
Compilation and Inference with Chemical Reaction
Networks

Thesis by
William Poole

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy in Computation and Neural Systems

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2022
Defended August 24, 2021

ii

© 2022

William Poole
ORCID: 0000-0002-2958-6776

All rights reserved

iii

ACKNOWLEDGEMENTS

This thesis would not have been possible without the help of a great many people.
First and foremost, my family. My parents Will and Janet, and my sister Sarah have
been incredibly supportive through the years and challenges of a PhD. A few years
ago, I met my wonderful wife, Aabha, who has since been a center point of my
life. She has humored my complaints and (frequently unilateral) excitement about
science, advanced math, and other academic details. She has encouraged me when
I struggled and frequently reminded me that my passion and excitement for science
would make this long process worthwhile.

Obviously the support of my advisors Erik Winfree and Richard Murray has been
crucial. Erik has instilled in me a deep respect and appreciation for rigorous
mathematics and computer science—an essential counterbalance to my tendency to
rely on intuition and jump prematurely to some conclusions. Richard has taught me
to think like an engineer; that the ability to design and build something is a sure road
to knowledge and that in this endeavor, powerful tools can be as helpful as theorems
and intuition.

One of the greatest joys of my PhD has been the collaborative sharing of knowl-
edge, teaching, and learning from exceptional people. Along the way, many friends,
colleagues, peers, and collaborators have played a huge role in helping me hone my
ideas and knowledge, provided support in my projects or just kept me sane. In par-
ticular, the work in this thesis would not have been possible without Tom Ouldridge,
Manoj Gopalkrishnan, Anandh Swaminathan, Andres Ortiz, Vipul Singhal, Ayush
Pandey, Andrey Shur, Zoltan Tuza, and Ankita Roychoudhury.1

Starting in high school, my physics and biology teachers Jonathan Briggs and Adam
Waltzer introduced me to these areas to such great effect that I haven’t stopped
studying them. In college, my thesis advisor Derek Stein, as well as informal
advisors/teachers Tom Powers and Gary Wessel empowered me to dive into the
intersection of physics, computation, and biology in a way I would never have been
able to on my own. After college, Theo Knĳnenburg and Brady Bernard taught me
bio-statistics and how to manage big data which have been invaluable skills.

So to everyone who has supported me along the way, thank you.
1No doubt I am missing names here, so I should add a few more: Logan Cross, Matt Rosenberg,

Anghad Singh, Abhishek Behera, Anish Sarma, Sam Clammons, Stefan Badelt, Miki Yun, and
doubtless, I am still missing people.

iv

ABSTRACT

The successful advancement and deployment of technologies in the field of syn-
thetic biology will require sophisticated computational infrastructure coupled with
new theoretical ideas in order to more effectively engineer and reverse engineer
biochemical networks. This thesis argues that the field of machine learning can
inform the development of these underlying principles and techniques. First, soft-
ware for compiling diverse chemical reaction network models of biological circuits
from simple specifications is described. Second, three chemical reaction network
implementations of a powerful machine learningmodel called a Boltzmannmachine
are analyzed and compared. Third, the class of detailed balanced chemical reaction
networks are proven to be capable of probabilistic inference and, when coupled to a
driven chemical system, autonomous learning. Finally, the use of machine learning
to interpret and understand biological systems is explored in an experimental case
study modeling E. coli cell extract metabolism.

v

PUBLISHED CONTENT AND CONTRIBUTIONS

[1] W. Poole, A. Pandey, Z. Tuza, A. Shur, and R. M. Murray, “BioCRNpyler:
CompilingChemical ReactionNetworks fromBiomolecular Parts inDiverse
Contexts,” BioRxiv, 2020. doi: https://doi.org/10.1101/2020.08.
02.233478,
W.P. lead this project, designed the high level architecture of the software,
and participated in all aspects of software development. W.P. also drafted
the manuscript.

[2] W. Poole, A. Ortiz-Munoz, A. Behera, N. S. Jones, T. E. Ouldridge, E.
Winfree, and M. Gopalkrishnan, “Chemical Boltzmann Machines,” in In-
ternational Conference onDNA-Based Computers, Springer, 2017, pp. 210–
231. doi: 10.1007/978-3-319-66799-7_14,
W.P. contributed equally with A.O.M. and A.B. as co-first authors develop-
ing the different models and theorems in this paper. W.P. also drafted the
manuscript.

https://doi.org/https://doi.org/10.1101/2020.08.02.233478
https://doi.org/https://doi.org/10.1101/2020.08.02.233478
https://doi.org/10.1007/978-3-319-66799-7_14

vi

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . iv
Published Content and Contributions . v
Table of Contents . v
Preface . 1
Chapter I: Introduction . 5

1.1 Chemical ReactionNetworks as a Biochemical Programming Language 5
1.2 Machine Learning as a Programming Methodology 8
1.3 Past Work Relating Machine Learning and Chemical Reaction Net-

works . 10
1.4 Statistical PhysicsConnectsChemicalReactionNetworks toMachine

Learning . 11
1.5 Synthetic and Systems Biology: Two Sides of the Same Coin 14

Chapter II: BioCRNpyler: Compiling Chemical Reaction Networks from
Biomolecular Parts in Diverse Contexts 16
2.1 Forward . 16
2.2 Abstract . 17
2.3 Introduction . 18
2.4 Motivating Examples . 20
2.5 Framework and Compilation Overview 23
2.6 Building an Open-Source Community 31
2.7 Future Directions . 32
2.8 Supplemental: Code for Examples 33
2.9 Supplemental: Tables of Features 38
2.10 Supplemental: Creating Custom BioCRNpyler Classes 40

Chapter III: Chemical Boltzmann Machines 43
3.1 Forward . 43
3.2 Abstract . 44
3.3 Introduction . 44
3.4 Relevant Background . 46
3.5 Exact Constructions and Theorems 50
3.6 Approximate Bimolecular Implementations 57
3.7 Detailed Balanced CRN Learning Rule 59
3.8 Discussion . 62
3.9 Appendix . 64

Chapter IV: Detailed Balanced Chemical Reaction Networks as Generalized
Boltzmann Machines . 67
4.1 Forward . 67
4.2 Abstract . 68

vii

4.3 Introduction . 69
4.4 Background . 71
4.5 Effective Use of Hidden Species Requires Reachability Entanglement 78
4.6 Inference with Detailed Balanced CRNs 80
4.7 Autonomous Learning CRNs . 90
4.8 Thermodynamics of Learning and Inference 100
4.9 Discussion . 110

Chapter V: Reducing the Complexity of E. coli Cell Extract Metabolism with
Phenomenological Modeling . 114
5.1 Forward . 114
5.2 Abstract . 115
5.3 Introduction . 115
5.4 Results and Discussion . 118
5.5 Methods . 125

Afterword . 132
Bibliography . 135

1

PREFACE

The personal side of science is often omitted from the formal narrative presented
at conferences and published in academic journals. But, at least in my experience,
the late-night musings, short tangential conversations with friends and colleagues,
and otherwise unpublished aspects of science make the work fun and fulfilling.
After all, if my intellectual nourishment consisted solely of the papers I published,
I would have long since starved myself out of academia. So I have decided to take
the opportunity to indulge in some less rigorous discussion in this preface and will
return to these ideas briefly at the very end of this thesis. For those of you interested
in rigorous scientific content, I encourage you to read this section with an open
mind, for it focuses not so much on what we know,2 nor on what I have added to
the body of scientific knowledge,3 but rather on what we may know in the future.
Speculations of future science can accurately be called science fiction and, needless
to say, I will be flattered if this preface is read again in the distant future so I could
be called either a visionary or a naive dreamer.

Before beginning to write this section, I dug up the Statement of Purpose I wrote
on my application to the Computation and Neural Systems program at Caltech. An
excerpt from the first paragraph is included below:

... I have been deeply fascinated by the question: what constitutes
a “thinking” network capable of processing information and how do
these networks operate under different contexts? I believe answering
this question in mathematical terms is essential to our ability to un-
derstand the complexity found in biological circuitry and to effectively
engineer biological systems. [...] With the aid of compute clusters and
powerful mathematical abstractions, I believe we can learn a lot about
how complex biological systems process information and use models
to make testable and/or clinically relevant predictions. Crucial to this
endeavor is the use of real biological data.

Considering how much I have learned over the past 6 years, I am surprised at how
accurately this paragraph reflects the content of this thesis. But, I also know that

2In the introduction of this thesis, you will find a succinct summary of some relevant scientific
knowledge which may even be mildly accessible.

3Chapters 2-5 of this thesis represent about two thirds of 6 years of work compressed into the
scientific fact-telling format we call journal articles.

2

what I wrote in my application and what I was hoping to accomplish are two very
different things. Then, I had the notion that math and computation could uncover
the secrets that make life special. It is now rather apparent to me that these secrets
are not in fact all that secret; they take the form of the laws of physics entangled
together in a myriad of complex ways by evolution. And as always, the devil is
in the evolutionary details. Biologists spend lifetimes reverse engineering specific
organic programs (more frequently called living organisms) and, despite incredible
advances in the past century, there exists countless more lifetimes of work before
we can hope to understand the full depth of biological complexity. Indeed, Chapter
5 of this thesis focuses on my costly attempt to reverse engineer a relatively tiny and
idealized piece of this puzzle: themetabolism ofmushed upE. coli—one of themost
studied organisms in history—made even simpler by being robbed of its genome
and cellular membrane. Even in such a simplified biological system, all I can do is
point out how little we understand, emphasize the challenges of collecting sufficient
data to build quantitative mechanistic models that can make concrete predictions,
and fall back to improving our heuristic and phenomenological understanding.

That said, I am confident we will make progress in both synthetic and systems
biology, two closely linked endeavors corresponding to engineering and reverse
engineering biological systems. In many ways, I believe this technological revolu-
tion will be driven out of necessity. Humanity is faced with daunting 21st century
challenges: to provide an ever-growing population with nourishment, shelter, and
healthcare, and most importantly, to do so in a way that is robust to and does
not intensify climate change. Advances in biotechnology may allow us to build
a sustainable society where matter and energy are as available as information has
become in the age of the internet. Scientists have already begun engineering genet-
ically modified crops to automatically adapt to droughts and floods. But we can do
better—our agriculture could replenish depleted soil and contain nutrients currently
only available from animal products. Today, wood is considered one of the more
sustainable construction materials—but at best, it is carbon neutral with new timber
replacing the old as it is destroyed by time. In the future, I foresee sustainable living
materials that sequester carbon from the atmosphere to repair themselves. Similarly,
many diseases caused by specific genetic mutations may be curable with highly
efficient personalized medicine. Maybe we will even learn how to repair or prevent
the damage caused by aging. These are just a few of the imaginable science fiction
technologies I believe will be made possible by synthetic and systems biology.

3

I have already said that I was only mildly successful at reverse engineering a par-
ticular biological system. Nor did I build new synthetic biological parts or circuits.
Instead, I attempt to provide a new lens through which we can think about how bio-
chemical circuits function. This lens is deeply inspired by the explosion of a field
called machine learning.4 The central point however is subtle; instead of explor-
ing “how can computers help us understand biochemical circuits,” the larger take
away from this thesis is exploring how biological computation can be understood as
machine learning. Just as idealized mathematical representations of biological neu-
rons inspired the deep neural networks being deployed by technology firms around
the world, idealized mathematical models of biochemical networks can also map
to powerful machine learning methods. In other words, the ideas fundamental in
machine learning theory may be a natural language to use to understand biochemical
computation. Chapters 3 and 4 of this thesis rigorously defend this statement in a
variety of contexts.

Finally, Chapter 2 of this thesis focuses on a software tool—BioCRNpyler—partly
inspired by the computational infrastructure that has accelerated the success of
machine learning. BioCRNpyler allows synthetic and systems biologists to easily
compile diverse and complex biochemical models from simple specifications. Just
as a computer programmer can use high level programming languages such as
Python instead of writing with assembly code,5 biologists and bioengineers will
need software tools to help them translate high level designs and hypotheses into
specific biochemical implementations and models. Indeed, drawing the computer
analogywith biology further, I would argue thatmolecular programming is still in its
infancy, perhaps equivalent to the early era of vacuum-tube based computers. We are
still waiting for a biochemical “transistor” and some biochemical version of Moore’s
law to take hold. In fact, it may be that this biochemical transistor will not consist
of a single physical device which enables seemingly endless biochemical computers
to be built, but rather a series of conceptual breakthroughs in design methodology
that allow us to seamlessly engineer biological systems in a holistic way. An
underlying premise of this thesis is that this methodological breakthrough will likely
include many ideas inspired by machine learning. Realizing the potential synthetic
biology offers will require new theoretical insights, sophisticated computational
infrastructure, and large data sets to validate and test new principles. I certainly do

4Briefly, the central idea of machine learning is to automate the construction and optimization
of some very specific kinds of mathematical models by computers with access to boatloads of data.

5Or the infamous punch cards my father likes to brag about using.

4

not claim to have accomplished all of these, but I hope that this work provides a step
in those directions and will inspire scientists to help grow a sustainable future built
on biological technology.

5

C h a p t e r 1

INTRODUCTION

1.1 Chemical Reaction Networks as a Biochemical Programming Language
Chemical reaction networks (CRNs) are a unifying theoretical foundation for most
of this thesis. CRNs are defined mathematically as a set of # species {(8} and
reactions of the form: ∑

8

�8A(8
dA (B)−−−−→

∑
8

$8A(8 . (1.1)

Here, �8A and $8A are the number of inputs and outputs of species (8 to the reaction
A, and dA (B) ≥ 0 can, in general, be any function of the amount of species in the
system B which goes to 0 when any input (reactant) is not present. Every CRN can
be simulated mathematically to produce dynamic trajectories representing how a
model of a system behaves in two mutually compatible ways. If the amount of each
species is assumed to be a real valued concentration, the system is best modeled by
the chemical rate equation (commonly called deterministic dynamics) [1]:

3 [(8]
3C

=
∑
A

Δ8AdA ([(]). (1.2)

Here, [(] ∈ R# denotes a vector of species concentrations and [(8] the concentration
of the specific species 8. The index A sums over reactions in the network, Δ8A = $8A− �8A
is a matrix describing the amount of species 8 produced or consumedwhen reaction A
occurs, and dA ([(]) is the rate at which reaction A occurs. On the other hand, if each
species is assumed to consist of discrete counts of molecules, the same CRN can be
simulated as a Markov jump process via the chemical master equation (commonly
called stochastic dynamics) [2]:

3P(B, C)
3C

=
∑
A

P(B − ΔA , C)dA (B − ΔA) − P(B, C)dA (B). (1.3)

Here B ∈ Z#≥0 denotes an #-vector of species counts and P(B, C) is the probability
that the system has counts B at time C. It is worth noting that stochastic dynamics can
rigorously be derived from the statistical physics of a well-mixed solution (meaning
diffusion is so fast that spatial interactions are negligible) [3]. Deterministic dynam-
ics can then be seen as a limit of the stochastic dynamics in an infinite volume with
infinite counts but a finite concentration [4].

6

CRN models have become widely used in synthetic and systems biology1 [5, 6] be-
cause they can succinctly encode detailed molecular interactions at the mechanistic
level [7] as well as coarse-grained phenomenological behavior [8, 9]. It is easiest to
see the difference between mechanistic models and phenomenological models via
an example. First, consider a gene � which produces a transcript) . This could be
written as a single reaction:

�
+C G−−→ � +). (1.4)

When the species � produces the transcript, it is not used up, so it appears on both
sides of the equation. A more detailed description of this process might involve
a second species, the polymerase %, which first binds to � before transcription is
enabled. This could be written as:

� + %
:1−−⇀↽−−
:D

� : % Polymerase binds or unbinds from the gene, (1.5)

� : %
:C G−−→ � + % +) Polymerase transcribes the gene. (1.6)

In this example, the process consists of three reactions: % and � can bind together
to form a complex � : % (1.5 forward direction) which can also unbind (1.5
reverse direction) or be transcribed to produce) (1.6). The first model could
be called phenomenological because it describes what might be observed in the
lab—production of a transcript from a gene—without describing how that process
occurs. Specifically, the constant +CG denotes the transcription rate, and in general
may be a complex function of the amount of polymerase %, temperature, and
a whole host of other factors [10]. The second model is a more mechanistic
model because it describes a process by which transcription occurs. However, it is
worth noting that the boundary between mechanistic models and phenomenological
models is largely one of perspective. For example, the second model could be called
phenomenological because the growth of the transcript nucleotide by nucleotide is
not modeled; once again, a complex process has been lumped into a rate constant

1Simply put, synthetic biology is engineering biology. Systems biology is reverse engineering.

7

:CG . An even more detailed mechanistic model might look like:

� + %
:1−−⇀↽−−
:D

� : % Polymerase binds or unbinds from the gene,

(1.7)

� : % + =
: ?−−→ � : % :)0 Polymerase begins transcribing, (1.8)

� : % :)8−1 + =
: ?−−→ � : % :)8 Polymerase adds nucleotide 8 ∈ 1...", (1.9)

� : % :)"
:A−−→ � + % +) Transcript is released. (1.10)

Here, = denotes nucleotide and : ? is the rate of polymerization. This elongation
model is also a simplification of an even more complex process involving confor-
mation changes of the polymerase [11] and potentially multiple polymerases bound
to each gene [12]. The flexibility of chemical reaction networks coupled with their
well-tailored nature to describe biochemical phenomena hasmade thesemodels very
popular in systems and synthetic biology. For example, CRNs have been used to
produce systems level metabolic models [13], detailed mechanistic and phenomeno-
logical models of real biochemical circuits [6, 14, 15], and detailed mechanistic and
phenomenological models of synthetic biochemical circuits [16, 17].

The utility of CRNs is that they are very expressive and can represent virtually any
process at multiple levels of abstraction. This statement has been made rigorous
using the branch of computer science called complexity theory which asks “What
kind of problems is a particular class of systems capable of solving?” It has been
proven that finite stochastic CRNs are probabilistically Turing universal (meaning
they can perform any computation a Turing machine can, and hence any computer
can, with an arbitrarily small chance the output will have an error) [18]. Deter-
ministic CRNs are somewhat less powerful than their stochastic counterparts, but
they can are powerful function approximators2 [19–21]. Subtly, some sub-classes of
CRNs, meaning systems where only reactions of a very particular form are allowed
to occur such as carefully engineered DNA strand displacement systems, can in fact
implement any arbitrary CRNwith no restrictions. Put in other words, CRNs can be
viewed as a programming language where a phenomenological description (in the
form of a simple CRN) is compiled into a detailed mechanistic CRN (in the form of
a much larger implementation CRN) [22, 23].

2Technically, they can produce any piece-wise linear function, which could be used to approxi-
mate any function over a bounded domain.

8

The idea of biochemical compilation has helped birth a very fruitful field,molecular
programming, which sits at the intersection of computer science, DNA nanotechnol-
ogy, and synthetic biology. Molecular programmers have made numerous in vitro
biochemical computers out of DNA [24–26], RNA [27, 28], enzymatic systems [29,
30], and small molecules [31]. Molecular compilation has also been used to a lesser
extent in vivo, but significant challenges remain in this area including orthogonality
of components [32, 33], toxicity [34, 35], and evolutionary stability [36]. Extend-
ing CRN compilation to synthetic and systems biology is a central aspect of this
thesis. Towards this goal, Chapter 2 introduces a Python software package called
BioCRNpyler3 designed as a general purpose CRN compiler for synthetic and sys-
tems biologists inspired, in part, by DNA strand displacement (DSD) compilers [23,
26].

The ability to rapidly explore the design space of biochemical models naturally leads
to the question: what are the most natural ways to program CRNs? To date, most in
vivo implementations of CRN-based programs take the form of logic circuits [33,
37, 38] or feedback controllers [39]. However, it is unclear that these programming
paradigms are easily represented by the intrinsic interactions of biomolecules and
whether those representations scale to larger systems [40, 41]. One alternative is
that biochemistry naturally implements algorithms inspired by machine-learning
methodologies.

1.2 Machine Learning as a Programming Methodology
The methods and considerations common in machine learning have been a direct
inspiration for many aspects of this thesis. Briefly, machine learning can be charac-
terized as a set of techniques to learn parameters, of a function � given data - [42].
The basic idea is that the function � encodes some kind of computation (such as
image classification) and that the parameters can be learned from a representative
set of training data. Commonly, this is framed as an optimization problem:

,∗ = argmin
,

L(� (-,,)). (1.11)

Here, L is some kind of loss function or error. In general, finding the globally
optimal value of ,∗ is infeasible. Instead, stochastic gradient descent is used to
search for a local optimum which in practice is often close to a global optimum:

mg,8 ∝
m

m,8

L(� (-,,)). (1.12)

3pronounced “Biocompiler”.

9

Here ,8 is a single parameter and mg,8 denotes the change in ,8 at the training
epoch g. For example, in an image classification problem, � might be a feed forward
neural network, - would be images, and L could be the squared-difference between
the true classification and the classification output from �. The key to effective
machine learning is in choosing the right function � for a given problem [42]
and the correct optimization procedure to learn that function. However, these
topics only play a tangential role in this thesis by highlighting the powerful idea
of function optimization being a computational tool which can be applied to an
incredibly diverse number of problems ranging from image recognition [43] to
drug discovery [44] to natural language processing [45] to solving the structures of
proteins from sequences [46].

This thesis is primarily focused on a particular subclass of machine learning func-
tions called generative probabilistic models [47] and specifically probabilistic graph-
ical models [48]. Generative probabilistic models consist of functions which pro-
duce probability distributions4 � : G → R by assigning each possible data point G a
probability P(G). Probabilistic generative models have a deep history of being used
in neuroscience and are hypothesized to underlie many aspects of how the brain
functions [49, 50]. It therefore seems plausible that generative models could also
play a role in chemical computation.

Probabilistic graphical models are a subclass of generative models which use a
graphical approach to write their distribution in a factorized form. For example, a
graphical model where H and I depend on G but not on each other would be denoted:5

-

↙ ↘
. /

⇒ P(G, H, I) = P(G)P(H | G)P(I | G). (1.13)

Furthermore, these distributions are commonly parameterized as exponential func-
tions which makes these models analytically tractable. Continuing with the above
example:

P(G, H, I) = 1
/
4 5G (G)4 5H (H,G)4 5I (I,G) =

1
/
4 5 (G,H,I) / =

∑
G,H,I

4 5 (G,H,I) . (1.14)

Here, the functions 5G , 5H, and 5I may have many forms, typically chosen based upon
prior knowledge of the data or process being modeled. Common choices include

4A distribution is a (potentially infinite) vector of values ?8 normalized to
∑
8 ?8 = 1.

5Note that the arrows used here are different from the reaction arrows of the previous section.

10

Guassians, Poisson distributions, etc. [48]. Graphical models are well suited for
Bayesian inference and computing conditioning distributions such as P(H | G). In
practice, these models are commonly trained to learn the distribution of the training
data by using the relative entropy � as a cost function:

L = � (& | | %) =
∑
G

&(G) log
&(G)
%(G) . (1.15)

The relative entropy is not symmetric. Depending on the specific algorithm and
model used, both & and % can be either the data distribution or the algorithm distri-
bution [51]. When % is the algorithm distribution, the relative entropy has a natural
interpretation as the amount of information lost when % is used to approximate
& which makes this cost function a natural choice from an information theoretic
perspective.

1.3 Past Work Relating Machine Learning and Chemical Reaction Networks
Given the computational power of deterministic CRNs and the utility of machine
learning, it comes as no surprise that a large number of schemes have been developed
allowing CRNs to implement common functions (denoted � in the previous section)
trained via external (presumably non-chemical) machine learning algorithms. For
example, CRN implementations of neural network architectures inspired by the
perceptron [52] and Hopfield associative memories [53] have been designed and
analyzed at an abstract level [54–59]. Concrete implementations based on enzymatic
circuits have been proposed [60–62], and built at a small scale both in vitro [30, 63]
and in vivo [64, 65]. Similarly, concrete implementations based on in vitro DNA
based circuits have been proposed [66, 67] and built at a much larger scale than their
enzymatic counterparts [24, 68, 69].

The learning process has also been investigated in the context of deterministic
CRNs beginning with the connection between learning and evolution [70] leading
to a number of CRN networks which are evolved in silico in order to minimize an
error function [58, 71]. Various CRN architectures have also been proposed which
internally incorporate the ability to be optimized or tuned via dynamic changes in
species’ concentrations, such as error signals. This allows for adaptive CRN neural
networks which learn via chemical implementations of gradient descent and related
algorithms [72–75]. A different approach has been to understand learning from a
Bayesian probabilistic inference perspective leading to deterministic CRN models
which can infer the state transition matrices of a Markov chain [76] and find the
maximum likelihood estimators for log-linear models [77].

11

Parallels between CRNs and neural networks have also been used as a lens through
which to understand and model various biological processes including developmen-
tal biology [78, 79], protein-protein interaction networks [70], and combinatorial
transcriptional regulation [80]. It has also been argued that bio-molecular compu-
tations at the cellular level are fundamentally analog due to effects like resource
loading [81] suggesting that a neural perspective is natural in molecular biology.

Unlike most of the preceding references, this thesis is primarily focused on the rela-
tionship between stochastic CRNs and generative probabilistic models (as opposed
to deterministic CRNs and neural networks). At the highest level, this connection
seems intuitive because stochastic CRNs and generative models both produce prob-
ability distributions. In other words, the noise due to discrete molecular counts
in stochastic CRN dynamics might naturally give rise to behavior reminiscent of
generative models. A few papers make similar points by showing that stochastic
CRNs can use their intrinsic noise to implement a version of the message passing
algorithm [82] and to optimize probabilistic models directly [83, 84]. In this vein,
Chapter 3 of this thesis provides more examples of CRNs which use stochasticity
to implement a particular kind of probabilistic graphical model called a Boltzmann
machine [85]. Chapter 4 uses tools from information theory and statistical physics
to generalize the analogy between specific classes of CRN and graphical models.
These insights are then used to develop a fully autonomous6 chemical implementa-
tion of a learning (meaning parameter optimization with gradient descent).

1.4 Statistical Physics Connects Chemical Reaction Networks to Machine
Learning

Stochastic CRNs are a form of stochastic process which, by the definition of their
dynamics (1.3), embody dynamic probability distributions. Stochastic processes,
in turn, have been extensively studied in physics resulting in many methods of
numerically simulating and analyzing the properties of these systems [86]. However,
little can be said about the general overarching behavior of stochastic CRNs because
they are Turing universal and in principle capable of just about any kind of behavior.
Fortunately, by applying a series of constraints, stochastic CRNs can become more
analytically tractable. Crucially, we will apply restrictions with clear physical
interpretations with the ultimate goal of arriving at a model superficially similar to
probabilistic graphical models. In the process, a number of important considerations
related to the physicality of CRNs will be discussed.

6By “fully autonomous” I mean that no external signals or interventions are required for learning.

12

The first step is to focus on the steady-state distribution, PBB, of a CRN. This occurs
when the chemical master equation (1.3) is set to 0:

3P(B, C)
3C

= 0 =⇒
∑
A

PBB (B − ΔA)dA (B − ΔA) − PBB (B)dA (B) = 0. (1.16)

Notice that there is no time dependence—simplifying the probability distribution—
which also seems reasonable in light of the lack of dynamics in the definition of
probabilistic graphical models. The steady state distribution can also be thought
of as the infinite time-averaged behavior of the CRN. Mandating that a steady state
solution exists has the added benefit of ensuring that some CRNs which result in
unbounded dynamics like �→ 2� are excluded from consideration.

The second step is to realize that any irreversible reaction must be phenomenolog-
ical because physics is fundamentally reversible7 [88]. For example, consider the
elongation of a transcript by a polymerase, as represented in reaction (1.9). Al-
though this reaction is written irreversibly, it is also possible that the nucleotide will
de-polymerize from the transcript as soon as it is added. Rewritten to include this
possibility, the reaction becomes:

� : % :)8−1 + =
: ?−−−⇀↽−−−
:A4E?

� : % :)8 + %ℎ
: ?

:A4E?
= 4

−Δ�?
:�) . (1.17)

Here, the additional species %ℎ represents the polyphoshate produced during poly-
merization which is important to account for in the reversible dynamics. In the
second equation, :1 is Boltzmann’s constant and) is temperature. This equation is
the definition of microscopic reversibility: the ratio of the forwards and backwards
rates are given by the exponential of the change in free energy of the process divided
by :1) . Intuitively, what this condition implies is that transitions between states
are linked to thermal fluctuations. In the case of RNA polymerization, Δ� ? is on
the order of −30 kJ/mol.8 When translated to units of :�) , the forward rate is
hugely faster than the reverse rate. This means, that for all practical purposes the
phenomenological description of the reaction being irreversible is correct provided
the amount of fuel is abundant. Indeed, any phenomenologically irreversible reac-
tion can be written mechanistically as one or more reversible reactions connected

7The reversibility of physics can be seen through classical physics such as Newton’s laws as well
and the electromagnetic force as well as quantum physics which all have time-reversal symmetry.
Informally, this means the laws of physics still hold backwards in time as well as forwards. The only
exception to this symmetry occurs in statistical mechanics where entropy always increases in time,
but this is fundamentally a probabilistic effect [87].

8This is estimated from the standard free energy difference between ATP and AMP noting that
during polymerization a polyphosphate is released [89].

13

to reservoirs which provide fuel species and remove waste species species [90, 91].
In the above example, the triphosphate inside the NTP acts as a fuel source driving
polymerization. By explicitly analyzing the production of %ℎ as a waste product,
it becomes clear that this reaction is very energetically favorable. Provided that the
amount of NTP remains high and the amount of polyposphate waste remains low,
the polymerization process (and hence transcription) is approximately irreversible
despite being mechanistically microscopically reversible.

The final step is tomandate that themicroscopically reversibleCRN not be connected
to any non-equilibrium reservoirs or chemostats9. Then, the steady state distribution
will become an equilibrium distribution and the resulting CRN is called detailed
balanced (db). Formally, the detailed balanced condition states:

Every species (8 has an energy �8 . (1.18)

Reactions are reversible:
∑
8

�8(8
:+−−→

∑
8

$8(8 ⇔
∑
8

$8(8
:−−−→

∑
8

�8(8 . (1.19)

Microscopically reversible rates:
:+

:−
= 4−Δ� Δ� =

∑
8

($8 − �8)�8 . (1.20)

Intuitively, this condition means that there are no driving forces powering any
reactions in the dbCRN, which ensures that a dbCRN is driven only by thermal
fluctuations at steady state.

Equilibrium systems are the basis of thermodynamics and statistical mechanics,
and have been studied for around two centuries. One well known result about any
system at physical equilibrium is that it will have a probability distribution in the
Boltzmann-Gibbs form [92]:

P(G) = 1
/
4
− � (G)
:�) / =

∑
G

4
− � (G)
:�) . (1.21)

And indeed, it has been shown that dbCRNs have an equilibrium distribution c(G)
in the same form [93]:

c(B) = 1
/
4
− G(B)
:�) / =

∑
B∈Γ

B0

4
− G(B)
:�) G(B) =

∑
8

�8B8 + log B8!. (1.22)

Here, B is a vector of species counts and ΓB0 is called the reachability class which
denotes all the states that can be reached via some sequence of reactions from

9A chemostat is effectively a chemical battery that can hold fuel (e.g. ATP) and waste (e.g.
ADP) species at constant values to power a system [90]. Note that, technically, a system could
be connected to an equilibrium chemostat which is analogous to a drained battery because the
equilibrium chemostat will not provide any power to the system.

