m,n} can be approximated as

kf kb

kr(γn)
= 5 · 10n−1 M−1 s−1.

Approximating the critical concentration

For estimating the critical concentrations below which the BM rate constant accurately predicts kinetics,

recall the expression for the critical concentration:

[X(m,n)], [S] ≤
0.1

kf
·
kr(γn)kr(βm) + kr(γn)kb + kr(βm)kb

kb + kr(βm)

For situations where m > 6, kr(βm) < kb, and the critical concentration can be approximated as

0.1·(kr(γn)+kr(βm))

kf
. The numerator can be approximated as 0.1 · max(kr(γn), kr(βm)) = 6 · 105−min(m,n) s−1,

and the critical concentration is approximated as: 2 · 10−1−min(m,n) M.

For situations where m ≤ 6, kr(βm) > kb, and the critical concentration can be approximated as

0.1·(kr(γn)+kb)

kf
. When n > 6, the critical concentration is approximated as 0.1kb

kf
≈ 3 · 10−8 M. When n ≤ 6,

the critical concentration is approximated as
0.1kr(γn)

kf
= 2 · 10−1−n M.

S6. Matlab script for generating BM rate constant based on toehold

energies

The follows shows a script for calculating the BM rate constant and the ccrit values for a toehold

exchange reaction, taking the two toehold energies, the branch migration length, the temperature, and the

energy model as inputs.

function output = BM_rate(input)

%input format: [(invading toehold energy), (incumbent toehold energy),

% (branch migration length), (temperature), (energy model)]

%

%output format: [(BM rate constant), (critical concentration)]

%

%Assumes toeholds composition has all 4 bases (i.e. kf = 3.5e6)
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%

%Energy model: 1 = default, 2 = Pyshnyi, 3 = Nupack + Protozanova,

% 4 = Nupack(dangles = all), 5 = Owczarzy

%

% NOTE: User must manually add 2.38 kcal/mol for the input energies to NUPACK’s

% mole fraction energies

invading_energy = input(1);

incumbent_energy = input(2);

BM_length = input(3);

temperature = input(4)+273.15;

energy_model = input(5);

kf = 3.5e6;

if (energy_model == 1)

kb = 1 * 400 / (BM_length * BM_length);

end

if (energy_model == 2)

kb = 0.5 * 400 / (BM_length * BM_length);

end

if (energy_model == 3)

kb = 1 * 400 / (BM_length * BM_length);

end

if (energy_model == 4)

kb = 7 * 400 / (BM_length * BM_length);

end

if (energy_model == 5)

kb = 4 * 400 / (BM_length * BM_length);

end

invading_offrate = kf * exp(invading_energy * 4180 / temperature / 8.314) * (2 / BM_length);

incumbent_offrate = kf * exp(incumbent_energy * 4180 / temperature / 8.314) * (2 / BM_length);

%BM rate constant

BM_rate = kf * kb * incumbent_offrate / (invading_offrate * incumbent_offrate ...

+ kb * invading_offrate + kb * incumbent_offrate)

%critical concentration

c_crit = (0.1 / kf) * (invading_offrate * incumbent_offrate + kb * invading_offrate ...

+ kb * incumbent_offrate) / (incumbent_offrate + kb)

output = [BM_rate, c_crit];
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