14

initial condition B0. The key thing to notice is that Equations (1.14) and (1.22) are
suggestively similar - an analogy which will be elaborated on extensively in Chapter
4 of this thesis and ultimately used to implement a CRN capable of autonomous
learning which implements gradient descent (1.12) using the relative entropy as a
cost function (1.15).

1.5 Synthetic and Systems Biology: Two Sides of the Same Coin
Broadly, synthetic and systems biology provide themotivation and potential applica-
tion areas for many of the ideas in this thesis. Briefly, synthetic biology is concerned
with repurposing existing biochemical components to genetically engineer biolog-
ical organisms for new purposes [5]. Synthetic biology has been used to prototype
biochemical circuits in single cells [33, 37, 38, 94] and inmulti-cellular systems [95–
97] with potential applications in bio-manufacturing [98, 99], biosensors[100, 101],
and medicine [102–104]. Synthetic biology also emphasizes building mechanistic
models of biological parts and components so they can be applied in a modular
fashion similar to the parts of a circuit board [105]. However, despite the emphasis
on modularity, the context-dependent effects of different biochemical parts both
between chassis and due to unintended cross-talk remain major hurdles in scaling
synthetic biological circuits [106]. Additionally, synthetic circuits frequently have
unintended effects on their host organism which can make deployment of these
technologies challenging [107]. For example, a circuit which slows bacteria growth
by diverting essential resources to production of a pharmacological product may be
quickly evolved away [108].

Systems biology, on the other hand, attempts to bring a high-level holistic and
mathematically quantitative view to the understanding of biological organisms at
themolecular [109, 110], cellular [14], andmulti-cellular levels [111]. One common
approach in systems biology is collecting quantitative and often high throughput data
sets from the same biological system under different experimental conditions [112–
115]. Mathematical models are then made from the data which qualitatively or
quantitatively represent the observed behavior [116, 117]. Systems biology is
a rapidly developing field with new experimental techniques and mathematical
methods constantly being deployed. However, despite an ever increasing amount of
data systems biologists are able to collect, it frequently remains challenging to tease
causal relationships from biological data [118]. Additionally, as more scientists
move towards single cell data, many questions remain about how biochemical noise
implicit in small molecule counts [119–122] is used or mitigated by cells [123–125].

15

Bringing systems and synthetic biology together is both natural and inevitable.
Systems biology provides the tools and understanding so that synthetic biochemical
circuits can be built and optimized for specific contexts [126, 127] and integrated
within an organism in a way that their function remains robust [128]. On the flip
side, synthetic biology has shown some of its greatest potential when applied toward
understanding systems biology research questions [129]. However, for this synthesis
to occur, scientists need to be able to easily share and combine diverse models so
that bioengineers can use systems level knowledge in their designs and to enable
the rapid redeployment of synthetic biochemical systems to new systems. Recent
software advanced in multi-scale modeling [130] and data-driven machine learning
methods [131, 132] provide one potential avenue for this to occur.

Chapter 5 of this thesis takes a small step in these directions via an experimental study
of E. coli cell lysate—a platform used in synthetic biology for bioproduction [133]
and circuit prototyping [134]—at a systems level. High throughput untargeted small
molecule mass spectrometry (metabolomics) [135] is used to gather time course data
of cell extract metabolism during cell-free protein expression. This data coupled
with easy-to-automate calibration data and a machine learning technique called
Bayesian parameter inference are then used to develop a phenomenological model
of extract metabolism designed to be integrated with existing circuit models.

16

C h a p t e r 2

BIOCRNPYLER: COMPILING CHEMICAL REACTION
NETWORKS FROM BIOMOLECULAR PARTS IN DIVERSE

CONTEXTS

[1] W. Poole, A. Pandey, Z. Tuza, A. Shur, and R. M. Murray, “BioCRNpyler:
CompilingChemical ReactionNetworks fromBiomolecular Parts inDiverse
Contexts,” BioRxiv, 2020. doi: https://doi.org/10.1101/2020.08.
02.233478,

2.1 Forward
The following chapter is quoted directly from the pre-print journal article by the
same name which is currently under review [136]. An early version of the paper
was presented at the International Workshop on Biodesign Automation (IWBDA)
conference in 2020. This work was conducted jointly Ayush Pandey, Andrey Shur,
and Zoltan Tuza under the supervision of Richard Murray.

The BioCRNpyler software package compiles chemical reaction networks from
simple specifications with the goal of enabling principled model exploration and
reuse in systems and synthetic biology. BioCRNpyler uses a high level abstrac-
tion to represent diverse biochemical Components (parts) in various Mixtures
(contexts) which can interact via different Mechanisms (reaction schemas). The
idea underlying this abstraction is that biochemical models are dependent both on
their biological context— e.g. in vivo versus in vitro—as well as their modeling
context—e.g. the assumptions made to derive models used to represent different
interactions. BioCRNpyler is also an extensive library of commonly usedmotifs and
components in synthetic and systems biology. By using a flexible object-oriented
architecture, BioCRNpyler allows users to easily interchange different contexts and
combine different components in a modular way in order to rapidly deploy diverse
and sophisticated models.

Importantly, BioCRNpyler is not a simulator — it produces models in the Systems
Biology Markdown Language (SBML,) which can be simulated with a diverse set
of simulators. During my PhD, I have also contributed heavily to the Bioscrape
CRN simulator [137] and the Vivarium Engine [130]. The vision of these pack-
ages as a unit is inspired by machine learning libraries such as pytorch [138] and

https://doi.org/https://doi.org/10.1101/2020.08.02.233478
https://doi.org/https://doi.org/10.1101/2020.08.02.233478

17

tensorflow [139], which enable diverse network architectures to be easily deployed
and efficiently run by machine learning engineers. Similarly, by having flexible
model compilation (BioCRNpyler) automatically connected to powerful simulators
(Bioscrape and Vivarium) which can further be coupled to parameter inference ca-
pabilities (Bioscrape), biochemical models can be deployed and learned from data
in a pipeline similar to those used in the machine learning community. Obviously,
there is still work to be done. In particular, parameter inference from biochemical
data remains a challenge. Chapter 5 of this thesis will demonstrate how inadequate
current state of the art inference techniques are. One potential remedy for this is
to develop CRN-specific inference software that takes advantage of the underlying
mathematical structure of CRNs in order to be more efficient. The theoretical work
in Chapters 3 and 4 may be a first step in this direction.

Contribution: I designed the overall software architecture and CRN compilation
framework described in the paper and wrote the initial, very rough, version of the
code including many of the core Mechanisms, Components, and Mixtures. Then,
over the course of two years, this code was almost universally re-implemented by the
BioCRNpyler team. Ayush Pandey took care of most of the SBML compatibility.
Zoltan Tuza was instrumental in improving code quality, adding integrated testing,
and generally making everything “Pythonic” and developer friendly. Andrey Shur
focused on prototypingmany of the more complex and specific example applications
of the software such as DNA_construct and IntegraseEnumerator as well as
building a number of visualization packages. I was involved in the design of every
large feature and improvement. I also helped implement many new features and
ensured that changes were propagated throughout the entire code base in a way
that maintained the integrity of the software. Finally, I wrote the entire publication
included in the thesis (with review from the other coauthors).

2.2 Abstract
Biochemical interactions in systems and synthetic biology are often modeled with
chemical reaction networks (CRNs). CRNs provide a principled modeling environ-
ment capable of expressing a huge range of biochemical processes. In this paper,
we present a software toolbox, written in Python, that compiles high-level design
specifications to CRN representations. This compilation process offers four advan-
tages. First, the building of the actual CRN representation is automatic and outputs
Systems Biology Markup Language (SBML) models compatible with numerous
simulators. Second, a library of modular biochemical components allows for dif-

18

ferent architectures and implementations of biochemical circuits to be represented
succinctly with design choices propagated throughout the underlying CRN auto-
matically. This prevents the often occurring mismatch between high-level designs
and model dynamics. Third, high-level design specification can be embedded into
diverse biomolecular environments, such as cell-free extracts and in vivo milieus.
Finally, our software toolbox has a parameter database, which allows users to rapidly
prototype large models using very few parameters which can be customized later.
By using BioCRNpyler, users can easily build, manage, and explore sophisticated
biochemical models using diverse biochemical implementations, environments, and
modeling assumptions.

2.3 Introduction
Chemical reaction networks (CRNs) are the workhorse for modeling in systems
and synthetic biology [14]. The power of CRNs lies in their expressivity; CRN
models can range from physically realistic descriptions of individual molecules to
coarse-grained idealizations of complex multi-step processes [1]. However, this
expressivity comes at a cost. Choosing the right level of detail in a model is more an
art than a science. Themodeling process requires careful consideration of the desired
use of the model, the available data to parameterize the model, and prioritization of
certain aspects of modeling or analysis over others. Additionally, biological CRN
models can be incredibly complex including dozens or even hundreds or thousands
of species, reactions, and parameters. Maintaining complex hand-built models is
challenging and errors can quickly grow out of control for large models. Software
tools can answermany of these challenges by automating and streamlining themodel
construction process.

Due to CRN’s rich history and diverse applications, the available tools for a
CRN modeler are vast and include: extensive software to generate and simulate
CRNs [140, 141], databases of models [142], model analysis tools [143, 144],
and many more. However, relatively few tools exist to aid in the automated con-
struction of general CRN models from simple specifications. For example, even
though synthetic biologists have adopted a module and part-driven approach to their
laboratory work [5], models are still typically built by hand on a case-by-case basis.
Recognizing the fragile non-modular nature of hand built models, several synthetic
biology design automation tools have been developed for specific purposes such as
implementing transcription factor or integrase-based logic [37, 145]. These tools
indicate a growing need for design and simulation automation in synthetic biology,

19

as part and design libraries are expanded.

As the name would suggest, BioCRNpyler (pronounced bio-compiler) is a Python
package that compiles CRNs from simple specifications of biological motifs and
contexts. This package is inspired by the molecular compilers developed by the
DNA-strand displacement community and molecular programming communities
which, broadly speaking, aim to compile models of DNA circuit implementations
from simpler CRN specifications [22, 24, 146], or rudimentary programming lan-
guages [147, 148]. However, BioCRNpyler differs from these tools for three main
reasons: first, it is not focused only on DNA implementations of chemical compu-
tation; second, it does not take the form of a traditional programming language; and
third, modeling assumptions and compilation schemas can be easily redefined by
the user. BioCRNpyler combines specifications consisting of synthetic biological
parts and systems biology motifs that can be reused and recombined in diverse
biochemical contexts at customizable levels of model complexity. In other words,
BioCRNpyler compiles detailed CRN models from abstract specifications of a bio-
chemical system. Importantly, BioCRNpyler is not a CRN simulator—models are
saved in the Systems Biology Markup Language (SBML) [149] to be compatible
with the user’s simulator of choice. Figure 2.1 provides motivating examples for the
utility of BioCRNpyler by demonstrating the rapid construction of diverse CRNs by
reusing common parts and modifying the modeling context.

There are many existing tools that provide some of the features present in BioCRN-
pyler. Systems Biology Open Language (SBOL) [150] uses similar abstractions to
BioCRNpyler but is fundamentally a format for sharing DNA-sequences with as-
signed functions and does not compile a CRN. The software package iBioSim [151,
152] compiles SBOL specifications into SBML models and performs analysis and
simulation. Although BioCRNpyler is capable of similar kinds of compilation into
SBML, it is not a simulator. Importantly, BioCRNpyler does not hard-code how
models are compiled—instead it should be viewed as a customizable software com-
pilation language that can be applied to compile many kinds of systems beyond
genetic networks. The rule-based modeling framework BioNetGen [153] allows for
a system to be defined via interaction rules which can then be simulated directly
or compiled into a CRN. Internally, BioCRNpyler functions similarly to this rule-
based modeling compilation. Similarly to PySB [154], BioCRNpyler provides a
library of parts, mechanisms, and biomolecular contexts that allow for models to be
succinctly produced without having to manually specify and verify many complex

20

rules. Finally, the MATLAB TX-TL Toolbox [155] can be seen as a prototype
for BioCRNpyler but lacks the object-oriented framework and extendability beyond
cell-free extract systems.

BioCRNpyler is purposefully suited to in silicoworkflows because it is an extendable
object-oriented framework that integrates existing software development standards
and allows complete control overmodel compilation. Simultaneously, BioCRNpyler
acceleratesmodel constructionwith extensive libraries of biochemical parts, models,
and examples relevant to synthetic biologists, bio-engineers, and systems biologists.
The BioCRNpyler package is available on GitHub [156] and can be installed via the
Python package index (PyPi).

2.4 Motivating Examples
This section highlights the ease-of-use of BioCRNpyler through several well-known
synthetic biology examples. As a summary, Figure 2.1 demonstrates the utility of
compiling CRNs with BioCRNpyler. The names of Python classes are highlighted
typographically and are defined more thoroughly in later sections. Time-course
simulations in Figure 2.1 were done with Bioscrape [137] and circuit diagrams were
created with DNAplotlib [157]. Additional example models of the lac operon and
an integrase circuit are depicted in Figures 2.3 and 2.5, respectively.

Inducible Repression, Toggle Switch, and Repressilator
Models A, B, and C show three archetypal motifs from synthetic biology: inducible
repression, a bistable toggle switch [158], and the repressilator [159]. All three
of these examples are created by reusing the same Components wired together in
different ways as described in Section 2.8. The ability to reuse Components allows
for convenient design-space exploration of different circuit architectures. Further-
more, as explained in Section 2.4 and 2.4, examples D, E and F show how these
Components can be tested in different contexts by changing the Mechanisms and
Mixtures used to compile the Components resulting in nuanced implementation-
specific and context-specific models.

dCas9 Repressor and Guide RNA Coexpressed with Reporter
Figure 2.1D builds upon the repression Model A by modeling an implementation
consisting of a guide-RNA and dCas9 complex that acts as a repressor by inhibiting
RNA-polymerase binding to the reporter’s promoter [160]. Model A also includes
more intra-cellular context such as nucleases and ribosomes. By including cellular

21

Inducible
Repression

Idealized
Toggle
Switch

Idealized
Repressilator

dCas9
Repression

RNAase
Toggle
Switch

Multi-Occupancy
Repressilator

0

100

200

300

400

500

600

4 4 4 6 6 10 10 7 9 15 15 11 28 36
64

10 28 38
68

11

180

337

587

14

G. Comparative Model Complexity

Number Species in Model
Number of Reactions in Model
Number of ODE Terms in Model
Lines of Code to Create Model

A. Inducible Repression

Repressor Reporter

[Repressor Assembly]

[R
ep

or
te

r S
te

ad
y

St
at

e]
Idealized Repression Behavior

D. dCas9 Repressor & Guide
 Coexpressed with Reporter

guideRNA dCas9 Reporter

0 10−4 10−2 100 102

[guide RNA Assembly]

0

10−4

10−2

100

102

[d
Ca

s9
 A

ss
em

bl
y]

Reporter Steady State Heatmap
(model includes reotractivity)

10−1 101 103

B. Bistable Toggle Switch

A B

100 101 102 103

100

101

102

103

Idealized Toggle Switch Phase Portrait

Stable Fixed Point A
Stable Fixed Point B
Unstable Fixed Point

E. Targeted RNAase
Toggle Switch

A B

10−2 10−1 100 101 102

10−2

10−1

100

101

102

RNAase Toggle Phase Portrait
(model includes cellular machinery)

Stable Fixed Point A
Stable Fixed Point B
Unstable Fixed Point

C. Repressilator

A B C

Time

10−1

100

101

102

Idealized Repressilator Dynamics

Protein A
Protein B
Protein C
Transcript

Time
10−4

10−3

10−2

10−1

100

101

102

F. Multiple Ribosome Occupancy
Repressilator Dynamics

Protein A
Protein B
Protein C
Free Transcript
Bound Transcript
Ribosomes (unbound)
RNAase (unbound)

Figure 2.1: Motivating Examples. The idealized models (A, B, and C) do not model
the cellular environment; genes and transcripts transcribe and translate catalytically. A.
Schematic and simulation of a constitutively active repressor gene repressing a reporter.
B. Schematic and simulations of a toggle switch created by having two genes, � and
�, mutually repress each other. C. Schematic and dynamics of a 3-repressor oscillator.
The detailed models (D, E, & F) model the cellular environment by including ribosomes,
RNases, and background resource competition for cellular resources. D.AdCas9-guideRNA
complex binds to the promoter of a reporter and inhibiting transcription. Heatmap shows
retroactivity caused by varying the amount of dCas9 and guide-RNA expressed. The sharing
of transcription and translational resources gives rise to increases and decreases of reporter
even when there is very little repressor. E. A proposed model for a non-transcriptional
toggle switch formed by homodimer-RNase; the homodimer-RNase made from subunit �
selectively degrades the mRNA producing subunit � and visa-versa. F. A model of the
Repressillator exploring the effects of multiple ribosomes binding to the same mRNA. G.
Histogram comparing the sizes of models A-F and the amount of BioCRNpyler code needed
to generate them.

22

machinery in the model, the co-expression of dCas9 and the guide RNA is able
to influence the reporter via loading effects and retroactivity, which can cause
unintended increases and decreases in reporter expression [161] even when only the
guide-RNA or dCas9 is present.

Targeted RNase Toggle Switch
Figure 2.1E models a hypothetical toggle switch that functions at the RNA level
instead of the transcriptional level. Each DNA assembly expresses a subunits �
and � of two homodimer-RNase. The homodimer-RNase made from subunit �
selectively degrades the mRNA producing subunit � and visa-versa. Such a system
could potentially be engineered via RNA-targeting Cas9 [162] or more complex
fusion proteins [163].

Multiple Ribosome Occupancy Repressilator Dynamics
Figure 2.1F illustrates how BioCRNpyler can be used to easily generate more re-
alistic and complex models of biochemical processes in order to validate if model
simplifications are accurate. It is common practice in transcription and translation
models to use an enzymatic process consisting of a single ribosome (') to a tran-
script ()) which then produces a single protein (%). This translation Mechanism
could be written as: ' +) ↼−−⇁ ' :) → ' +) + %. Indeed, both example mod-
els D and E use such a simplification. However, experiments show that in fact
many ribosomes can co-occupy the same mRNA [164]. By changing the under-
lying translation Mechanism to model multiple ribosomal occupancy of a single
mRNA, a considerably more complex Repressilator model was created. Impor-
tantly, this model exhibits very similar behavior to the simpler model, suggesting
that multi-occupancy of ribosomes on mRNA can be neglected in these kinds of
genetic regulatory circuits.

Network Complexity
Finally, the bottom bar chart in Figure 2.1G shows that even as the size of the
underlying CRN grows, the amount of BioCRNpyler code that is needed to generate
the model remains very small. This enables the generation of large and complex
models with greater accuracy and lower chance of human error. For example,
imaginewriting downODEswith hundreds of terms and then trying to systematically
modify the equation: human error is nearly inevitable. By using BioCRNpyler to
compile CRNs, models can be easily produced, modified, and maintained.

23

Species and
Reactions

Mechanism
Biochemical Processes

Component
Functional Parts

Global
Mechanisms

Compiled
Chemical Reaction

Network

Parameters
Hierarchical Definitions

Mixture
Biochemical &

Modeling Context

Component
Enumerator

Figure 2.2: The hierarchical organization of Python classes in the BioCRNpyler.
Dark gray arrows represent direction of compilation: from high-level design specifi-
cations (Components) in amodeling context (Mixtures) and biochemical processes
(Mechanims) to a CRN representation. Light gray arrows represent inheritance
of default Parameters and Mechanims. Yellow arrows represent Species and
Reaction generation which are placed in a ChemicalReactionNetwork repre-
sented by the bottom right gold box. ComponentEnumerators are advanced objects
used to automate the generation of Components. GlobalMechanisms are rules
used to generate Species and Reactions at the end of compilation.

Parameter Database
Importantly, all these examples in this section make use of the same underlying set
of 10-20 default parameters (estimated from Cell Biology by the Numbers [165])
demonstrating how BioCRNpyler’s parameter database makes model construction
and simulation possible even before detailed experiments or literature review.

2.5 Framework and Compilation Overview
BioCRNpyler is an open-source Python package that compiles high-level design
specifications into detailedCRNmodels, which then are saved as anSBMLfiles [149].
BioCRNpyler is written in Python with a flexible object-oriented design, extensive
documentation, and detailed examples which allow for easy model construction by
modelers, customization and extension by developers, and rapid integration into
data pipelines. As Figure 2.2 shows, underlying BioCRNpyler is a comprehensive
ChemicalReactionNetwork class allowing for the direct creation and manipula-
tion of Reactions and the participating Species to represent molecular interac-
tions at many levels of complexity. For example, an entire gene may be modeled as
a single Species, as an OrderedPolymerSpecies with multiple binding specific
sites, or as a PolymerConformation which represents the secondary structure of
one or more OrderedPolymerSpecies.

BioCRNpyler also compiles CRNs objects from high-level specifications defined by
modular Components combined together in a Mixture representing a biochemical

24

context (e.g. cell lysate extract). Modeling assumptions and specific knowledge
of biochemical processes are defined via Mechanisms which can be placed inside
Components and Mixtures. This class structure allows for the biochemical parts
(e.g. Components) to be reused to quickly produce numerous different architectures
and implementations, such as those described in the motivating examples. These
different architectures and implementations can further be tested in different con-
texts providing easily customizable levels of biochemical and modeling complexity
represented by Mixtures and Mechanisms.

The Mixture, Component, and Mechanism classes are hierarchical. Mixtures
represent biological context by containing Components to represent the biochemical
environment and Mechanisms to represent the modeling details. For example, the
TxTlExtract subclass of Mixture represents bacterial cell extract and contains
Ribosomes, RNA Polymerase, and RNases Components as well as transcription,
translation, and RNA-degredation Mechanisms. Additionally, Components can be
added to a Mixture to produce a particular biochemical system of interest in a
particular context. Figure (2.3) illustrates how a set of BioCRNpyler Components
and Mechanisms can be joined together to produce a systems level model of the
lac operon—a highly studied gene regulatory network in E. coli which regulates
whether glucose or lactose is metabolized [166]. This model consists of around a
dozen Components and Mechanisms which jointly enumerate hundreds of species
and reactions representing the combinatorial set of conformations of the lac operon
and its associated transcription factors, transcription, translation, transport, mRNA
degradation, and dilution.

During compilation, Components represent biochemical functionality by calling
Mechanisms to produce Species and Reactions. The Component class may use
the Mechanisms contained in the Mixture or have their own custom Mechanisms
to have more differentiated functionality. For example, a RepressiblePromoter
(a subclass of Component) might rely on the Mixture for its translation Mechanism
but use a custom transcription Mechanism. BioCRNpyler uses flexible parameter
databases contained in both Mixtures and Components to allow for rapid model
prototyping using just a few default parameters, which can later be customized for
each Component and Mechanism. Specifically, Mechanisms will first search for
parameters in the Component that called them before defaulting to the parameters
of the Mixture. This defaulting behavior is illustrated by the light gray arrows of
Figure 2.2. Finally, component enumeration provide a highly flexible framework

25

C

Other Species
glucose internal
lactose internal
cAMP
allolactose
glucose external
lactose external
rna
rna polymerase
ribosome
rnaase
empty set

B R RC P Z Y AR

Lac Operon [CombinatorialConformationPromoter, DNA_assembly]

LacR Tetramer [ChemicalComplex]

c-CRP [ChemicalComplex]

Lactose Permease [Enzyme]

Glucose Permease [Enzyme]

β-Galactosidase [ChemicalComplex, Enzyme]

Components

Catalysis

Binding

Conformation Change

Dilution

Transcription

Translation

RNA Degradation

Mechanisms

Mixture: E. coli
A

Figure 2.3: Compiling amodel of the Lac Operon using BioCRNpyler specifications
with 173 species and 343 reactions using ∼50 lines of code. A.A Mixture contains
a set of Components and Mechanisms. The Component classes used for each
element of the model are shown in brackets. B. A schematic of the lac operon and
the three looped and one open conformation it can take. Each conformation contains
a combinatoric number of states based upon the accessible binding sites: R are lac
repressor binding sites; C is the activator c-CRP binding site; P is the promoter; and
Z, Y, A are the three lac genes. C. A graph representation of the compiled CRN.
Each circle is a unique chemical species. Square boxes show how chemical species
interact via reactions generated by specific Mechanisms.

to automatically generate new Components during compilation as illustrated in the
integrase example Figure 2.5.

Internal CRN Representation
Formally, a CRN is a set of species (= {(8} and reactions ' : {�

d(B;\)
−−−−→ $} where

� and $ are multisets of species, d is the rate function or propensity, B is a vector of
species’ concentrations (or counts), and \ are rate parameters. Typically, CRNs are
simulated as ordinary differential equations (ODEs) and numerically integrated [1].
A stochastic semantics also allows CRNs to be simulated as continuous-timeMarkov
chains [167]. Besides their prevalence in biological modeling, there is rich theo-
retical body of work related to CRNs from the mathematical [168], computer sci-
ence [169], and physics communities [170]. Despite these theoretical foundations,
manymodels are phenomenological in nature and lackmechanistic details of various
biological processes. The challenge of constructing correct models is compounded
by the difficulty in differentiating between correct and incorrect models based upon
experimental data [16, 171, 172].

26

BioCRNpyler allows users to easily build diverse CRNs with flexible species and
reaction representations which are then saved as SBML [149] for simulation with
many different simulators. The CRN classes inside BioCRNpyler provide use-
ful functionality so that users can easily modify CRNs produced via compilation,
produce entire CRNs by hand, or interface hand-produced CRNs with compiled
CRNs. These functionalities include classes to represent Species bound together as
ComplexSpecies, lists of species organized as OrderedPolymerSpecies, multi-
polymer secondary structures called a PolymerConformation, and many diverse
propensity function types including mass-action, Hill functions, and general user-
specified propensities. Additionally, user-friendly printing functionality allows for
the easy visualization of CRNs in multiple text formats or as interactive reaction
graphs formatted and drawn using Bokeh and ForceAtlas2 [173, 174].

Mechanisms are Reaction Schemas
When modeling biological systems, modelers frequently make use of mass-action
CRN kinetics which ensure that parameters and states have clear underlying mecha-
nistic meanings. However, for the design of synthetic biological circuits and analysis
using experimental data, phenomenological or reduced-order models are commonly
utilized as well [1]. Empirical phenomenological models have been successful in
predicting and analyzing complex circuit behavior using simple models with only a
few lumped parameters [17, 175, 176]. Bridging the connections between the differ-
ent modeling abstractions is a challenging research problem. This has been explored
in the literature using various approaches such as by direct mathematical compar-
ison of mechanistic and phenomenological models [7–9] or by studying particular
examples of reduced models [1]. BioCRNpyler provides a computational approach
using reaction schemas to easily change the mechanisms used in compilation from
detailed mass-action to coarse-grained at various level of complexity.

Reaction schemas refer to BioCRNpyler’s generalization of switching between dif-
ferent mechanistic models: a single process can be modeled using multiple underly-
ing motifs to generate a class of models. Mechanisms are the BioCRNpyler objects
responsible for defining reaction schemas. In other words, various levels of abstrac-
tions andmodel reductions can all be represented easily by using built-in and custom
Mechanisms in BioCRNpyler. For example, to model the process of transcription
(as shown in Figure 2.4), BioCRNpyler allows the use of various phenomenological
and mass-action kinetic models by simply changing the choice of reaction schema.
Notably, this provides a unique capability to quickly compare system models across

27

Gene G Transcript T

Simple Transcription:
𝐺 → 𝐺 + 𝑇

Michaelis Menten Transcription
𝐺 + 𝑅𝑁𝐴𝑃 ⇌ 𝐺: 𝑅𝑁𝐴𝑃

𝐺: 𝑅𝑁𝐴𝑃 → 𝐺 + 𝑅𝑁𝐴𝑃 + 𝑇

Michaelis Menten Transcription with Hill Function

𝐺
𝜌(𝐺,𝑅𝑁𝐴𝑃)

𝐺 + 𝑇

𝜌 𝐺, 𝑅𝑁𝐴𝑃 = 𝑘 𝑅𝑁𝐴𝑃
𝐺

𝐾+𝐺

Multi-Occupancy Michaelis Menten Transcription
𝐺 + 𝑅𝑁𝐴𝑃 ⇌ 𝐺: 𝑅𝑁𝐴𝑃1

𝐺: 𝑅𝑁𝐴𝑃𝑛 + 𝑅𝑁𝐴𝑃 ⇌ 𝐺: 𝑅𝑁𝐴𝑃𝑛+1
𝐺: 𝑅𝑁𝐴𝑃𝑛 → 𝐺 + 𝑛 𝑅𝑁𝐴𝑃 + 𝑛 𝑇

User Specified
Input Species and

Parameters

User Specified
Output Species

Reaction Schemas are Black Box CRNs

Figure 2.4: Mechanisms (Reaction Schemas) representing transcription.

various levels of abstraction enabling a more nuanced approach to circuit design
and exploring system parameter regimes.

Formally, reaction schemas are functions that produce CRN species and reactions
from a set of input species and parameters: 5 : ((′, \) → ((, '). Here the in-
puts (′ are chemical species and \ are rate constants. The outputs (⊇ (′ are
an increased set of species and ' is a set of reactions. Figure 2.4 gives different
examples of reaction schemas representing transcription. This functionality allows
modelers to generate CRNs at different levels of complexity and reuse CRN motifs
for some Components while customizing Mechanisms for others. Importantly,
BioCRNpyler contains a large and growing library of existing Mechanisms exten-
sively documented via examples making them easy to use and re-purpose without
extensive coding. Internally, each Mechanism class has a type (e.g. transcription)
which defines the input and output species it requires. Global mechanisms are a spe-
cial subclass of Mechanism called at the end of compilation to represent processes
which act on large subsets of CRN species such as dilution in cellular models. The
ability to generate chemical Species and Reactions via customized Mechanisms
is one of the key features making BioCRNpyler distinct from other frameworks.
Hierarchical SBML and supporting software provide [177] a notable exception—
however BioCRNpyler contains a library of reusable chemical reactionmotifs, while
Hierarchical SBML is a standard for describing embedded CRN models.

28

Components Represent Functionality
In BioCRNpyler, Components are biochemical parts or motifs, such as promoters,
enzymes, and chemical complexes. Components represent biomolecular func-
tionality; a promoter enables transcription, enzymes perform catalysis, and chem-
ical complexes bind together. Components express their functionality by calling
particular Mechanism types during compilation. Importantly, Components are
not the same as CRN Species; one Species might be represented by multiple
Components and a Component might produce multiple Species! For example,
the single CombinatorialConformationPromoter Component used in the lac
operon model (shown in Figure 2.3) produces hundreds of unique Species. Con-
versely, the chemical species V-Galactosidase is modeled using two components:
an Enzyme to model the metabolism of lactose and a ChemicalComplex to model
the fact that V-Galactosidase is a homeotetramer. Components are flexible and can
behave differently in different contexts or behave context-independently. To define
dynamic-context behavior, Components may use mechanisms and parameters pro-
vided by the Mixture. To define context-independent behavior, Components may
have their own internal Mechanisms and parameter databases. The BioCRNpyler
library includes many Component subclasses to model enzymes (Enzyme), chem-
ical complexes (ChemicalComplexes) formed by molecular binding, Promoters
(Promoter), Ribosome Binding Sites (RBS), complex genetic architectures (such as
DNA_construct illustrated in Figure 2.5), and more.

Mixtures Represent Context
Mixtures are collections of default Components, default Mechanisms, and user-
added Components. Mixtures can represent chemical context (e.g. cell extract
vs. in vivo), as well as modeling resolution (e.g. what level of detail to model
transcription or translation at) by containing different internal Components and
Mechanisms. Mixtures also control CRN compilation by requesting Species
and Reactions for each of their Components. After receiving all these Species
and Reactions, Mixtures then apply global mechanisms which act on all the
Species produced by Components. BioCRNpyler comeswith a variety of Mixtures
to represent cell-extracts and cell-like systems with multiple levels of modeling
complexity.

29

DNA 1

DNA 1

RNA 1

RNA 2

pTeta�B a�P

NA + bound proteins

DNA 2

DNA 2

RNA 1

GFP
A B

C

RFP

CFP

DNA
RNA
Cellular Processes
Ribosome
Protein Complexes
RNAP
GFP
RFP
CFP

Nothing (degrada�on)

Integrase Reac�on
Reac�on

Flow

Integrase

pTet

Integra�on Transcrip�on

Transla�on

RNA 2

TetR

TetR

Figure 2.5: Using the DNA construct class, DNA parts (a subclass of Component)
can be arranged in the same order as they would be in a DNAmolecule and compiled
into a CRN. A. A complicated DNA construct contains three coding sequences
and a single promoter which can be flipped by an integrase. Global component
enumeration allows an integrase enumerator to generate “DNA 2” from “DNA 1.”
B. Local component enumeration generates an RNA construct from each DNA
construct. C. A directed graph representation of the compiled CRN from the DNA
construct. Species represented by circles participate in Reactions represented
by squares. Circled groups of Species and Reactions involve the DNA construct
labeled “DNA 1,” or the RNA constructs labeled “RNA 1” or “RNA 2.” The
component enumeration process creates all the necessary Species and Reactions
to simulate integration, transcription, and translation from linear and circular DNA,
taking into account the compositional context of DNA parts.

30

Component Enumeration Allows for Arbitrary Complexity
Component enumeration allows additional Components to be generated dynami-
cally during the compilation process. Local component enumeration occurs when
one Component compiles itself into a set of many sub-components. For example,
the DNA construct Component, made out of an ordered list of DNA parts, such
as Promoters, RBSs, and CDSs, uses component enumeration to enumerate all the
possible mRNAs which could be transcribed as new RNA construct Components.
When the CRN is compiled, many RNA constructs may be generated from a sin-
gle DNA construct. All the objects generated this way can then be coupled to
Mechanisms automatically to compile a complex CRN.

Similarly, global component enumeration generates a set of Components based
upon all the Components in the Mixture. For example, serine integrases are
enzymes which are capable of recombining strands of DNA at specific integration
sites [178]. Integration events can happen within a single piece of DNA or between
multiple DNA species. The integrase enumeration looks at all the DNA constructs
present in a Mixture and enumerates all possible integration events to generate
new DNA constructs which are then fed back into the enumeration recursively.
Figure 2.5 illustrates both local and global component enumeration involving a
DNA_construct with serine integrase attachment sites. Other integrase types (for
example homotypic sites) are also supported. Due to the potential of an unbounded
number of Components being produced by such a process, component enumeration
can be called to a user-specified recursion depth in order to compile arbitrarily large
chemical reaction networks.

Flexible Parameter Databases
Developing models is a process that involves defining and then parameterizing in-
teractions. Often, at the early stage of model construction, exact parameter values
will be unavailable. BioCRNpyler has a sophisticated parameter framework which
allows for the software to search user-populated parameter databases for the param-
eter that closest matches a specific Mechanism, Component, and parameter name.
This allows for models to be rapidly constructed and simulated with “ball-park”
parameters and then later refined with specific parameters derived from literature or
experiments. This framework also makes it easy to incorporate diverse parameter
files together and share parameters between many chemical reactions.

31

BioCRNpyler Parameter Hierarchy

(mechanism_name, part_id, param_name)

• ParameterKey(Michaelis-Menten Transcription, J23119, kb)

(mechanism_type, part_id, param_name)

• ParameterKey(Transcription, J23119, kb)

(None, part_id, param_name)

• ParameterKey(None, J23119, kb)

(mechanism_name, None, param_name)

• ParameterKey(Michaelis-Menten Transcription, None, kb)

(mechanism_type, None, param_name)

• ParameterKey(Transcription, None, kb)

ParameterKey(None, None, param_name)

• ParameterKey(None, None, kb)

Su
cc

e
ss

iv
e

 D
ef

au
lt

in
g

Figure 2.6: BioCRNpyler Parameter Defaulting Hierarchy. If a specific parameter
key (orange boxes) cannot be found, the parameter database automatically defaults
to other parameter keys. This allows for parameter sharing and rapid construction
of complex models from relatively few non-specific (e.g. lower in the hierarchy)
parameters.

2.6 Building an Open-Source Community
BioCRNpyler aims to be a piece of open-source community driven software that is
easily accessible to biologists and bioengineers with varying levels of programming
experience as well as easily customizable by computational biologists and more
advanced developers. Towards these ends, the software package is available via
GitHub and PyPi, requires very minimal software dependencies, contains extensive
examples and documentation in the form of interactive Jupyter notebooks [156],
YouTube tutorials [179], and automated testing to ensure stability. Furthermore
this software has been extensively tested via inclusion in a bio-modeling course and
bootcamps with dozens of users ranging from college freshmen and sophomores
with minimal coding experience to advanced computational biologists. BioCRN-
pyler has already been deployed to build diverse models in systems and synthetic
biology [130, 180–182]. Developing new software functionality is also a simple
process documented on the GitHub contributions page.

Integrated Testing
BioCRNpyler uses Github Actions and Codecov [183] to automate testing on
GitHub. Whenever the software is updated, a suite of tests is run including ex-
tensive unit tests and functional testing of tutorial and documentation notebooks.
Automated testing ensures that changes to the core BioCRNpyler code preserve
the functionality of the package. The integration of Jupyter notebooks into testing

32

allows users to easily define new functionality for the software and document that
functionality with detailed explanations which are simultaneously tests cases.

Documentation and Tutorials
TheBioCRNpylerGitHubpage contains over a dozen tutorial Jupyter notebooks [156]
and presentations explaining everything from the fundamental features of the code
to specialized functionality for advanced models to how to add to the BioCRNpyler
code-base [179]. This documentation has been used successfully in multiple aca-
demic courses and is guaranteed to be up-to-date and functional due to automatic
testing.

2.7 Future Directions
BioCRNpyler is an ongoing effort which will grow and change with the needs of its
community. Extending this community via outreach, documentation, and an ever
expanding suite of functionalities is central to the goals of this project. We are
particularly interested in facilitating the integration of BioCRNpyler into existing
laboratory pipelines in order to make modeling a central part of the design-build-test
cycle in synthetic biology. One avenue towards this goal is to add compatibility
to existing standards such as SBOL [150] and automation platforms such as DNA-
BOT [184] so BioCRNpyler can automatically compile models of circuits as they
are being designed and built. This approach will be a generalization and extension
of Roehner et al. [185]. In particular, due to the modular BioCRNpyler compilation
process, it will be possible to have programmatic control over the SBML model
produced from BioCRNpyler.

We also plan on extending the library to includemore realistic and diverseMixtures,
Mechanisms, and Components (particularly experimentally validated models of
circuits in E. coli and in cell extracts). We hope that these models will serve as
examples and inspiration for other scientists to add their own model systems in other
organisms to the software library.

Finally, we believe that the Context-Part-Mechanism abstraction of model compila-
tion used in BioCRNpyler is fundamental and could be extended to other non-CRN
based modeling approaches. Advanced simulation techniques beyond chemical re-
action networks will be required to accurately model the diversity and complexity
of biological systems. New software frameworks such as Vivarium [130] have
the potential to generate models which couple many simulation modalities. The
abstractions used in BioCRNpyler could be extended to compile models beyond

33

chemical reaction networks such as mechanical models, flux balance models, and
statistical models derived from data. The integration of these models together will
naturally depend on both detailed mechanistic descriptions as well as overarching
system context. We emphasize that building extendable and reusable frameworks
to enable quantitative modeling in biology will become increasingly necessary to
understand and design ever more complex biochemical systems.

Acknowledgement
We would like to thank the Caltech BE 240 class and the Murray Biocircuits lab
for extensive testing of this software and discussions of relevant models, library
of parts, and parameters. In particular, we would like to thank Matthieu Kratz,
Liana Merk, and Ankita Roychoudhury for contributing to the software library. The
authors W.P. and A.P. are partially supported by US National Science Foundation
(CBET-1903477). A.P. is also supported by theDefenseAdvancedResearchProjects
Agency (Agreement HR0011-17-2-0008). The content of the information does not
necessarily reflect the position or the policy of the Government, and no official
endorsement should be inferred.

2.8 Supplemental: Code for Examples
This section provides code from the examples Figure 2.1. The first three models
are idealized in the sense that they are represented by Hill functions and include
no cellular machinery such as ribosomes or polymerases. Producing these models
in BioCRNpyler is easy and just requires the reuse of a few parts: DNAassembly
represents a simple transcriptional unit with a promoter, transcript, and option-
ally an ribosome binding site (RBS) and protein product. RepressiblePromoter
creates a promoter modeled by a Hill function. Species creates CRN species
used in the models. Notice that only Species which are shared between dif-
ferent Components need created by hand—BioCRNpyler takes care of the rest.
For example, in inducible repression example the repressor ' is created by hand
because it is placed inside the RepressiblePromoter. However the DNA, tran-
script, and protein are automatically generated from the name of the DNAassmebly.
Finally, everything is added together into a subclass of Mixture and compiled
into a ChemicalReactionNetwork. The second three models build off the gen-
eral architectures of the first three, but add in more complicated context and im-
plementation details. These models use the considerably more complex context
TxTlDilutionMixture which includes molecular machinery such as RNAP, ri-

https://www.cds.caltech.edu/~murray/wiki/BE_240,_Spring_2020

34

bosomes, RNases, and background cellular processes. Additional implementation
details in the form of Components and Mechanisms are also added to these models.

Inducible Repression
Here a repressor is constituitively produced from a DNAassembly. This repressor
is then linked to a RepressiblePromoter which models repression using a Hill
function.

from biocrnpyler import *

Models a piece of DNA that constitutively produces the species R

repressor = Species("R")

const_rep = DNAassembly(name="const_rep", promoter="medium", rbs="medium",

protein=repressor)

R represses RepressiblePromoter which is placed into another DNAassembly

reporter

prom = RepressiblePromoter(name="pR", repressor=repressor)

reporter = DNAassembly(name="Reporter", promoter=prom, rbs="strong",

initial_concentration=1)

ExpressionDilutionMixture models gene expression without

transcription/translation

mixture = ExpressionDilutionMixture(components=[reporter, const_rep],

parameter_file="params.txt")

CRN = mixture.compile_crn()

Toggle Switch
In the following example, a toggle switch is created by connecting two instances
of RepressiblePromoter. Notice that string names passed to promoter and RBS are
used to help find parameters. BioCRNpyler comes with many default parameters to
enable rapid model prototyping.

from biocrnpyler import *

Creates A and is repressed by B

repA = Species("A")

promA = RepressiblePromoter(name="pA", repressor=repB)

assemblyA = DNAassembly(name="A", promoter=promA, rbs="medium",

protein=repA, initial_concentration=1)

Creates B and is repressed by A

repB = Species("B")

promB = RepressiblePromoter(name="pB", repressor=repA)

assemblyB = DNAassembly(name="B", promoter=promB, rbs="medium",

protein=repB, initial_concentration=1)

35

SimpleTxTlDilutionMixture includes transcription and translation but no

machinery

mixture = SimpleTxTlDilutionMixture(components=[assemblyA, assemblyB],

parameter_file= "params.txt")

CRN = mixture.compile_crn()

Repressilator
The code to create a 3-node repression oscillator is really just adding one more unit
and rewiring the toggle switch example.

from biocrnpyler import *

Create Repressors

repA = Species("A")

repB = Species("B")

repC = Species("C")

Create Promoters

promA = RepressiblePromoter(name="pA", repressor=repC)

promB = RepressiblePromoter(name="pB", repressor=repA)

promC = RepressiblePromoter(name="pC", repressor=repB)

#Create DNAassemblies

assemblyA = DNAassembly(name="A", promoter=promA, rbs="medium",

protein=repA, initial_concentration=1)

assemblyB = DNAassembly(name="B", promoter=promB, rbs="medium",

protein=repB, initial_concentration=1)

assemblyC = DNAassembly(name="C", promoter=promC, rbs="medium",

protein=repC, initial_concentration=1)

Place it all in a Mixture & Compile

mixture = SimpleTxTlDilutionMixture(components=[assemblyA, assemblyB,

assemblyC], parameter_file="params.txt")

crn = mixture.compile_crn()

Cas9 Repressor and Guide RNA Coexpressed with Reporter
Modeling a dCas9-guideRNA repressor in bioCRNpyler requires that the dCAs9
and guide RNA know to bind together. This is accomplished via the Component
subclass ChemicalComplex which models binding between multiple species. The
resulting dCas9-guideRNA ComplexSpecies is used as a repressor.

from biocrnpyler import *

parameter syntax: (mechanism_name, part_id, parameter_name) : value

Only one dCas9-guideRNA complex binds to the promoter at once

params = {

36

("negativehill_transcription", None, "n"):1

}

Create guide RNA and dCas9 Species

guide = Species("guide", material_type="rna")

dcas = Species("dCas9")

These species will bind together by placing them in the ChemicalComplex

Component

"notdegradable" ensures that RNases do not degrade gRNA-dCas9 complexes.

repressor = ChemicalComplex([dcas, guide], attributes=["notdegradable"])

reporter = Species("reporter")

Constuitive Assemblies to produce dCas9 and the guideNRA

assembly_dcas = DNAassembly(name="dcas", promoter="medium", rbs="medium",

protein=dcas)

assembly_guide = DNAassembly(name="guide", promoter="strong", rbs=None,

transcript=guide)

Create a repessible promoter

pReg = RepressiblePromoter(name="pA", repressor=repressor,

parameters=params)

assembly_rep = DNAassembly(name="reporter", promoter=pReg, rbs="strong",

protein=reporter, initial_concentration=1)

Place the Components in a Mixture

extract = TxTlDilutionMixture("e coli", components=[assembly_rep,

assembly_dcas, assembly_guide, repressor], parameter_file="params.txt")

#Compile the CRN

crn = extract.compile_crn()

Targeted RNase Toggle Switch
The targeted RNase toggle switch model is a hypothetical model similar to a normal
toggle switch, but with regulation at the RNA level instead of the transcriptional
level. This is accomplished by creating two constitutively expressed RNases (which
areChemicalComplexesmade up of two subunits) and adding customMechanisms
to the Mixture modeling the degradation of any species with the attribute “tagA”
and “tagB” by RNase A and RNase B, respectively.

#Create an RNA species with degradation tag sequence tagB

TA = Species("A", attributes=["tagB"], material_type="rna")

#Create homodimer subunit A

A = Species("A", material_type="protein")

#RNase A is a homodimer made up of two identical subunits

RNaseA = ChemicalComplex([A]*2)

#create a DNAassembly that produces A

37

assemblyA = DNAassembly(name="A", promoter="strong", transcript=TA,

rbs="medium", protein=A, initial_concentration=1)

#Same as above but for Species B

TB = Species("B", attributes=["tagA"], material_type="rna")

B = Species("B", material_type="protein")

RNaseB = ChemicalComplex([B]*2)

assemblyB = DNAassembly(name="B", promoter="strong", transcript=TB,

rbs="medium", protein=B, initial_concentration=1)

#add all the Components to a Mixture

mixture = TxTlDilutionMixture("e coli", components=[assemblyA, assemblyB,

RNaseA, RNaseB], parameter_file="default_parameters.txt")

Deg_Tagged_Degredation Mechanism makes RNaseA degrade anything with

attribute "tagA"

mixture.add_mechanism(Deg_Tagged_Degredation(mechanism_type="tagA_degredation",

deg_tag="tagA", protease=RNaseA.get_species()))

Deg_Tagged_Degredation Mechanism makes RNaseB degrade anything with

attribute "tagB"

mixture.add_mechanism(Deg_Tagged_Degredation(mechanism_type="tagB_degredation",

deg_tag="tagB", protease=RNaseB.get_species()))

#Compile the CRN

CRN = mixture.compile_crn()

Multiple Ribosome Occupancy Repressilator Dynamics
Simulatingmultiple-ribosome occupancy in the Repressilatormostly reuses the code
from Section 2.8 with the main addition of a new Mechanism to model transcription
being placed into the Mixture.

#Create Repressors

repA = Species("A")

repB = Species("B")

repC = Species("C")

#Create Promoters

promA = RepressiblePromoter(name="pA", repressor=repC)

promB = RepressiblePromoter(name="pB", repressor=repA)

promC = RepressiblePromoter(name="pC", repressor=repB)

#Create DNAassemblies

assemblyA = DNAassembly(name="A", promoter=promA, rbs="strong",

protein=repA, initial_concentration=1)

assemblyB = DNAassembly(name="B", promoter=promB, rbs="strong",

protein=repB, initial_concentration=1)

assemblyC = DNAassembly(name="C", promoter=promC, rbs="strong",

38

protein=repC, initial_concentration=1)

#Extra parameters for the Multi_tx Mechanism

extra_params = {"max_occ":10, ("multi_tx", None, "k_iso"):50, ("multi_tl",

None, "k_iso"):50, "cooperativity":2}

#Add Everything to a Mixture

mixture = TxTlDilutionMixture("e coli", components=[assemblyA, assemblyB,

assemblyC],

parameter_file="default_parameters.txt",

parameters=extra_params,

overwrite_parameters=True)

#Add the multi_tl translation mechanism to the mixture, overwriting the

old one.

mixture.add_mechanism(multi_tl(name="multi_tl",

ribosome=mixture.ribosome.get_species()), overwrite=True)

#Compile the CRN

crn = mixture.compile_crn()

2.9 Supplemental: Tables of Features
This section lists many of the different Mixture, Component, and Mechanism
classes available in BioCRNpyler. Formore details about these classes and examples
using many of them, check out the Examples folder on GitHub.

Mixtures
Mixture Name Description
ExpressionExtract A model for gene expression without machinery such as ribosomes, polymerases,

etc. Here transcription and translation are lumped into one reaction: expression.
SimpleTxTlExtract A model for transcription and translation in a cell-free extract without machinery

such as ribosomes, polymerases, etc. RNA is degraded via a global mechanism.
TxTlExtract A model for transcription and translation in a cell-free extract with machinery for

ribosomes, polymerases, and endonucleases action. This model does not include
any energy buffer.

EnergyTxTlExtract Transcription and translation with ribosomes, polymerases, and endonucleases
labelled as cellular machinery. Also includes a simple model of biochemical
energy utilization involving NTPs, amino acids, and energy regeneration from a
food source. Adapted from the model in [186].

ExpressionDilutionMixture A model for in-vivo gene expression without any machinery such as ribosomes,
polymerases, etc. Transcription and translation are lumped into one reaction and
a global mechanism is used to dilute all non-DNA species.

SimpleTxTlDilutionMixture Mixture with continuous dilution for non-DNA species. Transcription (TX) and
Translation (TL) are both modeled as catalytic with no cellular machinery. mRNA
is also degraded via a separate reaction to represent endonucleases.

TxTlDilutionMixture Transcription and translation with ribosomes, polymerases, and endonucleases
labelled as cellular machinery. Also includes a background load which represents
innate loading effects in the cell. Effects of loading on cell growth are not modeled.
It has global dilution for non-DNA and non-machinery species. This model does
not include any energy.

39

Components
Component Type Component Name Description
Chemical Complex ChemicalComplex A complex that represents the combination of several

Species. Takes care of binding and unbinding reactions
needed to form the complex.

Chemical Complex CombinatorialComplex A complex that represents the combination of several
Species. Binding occurs combinatorially in many pos-
sible orders. Allowed and disallowed intermediate com-
plexes can be specified.

Enzyme Enzyme An enzyme that converts substrates to products.
Protein Protein Basic component that represents a protein.
DNA DNA Basic component that represents a DNA sequence.
DNA DNAassembly A relatively simple DNA sequence containing one pro-

moter, RBS, and a product.
DNA DNA_construct A more complex DNA sequence that can have any num-

ber of Components in any order.
Promoter Promoter Constitutive f70 promoter.
Promoter RegulatedPromoter Repressible or activatable promoter such as %C4C .
Promoter ActivatablePromoter Activatable promoter using a positive Hill function.
Promoter RepressiblePromoter Repressible promoter using a negative Hill function.
Promoter CombinatorialPromoter Flexible promotermechanism allowing various transcrip-

tion factor binding configurations to allow or prevent
transcription.

Promoter CombinatorialConformationPromoter Enumerates the binding and unbinding events to repre-
sent a promoter with many regulators that can also form
various secondary structures such as loops.

Ribosome Binding
Site

RBS Simple RBS using a translation mechanism.

Coding Sequence CDS Protein coding part used for DNA_construct. Doesn’t
affect CRN.

Terminator Terminator Transcriptional terminator used for DNA_construct.
Doesn’t affect CRN.

RNA RNA Basic component that represents an RNA sequence.
RNA RNA_construct A more complex RNA sequence that can have any num-

ber of Components in any order. Usually automatically
generated by DNA_construct.

Polymer Secondary
Structure

CombinatorialConformation Enumerates the binding and unbinding events to produce
a PolymerConformation with different bound com-
plexes and secondary structure.

40

Mechanisms
Mechanisms Type Mechanism Name Description
binding Reversible_Bimolecular_Binding (1 + (2 ↼−−⇁ ((1 : (2)
cooperative_binding One_Step_Cooperative_Binding = (1 + (2 ↼−−⇁ (=(1 : (2)
cooperative_binding Two_Step_Cooperative_Binding = (1 ↼−−⇁ (=(1) , (=(1) + (2 ↼−−⇁ (=(1 : (2)
cooperative_binding Combinatorial_Cooperative_Binding Allows a set of species (8 and cooperativities =8 to bind

to a target) in any order to form (=1(1 : ... : =:(: :)
along with all combinatorial intermediaries.

binding One_Step_Binding (1 + (2...(# ↼−−⇁ (1 : (2 : ... : (#

catalysis BasicCatalysis (+� → % +�
catalysis BasicProduction � → % +�
catalysis MichaelisMenten (D1 + �=I ↼−−⇁ (D1 : �=I → �=I + %A>3
catalysis MichaelisMentenReversible (D1 + �=I ↼−−⇁ (D1 : �=I ↼−−⇁ �=I : %A>3 ↼−−⇁ �=I +

%A>3

copy MichaelisMentenCopy (D1 + �=I ↼−−⇁ (D1 : �=I → (D1 + �=I + %A>3
transcription OneStepGeneExpression � → � + %
transcription SimpleTranscription � → � +)
translation SimpleTranslation) →) + %
transcription PositiveHillTranscription � → [A]� + % A = :� ('=)/(+ '=)
transcription NegativeHillTranscription � → [A]� + % A = :�/(+ '=)
transcription Transcription_MM � + '# �% ↼−−⇁ � : '# �% → � + '# �% +<'# �
translation Translation_MM <'# � + '81 ↼−−⇁ <'# � : '81 → <'# � + '81 +

%A>C48=

transcription multi_tx �# � : '# �?= + '# �? ↼−−⇁ �# � :
'# �?2;>B43= → �# � : '# �?=+1�# � :
'# �?= → �# � : '# �?0 + ='# �? +
=<'# ��# � : '# �?2;>B43= → �# � :
'# �?2;>B430 + ='# �? + =<'# � for = =

{0,max>22 }
translation multi_tl <'# � : '�/= + '�/ ↼−−⇁ <'# � : '�/2;>B43

= →
<'# � : '�/=+1<'# � : '�/= → <'# � :
'�/0 + ='�/ + =%A>C48=<'# � : '�/2;>B43

= →
<'# � : '�/2;>B43

0 + ='�/ + =%A>C48= for = =
{0,max>22 }

dilution Dilution B → ∅
rna_degredation_mm Degredation_mRNA_MM) + #D2;40B4 ↼−−⇁) : #D2;40B4 → #D2;40B4.

Global mechanism effects all RNA species) . Com-
plexSpecies containing RNA species are broken apart
via the reaction) : - + #D2;40B4 ↼−−⇁) : - :
#D2;40B4→ - + #D2;40B4. for any - .

degredation Deg_Tagged_Degredation - +%A>C40B4 ↼−−⇁ - : %A>C40B4→ %A>C40B4. Here
- is any Species with the deg_tag attribute passed into
the constructor of this GlobalMechanism.

2.10 Supplemental: Creating Custom BioCRNpyler Classes
BioCRNpyler is designed to be easily extendable so even non-computer scientists
can add their own custom functionality. In this section, we briefly show how to
subclass core BioCRNpyler classes. For more details and examples, interested
readers should look at the Developer Overview on our Github.

41

Mechanisms
Developing custom Mechanisms is also as easy as making a subclass of Mechanism
and defining three functions to produce the desired CRN:

class CustomMechanism(Mechanism):

def __init__(self, args, **kwargs):

Mechanism.__init__(self, name="name", mechanism_type="type",

**kwargs)

python code to set internal variables

def update_species(self, ...):

python code to create Species objects

return species_list

def update_reactions(self, ...):

python code to create Reaction objects

return reaction_list

Components
It is also straightforward to make custom Components: simply subclass Component
and define three functions:

class CustomComponent(Component):

def __init__(self, args, **kwargs):

Component.__init__(self, ... , **kwargs)

python code to set internal variables

def update_species(self):

python code calls mechanism.update_species(...)

return species_list

def update_reactions(self):

python code calls mechanism.update_reaction(...)

return reaction_list

Mixtures
Making custom Mixtures is also easy—it can be done via simple scripts by adding
Components and Mechanisms to a Mixture object:

MyMixture=Mixture("customized mixture",

components=[List Components],

42

mechanisms=dict("mechanism_type":Mechanism))

The Mixture class can also be easily subclassed by rewriting the constructor:

class CustomMixture(Mixture):

def __init__(self, args, **kwargs):

#python code to set up internal variables,

create Components, and default Mechanisms

Mixture.__init__(self, mechanisms=dict("mechanism_type": Mechanism),

components=[List of Components], **kwargs)

43

C h a p t e r 3

CHEMICAL BOLTZMANN MACHINES

[1] W. Poole, A. Ortiz-Munoz, A. Behera, N. S. Jones, T. E. Ouldridge, E.
Winfree, and M. Gopalkrishnan, “Chemical Boltzmann Machines,” in In-
ternational Conference onDNA-Based Computers, Springer, 2017, pp. 210–
231. doi: 10.1007/978-3-319-66799-7_14,

3.1 Forward
The following chapter is quoted directly from the conference paper Chemical Boltz-
mann Machines presented at the International Conference on DNA Computing and
Molecular Programming in 2017 [187]. This was joint work with Andrés Ortiz-
Muñoz, Abhishek Behera, Nick S. Jones, Thomas E. Ouldridge, Erik Winfree, and
Manoj Gopalkrishnan.

Chemical Boltzmann Machines provides three CRN implementations of a partic-
ularly famous probabilistic graphical model called a Boltzmann Machine (BM).
TheDirect Chemical Boltzmann Machine (DCBM) is a non-detailed balanced CRN
so-named because it directly recreates the Markov chain underlying a BM and can
be easily generalized to implement any Markov chain on the integer lattice. The
detailed balanced Edge-Species Chemical Boltzmann Machine (ECBM) produces
an equilibrium distribution identical to a BM, but may have different dynamics.
Similar models and their generalizations are a major element of Chapter 4. Finally,
the Taylor Chemical Boltzmann Machine (TCBM) approximates the dynamics of a
BM using reactions inspired by gene regulatory networks and protein phosphoryla-
tion networks. Unlike the DCBM and ECBM, the TCBM is very compact requiring
relatively few reactions, which makes it easier to simulate.

These models show how diverse CRNs are capable of implementing probabilistic
algorithms and suggest that these kinds of programs are natural to encode as CRNs.
The paper goes on to derive an in silico learning algorithm for the ECBM. Similarly,
the DCBM and TCBM can be seen as exact and approximate molecular implemen-
tations of BMs which could be trained in-silico before being translated into these
CRNs. These results are a step in the direction of automated design of probabilistic
chemical programs and rely on methods borrowed directly from machine learning.

https://doi.org/10.1007/978-3-319-66799-7_14

44

Contribution: Andres Ortiz-Muñoz, Abhishek Behera, and I are all listed as co-
first authors on this work and indeed we each contributed one of the three models
presented. Andres Andrés Ortiz-Muño was responsible for the ECBM, Abhishek
Behera and Manoj Gopalkrishnan developed DCBM, and I developed the TCBM
and carried out the extensive simulations using this model. All theorems and proofs
were a collaborative effort over approximately a year of meetings. Although I wrote
the initial draft of the paper, it was heavily revised and improved by all co-authors.

3.2 Abstract
How smart can a micron-sized bag of chemicals be? How can an artificial or real
cell make inferences about its environment? From which kinds of probability distri-
butions can chemical reaction networks sample? We begin tackling these questions
by showing three ways in which a stochastic chemical reaction network can imple-
ment a Boltzmann machine, a stochastic neural network model that can generate a
wide range of probability distributions and compute conditional probabilities. The
resulting models, and the associated theorems, provide a road map for constructing
chemical reaction networks that exploit their native stochasticity as a computational
resource. Finally, to show the potential of our models, we simulate a chemical
Boltzmann machine to classify and generate MNIST digits in-silico.

3.3 Introduction
To carry out complex tasks such as finding and exploiting food sources, avoiding
toxins and predators, and transitioning through critical life-cycle stages, single-
celled organisms and future cell-like artificial systems must make sensible decisions
based on information about their environment [188, 189]. The small volumes of
cells makes this enterprise inherently probabilistic: environmental signals and the
biochemical networks within the cell are noisy, due to the stochasticity inherent in
the interactions of small, diffusing molecules [119, 190, 191]. The small volumes
of cells also raises questions not only about how stochasticity influences circuit
function, but also about how much computational sophistication can be packed into
the limited available space.

Perhaps surprisingly, neural networkmodels provide an attractive architecture for the
types of computation, inference, and information processing that cells must do. Neu-
ral networks can perform deterministic computation using circuits that are smaller
and faster than boolean circuits composed of AND, OR, and NOT gates [192], can
robustly perform tasks such as associative recall [53], and can naturally perform

45

20 40 60 80 100

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

Figure 3.1: In a micron-scale environment, molecular counts are low and a real (or
synthetic) cell will have to respond to internal and environmental cues. Probabilistic
inference using chemical Boltzmann machines provides a framework for how this
may be achieved.

Bayesian inference [85]. Furthermore, the structure of biochemical networks, such
as signal transduction cascades [70, 188, 193] and genetic regulatory networks [78,
80, 194–196], can map surprisingly well onto neural network architectures. Chem-
ical implementations of neural networks and related machine learning models have
also been proposed [55, 56, 60, 77, 82], and limited examples demonstrated [30, 57,
63, 197], for synthetic biochemical systems.

Most previous work on biochemical neural networks and biochemical inference in-
voked models based on continuous concentrations of species representing neural
activities. Such models are limited in their ability to address questions of biochem-
ical computation in small volumes, where discrete stochastic chemical reaction
network models must be used to account for the low molecular counts. The nature
of biochemical computation changes qualitatively in this context. In particular,
stochasticity has been widely studied in genetic regulatory networks [198], signal-
ing cascades [199], population level bet hedging in bacteria [200], and other areas
[201, 202]—where the stochasticity is usually seen as a challenge limiting correct
function, but is occasionally also viewed as a useful resource [125]. Our work falls
squarely in the latter camp: we attempt to exploit the intrinsic stochastic fluctuations
of a formal chemical reaction network (CRN) to build natively stochastic samplers
by implementing a stochastic neural network. This links to efforts to build natively
stochastic hardware for Bayesian inference [203, 204] and to the substantial litera-

46

ture attempting to model, and find evidence for, stochastic neural systems capable
of Bayesian inference [205, 206].

Specifically, we propose CRNs that implement Boltzmann machines (BMs), a flexi-
ble class ofMarkov random fields capable of generating diverse distributions and for
which conditioning on data has straightforward physical interpretations [85, 207].
BMs are an established model of probabilistic neural networks due to their analytic
tractability and connections to spin systems in statistical physics [208] and Hopfield
networks in computer science [53]. These networks have been studied extensively
and used in a wide range of applications including image classification [209] and
video generation [210]. We prove that CRNs can implement BMs and that this is
possible using detailed balanced CRNs. Moreover, we show that many of the at-
tractive features of BMs can be applied to our CRN constructions such as inference,
a straightforward learning rule and scalability to real-world data sets. We thereby
introduce the idea of a chemical Boltzmann machine (CBM), a chemical system
capable of exactly or approximately performing inference using a stochastically
sampled high-dimensional state space, and explore some of its possible forms.

3.4 Relevant Background
Boltzmann Machines (BMs):
Boltzmann machines are a class of binary stochastic neural networks, meaning that
each node randomly switches between the values 0 and 1 according to a specified
distribution. They are widely used for unsupervised machine learning because they
can compactly represent and manipulate high-dimensional probability distributions.
Boltzmann machines provide a flexible machine learning architecture because, as
generative models, they can be used for a diverse set of tasks including data clas-
sification, data generation, and data reconstruction. Additionally, the simplicity of
the model makes them analytically tractable. The use of hidden units (described
below) allows Boltzmann machines to represent high order correlations in data.
Together, these features make Boltzmann machines an excellent starting point for
implementing stochastic chemical computers.

Fix a positive integer # ∈ Z>0. An #-node Boltzmann machine (BM) is specified
by a quadratic energy function � : {0, 1}# → R

� (G1, G2, . . . , G#) = −
∑
8< 9

F8 9G8G 9 −
∑
8

\8G8 (3.1)

where \8 ∈ R is the bias of node 8, and F8 9 = F 98 ∈ R is the weight of the unordered
pair (8, 9) of nodes, with F88 = 0. One may specify a BM architecture, or graph

47

topology, by choosing additional weights F8 9 that are to be set to 0. In this paper, we
will use N(8) = { 9 s.t. F8 9 ≠ 0} to denote the neighborhood of 8. From a physical
point of view, we are implicitly using temperature units :�) for energy, which we
will continue to do throughout this paper. A BM describes a distribution %(G) over
state vectors G = (G1, . . . , G#) ∈ {0, 1}# ,

%(G) = 1
/
4−� (G) with / =

∑
G ′∈{0,1}#

4−� (G
′) . (3.2)

Nodes of a BM are often partitioned into sets + and � of visible and hidden,
respectively. Nodes in + represent data, and auxiliary nodes in � allow more
complex distributions to be represented in the visible nodes. An implementation
of a BM is a stationary stochastic process that samples from this distribution in
the steady state. A BM can be implemented in silico using the Gibbs sampling
algorithm [211], which induces a discrete time Markov chain (DTMC) on the state
space {0, 1}# in such a way that the stationary distribution of this Markov chain
corresponds to the distribution %(G). In each round, one node 8 ∈ {1, . . . , #} is
chosen at random for update. For any two adjacent configurations G and G′ which
differ only at node 8 — i.e., G8 = 1 − G′

8
and G 9 = G′

9
for all 9 ≠ 8 — we set the

transition probabilities)G→G ′ of the DTMC so that

)G ′→G
)G→G ′

=
%(G)
%(G′) =

e−� (G)

e−� (G ′)
= e(\8+

∑
9∈N(8) F8 9G 9) (G8−G ′8) . (3.3)

Any function)G→G ′ can be chosen so long as (3.3) is satisfied. One common choice
is)G→G ′ = 1/(# (1 + e� (G ′)−� (G))), where the factor 1/# represents the probability
of choosing node 8.

A Boltzmann machine is also an inference engine. One can do inference on %(G)
by conditioning on the values of a subset of the nodes. Suppose nonempty node
subsets* and . form a partition of the nodes {1, 2, . . . , #}, and fix D ∈ {0, 1}* . To
obtain samples from %(H | D) where H ∈ {0, 1}. , one clamps every node 8 ∈ * to
the state D8 while running Gibbs sampling, i.e., one does not allow these nodes to
update. Clamping nodes to an input state is the same as specifying the input data
for a statistical model. Steady state samples H ∈ {0, 1}. of this procedure are draws
from the distribution %(H | D).

Boltzmann machines can be used to learn a generative model from unlabeled data.
After specifying the architecture, one then proceeds to find the weights, F8 9 , and
biases, \8, that maximize the likelihood of the observed data according to the model,

48

using gradient descent from a random initial parameterization. This reduces to a very
simple two-phase Hebbian learning rule where weights on active edges are strength-
ened in a “wake phase” duringwhich the network is clamped to observed data and are
weakened in a “sleep phase” during which the network runs free [85, 207]. Given a
target distribution&(G), this gradient descent corresponds to calculating the gradient
of the Kullback-Leibler divergence from % to &, � ! (& | | %) =

∑
G &(G) log &(G)

%(G) ,
with respect to the parameters \8 and F8 9 :

3\8

3C
= −m� !

m\8
= 〈G8〉& − 〈G8〉% and

3F8 9

3C
= −m� !

mF8 9
= 〈G8G 9 〉& − 〈G8G 9 〉% (3.4)

where 〈·〉% and 〈·〉& denote expected values with respect to the distributions % and
& respectively. When hidden units are present, the distribution & (which is defined
on visible units only) is extended to hidden units based on clamping the visible
units according to & and using the conditional distribution %(H |D) to determine the
hidden units.

Chemical Reaction Networks (CRNs):
Fix a finite setS = ((1, (2, . . . , (") of" species. A reaction A is a formal chemical
equation

"∑
8=1

`8A(8 →
"∑
8=1

a8A(8, (3.5)

abbreviated as A = `A → aA where `A , aA ∈ NS are the stoichiometric coefficient
vectors for the reactant and product species respectively, and N = Z≥0. A reaction
rate constant, :A ∈ R>0, is associated with each reaction. In this paper, we define
a chemical reaction network (CRN) as a triple C = (S,R, :) where S is a finite
set of species, and R is a set of reactions, and : is the associated set of reaction rate
constants.

We will denote chemical species by capital letters, and their counts by lower case
letters; e.g., B1 denotes the number of species (1. Thus the state of a stochastic
CRN is described by a vector on a discrete lattice, B = (B1, B2 . . . B") ∈ NS . The
dynamics of a stochastic CRN are as follows [167]. The probability that a given
reaction occurs per unit time, called its propensity, is given by

dA (B) = :A
"∏
8=1

B8!
(B8 − `8A)!

if B8 ≥ `8A and 0 otherwise. (3.6)

Each time a reaction fires, state B changes to state B + ΔA , where ΔA = aA − `A is
called the reaction vector, and the propensity of each reaction may change. Viewed

49

from a state space perspective, stochastic CRNs are continuous time Markov chains
(CTMCs) with transition rates

'B→B′ =
∑

A s.t. B′=B+ΔA
dA (B) (3.7)

and thus their dynamics follow

3%(B, C)
3C

=
∑
B′≠B

'B′→B%(B′, C) − 'B→B′%(B, C) , (3.8)

where %(B, C) is the probability of a state with counts B at time C. Equivalently, they
are governed by the chemical master equation,

3%(B, C)
3C

=
∑
A∈R

%(B − ΔA , C)dA (B − ΔA) − %(B, C)dA (B) . (3.9)

A stationary distribution c(B) may be found by solving 3%(B,C)
3C

= 0 simultaneously
for all B; in general, it need not be unique, and even may not exist. Given an initial
state B0, c(B) = %(B,∞) is unique if it exists. For that initial state, the reachability
class ΩB0 ⊆ N" is the maximal subset of the integer lattice accessible to the CRN
via some sequence of reactions in R. We will specify a CRN and a reachability
class given an initial state as a shorthand for specifying a CRN and a set of initial
states with identical reachability classes.

Detailed Balanced Chemical Reaction Networks:
A CTMC is said to satisfy detailed balance if there exists a well-defined function
of state B, � (B) ∈ R, such that for every pair of states B and B′, the transition rates
'B→B′ and 'B′→B are either both zero or

'B→B′

'B′→B
= e� (B)−� (B

′) . (3.10)

If the state spaceΩ is connected and the partition function / =
∑
B∈Ω e−� (B) is finite,

then the steady state distribution c(B) = 1
/

e−� (B) is unique, and the net flux between
all states is zero in that steady state.

There is a related but distinct notion of detailed balance for a CRN. An equilibrium
chemical system is constrained by physics to obey detailed balance at the level of
each reaction. In particular, for a dilute equilibrium system, each species (8 ∈ S has
an energy � [(8] ∈ R that relates to its intrinsic stability, and

:A+

:A−
= e−

∑"
8=1 Δ

8
A+� [(8] = e−Δ�A+ , (3.11)

50

where Δ8
A+ is the 8th component of ΔA+ = aA+ − `A+ , and we have defined Δ�A+ =∑#

8=1 Δ
8
A+� [(8]. Any CRN for which there exists a function � satisfying (3.11) is

called a detailed balanced CRN. To see that the CTMC for a detailed balanced CRN
also itself satisfies detailed balance in the sense of (3.10), let B′ = B + ΔA+ and note
that (3.6) and (3.11) imply that

dA+ (B)
dA− (B′)

= eG(B)−G(B
′) with G(B) =

"∑
8=1

B8� [(8] + log(B8!), (3.12)

for all reactions A+. Here, G(B) is a well-defined function of state B (the free energy)
that can play the role of � in (3.10). If there are multiple reactions that bring B to B′,
they all satisfy (3.12), and therefore the ratio 'B→B′/'B′→B satisfies (3.10) and the
CTMC satisfies detailed balance.

It is possible to consider non-equilibrium CRNs that violate (3.11). Such systems
must be coupled to implicit reservoirs of fuel molecules that can drive the species
of interest into a non-equilibrium steady state [212–214]. Usually – but not always
[215, 216] – the resultant Markov chain violates detailed balance. In Section 3.5,
we shall consider a system that exhibits detailed balance at the level of the Markov
chain, but is necessarily non-equilibrium and violates detailed balance at the detailed
chemical level.

Given an initial condition B0, a detailed balanced CRN will be confined to a single
reachability class ΩB0 . Moreover, from the form of G(B), the stationary distribution
c(B) on ΩB0 of any detailed balanced CRN exists, is unique, and is a product of
Poisson distributions restricted to the reachability class [93],

c(B) = 1
/

e−G(B) =
1
/

"∏
8=1

e−B8� [(8]

B8!
, (3.13)

with the partition function / =
∑
B′∈ΩB0 e−G(B′) dependent on the reachability class.

Note that this implies that the partition function is always finite, even for an infinite
reachability class.

3.5 Exact Constructions and Theorems
Clamping and Conditioning with Detailed Balanced CRNs:
In a Boltzmann machine that has been trained to generate a desired probability
distribution when run, inference can be performed by freezing, also known as
clamping, the values of known variables, and running the rest of the network
to obtain a sample; this turns out to exactly generate the conditional probability.

51

A similar result holds for a subclass of detailed balanced CRNs that generate a
distribution, for an appropriate notion of clamping in a CRN. Imagine a “demon”
that, whenever a reaction results in a change in the counts of one of the clamped
species, will instantaneously change it back to its previous value. If every reaction
is such that either no clamped species change, or else every species that changes is
clamped, then the demon is effectively simply “turning off” those reactions. More
precisely, consider a CRN, C = (S,R, :). We will partition the species into two
disjoint groups. = S 5 A44 and* = S2;0<?43 , whereS 5 A44 will be allowed to vary and
S2;0<?43 will be held fixed. We will define free reactions, R 5 A44, as reactions which
result in neither a net production nor a net consumption of any clamped species.
Similarly, clamped reactions, R2;0<?43 are reactions which change the counts of
any clamped species. The clamped CRN will be denoted C|*=D to indicate the the
species*8 ∈ * have been clamped to the values D8. The clamped CRN is defined by
C|*=D = (S,R 5 A44, : 5 A44), that is, the entire set of species along with the reduced
set of reactions and their rate constants. In the clamped CRN it is apparent that the
clamped species will not change from their initial conditions because no reaction in
R 5 A44 can change their count. However, these clamped species may still affect the
free species catalytically. If the removed reactions, R2;0<?43 , never change counts
of non-clamped species, then C|*=D is equivalent to the action of the “demon”
imagined above.

We use equation 3.13 to prove that clamping a detailed balancedCRN is equivalent to
calculating a conditional distribution, and to showwhen the conditional distributions
of a detailed balanced CRN will be independent. Together, these theorems provide
guidelines for devising detailed balanced CRNs with interesting (non-independent)
conditional distributions and for obtaining samples from these distributions via
clamping.

We will need one more definition. Let C be a detailed balanced CRN with
reachability class ΩB0 for some initial condition B0 = (D0, H0). Let ΓB0 be the
reachability class of the clamped CRN C|*=D0 with species * clamped to D0 and
species . free. We say clamping preserves reachability if Ω.

B0 |*=D0
= Γ.B0 where

Ω.
B0 |*=D0

= {H s.t. (D0, H) ∈ ΩB0} and Γ.B0 = {H s.t. (D0, H) ∈ ΓB0}. In other words,
clamping preserves reachability if, whenever a state B = (D0, H) is reachable from B0

by any path in C, then it is also reachable from B0 by some path in C|*=D0 that never
changes D.

Theorem: Consider a detailed balanced CRN C = (S,R, :) with reachability

52

class ΩB0 from initial state B0. Partition the species into two disjoint sets * =

{*1, . . . ,*"D } ⊂ S and . = {.1, . . . , ."H } ⊂ S with "D + "H = " = |S|. Let
the projection of B0 onto * and . be D0 and H0. The conditional distribution
%(H | D) implied by the stationary distribution c of C is equivalent to the stationary
distribution of a clamped CRN, C|*=D starting from initial state B0 with D0 = D,
provided that clamping preserves reachability.

Proof: We have G(D, H) = ∑"D
8=1 D8� [*8] + log(D8!) +

∑"H

8=1 H8� [.8] + log(H8!).
Let the reachability class of C|*=D be ΓB0 , its projection onto . be Γ.B0 , and
Ω.
B0 |*=D0

= {H s.t. (D0, H) ∈ ΩB0} with Ω.
B0 |*=D0

= Γ.B0 . Then, the conditional
probability distribution of the unclamped CRN is given by

%(H | D) = c(D, H)∑
H′∈Γ.B0

c(D, H′) =
e−G(D,H)∑

H′∈Γ.B0
e−G(D,H′)

. (3.14)

Simply removing pairs of forward and backward reactions will preserve detailed
balance for unaffected transitions, and hence the clamped system remains a detailed
balanced CRN with the same free energy function. We then readily see that the
clamped CRN’s stationary distribution, c2 (H |D) is given by

c2 (H |D) =
e−G(D,H)

/2 (D)
with /2 (D) =

∑
H′∈Γ.B0

e−G(D,H
′) . (3.15)

The original CRN and the clamped CRN do not need to have the same initial
conditions as long as the initial conditions have the same reachability classes.
However, even if the two CRNs have the same initial conditions, it is possible
that the clamping process will make some part of Ω.

B0 |*=D0
inaccessible to � |*=D, in

which case this theorem will not hold.

Theorem: Assume the reachability class of a detailed balanced CRN can be ex-
pressed as the product of subspaces, ΩB0 =

∏!
9=1Ω

9
B0 . Then the steady-state dis-

tributions of each subspace will be independent for each product space: c(B) =∏!
9=1 c

9 (B 9), where B = (B1, . . . , B!) and c 9 is the distribution over Ω 9
B0 .

Proof: IfΩB0 is decomposable into a product of subspacesΩ 9
B0 , with 9 = 1...!, then

each subspace involves disjoint sets of species . 9 = {(91, . . . , (
9

" 9
}. In this case the

steady-state distribution of a detailed balanced CRN can be factorized due to the
simple nature of G(B) given by eq. (3.12):

c(B) = e−G(B)

/
=

∏!
9=1 e−G(B 9)∏!

9=1
∑
B 9
′∈Ω 9B0

e−G(B 9 ′)
=

!∏
9=1

e−G(B 9)∑
B 9
′∈Ω 9B0

e−G(B 9 ′)
=

!∏
9=1

e−G(B 9)

/ 9
,

(3.16)

53

where B 9 = (B 91, B
9

2, . . . , B
9

" 9
) is the state of the set of species within subspace 9 .

The product form c(B) means that species from separate subspaces Ω 9
B0 are statis-

tically independent. To develop non-trivial conditional probabilities for the states
of different species, therefore, it is necessary either to use a non-detailed balanced
CRN by driving the system out of equilibrium, or to generate complex interdepen-
dencies through conservation laws that constrain reachability classes and “entangle”
the state spaces for different species. We explore both of these possibilities in the
following sections.

Direct Implementation of a Chemical Boltzmann Machine (DCBM):
We first consider the most direct way to implement an #-node Boltzmann machine
with a chemical system. Recall that a BM has a state space Ω�" = {0, 1}# and an
energy function � (G1, G2, . . . , G#) = −

∑
8< 9 F8 9G8G 9 −

∑
8 \8G8. We use a dual rail

representation of each node 8 by two CRN species -$#
8

and -$��
8

and reactions
that respect a conservation law, G$#

8
+ G$��

8
= 1. The species -$#

8
and -$��

8

could represent activation states of an enzyme. The CRN has " = 2# species and
states B = (G$#1 , G$��1 , . . . , G$#

#
, G$��
#
). Although there are 22# states in which each

species has a count of at most one, only 1/2# of these states are reachable due to
the conservation laws. Let Ω���" be the states reachable from a valid initial state.
There exists a one-to-one invertible mapping F : Ω�" → Ω���" which maps the
states G ∈ Ω�" of a BM to states B = F (G) ∈ Ω���" of the CBM, according to
G$#
8

= G8 and G$��8
= 1 − G8.

Reactions are intended to provide a continuous-time analog of the typical BM
implementations, such as the Gibbs sampling method discussed in Section 3.4. In
each reaction A, only the species -$#

8
and -$��

8
, corresponding to a single node

8, change (aA − `A has two non-zero components). To reproduce the stationary
distribution of a Boltzmann machine with energy function � (G), it is sufficient to
require that the CTMC for the CRN satisfies

B −⇀↽− B′ with
'B→B′

'B′→B
=

e−� (B′)

e−� (B)
= e\8+

∑
9∈N(8) F8 9G

$#
9 (3.17)

where B is any reachable state with G$��
8

= 1, and B′ has G$#
8

= 1 but is otherwise
the same. Such a choice would enforce detailed balance of the CTMC, with the
desired steady-state distribution

c(B) = 1
/

e−� (B) =
1
/

e−
∑
8< 9 F8 9G

$#
8

G$#
9
−∑8 \8G

$#
8 . (3.18)

54

X1 X2

X3

X4 X5

w13

w14
w45

w35

w25

X3
ON + X1

ON + X5
ON X3

OFF + X1
ON + X5

ON

X3
ON + X1

OFF + X5
ON X3

OFF + X1
OFF + X5

ON

X3
ON + X1

ON + X5
OFF X3

OFF + X1
ON + X5

OFF

X3
ON + X1

OFF + X5
OFF X3

OFF + X1
OFF + X5

OFF

kβexp(w35)

kβ

kαexp(w13+w35)

kα

kγexp(w13)

kγ

kδ

kδ

θ3 = 0

Figure 3.2: The reactions required by the dynamics of a single node using the direct
CBM implementation. We consider a simple network with the illustrated topology,
and display the required reactions for node 3. Since node 3 has degree 2, there
are 4 possible states of its neighbors, and hence four distinct pairs of reactions for
the species of node 3. The relative rates of each pair of reactions is set by F8 9 as
indicated (where, for simplicity, we have assumed \3 = 0).

To implement such a CRN, we define a reaction set R that contains a distinct pair
of reactions for each possible state of the neighbors of 8 for which F8 9 ≠ 0. Let
U8 ∈ {$#,$��} |N (8) | denote a state of neighboring species. Then, the necessary
reactions and rate constants are

-$#8 +
∑
9∈N (8)

-
U8
9

9

:8− |U8−−−−⇀↽−−−−
:8+ |U8

-$��8 +
∑
9∈N (8)

-
U8
9

9
,

:8+ |U8

:8− |U8
= e\8+

∑
9∈N(8) F8 9G

$#
9 , (3.19)

for each 8 and every possible state U. In physical terms, the species representing
the neighbors of node 8 collectively catalyze -$��

8
� -$#

8
, with a separate pair

of reactions for every possible U8. While this entails a large number of reactions
(2|N (8) |+1 for each node 8), it allows the rate constants for each configuration of
neighbors to be distinct, and thus to satisfy the ratio of rate constants given in
(3.19). For CRN states that satisfy the conservation laws G$#

8
+ G$��

8
= 1, there

will be a unique reaction that can flip any given bit, and thus the CTMC detailed
balance (3.17) also holds, yielding the correct c(B). The construction is illustrated
by example in Figure 3.2 and compared to other constructions in Figure 3.3.

The distribution c(B) is identical to that of the BM, both with and without clamping.
Reachability is preserved by clamping, as all states satisfying the conservation laws
and clamping can be reached in the clamped CRN. All results derived for traditional
BMs therefore apply, including conditional inference and the Hebbian learning rule.
The construction can be generalized to any graphical model and indeed to any finite
Markov chain defined on a positive integer lattice.

55

With the DCBM, we have shown that CRNs can express the same distributions as
BMs, and are thus very expressive. However, since each possible state U8 ofN(8) is
associated with two reactions, the number of reactions of the CRN is exponentially
large in the typical node degree 3 in the original BM.Moreover, the scheme requires
high molecularity reactions in which multiple catalysts effect a single transition
(the molecularity grows linearly with 3). Physical implementations are therefore
likely to be challenging. We further note that as a consequence of Theorem 3.5, the
DCBM cannot be detailed balanced at the level of the underlying chemistry, due to
its simple conservation laws. Physically, this means that the DCBM must use a fuel
species to drive each reaction. Details of this argument are given in the appendix
(3.9).

The Edge Species CBM Construction (ECBM):
Can a detailed balancedCRNalso implement aBoltzmannmachine, or is it necessary
to break detailed balance at the level of the CRN reactions, as in the DCBM? Here
we show that it is not necessary by introducing a detailed balanced CRN that uses
species to represent both the nodes and edges of a BM. The # nodes of a BM are
converted into # pairs of species, -$#

8
and -$��

8
, via a dual rail implementation

identical to that used in the DCBM. Similarly, the edges F8 9 are represented by dual
rail edge species ,$#

8 9
and ,$��

8 9
with the conservation law F$#

8 9
+ F$��

8 9
= 1 for

1 ≤ 9 < 8 ≤ # . Note that we may slightly abuse notation and let ,U8 9

8 9
and ,U8 9

98
,

with U8 9 ∈ {$#,$��}, represent the same chemical species.

To have detailed balance, we associate energies to each node species determined by
the bias in a BM, � [-$#

8
] = −\8 and � [-$��8

] = 0. Similarly, each edge species
has an energy determined by the corresponding edge weight � [,$#

8 9
] = −F8 9 and

� [,$��
8 9
] = 0. Finally, we define a set of catalytic reactions that ensure that the

states of edge and node species are consistent, meaning F$#
8 9

= 1 if and only if
G$#
8

= 1 and G$#
9

= 1. To achieve this coupling, the reactions that switch node 8
are always catalyzed by the species corresponding to the set of neighboring nodes
N(8). Simultaneously, these reactions switch edge 8 9 if 9 ∈ N (8) and G$#

9
= 1,

maintaining G$#
8
G$#
9
= F$#

8 9
. The set of reactions that result from this scheme are

-$��8 +
∑
9∈N (8)

-
U8
9

9
+

∑
9∈N (8), G$#

9
=1

,$��
8 9
 -$#8 +

∑
9∈N (8)

-
U8
9

9
+

∑
9∈N (8), G$#

9
=1

,$#
8 9 . (3.20)

This reaction scheme is visualized in Figure 3.3. Just like in the DCBM, there is a
separate pair of reactions for each node 8 for each state of its neighbors U8. In this

56
�� ��������� ������� �� ������ �������������� �� ���� ������� �� ������������

1

2

3 4

5

6
7

1
2

3
4

5

6
7

1
2�

3

2� 4

2�
5

2�
6

2� 7

3� 4

3� 5

3�
6

3�
7

4�
5

4� 6

4�
7

5� 6

5� 7

6� 7
1�

2

1� 72

3

4

5

6

7

3�
1 1

�
4

1� 5

1�
6

2�
3

2� 4
2� 5

2�
6

2�
73�

4

3�
5

3� 6
3�

7

4� 5

4� 64�
7

5�
6

5� 7

6� 7

2� 1
2

3�
1

3 4
�
1

4

1� 5
5

1�
6 61

�
7

7

1

1

2

3 4

5

6
7

1
2

3
4

5

6
7

1

2�
3

2� 4

2�
5

2�
6

2� 7

3�
4

3� 5

3�
6

3� 7

4�
54�

6
4� 7

5� 6 5�
7

6�
7

1�
2

1�
72

3

4

5

6

7

3�
1 1

�
4

1� 5

1�
6

2�
3

2�
4

2� 5

2�
62�

7 3�
4

3� 5
3�

6
3� 7

4� 5

4�
6

4� 7

5�
6

5�
7

6� 7

2� 1
2

3�
1

3 4
�
1

4

1� 5
5

1�
6 61

�
7

7

1

Figure 3.3: Comparison of the switching of a node in exact constructions for
fully-connected topologies. Black circles indicate ON species (or nodes), and white
circles indicate OFF species. Similarly, black/white rectangles indicate ON/OFF
edge species. Species not involved in the reaction have been grayed out. A. A
Boltzmann machine. Black edges contribute to the energy function. B. The direct
implementation of a chemical Boltzmann machine. All species jointly catalyze the
conversion of -OFF

1 to -ON
1 . C. The edge species chemical Boltzmann machine.

-OFF
1 is converted to ON simultaneously with,$��

14 , ,$��
15 , ,$��

16 and,$��
17 ; all

other node species involved act as catalysts.

case, however, the backward reaction in (3.20) does represent a transition that is a
true chemical inversion of the forward reaction. So the rate constants can be set to
agree with detailed balance (3.11). Further, given a valid initial state, clamping any
subset of the -$#/$��

8
species preserves reachability.

Theorem: The stationary distribution c(G$# , G$�� , F$# , F$��) of the
ECBM is equivalent to the stationary distribution of a Boltzmann machine, %(G),
provided that the ECBM begins in a valid state obeying F$#

8 9
= G$#

8
G$#
9

and one ap-
plies a one-to-one invertiblemappingF betweenBMandECBMstates, as described
below.

Proof: If this CRN begins in a consistent state, then every subsequent reaction
will conserve this condition. The combined conservation laws G$#

8
+ G$��

8
= 1,

F$#
8 9
+ F$��

8 9
= 1, and F$#

8 9
= G$#

8
G$#
9

ensure that the set of values G$#
8

uniquely
determine the CRN state for the ECBM, and thus — similar to how the BM and
DCBM states were related — we can define a one-to-one invertible mapping F that
sets G$#

8
= G8 and obeys the conservation laws.

57

The ECBM is detailed balanced and therefore its stationary distribution has the form
(3.13). Substituting the conservation law F8 9 = G8G 9 and omitting species with 0
energy results in

c(G$# , G$�� , F$# , F$��) = 1
/c

e−
∑
8≠ 9 � [,$#

8 9
]G$#
8

G$#
9
−∑8 � [-$#8]G$#

8 . (3.21)

Comparing this expression to the distribution of a BM, equation (3.2), the above
expressions are equivalent provided that their partition functions are equivalent. To
see this is the case, notice that: 1) the partition function is just a sum over the
Gibbs factors across the entire state space. 2) The Gibbs factors take the same form
between the ECBM and BM (as shown above). And 3) the reachable state spaces
spaces are equivalent. Thus a sum over all possible Gibbs factors will be equal.
Therefore, /�" = /c and the theorem is proven.

Via the ECBM, we have shown that even detailed balanced CRNs can represent rich
distributions and are able to calculate conditional distributions through clamping as
proven in Theorem 3.5. Due to being detailed balanced, this construction requires no
fuelmolecules and performs sampling via the intrinsic equilibriumfluctuations of the
CRN. Moreover, it is only necessary to tune molecular energies in this construction,
since appropriate relative rate constants follow by definition. This construction is
possible due to the complex set of conservation laws that ensure that the reachability
classes of all the -$#/$��

8
species are tightly coupled via the ,$#/$��

8 9
species.

One implication is that this construction does not generalize easily to non-binary
species counts. Additionally, issues related to high molecularity reactions and large
number of reactions remain.

3.6 Approximate Bimolecular Implementations
TheDCBMand the ECBMboth require reactions of highmolecularity. Highmolec-
ularity reactions and systems involving many species are physically challenging to
implement and also potentially suffer from long mixing times. In this section, we
discuss an approximation scheme to create CBMs with lower molecularity reactions
and thus overcome these issues.

Taylor Series Chemical Boltzmann Machine (TCBM):
Here, we demonstrate a compact CBM that approximates a BM. It is not detailed
balanced on either the Markov chain or the CRN level, but uses only 2# species and
O(#2) unimolecular and bimolecular reactions. The TCBM is a non-equilibrium
CBM of the kind discussed in Section 3.5 that uses a dual-rail representation and
single-node transitions to approximately implement a BM. The reactions are given

58

by:

-$��8

:−⇀↽−
:
-$#8

-$#9 + -$��8

:08 9−−−→ -$#9 + -$#8

-$#9 + -$#8
:18 9−−−→ -$#9 + -$��8 (3.22)

which, with appropriate initial conditions, preserve the conservation law that G$#
8
+

G$��
8

= 1.

This model’s parameters can be taken directly from the weights of a BM, F8 9 .
First, define a symmetric matrix , . Decompose this matrix into the difference of
two positive matrices, , = � − �, where 08 9 ∈ � are all F8 9 > 0 and 18 9 ∈ �
are the absolute values of all F8 9 < 0. Finally, : is an arbitrary overall rate.
This construction can be understood as an approximation of equation (3.17), which
dictates that for two states B and B′ that differ only in bit 8 with G$#

8
= 1 in state B′,

the CTMC transition rates must satisfy

'B→B′

'B′→B
=

e
∑
9≠8 08 9G

$#
9

e
∑
9≠8 18 9G

$#
9

=
1 +∑

9≠8 08 9G
$#
9
+ O((∑ 9≠8 08 9G

$#
9
))2

1 +∑
9≠8 18 9G

$#
9
+ O((∑ 9≠8 18 9G

$#
9
))2

, (3.23)

The bias \8 has been absorbed into F8 9 for notational clarity by assuming there is
some G$#0 = 1 whose weights act as biases. The TCBM is a bimolecular CRN
obeying the same conservation laws as the DCBM in which each species 9 acts as
an independent catalyst for transitions in 8 with reaction rates determined by 08 9
and 18 9 . The relative propensities of this network are exactly equal to the linear
expansion of the relative propensities shown in the last term in (3.23). Specifically,
the numerator is the sum of the reaction propensities for reactions that convert or
catalyze -$��

8
→ -$#

8
and the denominator is the sum of the reaction propensities

for -$#
8
→ -$��

8
, in each case plus a constant term due to the unimolecular

reactions. We thus propose the simple scheme in (3.22) as an approximate CBM;
Figure 3.4A depicts this TCBM schematically. This model bears some resemblance
to protein phosphorylation networks where adding or removing a phosphate group is
analogous to turning a species on or off; both are driven, catalytic processes capable
of diverse computation.

Approximate BCRN Inference:
Remarkably, this simple approximate CBM can reasonably approximate the infer-
ential capabilities of a BM. We demonstrate this by using (3.22) to convert a BM

59

trained on the MNIST dataset [217] to a TCBM (Figure 3.4). We then compare the
BM and the TCBM side by side. Digit classification is shown in Figure 3.4 panels C
and D for a BM and in Figure 3.4 panels F and G for a CBM as confusion heatmaps.
Classification is carried out by clamping the image nodes to MNIST images and
averaging the values of the classification nodes. As is apparent from these plots, the
BM does a fairly reasonable job classifying these digits, but struggles on the number
5. The CBM functions as a very noisy version of the BMwith nodes in general much
more likely to be on. The CBM has also faithfully inherited the capabilities and
limitations of the BM and similarly struggles to classify the digit 5. Digit generation
is shown in Figure 3.4E for a BM and 3.4H for a CBM. Generation was carried out
by clamping a single class node to 1 and all other class nodes to 0, then averaging
the output of the image nodes after the network had equilibrated. For each generated
image, we show the raw output and the top 85th percentile of nodes, a thresholding
which helps visualize the noisy output. As is apparent from the raw output, the
CBM approximation scheme does not generate images nearly as distinctly as the
BM. However, this approximation does faithfully reproduce plausible digits when
filtered for the top 85th percentile. Additional training and simulation details can
be found in the appendix (3.9).

The overall performance of the CRN is reasonable, given the fact that weights were
simply imported from aBMwithout re-optimization. The TCBMonly approximates
the distribution implied by these weights and, in the absence of detailed balance,
does not have an established formal relationship between clamping and conditioning.

3.7 Detailed Balanced CRN Learning Rule
A broad class of detailed balanced chemical reaction networks can be trained with a
Hebbian learning rule between a waking phase (clamped) and sleeping phase (free)
that is reminiscent of the classic gradient descent learning algorithm for a BM [85,
207]. We present the CRN learning rule here.

First we state a simple case of Theorem 3.7wherewe just want a CRNwith stationary
distribution c over ΩB0 to learn a target distribution & also defined on ΩB0 . Then,
the learning rule is given by

368

3C
= −m� !

m68
= 〈B8〉& − 〈B8〉c . (3.24)

Here, 〈B8〉c and 〈B8〉& denote the expected count of the species (8 with respect to
the probability distributions c and &, respectively, and 68 = � [(8] is the energy of
species (8. Theorem 3.7 generalizes this procedure to cases with hidden species.

60

1
b i j

X j
OFF

X j
ON

X i
ON

A. Node Schematic

100 Image Nodes

40 Hidden Nodes

1
0

 C
la

ss
 N

o
d
e
s

B. Network Architecture

0 1 2 3 4 5 6 7 8 9
Input Label

0

1

2

3

4

5

6

7

8

9

C
la

ss
if
ic

a
ti

o
n
 O

u
tp

u
t

C. BM Raw
Classification

0 1 2 3 4 5 6 7 8 9
Input Label

0

1

2

3

4

5

6

7

8

9

D. BM max
Classification

0 1 2 3 4 5 6 7 8 9
Input Label

0

1

2

3

4

5

6

7

8

9
C

la
ss

if
ic

a
ti

o
n
 O

u
tp

u
t

F. CBM Raw
Classification

0 1 2 3 4 5 6 7 8 9
Input Label

0

1

2

3

4

5

6

7

8

9

G. CBM Max
Classification

E. BM Digit Generation

H. CBM Digit Generation

Figure 3.4: A. CRN underlying an individual node of the TCBM approximation. In
this case a negative weight, F8 9 < 0 is shown because -$#

8
catalyzes -$#

9
→ -$��

9
.

B. Network architecture used for simulations is fully connected but only 10 percent
of edges are shown for clarity. C. Average raw classification output of a BM
running with clamped MNIST digits. D.Average max classification output of a BM
running with clamped MNIST digits. E. Digits generated by a BM by clamping
individual class nodes. Small sub-boxes in the bottom corners are plots of the top
85th percentile of pixels. F. Average raw classification output of a TCBM running
with clamped MNIST digits. G. Average max classification output of a TCBM
running with clamped MNIST digits. H. Digits generated by a TCBM by clamping
individual class nodes. Small sub-boxes in the bottom corners are plots of the top
85th percentile of pixels.

Theorem: Let C = (S,R, :) be a detailed balanced chemical reaction network
with stationary distribution c(B) on ΩB0 . Consider a partition (+, �) of the set
S of species into visible and hidden species such that c(B) = c(E, ℎ). Require
that for all visible states E, the clamped CRN C|+=E preserves reachability. Let
&(E) > 0 for all E ∈ Ω+B0 = {E s.t. (E, ℎ) ∈ ΩB0} be a target distribution defined
on the projection of ΩB0 onto + . Furthermore, let c& (E, ℎ) = &(E)c(ℎ | E) be
the weighted mixture of stationary distributions of the clamped CRNs C|+=E with E
drawn from the distribution&. Then, the gradient of theKullback-Leibler divergence
from c+ to & with respect to the energy, 68 = � [(8], of the species (8 is given by

m� ! (& | |c+)
m68

= 〈B8〉c − 〈B8〉c& (3.25)

where c+ (E) =
∑
ℎ∈Ω�B0

c(E, ℎ) is the marginal c(E, ℎ) over hidden species �.

61

Proof: Applying Theorem 3.5, the clamped CRN ensemble c& (B) may be written

c& (B) = c& (E, ℎ) = &(E)c(ℎ | E) = &(E)
c(E, ℎ)∑

ℎ∈Ω�B0
c(E, ℎ) = &(E)

c(E, ℎ)
c+ (E)

. (3.26)

Additionally we will need the partial derivative of a Gibbs factor and the partition
function with respect to 68,

me−G(B)

m68
= −B8e−G(B) and

m/

m68
= −/ 〈B8〉c . (3.27)

Using these results, the partial derivative of any detailed balancedCRN’s distribution
at a particular state B, with respect to an energy 68, is

mc(B)
m68

=
m

m68

1
/

e−G(B) = 〈B8〉cc(B) − B8c(B) . (3.28)

Noting that & has no dependence on 68, the gradient of the Kullback-Leibler diver-
gence can then be written,

m� ! (& | |c+)
m68

=
m

m68

∑
E∈Ω+B0

&(E) log
&(E)
c+ (E)

=
∑
E∈Ω+B0

− &(E)
c+ (E)

mc+ (E)
m68

= −
∑
E∈Ω+B0

∑
ℎ∈Ω�B0

&(E)
c+ (E)

c(E, ℎ)〈B8〉c −
&(E)
c+ (E)

c(E, ℎ)B8

= −
∑

(E,ℎ)∈ΩB0

c& (E, ℎ)〈B8〉c − c& (E, ℎ)B8 = −〈B8〉c + 〈B8〉c& .

In the special case where there are no hidden species, which is to say the target
distribution & is defined over the whole reachability class ΩB0 , then c+ (E) = c(B)
and c& (B) = &(B) and the gradient has the simple form shown in equation (3.24).

Applying gradient descent via 368
3C
= − m� !

m68
, we thus have a simple in silico training

algorithm to train any detailed balanced CRN such that it minimizes the Kullback-
Leibler divergence from c+ to &. If � = ∅, simulate the CRN freely to estimate the
average counts 〈B8〉 under c(B). Then compare to the average counts under the target
&(B) and update the species’ energies accordingly. If � ≠ ∅, clamp the visible
species to some E ∈ Ω+B0 with probability &(E) and simulate the dynamics of the
hidden units. Repeat to sample an ensemble of clamped CRNs C|+=@. Because
clamping E preserves reachability, Gillespie simulations of the CRN with the +
species clamped to the data values E will sample appropriately. This gives the
average counts under c& .

62

This CBM learning rule is more general than the classical Boltzmann machine
learning rule, as it applies to arbitrary detailed balanced CRNs, including those with
arbitrary conservation laws and arbitrarily large species counts (but still subject to
the constraint that reachability under clamping must be preserved). That said, at first
glance the CBM learning rule appears weaker than the classical Boltzmann machine
learning rule, as it depends exclusively on mean values 〈B8〉, whereas the Boltzmann
machine learning rule relies primarily on second-order correlations 〈G8G 9 〉. In fact,
though, conservation lawswithin theCRNcan effectively transformmean values into
higher-order correlations. A case in point would be to apply the CBM learning rule
to the ECBM network: For 68 = � [-$#8] = −\8,

3\8
3C
= − 368

3C
= 〈G$#

8
〉c& − 〈G$#8 〉c,

and for 68 = � [,$#
8 9
] = −F8 9 ,

3F8 9
3C

= − 368
3C
= 〈F$#

8 9
〉c& − 〈F$#8 9 〉c = 〈G$#8 G$#

9
〉c& −

〈G$#
8
G$#
9
〉c, which exactly matches the classical Boltzmann machine learning rule

if we assert that the energies of $�� species are fixed at zero.

3.8 Discussion
We have given one approximate and two exact constructions that allow CRNs to
function as Boltzmann machines. BMs are a “gold standard" generative model
capable of performing numerous computational tasks and approximating a wide
range of distributions. Our constructions demonstrate that CRNs have the same
computational power as a BM. In particular, CRNs can produce the same class of
distributions and can compute conditional probabilities via the clamping process.
Moreover, the TCBM construction appears similar in architecture to protein phos-
phorylation networks. Both models are non-equilibrium (i.e., require a fuel source)
and make use of molecules that have an on/off (e.g., phosphorylated/unphosphory-
lated) state. Additionally, there are clear similarities between our exact schemes and
combinatorial regulation of genetic networks by transcription factors. In this case,
both models make use of combinatoric networks of detailed-balanced interactions
(e.g., binding/unbinding) to catalyze a state change in a molecule (e.g., by turning
a gene on/off). We note that our constructions differ from some biological counter-
parts in requiring binary molecular counts. However, in some cases we believe that
biology may make use of conservation laws (such as having only a single copy of a
gene) to allow for chemical networks networks to perform low-cost computations.
In the future, we plan to examine these cases in a biological setting as well as
generalize our models to higher counts.

Developing these CBMs leads us to an important distinction between equilibrium,
detailed-balanced CRNs with steady state distributions determined by molecular

63

Model Species Reactions Molecularity Detailed Balance
Direct CBM 2# #23+1 3 + 1 CTMC
Edge CBM 2# + 3# #23+1 ≤ 23 + 1 CRN and CTMC
Taylor CBM 2# 2# + 23# ≤ 2 Neither

Table 3.1: The complexity and underlying properties of our constructions for re-
producing a BM with # nodes of degree 3. Detailed balance describes whether the
construction is detailed balanced at the CRN level, at the CTMC level, or neither.

energies, and CRNs that do not obey detailed balance in the underlying chemistry.
The second category includes those that nonetheless appear detailed balanced at
the Markov chain level. Physically, this distinction is especially important: a non-
detailed balanced CRN will always require some kind of implicit fuel molecule
(maintained by a chemostat) to run and the steady state will not be an equilibrium
steady state due to the continuous driving from the fuel molecules. A detailed
balanced CRN (at the chemical level) requires no fuel molecules: and thus the
chemical circuit can act as a sampler without fuel cost. Despite this advantage,
working with detailed balanced CRNs presents additional challenges: to ensure
that chemical species do not have independent distributions, species counts must be
carefully coupled via conservation laws.

Our constructions also highlight important complexity issues underlying CBM de-
sign. The number of species, the number of reactions, and the reaction molecularity
needed to implement a particular BM are relevant. Trade-offs appear to arise be-
tween these different factors and the thermodynamic requirements of a given design.
A breakdown of the main features of each CBM is given in Table 3.1. Summarizing,
the TCBM is by far the simplest construction, using O(#) species, at most O(#2)
reactions, with molecularity ≤ 2. However, this happens at the expense of not being
an exact recreation of a BM, and the requirement of a continuous consumption of
fuel molecules. The DCBM is the next simplest in complexity terms, using O(#)
species, O(#2#) reactions, and molecularity of at most # . Like the TCBM, the
DCBM requires fuel molecules because it is not detailed balanced at the CRN level.
The ECBM is considerablymore complex than the DCBM, using quadratically more
species, O(#2), the same number of reactions, O(#2#) and double the reaction
molecularity. The ECBM makes up for this increased complexity by being detailed
balanced at the CRN level, meaning that it functions in equilibrium without implicit
fuel species.

64

Finally, we have shown that a broad class of detailed balanced CRNs can be trained
using a Hebbian learning rule between a waking phase (clamped) and sleeping phase
(free) reminiscent of the gradient descent algorithm for a BM. This exciting finding
allows for straightforward optimization of detailed balanced CRNs’ distributions.

This work provides a foundation for future investigations of probabilistic molecular
computation. In particular, how more general restrictions on reachability classes
can generate other “interesting" distributions in detailed balanced CRNs remains an
exciting question. We also wonder if the learning rule algorithm can be generalized
to certain classes of non-detailed balanced CRNs, and whether our exact CBM
constructions can be generalized to non-binary molecular counts. From a physical
standpoint, plausible implementations of the clamping process and the energetic
and thermodynamic constraints require investigation. Indeed, a more realistic un-
derstanding of how a CBM might be implemented physically will help us identify
when these kinds of inferential computations are being performed in real biological
systems and could lead to building a synthetic CBM.

Acknowledgements: This work was supported in part by U.S. National Sci-
ence Foundation (NSF) graduate fellowships to WP and to AOM, by NSF grant
CCF-1317694 to EW, by the Gordon and Betty Moore Foundation through Grant
GBMF2809 to the Caltech Programmable Molecular Technology Initiative (PMTI),
by a Royal Society University Research Fellowship to TEO, and by a Bharti Centre
for Communication in IIT Bombay award to AB.

3.9 Appendix
Application of Theorem 3.5: The Direct CBMMust Use Implicit Fuel Species
Here, we use Theorem 3.5 to analyze the direct implementation of a CBM and show
that it cannot be detailed balanced and thereby requires implicit fuelmolecules. First,
notice that the the conservation laws used in this construction are of a simple form.
The states accessible by (-$#

8
, -$��

8
) are independent of (-$#

9
, -$��

9
) for 8 ≠ 9 ,

and therefore the reachability class is a product over the subspaces of each individual
node. As a consequence, by Theorem 3.5, the system must be out of equilibrium
and violate detailed balance at the level of the CRN because, by construction, this
system is equivalent to a BM and has correlations between nodes 8 and 9 whenever
F8 9 ≠ 0. In physical terms, the presence of catalysts cannot influence the equilibrium
yield of a species, and therefore a circuit which uses catalysis to bias distributions
of species must be powered by a supply of chemical fuel molecules [212–214]. It
is also worth noting that, as a consequence, this scheme cannot be implemented

65

by tuning of (free) energies; it is fundamentally necessary to carefully tune all of
the rate constants individually (via implicit fuel molecules) to ensure that detailed
balance is maintained at the level of the Markov chain for the species of interest.

BM Training and TCBM Simulation Details:
We trained a BM using stochastic gradient descent on the MNIST dataset, down
sampled to be 10 pixels by 10 pixels [217]. The BM has 100 visible image units
(representing a 10 x 10 image), 10 visible class nodes, and 40 hidden nodes as
depicted in Figure 3.4B. Our training data consisted of the concatenation of down
sampled MNIST images and their classes projected onto the 10 class nodes. The
weights and biases of the trained BM were converted to reaction rates for a CBM
using the Taylor series approximation. This CBM consists of 300 species, 300 uni-
molecular reactions and 22350 bimolecular reactions. The resulting CBM was then
compared side-by-side with the trained BM on image classification and generation.
The BM was simulated using custom Gibbs sampling written in Python. The CRN
was simulated on a custom Stochastic Simulation Algorithm (SSA) [167] algorithm
written in Cython. All simulations, including network training, were run locally on
a notebook or on a single high performance Amazon Cloud server.

Classification was carried out on all 10000 MNIST validation images using both
the BM and the CBM. Each 10 by 10 gray-scale image was converted to a binary
sample image by comparing the gray-scale image’s pixels (which are represented as
real numbers between 0 and 1) to a uniform distribution over the same range. The
network’s image units were then clamped to the binary sample and the hidden units
and class units were allowed to reach steady state. This process was carried out 3
times for each MNIST validation image, resulting in 30000 sample images being
classified. Raw classification scores were computed by averaging the class nodes’
outputs for 20000 simulation steps after 20000 steps of burn-in (Gibbs sampling
for the BM, SSA for the CBM). Max classification was computed by taking the
most probable class from the raw classification output. Raw classification and
max classification confusion heatmaps, showing the average classification across all
sample images as a function of the true label are shown in Figure 3.4 panels C and
D for a BM and in Figure 3.4 panels F and G for a CBM.

Image generation was carried out by clamping the class nodes with a single class,
0...9, taking the value of 1 and all other classes being 0, and then allowing the
network to reach steady state. Generated images were computed by averaging the
image nodes over 50000 simulation steps (Gibbs sampling for the BM, SSA for the

66

CBM) after 25000 steps of burn-in. Generation results are shown in Figure 3.4E for
a BM and Figure 3.4H for a CBM.

67

C h a p t e r 4

DETAILED BALANCED CHEMICAL REACTION NETWORKS
AS GENERALIZED BOLTZMANN MACHINES

4.1 Forward
The following chapter has been written as a long-form paper which we aim to submit
for review in the near future. A version of this work was presented as a digital poster
at Nucleic Acids, Synthetic Biology and Artificial Life: Engineering and Controlling
Out of Equilibrium Systems workshop hosted (online) at Imperial College London,
March 2021. This work has been jointly supervised by Tom Ouldridge, Manoj
Gopalkrishnan, and Erik Winfree.

In Chapter 3, we showed that a particular detailed balanced CRN can exactly im-
plement a Boltzmann machine and proved an in silico learning rule applicable to
all dbCRNs. This chapter’s main focus is to elaborate and generalize those results.
First, we show that the key requirement for a dbCRN to have a complex 1 equilib-
rium distribution is restricting its reachability class. We then provide a framework
by which any dbCRN is capable of probabilistic inference expanding and improv-
ing the definition of clamping from the previous chapter. We go on to show that
this new way of clamping can be implemented via chemical potentials coupled to
the dbCRN. These chemical potentials, in turn, can be controlled by the species
in the dbCRN producing an autonomous non-detailed balanced CRN which trains
itself with a chemical implementation of the in silico learning rule from Chapter
3. Finally, we take advantage of having a self-contained CRN implementation of
a machine learning algorithm to provide some basic results on the thermodynamic
costs of inference and learning.

The significance of this work in the broader scope of this thesis is two-fold. First,
it shows that the biochemically relevant class of dbCRNs can be naturally inter-
preted as a kind of probabilistic graphical model capable of inference and learning.
However, unlike traditional graphical models which are “programmed” by choos-
ing the form of their energy function, dbCRNs have a preset form for their energy
function and are programmed by restricting their reachability class. In some cases,
such as the Edge-Species Chemical Boltzmann Machine described in Chapter 3,

1In this context, we define complex as far from a product of independent Poisson distributions.

68

these reachability class restrictions can result in a new emergent energy function.
However, understanding how to write dbCRN programs in general using reachabil-
ity constraints remains an open problem. Second, the autonomous learning CRN
described in this chapter points to a new class of CRN-specific machine learning
algorithms. Besides being of interest as a self-contained and physically well-defined
learning system which could potentially be built in the lab, this result suggests a new
class of in silico machine learning algorithms based on CRNs. I hypothesize that
these algorithms may be particularly useful when applied to learning and inference
problems involving CRNs and biological data because these algorithms may be
able to better use the underlying mathematical structure of CRNs in order to more
effectively optimize them.

Contribution: This work was born out of years of theoretical and computational
investigations trying to generalize results from the previous chapter. Different pieces
began to fall together in their final form when I traveled to Mumbai to work closely
with Manoj Gopalkrishnan for four months in late 2019 and early 2020. Upon
returning to the US, I continued formalizing the foundations under Erik Winfree’s
guidance. I asked Tom Ouldridge to help advise me on the thermodynamic analysis
towards the end of the project. I drafted the entire paper and am responsible for the
majority of proofs and analyses, with input, guidance, and review from the other
co-authors.

4.2 Abstract
Can a micron sized sack of interacting molecules understand, learn, and adapt to
a constantly-fluctuating environment? Cellular life provides an existence proof in
the affirmative, but the principles that allow for life’s existence are far from being
proven. One challenge in engineering and understanding biochemical computation is
the intrinsic noise due to chemical fluctuations. In this paper, we draw insights from
machine learning theory, chemical reaction network theory, and statistical physics
to show that the broad and biologically relevant class of detailed balanced chemical
reaction networks is capable of representing and conditioning complex distributions.
Furthermore, these systems can be augmented via non-equilibrium reactions in order
to learn complex distributions copied from an external environment. These results
illustrate how a biochemical computer can use intrinsic chemical noise to perform
complex computations. Furthermore, by providing an explicit and autonomous
physical model of machine learning, we are able to derive basic thermodynamic
costs of inference and learning.

69

4.3 Introduction
Computing with small numbers of molecules at around room temperature presents
a unique set of challenges. However, cell and molecular biology demonstrate that
every living cell can perform complex information processing using circuitry built
out of just a few basic building blocks [218]. More recently, systems biologists
have identified a variety of biochemical design principles observed across many
organisms and suggesting that unified understanding of biochemical systems may
be possible [6, 14]. At the same time, synthetic biologists and engineers, inspired
by the sophistication seen in biology, are beginning to build cellular and synthetic
cell-like systems [94, 219–221]. Programmed biochemical systems are rapidly
expanding into medical diagnostics [222], cancer therapeutics [104], sustainable
bioreactors [99], and advanced materials [98]. However, designing and understand-
ing increasingly complex biochemical computation will require new principles and
design methodologies. This work adds a new perspective by showing that a wide
class of biochemical models can be formally interpreted, designed, and analyzed
using machine-learning inspired methods.

Almost all modern computers are built on the digital abstraction of variables having
binary values. This allows computer to excel at tasks like Boolean logic and integer
arithmetic. However, there is no reason why biochemical computers need be digital
orwould have evolved thatway. Despite early success building synthetic biochemical
logic circuits [24, 37], so far these systems have failed to achieve anything close to the
complexity a smartphone is capable of, much less a living organism. An alternative
is to take an analog approach where biochemical signals are allowed a continuous
range of values. In the past decades, analog computing has been reborn under the
guise of deep learning and is revolutionizing domains from computer vision [43] to
natural language processing [45] to biochemistry [46]. A third approach, and the
one we emphasize in this paper, is probabilistic programming [223], a hybrid of the
conventional digital abstraction and analog computing where discrete values are as-
signed probabilities. Indeed, many state of the art machine learningmethods involve
probabilistic elements [47] and more conventional machine learning methods may
be seen as approximations of probabilistic models [224]. It has also been suggested
out that analog or hybrid digital-analog approaches to information processing may
be more efficient, particularly in the nervous system and biochemical contexts [41,
225]. There is also an increased interest in specialized hardware capable of directly
implementing probabilistic computations and machine learning [226]. In this vein,
machine learning architectures, such as neural networks, have been theorized [54,

70

55, 60, 78, 227] and built in a variety of biochemical systems [68], yet are still
considerably smaller than their digital relatives.

Inside individual cells, noise also plays an important role in biochemical computa-
tion contrasting with the deterministic precision of silicon computers. At the micron
to sub-micron scale, the counts of individual (non-solvent) molecules frequently be-
come very small which in turn results in high coefficient of variation [199]. Math-
ematically, such systems are commonly modeled with stochastic chemical reaction
networks (CRNs) [3]. Biochemical noise has been rigorously quantified in systems
such as gene expression [119], stochastic partitioning at cell division [122], and
neuronal firing [228]. This extensive documentation of noise suggests that chemical
computers must function in a a noisy environment, respond to noisy signals, and
rely on noisy components. One way to deal with this noise is to mitigate it: methods
such as kinetic proofreading [229, 230], low pass filters [231, 232], and fold change
detectors [233, 234] have all been observed naturally and engineered in order to
mitigate fluctuations. However, an alternate approach is to ask how biochemical
systems can use intrinsic noise to their advantage. A number of theoretical bio-
chemical algorithms have been proposed which use intrinsic chemical fluctuations
to generate distributions [235], infer parameters of probabilistic models [84], and
solve combinatorial constraint satisfaction problems [236].

Probabilistic inference can be seen as the archetypal problem for understanding
how to deal with noise and make the best decision [237]. In computer science
and machine learning, generative probabilistic models have emerged as a powerful
framework for inference [48]. Boltzmann machines are one of the most well studied
of these models and excel at learning high dimensional probability distribution using
hidden (latent) variables and computing conditional distributions [85]. In this paper,
we build off previous work which presented a number of CRN implementations of
Boltzmannmachines [187]. Here, we show how a broad class of stochastic biochem-
ical models called detailed balanced (db) CRNs may be viewed as generalizations of
Boltzmann machines: capable of representing complex distributions using hidden
variables, computing conditional distributions, and, when coupled to an auxiliary
CRN, learning. Due to the explicit and physical nature of these models, we then go
on to provide some thermodynamic costs related to inference and learning.

71

4.4 Background
Inference and Learning
In this work, we are interested in generative models, a broad class of mathematical
models which represent probability distributions [238]. Specifically we focus on
Boltzmann machines and stochastic chemical reaction networks; when interpreted
as generative models, each of these systems probabilistically samples (or explores)
a high dimensional state space. In general, we are less concerned with the sampling
dynamics than the steady state distribution which occurs in the limit of running
a generative model for infinite time. In fact, a low number of dynamic variables
coupled together can represent an exponentially larger steady-state distribution with
complex correlative structure [187]. Seen in this light, probability distributions
present a powerful framework for a system to understand its environment. Within
the context of generative models, we equate inference with the computation of
conditional steady state distributions. For instance, a cell inferring the state of the
environment ℎ given a noisy signal E is equivalent to computing the conditional
distribution P(ℎ | E). Similarly, learning, or inferring, the parameters of a model \
given data G can be thought of computing a conditional distribution P(\ | G). Implicit
in our framework is the idea that the variable being conditioned on is held constant
while the conditional distribution is being computed—these variables are referred
to as clamped. Additionally, the un-clamped or free variables must be coupled to
the clamped variables for inference to be meaningful. In the limit of no coupling
between G and H, a distribution can be written in product form, P(G, H) = P(G)P(H),
whichmeans G and H are independent and conditioning provides no new information:
P(G | H) = P(G) and P(H | G) = P(H).

Boltzmann Machines
Boltzmann Machines (BM) are a class of probabilistic graphical model which have
been extensively studied theoretically [207, 239] and used formanymachine learning
applications [44, 240, 241]. For the purposes of this work, BMs serve as a guide for
understanding what it means for a system to be capable of inference and learning.
Briefly, a BM is a stochastic neural network of binary nodes G8 ∈ {0, 1} which have
an equilibrium distribution:

P(G) = 1
/
4−� (G) / =

∑
G∈{0,1}#

4−� (G) � (G) =
∑
8> 9

F8 9G8G 9 −
∑
8

\8G8 . (4.1)

Here, \ ∈ R are bias terms and the weight terms F8 9 ∈ R couple nodes G8 and G 9 and
induce correlations ensuring G8 and G 9 are not independent. Additionally, Boltzmann

72

machines can use hidden units and marginalization to represent even more complex
distributions. Let - = {G8} be partitioned into two disjoint sets + and * of visible
and hidden units, respectively. The probability of the visible units is given by the
marginalization over the hidden units:

c(E) =
∑
D

c(E, D). (4.2)

Similarly to the many layers of latent variables in a deep neural network, the hidden
units* have been shown to increase the complexity of the distributions the BM can
model [207, 239, 242].

BMs are also able to seamlessly compute conditional distributions. Again, partition
the nodes - into two sets * and + . Here * will be the free variables and + will be
clamped. The conditional distribution c(D | E) can be exactly sampled by clamping
E to a constant value while simulating the BM [207]. In many cases, a combination
of clamping andmarginalization is used together where both visible and hidden units
can be clamped or free. General purpose inference allows Boltzmann Machines to
classify data [243] (* are class labels and hidden units, + are data points), generate
distributions [210] (* are data and hidden units, + are labels and hidden units), and
infer missing data [241] (* are unknown data and hidden units, + are known data).

Finally, the parameters F and \ can be learned to minimize the relative entropy:

D(k(E) | | c(E)) =
∑
E

k(E) log
k(E)
c(E) (4.3)

where c(E) is the marginal of c(E, D) and the data is distributed according to
k(E). Note that the relative entropy is not symmetric: D(k | | c) ≠ D(c | |
k). In the form of Eq. 4.3, we can consider k to be the “true” distribution,
while c is an approximation; this corresponds to the relative entropy being an
average over k: D(k | c) = 〈log 1

c
〉k − 〈 1

k
〉k being the excess average code length

when using the approximate distribution to design code words instead of the true
distribution. In order to explicitly optimize hidden units, this optimization can be
equivalently carried out via gradient descent on the relative entropy between the
clamped distribution c = c(D | E)k(E) of the BM held to samples from k and the
free distribution c(D, E) of BM:

D(c | | c) =
∑
E,D

c(D, E) log
c(D, E)
c(E, D) = where c(D, E) = c(D | E)k(E) (4.4)

73

Taking the gradient with respect to F8 9 and \8 results in the update rule which looks
identical for both hidden and visible units:
dF8 9
dC

= −mD(c | | c)
mF8 9

= n (〈G8G 9 〉c − 〈G8G 9 〉c)
d\8
dC

= −mD(c | | c)
m\8

= n (〈G8〉c − 〈G8〉c).

(4.5)

Here 〈·〉c and 〈·〉c denote the expected value with respect to the free and clamped
distributions, respectively, and n is the learning rate.

Chemical Reaction Networks
In this work, we model biochemical fluctuations using stochastic chemical reaction
networks (CRNs). This model can be derived from the statistical mechanics of a
well-mixed ideal solution [3] and has a long history being applied to biological prob-
lems includingmodeling genetic circuits [1] and understanding noise in biochemical
processes [198]. Similarly, stochastic CRNs have been studied as a programming
language, shown to be Turing universal [20, 169, 244] and used to guide imple-
mentations and analyses of molecular programs in laboratory settings [23, 26, 245]
.

Formally, a CRN (S,R, :) is a set of species S, reactions R, and reaction rates : .
Reactions convert one multiset of species into another: �A

:A−−→ $A . Here �A and $A

are the vectors of input and output species for reaction A, respectively. These vectors
can be combined into a single matrix called the stoichiometric matrix " = $ − �.
CRNs may have both stochastic and deterministic dynamics. When considered
deterministically, reactions cause the concentrations of each species, [(8], to change
according to the differential equation:

d[(8]
dC

=
∑
A

:A"
A
8

∏
9

[(9] �
A
9 . (4.6)

When considered stochastically, reactions occur with probability proportional to
their mass-action propensity function dA (B) = :A

∏
8

B8!
(B8−�A8)!

. Physically, rate con-
stants in deterministic and stochastic equations have differentmeanings (due to being
expressed with different units): the deterministic equations are volume-independent,
while the values in the stochastic context must depend on volume (and can be related
to the deterministic values given a choice of volume). We use B8 to mean the counts
of species (8 and B without a subscript denotes a vector of species’ counts. The
dynamics of the probability distribution are given by the chemical master equation:

dP(B, C)
dC

=
∑
A

P(B − "A , C)dA (B − "A) − P(B, C)dA (B). (4.7)

74

Often, we are interested in the steady-state distribution P∗(B) found by setting (4.7)
to 0 or by simulating the CRN dynamics until convergence with exact methods such
as the Gillespie algorithm [167]. For numerical results in this paper, CRNs are
sampled with the Bioscrape implementation of the Gillespie algorithm [137].

The reachability class of a CRN, ΓB0 ⊆ ZS , is the subset of the integer lattice
reachable by a sequence of reactions starting at an initial state B0. In some cases, ΓB0
may be infinite. We emphasize that this is distinct from the stoichiometric subspace
ΩB0 which is given by the kernel of the stoichiometric matrix " . The latter is
an affine space of the form �(B − B0) = 0, with � an |S| by : dimensional matrix
representing : ≥ 0 conserved quantities in the system. Specifically, ΓB0 ⊆ ΩB0 [168].
For example, the CRN ∅ −⇀↽− 2(has an infinite reachability class of either the even or
odd positive integers depending on B0 and a stoichiometric compatibility class that
covers all the positive integers. Indeed, as we will prove later, it is by restricting
the reachability class relative to the stoichiometric subspace that we are able to
program detailed balanced CRNs to represent broad classes of distributions. Note
that the reachability class may be arbitrarily complex compared to the stoichiometric
compatibility class [246].

Detailed Balanced Chemical Reaction Networks
Detailed balanced CRNs (dbCRN) are a subclass of CRNs which represent non-
driven chemical systems such as molecular binding. Mathematically, the detailed
balanced property requires that:

• Each species (8 ∈ S has an energy �8.

• All reactions are reversible meaning if � :+−−→ $ ∈ R then $:−−−→ � ∈ R.

• Reaction rates obey :+

:− = 4
−Δ� , where Δ� =

∑
8 �8 ($8 − �8).

A detailed balanced reaction network’s stationary distribution is an equilibrium
distribution meaning there is no net energy flow or entropy production at steady
state. These distributions can correspond to both the canonical or grand canonical
ensembles of statistical physics, depending on whether only energy is allowed to
be exchanged with the heat bath or if certain species within a reservoir can also be
exchanged (such as via the reaction ∅ −⇀↽− 2(where ∅ indicates a molecule moving
to or from the reservoir). This equilibrium distribution necessarily has a product-

75

100 125 150 175 200 225 250 275 300
time

0

20

ex
am

pl
e

tra
je

ct
or

y

A: Product Poisson Distribution

s1
s2
s3

(s1, s2)
Reachability

0.000 0.005 0.010 0.015 0.020 0.025
Probability

0 5 10 15 20 25 30
0.0

0.1

(s
1)

0.0 0.1
(s2)

0

5

10

15

20

25

30

100 125 150 175 200 225 250 275 300
time

0

10

20

ex
am

pl
e

tra
je

ct
or

y

B: Restricting the Reachability Class

S1
S2
S3

(s1, s2)
Reachability

0.00 0.01 0.02 0.03 0.04 0.05
Probability

0 5 10 15 20 25 30
0.0

0.1

(s
1)

0.0 0.1
(s2)

0

5

10

15

20

25

30

100 125 150 175 200 225 250 275 300
time

0

5

ex
am

pl
e

tra
je

ct
or

y

C: Marginalizing Over Restricted Hidden Species
S1
S2
Ch

Cs

(s1, s2)
Reachability

0.00 0.02 0.04 0.06 0.08 0.10
Probability

0 2 4 6 8 10
0.0

0.1

0.2

(s
1)

0.0 0.2
(s2)

0

2

4

6

8

10

Figure 4.1: Equilibriumdistributions of dbCRNs. A.AProduct PoissonDistribution
of uncorrelated species. B. A dbCRN restricted to an affine subspace. C. A dbCRN
marginalized over many binary hidden species. Note: all trajectories shown at the
top are just tiny fractions of the total simulated time.

Poisson form written in terms of the free energy function [93]:

c(B) = 1
/

∏
8

4−�8B8

B8!
=

1
/
4−G(B) / =

∑
B∈Γ

B0

4−G(B) (4.8)

G(B) =
∑
8

G8 (B) =
∑
8

�8B8 + log B8! (4.9)

In this paper, we are primarily concerned with how species’ energies affect the
equilibrium distribution. If D = (S,R, :) is a detailed balanced CRN, D� is the
same set of species and reactions with the rate constants : changed to reflect the
new energies �.

Detailed Balanced CRNs Can Model Complex Environments
Equation (4.8) seems to suggest that dbCRNs can only produce simple distributions
in product-Poisson form which in turn seem to only allow control of the mean,
because Poisson distributions are defined by their mean. For example, a product
Poisson distribution on the entire integer lattice can be seen in figure 4.1A. Yet, in
previous work, we constructed dbCRNs able to produce non-Poisson distributions
such as those produced by Boltzmannmachines [187]. Indeed, carefully constructed
dbCRNs can in fact produce any distribution with finite support [235]. Each of these
constructions implicitly restricts the reachability class with specific reactions and
initial conditions. In this section, we illustrate two example of dbCRNs producing
non-poisson distributions. First, we consider the simple dbCRN used to produce

76

the distributions in 4.1B and 4.4B:

(1 −⇀↽− (2 −⇀↽− (3 B1 + B2 + B3 = 2. (4.10)

Here a single constraint restricts the reachability class of each species where 2 is
the total number of all the species at the start of the simulation. Even such a simple
constraint is enough to break the independence of a product Poisson distribution
which can be seen by the obvious anti-correlatiom between (1 and (2 in Figure
4.1B.

Detailed balanced CRNs with many more conservation laws can produce arbitrary
distributions with finite support. For example, the dbCRN used to produce face in
figure 4.1C and the smiley-frowny face in 4.4C is given by a set of reactions based
on [235]:

�U + %UG,H −⇀↽− �U + %UG+1,H + (1

�U + %UG,H −⇀↽− �U + %UG,H+1 + (2

�U + %UG,H −⇀↽− �V + %
V
G,H .

Here, �U are control species tuning whether the distribution is happy (U = ℎ) or sad
(U = B). There are two sets of pixel species %UG,H, one for the happy face (U = ℎ)
and one for the sad face (U = B) with G and H denoting the pixel locations. The
visible species are (1 and (2. The energies of the pixel species have been tuned to
produce the happy and sad images. This construction requires a very tightly coupled
reachability class with initial conditions that satisfy the following constraints:

�B + �ℎ = 1
∑
G,H,U

%UG,H = 1
∏
G,H

%UG,H = �U B1 =
∑
G,H,U

G%UG,H B2 =
∑
G,H,U

H%UG,H

In words: there is only one �U species present and one %UG,H species present at any
time and they must both have the same value for U. The counts of (1 and (2 must
also correspond to the values G and H, respectively, of the single %UG,H species present.

Chemical Boltzmann Machines
In our previous work on chemical Boltzmann machines [187], we showed that an
analog of the BM learning rule (4.5) also works for dbCRNs:

dD(c | | c)
d�8

= n (〈B8〉c − 〈B8〉c). (4.11)

Naively, unlike the BM learning rule, (4.11) appears to only utilize themeans of each
species and not second moments. However, we showed that the detailed balanced

77

Edge-Species Chemical Boltzmann Machine (ECBM) construction constrains the
reachability class of certain species with conservation laws. This can be seen by the
example of a two-node ECBM (which can be generalized to arbitrary graphs):

(0
1 + (

0
2 −⇀↽− (

1
1 + (

0
2 (1

1 + (
0
2 + (

0
,
−⇀↽− (1

1 + (
1
2 + (

1
, (4.12)

(0
1 + (

0
2 −⇀↽− (

0
1 + (

1
2 (0

1 + (
1
2 + (

0
,
−⇀↽− (1

1 + (
1
2 + (

1
, . (4.13)

Here, each node 8 ∈ {1, 2} of a BM is represented by two species (0
8
and (1

8

corresponding to the off and on states. The edge species (0
,

and (1
,

relates to
the energy term F12 in a BM and similarly has off and on states. This dbCRN has
stoichiometric conservation laws B0

8
+B1

8
= #8 8 ∈ {1, 2,,} aswell as the possibility

of an emergent conservation law B10B
1
1 = B

1
,
which occurs when #1 = #2 = #, = 1

and the CRN starts in a state which respects this law. The key observation is that,
due to the this final conservation law, the energy �(1

,
can be updated based upon

the mean of 〈B1
,
〉 or, equivalently, the second moment 〈B11B

1
2〉. This directly relates

the energy F8 9 to the species energy �,1
8 9
of an ECBM. Similarly, the bias terms

correspond to the species’ energies �(0
8
and �(1

8
which are updated based upon the

first moments of (0
8
and (1

8
, respectively. Further, with this constraint, equation (9)

takes the exact form of the classical Boltzmann machine learning rule.

Additionally, in our past work, we developed a rudimentary clamping process by
which a subset of species in the dbCRN is held constant for conditioning (possibly
“turning off” a subset of reactions when some species are clamped to zero). However
we observe that our previous clamping construction is fragile because it requires that
the reachability class of the unclamped species remains unchanged, which will only
be true for very carefully designed dbCRNs. Finally, we note that these methods
provided an in silico methodology for training some dbCRNs.

In this work, we extend the ideas of clamping and learning to all dbCRNs and show
how they can be implemented in a purely chemical setting. First, we will provide
a general framework for understanding how restricting the reachability class of a
dbCRN enables the production of complex distributions. Then, we will provide a
new definition of clamping which is broadly applicable to any dbCRN. Finally, we
show how the learning rule (4.11) can be implemented by coupling non-detailed
balanced reactions to a dbCRN. This ultimately constructs an autonomous chemical
learning system capable of representing complex distributions encountered in its
environment.

78

4.5 Effective Use of Hidden Species Requires Reachability Entanglement
In this section, provide a unifying framework for understanding how some dbCRNs
are able to produce equilibrium distributions which are far from independent product
Poisson distributions. First, we will show that restricting the reachability class of
dbCRNs is essential to producing far-from-Poisson distributions. Furthermore,
when using hidden units to increase the representational power of a dbCRN, the
reachability class of these units must be “entangled” with the reachability class of
the visible units for the hidden units to have any effect on the visible distribution.

As a reference case, consider a dbCRN with reactions such that the entire positive
integer lattice is reachable: Γd

B0
= Z

|(|
≥0 with equilibrium distribution d(B). Then all

the species are independent of each other because d is a product of independent
Poisson distributions. Proof: Rewrite Equation (4.8) into product form to show
independence.

d(B) =
∏
8 4
−G8 (B8)∑

B∈Z=≥0

∏
8 4
−G8 (B8)

=

∏
8 4
−G8 (B8)∏

8

∑
B8∈Z≥0 4

−G8 (B8)
=

∏
8

4−G8 (B8)∑
B8∈Z≥0 4

−G8 (B8)
=

∏
8

d8 (B8).

Notice that switching the order of the sum and product in the denominator is only
possible because the entire positive integer lattice is reachable. An example of such
a CRN, ∅ −⇀↽− (8 8 ∈ {1, 2, 3}, is illustrated in Figure 4.1A. In general, the partition
function / cannot necessarily be factored this way.

Now, consider a second dbCRNwith the same species and the same species energies
but different reactions and a different reachability class Γc

B0
⊂ Γd

B0
and equilibrium

distribution c. How well a product Poisson d is approximated by the distribution c
can be measured using the relative entropy:

D(c | | d) =
∑
B∈Γd

B0

c(B) log
c(B)
d(B) =

∑
B∈Γd

B0

4−G(B)

/c
log

/ d

/c
= log(/

d

/c
) = log(1 + /

−

/c
).

(4.14)
Here, / d and /c are the partition functions of d and c, respectively, and /− =
/ d − /c > 0. Note that we are using the convention c(B) = 0∀ B ∉ Γc

B0
and

0 log 0 = 0. Due to the logarithm, for c to be far from product Poisson, a heavily
weighted subset of states must be unreachable so that /− � /c. Figure 4.1B
illustrates how restricting the reachability classwith linear conservation laws induces
correlations using the dbCRN is (1 −⇀↽− (2 −⇀↽− (3 as an example.

More generally, the combination of marginalization and restricting the reachability
class can be employed to increase the relative entropy between the equilibrium

79

distribution of any dbCRN,f(E), and the equilibrium distribution of another dbCRN
with the same species + and � as well as additional hidden species * such that the
equilibrium is c(E, D). Assume that all the species+ have the same energies in both
dbCRNs and that the reachable states in the first dbCRN are also reachable in the
second dbCRN, for some value of the hidden species D: Γf

E(0) ∩ Γ
c
E(0),D(0) = Γ

f
E(0)

where the initial condition is B0 = E0, D0. The marginal distribution of the second
dbCRN is:

c(E) =
∑
D∈W(E)

c(E, D) W(E) = {D s.t. E′ = E ∀ (D, E′) ∈ Γc
B0
}. (4.15)

Here the function W produces a set of the reachable hidden states D given a visible
state E with the dependence on the reachability class and initial condition implied
in the function arguments for brevity. The relative entropy can then be written:

D(c(E) | | f(E)) =
∑
E∈Γf

c(E) log
c(E)
f(E) =

∑
E

©«
∑
D∈W(E)

c(E, D)ª®¬ log
∑
D∈W(E) c(E, D)
f(E)

(4.16)

=
∑
E∈Γf

©«
∑
D∈W(E)

4−G(E)−G(D)

/c
ª®¬ log

/f
∑
D∈W(E) 4

−G(E)−G(D)

/c4−G(E)
(4.17)

=
∑
E∈Γf

4−G(E)

/c
©«

∑
D∈W(E)

4−G(D)
ª®¬ log ©«/

f

/c

∑
D∈W(E)

4−G(D)
ª®¬ (4.18)

=
∑
(E,D)∈Γc

c(E, D) log ©«/
f

/c

∑
D∈W(E)

4−G(D)
ª®¬ . (4.19)

If W(E) is constant for all E, the restrictions on the reachability class are in-
dependent of the visible species, allowing the partition function to be factored
/c = /f (∑D 4

−G(D)). This simplifies the previous equation to 0 showing that
marginalization requires restricted reachability classes to modify distributions:

W(E) = const =⇒ D(c(E) | | d(E)) = log
/f (∑D 4

−G(D))
/c

= 0. (4.20)

A conceptual way to interpret this result is that in dbCRNs, marginalizing over
the species * does not effect the species + if the reachable states of + and * are
independent. This illustrates that complex reachability restrictions on the hidden
species are not enough: for them to provide extra power for representing complex
distributions, the reachability of the visible and hidden species must be entangled.

80

Figure 4.1C depicts the equilibrium distribution of a dbCRN which marginalizes
over many hidden species and extensively restricts reachability. Each pixel of the
image is represented by a unique binary hidden species %G,H. By marginalizing over
these hidden species, any finite distribution can be created [235]. More specifically,
this CRN can be written compactly as {%G,H −⇀↽− %G+1,H + (1, %G,H −⇀↽− %G,H+1 + (2}
where G and H are indexes of each pixel and the energies of %G,H have been tuned to
produce the desired image. This construction works because the pixel species are
highly entangled with each other—only one pixel can be present at a time—and also
with the visible species—each visible count (B1, B2) corresponds to a unique pixel
species %B1,B2 .

In summary, dbCRNs can represent a diverse set of distributions. When a dbCRN
is unconstrained with species’ counts allowed to take any value, all dbCRNs will
have Poisson equilibrium distributions with species’ means determined by their
energies. Species may then be coupled together via conservation laws which can
induce correlations. Furthermore, increasingly complex conservation laws have the
potential to dramatically constrain the reachability class to enable the production of
distributions with very rich structure. In some cases, the reachability class can be
constrained via auxiliary hidden species which have their reachable states entangled
with the reachable states of the visible species. In such cases, marginalization over
the hidden species may produce even more complex distributions on the visible
species. Finally, we comment that marginalization occurs implicitly when two
chemical systems interact. Consider subsystem � with species S� = (+,*�) which
observes a different subsystem � with species S� = (+,*�). If � observes the
species + long enough, it implicitly observes the marginal distribution over the
unobserved species*�.

4.6 Inference with Detailed Balanced CRNs
As referenced in the Background Section 4.4 on Boltzmann machines, general
purpose inference is incredibly powerful and can be used for a wide range of com-
putational tasks. In the following sections, we show that dbCRNs are similarly
capable of inference. To do this, we define a new notion of clamping which over-
comes the limitations of our previous work [187] and is applicable to all dbCRNs.
We then show how this clamping can be implemented by an auxilary set of chemical
species. In this section, each CRN will be assumed to have its species partitioned
into disjoint sets of free and clamped species, S = (S� ,S�).

81

0

10

20

30

(S
1,

S 2
)

G[S3] = 3
A. Clamping A Product Poisson

0 20
0.0

0.5

1.0

M
ar

gi
na

ls G[S3] = 3

G[S3] = 0

0 20

G[S3] = 0

G[S3] = 3

0.000

0.005

0.010

0.015

0.020

0.025

0 20

G[S3] = 3 S1
S2
S3

0

10

20

30

(S
1,

S 2
)

G[S3] = 3
B. Clamping in a Low Dimensional Subspace

0 20
0.0

0.5

1.0

M
ar

gi
na

ls G[S3] = 3

G[S3] = 0

0 20

G[S3] = 0

G[S3] = 3

0.00

0.01

0.02

0.03

0.04

0.05

0 20

G[S3] = 3 S1
S2
S3

0

4

8

(S
1,

S 2
)

G[Ch] = 3
C. Clamping in a High Dimensional Subspace

0 1 2 3 4 5 6 7 8 9
0.0

0.5

1.0

M
ar

gi
na

ls G[Ch] = 3

G[Ch] = 0

0 1 2 3 4 5 6 7 8 9

G[Ch] = 0

G[Ch] = 3

0.00

0.02

0.04

0.06

0.08

0.10

0 1 2 3 4 5 6 7 8 9

G[Ch] = 3
S1
S2
Ch

Cs

Figure 4.2: The dbCRNs used in panels A and B are shown in Fig 4.1. C. This
dbCRN shows how clamping a single species can induce correlated changes in many
species. The binary species�ℎ and�B which control whether the happy or sad pixels
are active. �ℎ and �B can also inter-convert.

82

A

B

Figure 4.3: A. A cartoon of energy clamping the reaction (>?4= −⇀↽− (;>>?. The
reaction can be pushed in either direction by changing the sequence depicted in blue
which can tune the relative energies Δ(>?4= and Δ(;>>? . B. A cartoon of potential
clamping where (>?4= is connected to a potential species % resulting in the reaction:
% + (>?4= −⇀↽− (;>>?. Changing [%] is the equivalent to changing Δ. The gray lines
indicate that (is in a small volume relative to %. % could be many kinds of chemical
species such as a transcription factor, small molecule, or even a salt ion such as
magnesium.

Energy Clamping
We define a new kind of clamping which is applicable to all dbCRNs. We call this
process energy clamping because it works by modulating the energies of chemical
species illustrated in Figure 4.3A. The energy clamped dbCRN D�� has the same
species and reactions asD� but different energies and hence different reaction rates:

��8 =

�8 (8 ∈ S�

�8 + Δ8 (8 ∈ S�
(4.21)

where Δ8 are the changes in energy for each clamped species. The clamped dbCRN
has a new equilibrium distribution c� (B):

c� (B) =
4−G

� (B)

/�
/� =

∑
B∈Γ

B0

4−G
� (B) G� (B) =

∑
8

��8 B8 + log B8! (4.22)

Here we are treating the energy changes Δ as tunable parameters which control the
means of our species. Unlike traditional clamping of a Boltzmann machine or the
construction from the CBM paper, energy clamping does not hold the value of a
species fixed. Instead, energy clamping can be interpreted as holding the mean

83

of the clamped species fixed while allowing for fluctuations. These fluctuations
are important because they ensure that the reachability class is preserved. This
is most properly interpreted as conditioning on the mean via the conditional limit
theorem [247]:

Theorem: Energy clamping is equivalent to conditioning upon the mean 〈B�〉c
being equal to 2:

c� (B� , B�) = c(B� , B� | 〈B�〉c = 2). (4.23)

The notation c(B� , B� | 〈B�〉c = 2) indicates that the distribution c sampled to
produce an empirical distribution with mean 〈B�〉c2. In the proof, this is made
rigorous as a limiting case of an infinite sequence of samples. Finally, it is important
to note that we have implicitly chosen Δ such that 〈B�〉c� = 2.

Proof:

Claim 1: First, we will show that the distribution % = c� (B� , B�) minimizes the
relative entropy D(% | | c) subject to the constraint that 〈B�〉% = 2 using the method
of Lagrange multipliers. We first define the functional we wish to minimize

� (%) = D(% | | c) +
∑
B

%(B)Δ · B + U%(B) (4.24)

where Δ ∈ R# will constrain the means and U ∈ R will normalize the distribution.
Optimize this function with respect to each component of the function space %B =
%(B):

m�

m%B
=

m

m%B

∑
B′
%(B′) log

%B′

cB′
+ %B′Δ · B′ + U%B′ = 0

=
m

m%B
[%B log

%B

c(B) + %BΔ · B + U%B] = 0

= log
%B

c(B) + 1 + Δ · B + U = 0

=⇒ %∗B = �c(B)4−Δ·B =
1
/�
4−

∑
8 �

�
8
B8+log B8! = c� (B)

where the � is a normalizing constant which becomes part of the partition function
/� and Δ is chosen so that 〈B�〉c� = 2. In practice, the moment learning rule (4.11)
can be used to find Δ provided that 2 ∈ ΓB0 where ΓB0 is the convex hull around ΓB0
because the mean does not have to be an integer value. The conceptual meaning of
this result is that c� is optimal choice of distribution, with expected value 〈B�〉 = 2

84

for the clamped species (� , to encode c.

We are now ready to invoke the conditional limit theorem (See Cover and Thomas
Elements of Information Theory theorem 11.6.2 p. 371 [247]). This theorem states
that if one were to observe a very rare sample of c with mean 2 the distribution of
that sample would be given by c� . Importantly, this provides a rigorous definition of
what it means to condition upon a distribution having a mean value which allows us
to interpret energy clamping as a form of conditioning and hence inference. We note
that this theorem has been applied to understand similar chemical systems previous
by Virinchi et al. [83].

Define: P to be the probability simplex (set of distributions) over the reachability
class of the CRN ΓB0:

P =
` : (B� , B�) → R s.t.

∑
B� ,B�∈Γ

B0

`(B� , B�) = 1
 .

Note that this is a convex subspace of a Banach function space [247].

Define: The space of distributions in the probability simplex, � ⊆ P, where
the expected value of the species B� = 2 :

� = {` ∈ P s.t. 〈B�〉` = 2}.

Here 〈·〉` denotes the expected value relative to the distribution `.

Claim 2: � is convex. Proof: the expected value 〈·〉` is a linear operator so
the constraint E` [B�] = 2 defines an affine subspace of %. The intersection of an
affine subspace and a convex space is also convex, so � is convex [247].

We now define a set of # samples from the distribution c and the empirical distri-
bution of types derived from the sample sequence.
Define: S= = B1, ..., B= are a vector of = i.i.d. samples from the distribution c.

Define: PS= is the empirical distribution of types derived from the sequence of
samples S=:

PS= (B) =
∑
8 I(B8, B)
=

85

where I(B′, B) denotes the identity operator.

We can now apply the condition limit theorem which states that for any convex
set � and empirical distribution of types PS= derived from a distribution c, in the
limit =→∞, the probability of a sample B8 having the value B is given by:

lim
=→∞
P(B8 = B | %-= ∈ �) = %∗ %∗ = argmin%∈�D(% | | c) = c� .

In words, consider drawing a set of = samples S= from a detailed balanced CRN
with equilibrium distribution c where the means of a subset of the species B� of
these samples are given by 〈B�〉PS= = 2. In the limit = → ∞, the samples will
be distributed according to a distribution, %∗(B� , B�), which can be produced by
another detailed balanced CRN with equilibrium distribution %∗ = c� where the
species’ energies ��

8
= Δ8 + �8 are chosen such that 〈B�〉c� = 2. This technical

description allows us to understand the clamped distribution as being a special kind
of conditioning on the mean of c:

c� (B� , B�) = c(B� , B� | 〈B�〉 = 2).

Hence energy clamping produces a conditional distribution and therefore can be
interpreted as a kind of inference. �

The idea of conditioning on the mean versus holding the value of a species constant
is analogous to the difference betweenmicrocanonical ensembles, where free energy
is constant, and the canonical ensemble where the mean free energy is fixed, but
allowed to fluctuate. Energy clamping modulates the energy of a species which
holds the steady-state mean value constant but the actual count of that species is
still allowed to fluctuate. The correctness of energy clamping can also be seen more
simply through the following theorem on the conditional distributions:

Theorem: Energy clamping produces the same conditional distributions between
c and c� when conditioned on the species (� taking the exact value 2:

c(B� | B� = 2) = c� (B� | B� = 2). (4.25)

Proof:

c(B� | B� = 2) = c(B
� , 2)

c(2) =
4−G(B

�)−G(2)∑
B� 4
−G(B�)−G(2) =

4−G(B
�)∑

B� 4
−G(B�)

86

c� (B� | B� = 2) =
c� (B� , 2)
c� (2)

=
4−G

� (B�)−G� (2)∑
B� 4
−G� (B�)−G� (2)

=
4−G(B

�)∑
B� 4
−G(B�) .

Here the final step notes that G� (B�) = G(B�) by definition. This result shows that
the clamped dbCRN has the correct conditional distribution when conditioned on
any B� = 2. �

Energy clamping provides a framework to hold the species of an arbitrary detailed
balanced CRN around a value bymodulating the energy vector� ⇒ �� . In the case
where (8 can take any value on the integer lattice, energy clamping can be thought of
as tuning the mean of (8 directly as seen in the lower plot of Figure 4.4A. In the case
where (8 is constrained via a conservation class to some minimum and maximum
value, energy clamping may be better thought of as pushing (8 towards one of its
extreme values. Furthermore, when reachable states of the clamped species are
entangled with the reachable states of free species, energy clamping induce changes
in the distribution of free species illustrated clearly in Figure 4.4B. In these cases,
energy clamping may perform computationally challenging inferential tasks. For
example, in Figure 4.4C, clamping a single species �ℎ is able to induce dramatic
changes in the distribution of the visible species causing the transition between a
frown face to a smiley face. Importantly, the energy clamping construction does not
change the reachability class of the underlying dbCRN which allows it to apply to
any species in any dbCRN, regardless of reactions in the CRN.

Clamping with A Potential Bath
Energy clamping provides a formal framework bywhich dbCRNs perform inference.
However, implementing energy clamping directly would involve carefully modify-
ing the internal energies of different species in a dbCRN. Although theoretically
possible, this is not an easy parameter to tune experimentally. In this section, we
construct a dbCRN in a small volume E coupled to a large external bath at volume
+ � E to produce a chemical system which implements energy clamping. We call
these CRNs potentiated dbCRNs. A physical cartoon of a potentiated CRN can be
found in Figure 4.3. We will show that the species in the bath, denoted potential
species, produce a chemical potential equivalent to energy clamping. Notice that
this model is a hybrid model in the sense that (8 are measured in counts and vary
stochastically but %8 varies continuously and is measured in concentration. This
will be derived as the limiting case of a completely stochastic CRN when the count
of %8 becomes large. Ultimately, we will couple the potentiated dbCRN back to the

87

bath through a set of (non-detailed balanced) chemical reactions producing a CRN
which will be able to autonomously learn from its environment.

Any dbCRN, D� , can be converted to a potentiated dbCRN, DP
�
, by adding an

additional set of potential species %8 which are coupled to each (or a subset) of
the species (8 ∈ S� and held at a constant concentration [%8] = ?8

+
where ?8 is

a count and + is a volume parameter. Formally, this can be viewed as replacing
all instances of (8 in each reaction (both inputs and outputs) with (8 + %8.2 For
example, the dbCRN with reactions 2(8 −⇀↽− (9 + (: becomes a potentiated dbCRN
with reactions 2(8 +2%8 −⇀↽− (9 + (: +% 9 +%: in the case that all species are clamped.
Formally, given a dbCRN D� = (S,R, :), we will denote the potentiated dbCRN
DP
�
= (S ∪ P,RP , :) where P are the potential species, RP are the reactions from

R modified to include potentials, and the rates : are unchanged.

Theorem: The fully stochastic description of a potentiated dbCRN DP
�
is detailed

balanced with equilibrium distribution given by:

c% (B, ?) = 1
/

exp−(
∑
8

�8B8 + �%
8 ?8 + log B8! + log ?8!). (4.26)

Proof:

Consider the reaction
∑
8 �8(8

:+−−⇀↽−−
:−

∑
8 $8(8. After being connected to the potential

baths, this reaction becomes:∑
8

�8 ((8 + %8)
:+−−⇀↽−−
:−

∑
8

$8 ((8 + %8) (4.27)

:+

:−
= 4−

∑
8 (�8+�%8) ($8−�8) (4.28)

d+(G) = :+
∏
8

B8!?8!
(B8 − �8)!(?8 − �8)!

d−(G) = :−
∏
8

B8!?8!
(B8 −$8)!(?8 −$8)!

.

(4.29)

� and $ are the reactions inputs and outputs which are the same stoichiometry for
each species (8 and its potential %8 by construction. �8 and �%

8
are the energies

of the species (8 and %8, respectively. d±(G) are the propensities of the forward
and backward reactions. Note that the rate constants (in units of per second)
remain unchanged by the addition of the potential species. Next, we show that

2Technically, the potential species %8 could go on either or both sides of the reaction - we consider
just one side for simplicity.

88

c% (B + $ − �)d−(B + $ − �) = c% (B)d+(B), which is a well known definition of
detailed balance:

d+(B)
d−(B +$ − �) =

:+

:−

∏
8

B8!?8!
(B8−�8)!(?8−�8)!∏

8
(B8+$8−�8)!(?8+$8−�8)!
(B8−�8)!(?8−�8)!

(4.30)

=
∏
8

4(�8+�
%
8
) (�8−$8)B8!?8!

(B8 +$8 − �8)!(?8 +$8 − �8)!
(4.31)

c% (B +$ − �, ? +$ − �)
c% (B)

=
∏
8

B8!?8!4−�8 (B8+$8−�8)−�
%
8
(?8+$8−�8)

(B8 +$8 − �8)!(?8 +$8 − �8)!4−�8B8−�
%
8
?8

(4.32)

=
∏
8

4(�8+�
%
8
) (�8−$8)B8!?8!

(B8 +$8 − �8)!(?8 +$8 − �8)!
. (4.33)

Because the dbCRNwith potential species is detailed balanced, we can simply apply
the product Poisson formula (4.8) to get the equilibrium distribution (4.26). �

Remark: it is not strictly necessary for each (8 to have a unique potential species
%8; many (8 could share the same % 9 (a universal potential species) if they are all
clamped together simultaneously. Remark: if individual reactions are connected to
a potential, instead of each species, the CRN is no longer detailed balanced and most
of the results in this paper are not expected to hold. The physics of such systems
have been studied elsewhere [90, 170].

Theorem: LetDP
�
be a potentiated dbCRNwith equilibrium distribution c% (B) and

D�� be an energy clamped dbCRN with equilibrium distribution c� (B). c% (B) =
c� (B) provided that:

Δ8 = `8 = �
%
8 + log[%8] . (4.34)

Here the energy difference Δ8 is equated to the chemical potential of %8, commonly
denoted `8 where �%

8
is the energy of %8.

Proof:

Claim 1: c% (B, ?) is just a function of B.

c% (B) = 1
/
4−

∑
8 �8B8−�%8 (B8−B08 +?

0
8
)−log B8!−log(B8−B08 +?

0
8
)!. (4.35)

Proof: Given an initial condition (B0, ?0), it is clear that the change in B8 and ?8
are coupled by the construction of the CRN: ?8 = B8 − B08 + ?0

8
. Equation (4.35)

results from inserting this conservation law into (4.26). Furthermore, note that the
terms�8 (B8−B08 +?0

8
)−;>6(B8−B08 +?0

8
)! are a kind of stochastic chemical potential. �

89

Claim 2: In the limit ?8 � 0 and ?8 � B8 − B08 , c% has the simplified form:

c% (B) ≈ 1
/
4−

∑
8 �8B8−�%8 B8−log B8!−B8 log ?0

8 (4.36)

Proof: Using Stirling’s approximation, log((B8 − B08 + ?0
8
)!) ≈ (B8 − B08 + ?0

8
) log(B8 −

B0
8
+ ?0

8
). If ?0

8
� B8 − B08 then log(B8 − B08 + ?0

8
) ≈ log ?0

8
. Finally, the constant terms

�%
8
(?0
8
− B0

8
) and (?0

8
− B0

8
) log ?0

8
will factor out between the Gibbs factor and the

partition function. �

Claim 3: Equating the exponential terms of (4.36) to the exponential terms of
an energy clamped CRN (4.22) term by term results in the relation:

��8 = �8 + �%
8 + log ?0

8 = �8 + `8 . (4.37)

where `8 is the chemical potential of %8 and is retrieved by changing from units
of counts to units of concentration. Proof: this follows easily from some simple
algebraic manipulation and proves the theorem. �

Together, these claims show how a potentiated dbCRN, when analyzed as a fully
stochastic CRN, is detailed balanced with a product-Poisson equilibrium distribu-
tion. In the hybrid model, the potential species are converted to concentrations in
a thermodynamic limit and held constant. Then, the concentrations [%8] can be
folded into the energies ��

8
of an energy clamped dbCRN.

Example: Potential Clamping and Polymer Conformations

Consider a piece of DNA which can form two mutually exclusive states where the
formation of each state is mediated by some kind of DNA-binding protein. These
mutually exclusive states could be caused by DNA loops which occur commonly due
to transcription factors in bacteria and eukaryotes [248] or by other kinds of DNA
packaging such as histones [249]. Here, we show that, under the assumption of DNA
conformations being at quasi-equilibrium, this kind of system can be interpreted as a
form of potential clamping where the DNA states are the species (8 and the binding
molecules (proteins) are equivalent to potential species %8. We examine a simple
two-state model that could potentially be built synthetically in the lab. This model
includes three DNA conformations: (0 is the free, unbound, molecule. (1 is a
molecule of DNA wrapped around a Histone � such that a binding region 0 is not
exposed. (2 is the same molecule of DNA where a protein � mediates looping

90

between the binding site 0 and another binding site 1 in such a way that � can no
longer bind. This can be written as the following CRN:

(0 + � −⇀↽− (1 (0 + � −⇀↽− (2. (4.38)

Notice that � and � both play the role of potential species to (1 and (2, respectively,
in a way slightly different from the previous construction. Instead of being coupled
as inputs whenever (8 are input into a reaction, these species are coupled as outputs
whenever (8 are coupled to a reaction. However, this is equivalent to our previous
construction because the key value of potential baths is to provide a way to tune the
energy difference between inputs and outputs. In the limit of many more molecules
of � and � than (8, this system can be written compactly as three unimolecular
reactions with two potentiated species:

(1 −⇀↽− (0 −⇀↽− (2. (4.39)

The energies of each species are given by:

� [(0] = �0 � [(1] = �1 − `� � [(2] = �2 − `� . (4.40)

By increasing the chemical potentials `� and `� , the system can be pushed into
states (1 and (2, which, by virtue of the underlying CRN, will be anti-correlated.
We note that it would be possible to generalize this kind of argument to DNA
molecules which may take on many conformations by binding to a wide range of
factors. The key assumption is that the binding and unbinding reactions occur much
more quickly than any change in the amount of the binding proteins. This seems
plausible in many biological settings where binding and unbinding of proteins to
DNA occur much more quickly than transcription and translation. Additionally, we
note that it is very natural to ascribe every DNA conformation (8 a unique energy
�8—although the same underlying molecule forms each of the states, the entropy of
a conformation is widely tunable by varying the degrees of freedom of the polymer
and mechanical energy could be stored inside bent or wound DNA strands [250].

4.7 Autonomous Learning CRNs
The potentiated dbCRN implementation provides amechanism to implement energy
clamping and hence inference without having to modify the underlying energies
of chemical species (which are in a certain sense physical constants). Instead,
the concentrations of the potential species can be controlled. In this section, we
first derive a non-detailed balanced potential clamping CRN which can tune the

91

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
10 1

100

101

102

co
un

ts
 tr

aj
ec

to
ry

Free CRN: S
Clamped CRN: S + P P + S 2P + S Q + P Q

S Free
Q
S Clamped
P

0 20 40 60 80 100 120 140
0.00

0.05

0.10

0.15
co

un
t p

ro
ba

bi
lit

y < S > free

< S > clamped

Figure 4.4: Dynamics of the potential clamping CRN C&
�
derived from the dbCRN

∅ −⇀↽− (where the mean of (is clamped to the value &.

concentration of the potential species [%8] such that the mean of (8 matches the
mean of a target species&8 which may be thought of as the environment. This CRN
is shown to implement the learning rule (4.5) and provides a chemical mechanism
by which clamping may occur dynamically. Then, by combining a number of these
clamping CRNs together with potentiated dbCRN modules and an environment
representing data, we show how any potentiated dbCRN can be embedded into
a learning CRN architecture which is able to learn potentials for both hidden and
visible species in order to approximate an environmental distribution. We emphasize
that the learning CRN is an autonomous CRN which automatically learns from
the environment, or in other words, that we have rewritten a fundamental machine
learning algorithm as aCRN. Thiswill allow us to understand some of the underlying
physics of learning.

Potential Clamping CRN
First, we consider a potentiated dbCRN, DP

�
= (S ∪ P,RP , :), as defined in the

previous section. We will then add the following species and reactions to DP
�
and

construct a new potential clamping CRN. For each potential species, %8 ∈ P, add
in a target species &8 ∈ Q, which are also allowed to fluctuate according to some
distribution k(@) (we are agnostic about how k is generated—it could be detailed
balanced or non-equilibrium). Additionally, add the non-detailed balanced reactions

92

T %S,Q which clamp the species S to the species Q using the potentials P:

%8 +&8
:
&

8−−→ &8 (4.41)

%8 + (8
:(
8−−→ 2%8 + (8 . (4.42)

Denote this new CRN CQ
�
= (S∪P∪Q,RP ∪T %S,Q , :) letting the mapping between

the Q species, P, and S species be implicit. CQ
�

is no longer detailed balanced;
instead of an equilibriumdistribution, it will in general have a non-equilibrium steady
state, P(B, @, [%]). The dynamics of this CRN could be understood stochastically
provided that the counts ?8 are high enough for (4.36) to be accurate. However, it
is more analytically and numerically tractable to approximate the dynamics of %8
as continuous concentrations [%8] and we provide a more rigorous discussion of
when this limit is valid in the supplement. The dynamics of the learning CRN are
then a hybrid of stochastic dynamics for the species (8 and &8 given by (4.7) and
deterministic dynamics for %8 given by:

d[%8] (C)
dC

= n (:(8 [%8] (C)B8 (C) − :
&

8
[%8] (C)@8 (C)). (4.43)

Here, n = +−1 must be small for the continuum approximation of %8 to be valid.
Note that (8 and &8 fluctuate as discrete stochastic counts, so this is a stochastic
differential equation. It can be simplified using a quasi-equilibrium approximation
n :

&

8
, n :(

8
� :A . In this limit, the reactions (4.41—4.42) effectively have rate 0, the

species % can no longer vary, and the species S and Q become independent. By
construction, the speciesS are governed by only the remaining reactionsRP andwill
have an equilibrium distribution c% (B). Similarly, the species Q vary independently
according to k. The approximate dynamics are then:

d[%8] (C)
dC

≈ n [%8] (C)
(
:(8

∑
B

c% (B)B8 (C) − :&8
∑
@

k(@)@8 (C)
)

(4.44)

= n [%8] (C)
(
〈B8 (C)〉c% − U8 〈@8 (C)〉k

)
(4.45)

where U8 =
:
&

8

:(
8

and is a parameter to rescale the relative means of (8 and &8. If
U8 = 1, this expression is precisely the learning rule for Boltzmann machines and
dbCRNs (4.5) with a dynamic learning rate n [%8]. This system of equations has a
steady state when the right hand side is 0, namely:

d[%8]
dC

= 0 =⇒ 〈B8 (C)〉c% = U8 〈@8 (C)〉k . (4.46)

93

The dynamics of this system can also be solved:

d[%8] (C)
[%8] (C)

= n (〈B8 (C)〉c% − U8 〈@8 (C)〉k)dC =⇒ [%8] (C) = �4n (〈B8 (C)〉c%−U8 〈@8 (C)〉kC

(4.47)

where� is a constant of integration. This means that if the rates : are small enough,
CQ
�
will vary [%8], effectively varying the energy parameter Δ8 = `8 = �%

8
+ log[%8].

For some initial conditions, this system will reach a fixed point [%8]BB such that
Equation (4.46) is satisfied—meaning that the mean of (8 is equal to the mean of
&8 multiplied by the scaling factor U8. The dynamics also illustrate that learning
will be fast with exponential convergence to the correct value provided there is no
error in the expected value of c% and k. However, as these distributions become
noisier (meaning not enough time scale separation), the exponential will amplify
fluctuations and learning becomes a biased random walk. Figure 4.4 illustrates the
dynamics of the clamping CRN when applied to a birth-death process. We also
note that the potential clamping CRN can be viewed as a form of integral feedback
control which tracks a reference signal.

Derivation of the Hybrid CRN Model

Consider a potentiated dbCRN with the species (8 confined to a small volume E
connected via a semi-permeable membrane to a larger volume, + � E, containing
the potential species %8. The potential species % can traverse this membrane but
the (species cannot. The environmental species & will be assumed to share the
same volume D with all the potential species %. Note that we define + to include
both volumes E and D. We assume that the number of %8 species is very large and
instantaneously well mixed so that fluctuations between the volumes E and D and
the volume + can be neglected. This implies that the number of %8 in the volumes
E and D is on average proportional to the volume ratios and that fluctuations around
this value are averaged over quickly:

?E8 =
E

+
?8 and ?D8 =

D

+
?8 . (4.48)

We consider the reactions (4.41) and (4.41) using stochastic mass action kinetics.
Rewriting the reactions and their propensities implicitly including the volumes E

94

and D, we obtain:

%8 +&8
:
&

8−−→ &8 d
&

8
(@8, ?8) =

:
&

8

D
@8?

D
8 =

:
&

8

+
@8?8 = :

&

8
@8 [%8] (4.49)

%8 + (8
:(
8−−→ 2%8 + (8 d(8 (B8, ?8) =

:(
8

E
B8?

E
8 =

:(
8

+
B8?8 = :

(
8 B8 [%8] . (4.50)

These reactions degrade and produce just a single molecule of %8. We can rewrite
this as a change in concentration:

Δ[%8] = ±
1
+
. (4.51)

We can informally take a continuum limit by assuming that in some time g, on
average d(

8
(B8, ?8) and d&8 (@8, ?8) occur. Each of these reactions will change [%8] by

± 1
+
. In the limit g → 0, we get the ordinary differential equation:
3 [%8]
3g

=
1
+
(d(8 (B8, [%8]) − d

&

8
(@8, [%8])) =

1
+
:(8 B8 [%8] −

1
+
:
&

8
@8 [%8] . (4.52)

Here the parameter n = 1
+
. Clearly in the limit + → ∞, these reactions will not

change [%8]. However, for any finite+ , they will produce a change in concentration.
In order for the deterministic description to be accurate, we need fluctuations in
[%8] to be small. First we assume that fluctuations in (8 (which will directly cause
fluctuations in [%8]) are negligible. This is true if B8 � ?8. Indeed, if this assumption
is broken, the entire learning system may not work. In particular, if the counts of
?8 becomes less than the counts of B8, a potentiated dbCRNs reachability class
can change. For example, consider the reaction (0 −⇀↽− (1 + %1. If B1 > ?1 = 0,
this reaction cannot occur preventing the formation of (0 which would have been
possible in the unpotentiated dbCRN. Second, we are relying on previous results
showing that the dynamics of sufficient high-count species can be well approximated
by deterministic kinetics [251]. This common approximation is valid provided the
counts ?8 � 0; in this limit, the standard volume expansion of the chemical master
equation predicts that fluctuations around the mean go to 0 at a rate proportional
to +− 1

2 [252]. In practice, satisfying these assumptions may require tuning of the
volume + relative to the concentration of the potential species [%8] and the rates :&8
and :(

8
. If + is large, clamping and learning will become infinitely slow unless the

rate constants :&
8
and :(

8
are increased proportionally. However, if + is too small,

fluctuations in ?8 may begin to play a significant role in the clamping dynamics and
could even lead to catastrophic extinction events of ?8. With an eye towards future
experimental implementations of such a system, we suggest choosing + as large as
possible given the rates :&

8
and :(

8
such that learning may occur on a reasonable

timescale.

95

Learning CRN Architecture
In this section, we show how to create an autonomous CRN capable of learning
by dynamically adjusting potential species so that an internal potentiated dbCRN
matches an environmental distribution. To do this, we use potential clamping
reactions first to produce a potentiated dbCRN clamped to the environment and then
to coupled this clamped potentiated dbCRN to a free potentiated dbCRN. We will
argue that this construction is an implementation of the learning rule as a continuous
online process.

The full construction is as follows. Let the environmental distribution k have visible
species Q+ . Let CQ� = (Q ∪ S ∪ P ∪ P,RSP,P ∪ T

P
S,Q

, :) be a clamped potentiated

dbCRN with a subset of the S clamped to environmental species Q+ ∼ k via
the potentials P. A second set of potentials P couple CQ� with another clamped
potentiated dbCRN C(

�
= (S ∪S ∪P,RSP ∪T

P
S,S
, :). The species S are clamped to

the values of the species S using the second set of potentials %. This construction
produces one large learning CRN LQ

�
= (Q ∪S ∪S ∪ P ∪ P,RS

P,P
∪RSP ∪ T

P
S,Q
∪

T P
S,S
, :) illustrated in Figure 4.5A.

Although seemingly complicated, LQ
�

is actually implementing a version of the
moment learning algorithm of Boltzmann machines (Equation 4.5) as a continuous
time online process. Recall fromSection 4.4 that this learning rule requires sampling
the free distribution c(D, E) and the clamped distribution c(D, E) = c(D | E)k(E).
The moments of these distributions are then compared and used to update the
energies. In the CRN construction, the first set of potential clamping reactions is
used to compute the distribution c(B | 〈B+ 〉 = @)k(@) where the visible species
S+ are clamped to samples @ ∼ k of the environmental distribution. The clamped
CRN is then copied to a free dbCRN with equilibrium c(B | 〈B〉 = 〈B〉c) by the
second set of potential clamping reactions which update the potentials of the free
CRN in real time according to the learning dynamics (Equation 4.44). An example
of this process is illustrated in Figure 4.5B where a three-node chemical Boltzmann
machine learns a binary representation of the steady state distribution generated
by a bistable genetic toggle switch [158]. Figure 4.5C shows the environmental
distribution k which is used to clamp the species+& producing an XOR distribution
(Figure 4.5D). Initially, the free chemical Boltzmann machine produces a uniform
distribution (Figure 4.5E). Then, after tuning the potential species of both the visible
and hidden units, it ultimately produces an XOR (Figure 4.5F). Note that in these
examples the parameter U is used to scale the counts of the toggle switch so they

96

A B

C D E F

Environment:
(q)

Potential Clamping
 Reactions: ,

(fast)

 Detailed Balanced
Reactions: ,

 Clamped Distribution:
(s| sV = q)

(quasi-equilibrium)

Potential Clamping
Reactions: ,

(slow)

 Detailed Balanced
Reactions:

 Free Distribution:
 (s| s = s)

(quasi-equilibrium)

10 1 100 101 102 103 time
0

25

50

75

co
un

ts

QA QB

10 1 100 101 102 103 time

10 15

10 8

10 1

co
nc

en
tra

tio
n PA PB

10 1 100 101 102 103 time
0

1

co
un

ts

SA SB

10 1 100 101 102 103 time
0

1
co

un
ts

SH SWHA SWHB

10 1 100 101 102 103 time

10 1

100

101

co
nc

en
tra

tio
n PH PA PB PWHA PWHB

10 1 100 101 102 103 time
0

1

co
un

ts

SH SWHA SWHB

10 1 100 101 102 103 time
0

1

co
un

ts

SA SB

0 10 20 30 40 50
QA

0

10

20

30

40

50

Q
B

Environment Distribution
(qA, qB)

0 1
SA

0

1

S B

Clamped Distribution
(sV)

0 1
SA

0

1

S B

Initial Distribution
(sV)

0 1
SA

0

1

S B

Final Distribution
P(sV)

10 5

10 4

10 3

10 2

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.5: A. The learning architecture coupling dbCRNs and the environment
together with potential clamping reactions. Arrows point from the target species
to the clamped species. −⇀↽− denote that two sets of species are at quasi-equilibrium.
B. Trajectories from this architecture applied to learn an XOR distribution with a
3-node chemical Boltzmann machine from a bistable genetic toggle switch. C. The
steady state distribution of the bistable toggle switch. D. The distribution obtained
from clamping to the environment. E. The initial distribution of the chemical Boltz-
mann machine before training. F. The final distribution of the chemical Boltzmann
machine after training.

97

can be presented by a binary variable.

Next, we describe the example of the learning system simulated in 4.5B in detail.
The free and clamped CRNs, represented by species (and (, respectively, are both
3-node chemical Boltzmann machines with two visible species � and � and three
hidden species including a hidden node � and the weights connecting the hidden
unit to the visible units,�� and,��. This entire model takes the form of one large
hybrid CRN with four nominal timescales; n 5 0BC , the environmental clamping rate;
nB;>F the hidden unit clamping rate; :31 the detailed balanced CRN nominal rate;
and :4=E the environmental rate. These rates are separated into three timescales:
:4=E24E ≈ :31 ∗ 231 � n 5 0BC ∗�? � nB;>F ∗�?. Here, 24E, 231 are the characteristic
counts of the environment and dbCRNs, respectively. �? is the characteristic
concentration of the potential species. Due to the fact that the concentrations of the
potential species are potentially unbounded, this implies that learning could fail if
the potential concentrations begin becoming very high or reach 0. Such a situation
could be encountered when the underlying dbCRN is not capable of learning the
environmental distribution (e.g. no steady state exists for the potential species).

The environment k(@+ , @�) is generated by a bistable toggle switch consisting of
two genes 8 ∈ {�, �}; each gene,�8, produces a transcript)8 which is translated into
a repressor &8. These repressors bind cooperatively to genes of the opposite type to
form the repressed complex �8 9 . Finally, a small amount of leak is added even for
the repressed genes to help tune switching times and the transcripts and repressors
degrade at rate X. Only the repressors are visible, Q+ = {&�, &�}. All other species
are hidden: Q� = {��, ��,)�,)�, ���, ���}. We model this process with the
stochastic mass action reactions:

�8
:C G−−→ �8 +)8)8

:C;−−→)8 +&8 �8 + 2& 9

:1−−⇀↽−−
:D

�8 9

�8 9
:;40:−−−−→ �8 9 +)8)8

X−→ ∅ &8
X−→ ∅ (8 ≠ 9).

Here 8, 9 ∈ {�, �} and the rate constants :CG , :C; , :D, :1, X ≥ :4=E. Next, the clamped
potentiated detailed balanced reactions produce the distribution c%,% (B+ , B� | 〈B+ 〉 =
@+)k(@+). Internally, it is a 3-node ECBM with potentiated detailed balanced

98

reactions:

R(
P,P

= {

(
0
� + (

0
� + %

0
� + %0

�
−⇀↽− (

1
� + (

0
� + %

1
� + %1

�,

(
0
� + (

1
� + (

0
,��
+ %0

� + %0
� + %

0
,��
−⇀↽− (

1
� + (

1
� + (

1
,��
+ %1

� + %1
� + %

1
,��

,

(
0
� + (

0
� + %

0
� + %0

�
−⇀↽− (

1
� + (

0
� + %

1
� + %1

�,

(
0
� + (

1
� + (

0
,��
+ %0

� + %0
� + %

0
,��
−⇀↽− (

1
� + (

1
� + (

1
,��
+ %1

� + %1
� + %1

,��
,

(
0
� + (

0
� + (

0
� + %0

�
−⇀↽− (

1
� + (

0
� + (

0
� + %1

� ,

(
0
� + (

1
� + (

0
� + (

0
,��
+ %0

� + %
0
,��
−⇀↽− (

1
� + (

1
� + (

0
� + (

1
,��
+ %1

� + %1
,��

,

(
0
� + (

0
� + (

1
� + (

0
,��
+ %0

� + %
0
,��
−⇀↽− (

1
� + (

0
� + (

1
� + (

1
,��
+ %1

� + %1
,��

,

(
0
� + (

1
� + (

1
� + (

0
,��
+ (0

,��
+ %0

,��
+ %0

� + %
0
,��

−⇀↽−

(
1
� + (

1
� + (

1
� + (

1
,��

, + (1
,��
+ %1

� + %1
,��
+ %1

,��

}.

Here, all the rate constants are detailed balanced and are scaled by :31. The potential
species P and P are included even though they are effectively held constant by the
bath. The potential species %1

� and %
1
� are used to clamp the visible species (� and

(� to the visible environmental species &� and &� by the non-detailed balanced
potential clamping reactions:

T P
S,Q

= {

%
1
� + (

1
�

n 5 0BC :
(
�−−−−−−→ 2%1

� + (
1
� %

1
� +&�

n 5 0BC :
&

�−−−−−−→ &�

%
1
� + (

1
�

n 5 0BC :
(
�−−−−−−→ 2%1

� + (
1
� %

1
� +&�

n 5 0BC :
&

�−−−−−−→ &�

}.

The rates of the above reactions are set to rescale the means of the repressors:
:(
�

:
&

�

=
:(
�

:
&

�

=
:C G :C;
X2 . Next, we describe the free potentiated detailed balanced reactions

which produce the distribution c% (BE, Bℎ). These reactions are near duplicates of
the clamped potentiated detailed balanced reactions; the former lacks the potential

99

species %1
� and %1

�. Specifically, these reactions model a 3-node ECBM:

RSP = {
(0
� + (

0
�
−⇀↽− (1

� + (
0
� + %

1
�

(0
� + (

1
� + (0

,��
+ %0

,��
−⇀↽− (1

� + (
1
� + (1

,��
+ %1

� + %
1
,��

,

(0
� + (

0
�
−⇀↽− (1

� + (0
� + %

1
�,

(0
� + (

1
� + (0

,��
+ %0

,��
−⇀↽− (1

� + (1
� + (1

,��
+ %1

� + %1
,��

,

(0
� + (

0
� + (

0
� + %

0
�
−⇀↽− (1

� + (0
� + (

0
� + %

1
� ,

(0
� + (

1
� + (

0
� + (

0
,��
+ %0

� + %
0
,��
−⇀↽− (1

� + (1
� + (

0
� + (

1
,��
+ %1

� + %1
,��

,

(0
� + (

0
� + (

1
� + (0

,��
+ %0

� + %
0
,��
−⇀↽− (1

� + (0
� + (

1
� + (1

,��
+ %1

� + %1
,��

,

(0
� + (

1
� + (

1
� + (0

,��
+ (0

,��
+ %0

,��
+ %0

� + %
0
,��

−⇀↽−

(1
� + (1

� + (
1
� + (1

,��
+ (1

,��
+ %1

� + %1
,��
+ %1

,��

}.

The free speciesS species are coupled to clampedS species via the potential species
P which are modulated by the potential clamping reactions:

T P
S,S

= {

%0
� + (

0
�

nB;>F−−−−→ 2%0
� + (

0
� %0

� + (
0
�

nB;>F−−−−→ (
0
�

%1
� + (

1
�

nB;>F−−−−→ 2%1
� + (

1
� %1

� + (
1
�

nB;>F−−−−→ (
1
�

%0
� + (

0
�

nB;>F−−−−→ 2%0
� + (

0
� %0

� + (
0
�

nB;>F−−−−→ (
0
�

%1
� + (1

�

nB;>F−−−−→ 2%1
� + (1

� %1
� + (

1
�

nB;>F−−−−→ (
1
�

%0
� + (

0
�

nB;>F−−−−→ 2%0
� + (

0
� %0

� + (
0
�

nB;>F−−−−→ (
0
�

%1
� + (1

�

nB;>F−−−−→ 2%1
� + (1

� %1
� + (

1
�

nB;>F−−−−→ (
1
�

%0
,��
+ (0

,��

nB;>F−−−−→ 2%0
,��
+ (0

,��
%0
,��
+ (0

,��

nB;>F−−−−→ (
0
,��

%1
,��
+ (1

,��

nB;>F−−−−→ 2%1
,��
+ (1

,��
%1
,��
+ (1

,��

nB;>F−−−−→ (
1
,��

%0
,��
+ (0

,��

nB;>F−−−−→ 2%0
,��
+ (0

,��
%0
,��
+ (0

,��

nB;>F−−−−→ (
0
,��

%1
,��
+ (1

,��

nB;>F−−−−→ 2%1
,��
+ (1

,��
%1
,��
+ (1

,��

nB;>F−−−−→ (
1
,��

.

}

100

Notice that the visible clamped species (� and (� have their own potentials in P as
well as sharing potential species in P with (� and (�. However the hidden clamped
species (� , (,��, and (,�� only share potentials P with the corresponding free
species (� , (,��, and (,�� . This is reminiscent of the way the clamped units in a
Boltzmann machine use the same energies as the free units during training.

4.8 Thermodynamics of Learning and Inference
This section provides physically motivated energetic and thermodynamic costs of
learning and inference with potentiated dbCRNs. First, we note that in the construc-
tions used in this paper, learning and inference are fundamentally the same process.
In both cases, we start with a dbCRN C� with equilibrium distribution c� and, either
via the clamping process or the learning process, end up with a new distribution
c� ′. The final distribution c� ′ can be physically realized in a variety of ways: by
changing the energies �′ = � + Δ; by equipping C� with potential species so that
�′ = � + `; or by using the reactions (4.41 - 4.42) to push c� from equilibrium.
Importantly, in the first two scenarios described, c� ′ remains a dbCRN while in
the last scenario, c� ′ is out of equilibrium (at least until the potential clamping
reactions are turned off). In the following section, we will investigate reversibly and
non-reversibly modulating the potentials of a potentiated dbCRN, the dissipation of
the potential clamping reactions, and how these can be used to understand the learn-
ing construction of the previous section. Finally, we note that this section tacitly
assigns a physical meaning to the species’ energies �8. In the previous sections,
these energies could be viewed purely mathematically. However, in this section
�8 corresponds to the physical enthalpy3 of formation of the species (8 which may
implicitly depend on factors like solvent conditions and temperature. The arguments
used in this section are of a very different flavor from the rest of the Chapter and
contain considerably less mathematical rigor. From the perspective of this thesis,
these results are meant to be a starting point to illustrate that a fully autonomous
learning CRN construction provides a window through which increasingly complex
analyses of the physics of learning can be conducted. A reader of this section is
cautioned that these arguments are not fully vetted. However, these arguments are
meant to be provocative and inspire future study.

101

b-1[P]

b+1[P]

b[P]

Figure 4.6: A cartoon of inference via potential baths. Large baths containing
different concentrations of potential species (shown in blue) can be connected and
disconnected to and from a dbCRN in a small volume (dashed circle) for free. Not
to scale.

Thermodynamics of Inference via Clamping
To analyze the costs of inference, we consider clamping a potentiated dbCRN by
changing the concentrations of the potential species directly by changing the external
baths. In the following analysis, the system will be a tuple (c, %) where c is an
initial distribution of the CRN and % are the potential bath concentrations. The
system is always in thermal equilibrium with its environment (the solvent) at a
temperature) . By changing the concentration of the external bath of the species %,
the chemical potentials ` can be controlled. Similarly to the analysis by Ouldridge
and collaborators [253, 254], we will imagine a set of different baths 1 each with
a concentration of potential species [%1] which can be freely disconnected and
reconnected to the reaction volume. The purpose of this analysis is to highlight
the cost of inference in certain extreme conditions which can act as benchmarks for
future investigations. We begin with some basic thermodynamic definitions for a
dbCRN at a (not necessarily equilibrium) distributionl connected to a potential bath
with concentrations [%]. Denote the energy function G% which includes chemical
potential terms. The internal energy, U%l, entropy, S%l, and free energy, G%l, of a

3For simplicity, we are assuming that the species energies �8 are in fact enthalpies. In reality,
they may contain both enthalpic and entropic components. However, for simplicity of presentation,
we ignore that complication.

102

dbCRN are given by [92]:

U%l = 〈G% (B)〉l =
∑
B

l(B)G% (B), (4.53)

S%l = −:�〈logl〉l = −:�
∑
B

l(B) logl(B), (4.54)

and F%l = U
%
l −)S%l. (4.55)

If l = c%, the equilibrium distribution for the volume +%, then entropy and free
energy can also be written:

S%
c%
= :� (

Uc%

)
+ log /c%) F%

c%
= − log /c% .

The free energy difference between a potentiated dbCRN with potential concen-
trations [%] in a non-equilibrium distribution l and its equilibrium c% is given
by:

ΔF%
l→c% = F

%
l − F%c% = U

%
l −)S%l − Fc% (4.56)

=
∑
B

l(B) (G% (B) + logl(B) + log(/c%)) (4.57)

=
∑
B

l(B) (logl(B) − log c% (B)) (4.58)

= D(l | | c%). (4.59)

The Reversible Case: By very slowly connecting and reconnecting the potentiated
dbCRN through an infinite series of baths, each of which changes the concentration
of [%], by an infinitesimal amount, the potentiated dbCRN can be clamped from
[%0] → ... → [%=] → ... → [%#] in such a way that it will always be at
an equilibrium distribution c%= as described by Ouldridge and collaborators [253].
This results in a quasistatic reversible process where the baths reversibly do chemical
work on the system:

(%0, c%
0)

,A4E
====⇒ (%# , c%#). (4.60)

This same process could be run backwards, through the sequence of potentials
[%#] → ... → [%=] → ... → [%0] with the dbCRN always at equilibrium. Based
on the results from [253], no entropywill be dissipated in either direction by this kind
of process. This result indicates that inference, if computed slowly, can be free—
something we suspect might be advantageous to cellular life in certain conditions.
We note that an explicit calculation of ,A4E is highly dependent on underlying
potentiated dbCRN and is a direction for future investigation.

103

An Irreversible Case: Next, we consider a non-reversible process. In this process,
the potential baths are changed instantaneously from %0 to %# . This can be imagined
as moving through the same series of baths as above, but infinitely quickly instead
of infinitely slowly (or equivalently moving directly to the final buffer). The CRN
is initially at equilibrium with distribution c%0 . Following the volume change, the
CRN will initially be out of equilibrium at the distribution c%0 but at potential
concentration %# . Then, the CRN relaxes to the equilibrium distribution c%# based
upon the new potential species’ concentrations.

(%0, c%
0)

,8AA4E
======⇒ (%# , c%0)

Q
c%

0→c%#
==========⇒ (%# , c%#). (4.61)

Notice that the system is not interacted with during the second step (and the volume
and temperature are held constant) so any changes in energy must be linked to the
bath. In this setup, the dissipated entropy Q results from mixing the external baths
(when a full cycle is considered). Indeed, c% is not at equilibrium relative to the
concentrations[%′] which is reflected in the free energy difference between c%0 and
c%

:
Qc%→c%′ = ΔF

%′

c%→c%′ = D(c
% | | c%′). (4.62)

Finally, noticing that initial and final states of the reversible and irreversible processes
are the same, conservation of energy dictates that:

,8AA4E = ,A4E + D(c%
0 | | c%#). (4.63)

In other words, the thermodynamic cost of performing inference quickly is the
relative entropy between the initial distribution of the systemand thefinal distribution
of the system. Importantly, performing inference this way always has an energetic
cost because the relative entropy is always positive. Energy is dissipated by the
dbCRN being pushed out of equilibrium and then settling into a new equilibrium
state. Additional work may have to be done to create the potentials, but this work is
assumed to be recoverable.

Thermodynamics of the Potential Clamping CRN
In the previous section, we analyzed the cost of an external agent with an infinite
collection of potential baths performing inference either very slowly or very quickly.
Clearly, this situation was idealized. However, the potential clamping reactions
provide a mechanism by which the potential baths can be dynamically adjusted by
an autonomous CRN. In this section, we analyze the cost of inference incurred by

104

these reactions and point out some trade-offs between accuracy, reversibility, and
dissipation. To begin, we note that the reactions (4.41, 4.42) are not directly amiable
to thermodynamic treatment because they are irreversible and therefore infinitely
dissipative. However, these equations can be rewritten reversibly and analyzed:

%8 + (8
n :(
8−−−⇀↽−−−
X

2%8 + (8 (4.64)

%8 +&8
n :
&

8−−−⇀↽−−−
X
&8, (4.65)

where X is a small reverse rate constant. This CRN can be thought of as driven by a
hidden infinite reservoir of fuel molecules [90]. The dynamics can now be written
as:

3 [%8]
3C

= [%8]〈B8〉c% (n − X[%8]) − 〈@8〉k (n [%8] − X) = �(8 − �
&

8
. (4.66)

Here we have assumed :(
8
= :

&

8
= 1 for simplicity. In the last step, we have rewritten

each term using the reaction fluxes �(
8
and �&

8
through (4.64) and (4.65), respectively.

This ODE cannot be solved analytically, however we can analyze its steady state
solutions:

3 [%8]
3C

= 0 = �(8 − �
&

8
Solution 1: �(8 = �

&

8
= 0 Solution 2: �(8 = �

&

8
≠ 0.

The first solution corresponds to an equilibrium solution when the driving potential
goes to 0. In general, we do not expect this case to exhibit accurate learning. The
second solution corresponds to a non-equilibrium steady state. Such a solution exists
provided that k(@) has the same support as c% (B). A little algebraic manipulation
reveals that at steady state, the error between the mean of (8 and &8 is given by:

〈@8〉k − 〈B8〉c%
〈@8〉k

= 1 − 〈B8〉c%〈@8〉k
= 1 − (n [%8] − X)

[%8] (n − X[%8])
=

X(1 − [%8]2)
[%8] (n − X[%8])

. (4.67)

Notice that when X→ 0, the error also goes to 0. For non-zero values of X, the error
will also depend non-linearly on the final concentration [%8]. This dependence is
illustrated in Figure 4.7. The key insight from figure is that the potential learning
CRN can be only weakly driven and still work well provided that the target mean
〈@〉k of the species Q is not too far from the unclamped mean 〈B〉c of the species S.
However, as larger clamping potentials need to be applied, X must become small to
keep the error low. The reaction fluxes (4.66) also allow us to calculate the entropy
production rate from the learning reactions for potential species 8 [91]. Notice that

105

0 -1 -2 -3 -4 -5 -6 -7 -8 -9

2 1.0

2 2.0

2 3.0

2 4.0

2 5.0

2 6.0

< S > at steady-state (Q = 100)

101

102

103

0 -1 -2 -3 -4 -5 -6 -7 -8 -9

2 1.0

2 2.0

2 3.0

2 4.0

2 5.0

2 6.0

[P] at steady state

10 1

100

101

0 -1 -2 -3 -4 -5 -6 -7 -8 -9
GS

2 1.0

2 2.0

2 3.0

2 4.0

2 5.0

2 6.0

Empirical Error

10 2

10 1

100

101

0 -1 -2 -3 -4 -5 -6 -7 -8 -9
GS

2 1.0

2 2.0

2 3.0

2 4.0

2 5.0

2 6.0

Theoretical Error

10 2

10 1

100

101

Figure 4.7: Empirical and theoretical error when learning the mean of a product
Poisson with the dbCRN ∅ −⇀↽− (+ % with potential clamping reactions for % for
different initial energies �(and reverse rate constant X. Empirical error is defined
as | 〈B〉−〈@〉〈@〉 | and theoretical error is defined as |

X(1−[%8]2)
[%8] (n−X[%8]) |.

all other reactions are at equilibrium, by construction, so these are the only parts of
the system which produce entropy:

)
3S8
3C

= ') (�(8 log
n

X[%8]
+ �&

8
log

n [%8]
X
). (4.68)

Here, ' is the gas constant. At an equilibrium steady state, this simplifies to 0. At a
non-equilibrium steady state with �BB = �(8 = �

&

8
, the entropy production is entirely

dissipated as heat:

3Q8
3C

= 2')�BB log
n

X
. (4.69)

Thermodynamics of Learning
We can understand the thermodynamics of the learning using the results from the
previous section on the reversible and irreversible thermodynamics of clamping a
potentiated dbCRN and the thermodynamics of the potential clamping CRN. In
these analyses, we will consider the different underlying trajectories the learning
CRN must go through during the learning process and examine different limits and
mechanisms through which the system can achieve learning.

First, we define a state of the learning system as a tuple (@, %, %, c%,%, c%) where
@ is a state of the environment, % are potentials connecting a clamped dbCRN to

106

time
0.0

0.2

0.4

0.6

0.8

E S
=

2
Q

=
10

0.
0

Error: Q S
Q

= 0.05
= 0.01
= 0.001
= 0.0001

time
0

10

20

30

40

50

60

70

Entropy Production Rate
= 0.05
= 0.01
= 0.001
= 0.0001

time
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Total Entropy Production
= 0.05
= 0.01
= 0.001
= 0.0001

time

3.0

2.5

2.0

1.5

1.0

0.5

0.0

E S
=

6
Q

=
10

0.
0

Error: Q S
Q

= 0.05
= 0.01
= 0.001
= 0.0001

time
0

100

200

300

400

500

Entropy Production Rate
= 0.05
= 0.01
= 0.001
= 0.0001

time
0

20

40

60

80

100

120

140

160

Total Entropy Production
= 0.05
= 0.01
= 0.001
= 0.0001

Figure 4.8: Error, entropy production rate, and total entropy production for the
potential clamping CRN reactions applied to the dbCRN ∅ −⇀↽− (.

the environment, % are potentials connecting the clamped dbCRN to a free dbCRN,
c%,% (B) is the clamped distribution, and c% (B) is the free distribution. Throughout
training, the environment may be sampled, potentials may be adjusted, and CRNs
may be pushed from equilibrium or relax to equilibrium.

Reversible Case: Similar to the reversible clamping analyzed in 4.8, we can imagine
that the potentials of the learning CRN are adjusted by an external agent equipped
with a set of potential baths which are quasi-statically used to guide the learning
process. Formally, such a process could be written as:

(@0, %
0
, %0, c%

0
,%0
, c%

0) → ...→

(@=, %=, %=, c%
=
,%= , c%

=) → ...→

(@# , %# , %# , c%
#
,%# , c%

).

Lumping all the infinitesimal transitions together, we write:

(@0, %
0
, %0, c%

0
,%0
, c%

0)
,A4E
====⇒ (@# , %# , %# , c%

#
,%# , c%

). (4.70)

This limit is not particularly interesting; the system is always at equilibrium so it
dissipates no entropy, but requires infinite time and an infinite number of baths.

107

We note that because this process is reversible, the work done will depend only on
the initial and final potentials of the learning system, not on the process by which
the system learns. Hence, we do not believe that this process accurately reflects
practical considerations of learning.

An Irreversible Case: Once again, the argument used to understand the thermo-
dynamics of irreversible clamping (Section 4.8) can be applied to understand the
learning CRN. Here, we imagine an external agent who freely moves the system
between a finite number of potential baths. There are a number of different trajecto-
ries the learning could take. The simplest irreversible learning trajectory begins at a
state (@0, %

0
, %0, c%

0
,%0
, c%

0) and is then immediately connected to potential baths
representing the final desired potentials. However, the system will initially be out
of equilibrium relative to these potentials and will dissipate entropy as it relaxes to
equilibrium:

(@0, %
0
, %0,c%

0
,%0
, c%

0)
⇓ ,1 step

8AA4E

(@# , %# , %# ,c%
0
,%0
, c%

0)
⇓ Q + Q

(@# , %# , %# ,c%
#
,%# , c%

).

Here,Q andQ are the entropy produced by the clamped and free CRNS, respectively:

Q1 step = D(c%
0
,%0 | | c%

#
,%#) Q1 step = D(c%

0 | | c%#). (4.71)

Again, we argue based upon conservation of energy that ,8AA4E = ,A4E + Q1 step +
Q1 step which suggests that learning quickly is in some sense the same as clamping a
CRN to a new set of potentials. However, in practice we expect the learning process
to be even more nuanced. Many samples from the environment will be copied into
the clamped CRN which in turn will induce changes to the free CRN. We can model

108

this process via the transitions:

(@=−1, %
=−1
, %=−1,c%

=−1
,%=−1

, c%
=−1)

Sample = ⇓ free

(@=, %=−1
, %=−1,c%

=−1
,%=−1

, c%
=−1)

Change % ⇓ ,=

(@=, %=, %=−1,c%
=−1

,%=−1
, c%

=−1)
Equilibrate c ⇓ Q=
(@=, %=, %=−1,c%

=
,%=−1

, c%
=−1)

Change % ⇓ ,=

(@=, %=, %=,c%
=
,%=−1

, c%
=−1)

Equilibrate c and c ⇓ Q=

(@=, %=, %=,c%
=
,%= , c%

=).

Here, we assume that the system starts at equilibrium relative to a sample @8−1.
When a new sample @8 is produced from the environment, it will be copied into the
clamped CRN using the potentials %. The clamped CRN will then equilibrate, then
the potentials % will be used to induce a change in the free CRN, and then the free
CRN equilibrates. The work ,= and ,= will depend on details of the underlying
CRNs’ reactions and energies. However, the dissipation can be obtained for each
step direction from (4.62). Combining these together for # training samples results
in a more complicated expression for dissipation from learning from many samples:

QN steps =

#∑
==1
[D(c%

=−1
,%=−1 | | c%

=
,%=−1) + D(c%

=
,%=−1 | | c%

=
,%=) + D(c%=−1 | | c%=)] .

(4.72)

When the relative entropy is considered as the cost of copying, this expression has
a straightforward interpretation [255]. The first term in the sum is due to copying
a sample from the environment onto the clamped distribution. The second term is
due to copying any new information in the sample into the clamped CRN model.
The third term is due to copying information from the clamped CRN model into
the free CRN model. Interestingly, we will show that this value is actually a lower
bound of the one-step irreversible learning:

Q1 step + Q1 step ≥ QN steps. (4.73)

109

Proof:

The Pythagorean information inequality states: [247]

D(% | | &) ≥ D(% | | %∗) + D(%∗ | | &) %∗ = argmin
%∈�

D(% | | &). (4.74)

Here, % and& are any two distributions, D is the relative entropy, and � is a convex
set of distributions. When applied to the learning CRN, energy can be dissipated
through both the clamped and free distributions, c and c. Any samples from
these distributions are independent; the coupling via potential learning reactions
allows the two dbCRNs to share energy parameters, but does not cause their states
to become correlated. Therefore, we will treat the dissipation through each sub-
CRN individually. Assume that # data points are sampled from the environmental
distribution k. Throughout the learning process, the baths % and % will update as
more data is sampled. The clamped potentiated dbCRN begins with its two potential
baths at values %0 and %0 and ends with them at %# and %# . The amount of entropy
produced due to the equilibration of c as the potentials change is:

Q = D(c%
0
,%0 | | c%

#
,%#) (4.75)

≥ D(c%
0
,%0 | | c%

1
,%1) + D(c%

1
,%1 | | c%

#
,%#) (4.76)

≥
#∑
==1
D(c%

=−1
,%=−1 | | c%

=
,%=) (4.77)

≥
#∑
==1
D(c%

=−1
,%=−1 | | c%

=
,%=−1) + D(c%

=
,%=−1 | | c%

=
,%=). (4.78)

Here, we have applied the Pythagorean information inequality iteratively between
the second and third steps to expand the total dissipation across each training sample
and once in the final step expand the equilibration between the two potential baths.
Note that we already proved that the equilibrium distribution of a potentiated dbCRN
minimizes (4.74) where � is the space of distributions with a fixed mean and that �
is convex in Section 4.6. Similarly, the dissipation through the free dbCRN is given
by:

Q = D(c%0 | | c%<) ≥
<∑
8=1
D(c%8−1 | | c%8). (4.79)

Combining these expressions gives the inequality for total dissipation:

Q + Q ≥
<∑
8=1
D(c%

8−1
,%8−1 | | c%

8
,%8−1) + D(c%

8
,%8−1 | | c%

8
,%8) + D(c%8−1 | | c%8).

110

This result makes intuitive sense because the multistep learning process is, infor-
mally, slower than the single step process and therefore closer to the completely
reversible process. Finally, the irreversible work may then be written as

,
N steps
8AA4E

=
∑
=

(,= +,=) ≥ ,A4E + QN steps. (4.80)

Unlike in the single step process, in the multistep process we know that some
amount of work put into the system can theoretically be re-used throughout the
learning process which we are not explicitly accounting for in the values of,= and
,=. Therefore, we expect the total irreversible work to be greater than the reversible
work and the entropy produced, with the understanding that this could be made an
equality if energy stored in the system is repurposed perfectly.

We emphasize that these results are agnostic as to whether the environmental process
k is dissipative. In the example used in 4.5, k is generated by a dissipitive CRN.
However, k could just as easily been generated by a dbCRN. As far as learning is
concerned, the cost comes from copying samples from the environment (data) into
the learning CRN, not from how that data is generated.

Dissipation from the Learning CRN: In the previous two examples, we imagined
an external agent moving pistons throughout the learning process. However, the
full learning CRN construction allows for an autonomous system to learn from its
environment. Each set of potential clamping reactions will dissipate energy in this
case according to the results in 4.8 which can then be added up throughout the
entire learning process. We suspect that there will be similar dissipation-accuracy
trade offs for the entire autonomous learning system as there are for a single set
of potential clamping reactions. Understanding how these trade offs relate to the
specific structure of the underlying dbCRN, the environmental distribution, and the
initial energies will prove an interesting avenue for future research.

4.9 Discussion
We have provided a necessary mechanism by which dbCRNs can represent com-
plex distributions far from the canonical product-Poisson form they are most well
known for. To do this, dbCRNs must carefully control their species counts and
initial conditions in order to restrict their reachability class. Analogously to BMs,
marginalization over hidden species can be employed to further increase the com-
plexity of distributions a dbCRN can represent with the important caveat that the
reachable states of the visible species must be dependent on the states of the hidden

111

species. This leads to the question of which dbCRN architectures can produce
far-from-Poisson distributions and how the representational power of dbCRNs re-
lates to their underlying structure. So far, we know of two powerful constructions
which require many species and/or reactions as well as carefully controlled binary
species counts. The pixel CRN construction used to produce the face distribution
in Figure 4.1 uses $ (#) hidden species where # is the size of the supported visible
distribution. Similarly, the chemical Boltzmann machine construction learned in
Figure 4.5 uses$ (# log #) reactions where # is the number of binary visible states
produced from log2 # visible species. This leads us to speculate that restricting
the reachability class of a dbCRN is a kind of computational resource analogous to
entanglement in quantum computing [256].

Next, we examined how modulating the energies of the species in a dbCRN can be
interpreted as computing a conditional distribution and hence a form of inference.
Energy clamping, as we named this process, can also be implemented by coupling
clamped species in the dbCRN to potential baths. This potentiated dbCRN, in turn,
can be controlled by a set of (non-detailed balanced) chemical reactions. These
constructions provide many ways for a physical system to perform inference closely
related to evolution, adaption, and control. Modulating the energies of chemical
species can happen easily by changing the sequences of DNA or other polymers and,
therefore, is potentially a form of inference that could occur evolutionary. Using
a chemical potential to modulate the mean of a chemical signal could also easily
occur in a real or synthetic biochemical network and may be used for an organism
to adapt to its environment. We suspect that these kinds of inferential systems could
be realised in vivo due to the binding and unbinding events between the genome
and different proteins or RNAs such as occurs in epigenetic chromatin structures
in eukaryotes and in folded or looping conformations caused by many transcription
factors in bacteria and eukaryotes [248, 249]. In order to build such a system in the
lab, the greatest challenge will be to produce a chemical network with low species
counts and dynamically measure the stochastic fluctuations. Advances in droplet-
based technologies coupled with microfluidics [257] and positioning of single DNA
molecules [258] provide potential avenues for the construction of such a circuit
in vitro. Finally, we note that an exact implementation of the potential clamping
reactions would function as a integral feedback controller capable of reference
tracking [220].

Mathematically, the potential clamping reactions correspond to a variation of the

112

moment learning rule used to train BMs and can be thought of as a chemical
implementation of a machine learning algorithm. In our learning CRN construction,
we show how these potential clamping reactions can be combined with free and
clamped dbCRNs in order to produce a general architecture which learns energies for
both hidden and visible species. This construction suggests a wide class of dbCRN-
inspired machine learning algorithms. These models would be generative, could
utilize both a mixture of discrete and continuous variables, and would inherently
learn in a continuous on-line fashion. The outstanding challenge is to find dbCRN
architectures which are compact enough for easy simulation yet can also represent
complex distributions, or, alternatively, to build design custom tailored software that
can quickly simulate very large dbCRNs analogous to GPU based libraries for deep
learning [138, 139].

Finally, by defining a machine learning system entirely in terms of chemical reaction
networks, we were able to provide some basic thermodynamic costs for the learning
process. These costs are intentionally very simple and, we believe, broadly appli-
cable to any physical system because they are rooted in modulating the energies
of a detailed balanced distribution. We note that in our construction, inference is
closely related to the thermodynamics of copying [255]. Our results suggest that
for learning to occur, the system must first read or copy its external environment.
Then, the system can compute a distribution conditioned on the environment which
it must again copy in order to learn. This closely follows known thermodynamic
limits on computing where many computations are free, but making use of the result
for downstream operations requires it to be copied [255].

To conclude, we wish to emphasize that the mathematical structures described in
this paper are in fact quite general, even though they may appear overly specific.
At the highest level, detailed balanced CRNs are ubiquitous in biology and engi-
neered bio-molecular systems; interactions such as molecular binding, diffusion,
and conformation changes are frequently detailed balanced. Indeed, for our results
on energy clamping and inference to hold, a detailed balanced sub-system need
only be at a dynamic quasi-equilibrium relative to other subsystems. Similarly,
our results on potentiated dbCRNs are also somewhat more general than they may
appear: potentials may be shared between multiple species and, as exemplified in
the DNA looping model, can occur on either side of a detailed balanced reaction.
This flexibility means that dynamic and driven biochemical systems may, in fact,
be generalized Boltzmann machines in disguise. Dynamic changes in generalized

113

potential species coupled to detailed balanced sub-systems could be acting as molec-
ular machine learning models—representing complex distributions and computing
inference while simultaneously adapting to and learning from the environment.

114

C h a p t e r 5

REDUCING THE COMPLEXITY OF E. COLI CELL EXTRACT
METABOLISM WITH PHENOMENOLOGICAL MODELING

5.1 Forward
The following chapter has been written as a journal article which we aim to post as
a preprint in the near future and submit to a journal after a few additional follow-up
experiments. This work was conducted in collaboration with Ankita Roychoudhury
under the supervision of Richard Murray.

Compared to the preceding chapters, this chapter is very concrete and rooted in
practical experiments. Since the start of my PhD, I have dabbled in a variety
of E. coli cell extract experiments mostly focused around understanding how to
best model and characterize these systems. Cell extracts are an interesting middle
ground between the biological complexity of a living organism and the simple
highly controlled in vitro settings commonly used for molecular programming (such
as DNA strand displacement systems). They contain much of the complexity of E.
coli—a great many unknown molecules and interactions—but are relatively high
throughput and easier to work with than living organisms.

This chapter originally began as an attempt to create a data set “big enough” for
machine learning techniques with a goal of parameterizing a systems level model of
cell extract metabolism. This model, in turn, could be used to build better synthetic
biological circuits and improve cell-free bio-production. Unfortunately, despite
acquiring tens of thousands of data points, the complexity of extract metabolism
surpassed my expectations. As a result, this chapter is more about reducing com-
plexity into parameterizable heuristics than it is about full on machine learning.

That said, this chapter still includes serious computation. It showcases the model-
building to simulation to inference pipeline I described in the preface of Chap-
ter 2. BioCRNpyler was used to produce a phenomenological model of cell ex-
tract metabolism. Bayesian parameter inference—a model fitting technique which
explores distributions of parameters based on a cost function1—run through the

1Bayesian parameter inference is related to the generative models discussed in the introduction
in the sense that one could frame learning a posterior parameter distribution as a machine learning
problem, but in this work I take a purely empirical approach.

115

Bioscrape software package was then used to understand how well a set of simple
experiments could fit a similarly simple model. At a more general level, the idea of
fitting phenomenologicalmodels to large complex data sets is an example of function
approximation in machine learning, and it seems plausible that phenomenological
CRN models will do a good job of approximating mechanistic CRN models. Al-
though I do not make these connections rigorous in this chapter, I believe they are
an important area of research in order to deal with biological complexity.

Contribution: I wrote the entire paper, prepared the metabolomics samples, an-
alyzed the data, developed the underlying mathematical model, and supervised
Ankita’s experimental contribution. The metabolomics measurements were con-
ducted by a company Metabolon. Ankita Roychoudhury was responsible for the
spiking and ATP timecourse experiments, which were similar to a number of exper-
iments included in her senior thesis.

5.2 Abstract
We present and discuss systems level metabolic measurements of E. coli cell extract
using high throughput mass spectrometry (“metabolomics”). These measurements
conclusively show that the majority of native E. coli metabolism is at least partially
active in extracts. We use these measurements to inform a phenomenological
model of cell extract metabolism which we parameterize using Bayesian inference
techniques from cell-free protein synthesis data. This model is designed to work as
a module that can be attached to other circuit models in order to better use cell-free
systems for circuit prototyping.

5.3 Introduction
Cell extracts, produced by lysing large numbers of cells and removing their DNA
and lipid membranes while retaining most constituents of the cytoplasm, have a
long history as a powerful tool in the study of biochemistry and molecular biology
[259]. More recently, in vitro biochemical systems are increasingly important in
synthetic biology [133, 260]. Extracts can be used as a flexible bioproduction
platform capable of producing compounds which may be toxic in vivo [261, 262].
Cell extracts also offer a valuable platform to rapidly test and prototype synthetic
biological components and circuits [134, 263]. Finally, cell extracts provide a
valuable platform for methodological prototyping and biological discovery because
they can be used for high throughput experiments and screens [264–266].

In this paper, we are particularly interested in the metabolism of E. coli cell extract.

116

Understanding extract metabolism will accelerate metabolic engineering of extracts
for bio-production purposes. Additionally, when using cell extracts as a genetic
circuit prototyping platform, the limited lifetime of cell extracts limits the complexity
of circuits that can be prototyped. Increasing the life span of cell-free protein
synthesis (CFPS) would allow increasingly complex circuits to be built and analyzed
in vitro, which can be significantly more efficient than working directly in vivo [267,
268].

Most cell-free systems work by combining extract with a fuel source (such as
glucose or 3PGA) that can be metabolized by the extract in order to regenerate
ATP and other internal fuel carrying molecules and ultimately produce proteins
or other molecules of interest [269, 270]. For CFPS, extracts are supplemented
with large amounts of NTPs, amino acids, and NAD which power transcription and
translation. Additional cofactors are also added to extracts to increase productivity
such as crowding agents, antioxidants, cAMP, speridimine to increase ribosome
stability, HEPES buffer, and Coenzyme A [271]. Cell extracts prepared with such an
energy buffer are in a highly non-equilibrium state. By metabolizing these energy
components, cell extract systems relax to equilibrium while expressing proteins,
producing biochemical products, or performing computations with biochemical
circuits. This process however, is not very efficient with estimates of just at most
65% energy efficiency for bio-production of small molecules [272] and presumably
even lower for CFPS [273].

Furthermore, it is widely understood that cell extracts stop functioning because
they run out of energy and/or accumulate toxic waste products which inhibit core
metabolic processes as opposed to the cellular machinery breaking down. In-
directly, this can be seen by the increased longevity of extracts connected via a
semi-permeable membrane to an energy reservoir which acts to provide near addi-
tional fuel and sequester toxic waste products [274]. Similar experiments have also
been carried out with vesicles showing that extract can function for prolonged times
provided its fuel is replenished and waste products removed [275]. However, these
kinds of systems are complicated and limit the throughput and scale of cell extract
experiments.

Cell extractmetabolic engineering and circuit prototypingwould greatly benefit from
mathematical models describing how cell extract metabolism functions. Systems-
level models could be used to identify experimental targets for cell extract metabolic
engineering. Understanding how metabolism effects CFPS duration would also en-

117

able optimization of circuits, energy buffers, and extracts for prototyping purposes.
It is also possible that batch-to-batch variability in extracts and differences between
preparation methods might have underlying metabolic causes which could be un-
derstood through modeling [276]. Unfortunately, most metabolic models of cell
extracts currently available are unable to explain all the dynamics of cell free protein
expression observed under diverse experimental conditions.

One potential modeling approach would be to use flux balance analysis (FBA), a
widely usedmetabolic modeling framework to understand the metabolism of steady-
state-growth of cell cultures [277]. FBA has been so successful, in part, because it
does not required detailed enzymatic rate constants and instead uses stoichiometric
constraints coupled with optimization in order to predict steady-state metabolic
fluxes. Unfortunately, the steady-state assumption of FBA is invalid for the majority
of bulk CFPS experiments because extract metabolism is not at steady state.

An alternative modeling approach is to use a chemical reaction network (CRN)
model [1] of cell extract metabolism. Briefly, CRNs consist of a set of reactions
�A

dA−−→ $A where �A , $A ⊆ S are vectors of chemical species S and dA (B) > 0 is a
rate function of the species concentration vector B. Such models result in a system
of ODEs: 3B8

3C
=

∑
A ($8A − �8A)dA (B) which can be integrated to understand system

dynamics. CRN models have been created to study small metabolic networks
such as the lac operon in E. coli [15] as well as larger networks like the core
glucose metabolism [278]. The challenge with these models is they require detailed
biochemical rate parameters and mechanistic information in order to define and
parameterize the functions dA . Additionally, parameterized in vivo models cannot
be directly applied to in vitro cell extract systems because enzyme abundances and
reaction rates likely vary between the systems. In cell extract, CRNmodels have been
used extensively to understand transcription and translation of genetic circuits [279,
280]. Furthermore, coarse grained phenomelogical models have been used to
describe how extract metabolism effect CFPS [186, 281]. More comprehensive
models have been built to examine the kinetics of E. coli’s central metabolism for
the first 3 hours [273]. However these models do not accurately model the many
experimental observations regarding extract metabolism, such as the fact that adding
more fuel to extracts does not improve yield, or that extracts cease to function after
4-8 hours.

118

5.4 Results and Discussion
Cell Extract Time Course Metabolomics
We used high throughput untargeted mass spectrometry to broadly identify metabo-
lites [135] which are present and dynamically changing during CFPS in E. coli
extract. Data was collected across a diverse set of experimental conditions includ-
ing duration of the cell-free protein synthesis reaction, different cell culture batches,
preparation methods, salt concentrations, and additives. Specifically, we used three
different cell culture batches, two different magnesium-glutamate concentrations,
the addition or absence of 4 nM of a constitutive expressing GFP plasmid, the
addition of additional oxygen during the cell-free protein synthesis reactions, and
variations in the extract preparation method. The use of many conditions across
multiple time points allowed us to statistically find a wide variety of associations in
the data. These conditions were distributed in such a way that we could easily pool
samples between sets of different conditions and still have enough statistical power
to draw meaningful conclusions (see Methods Table 5.1). Details of our statistical
methodology can be found in the Methods section.

First, we examined how the distributions of individual metabolites change over
time by pooling samples by time point across all the experimental conditions. This
analysis showed that 87 of 328 vary statistically significantly over time (Figure 5.1A).
These metabolites are spread out over a wide swath of E. coli metabolism which
will discuss further later. We then examined if different extract conditions gave
rise to statistical differences in the measured metabolite dynamics. Surprisingly,
the vast majority of conditions we compared produced few statistical differences.
Notably, the addition of constitutively active GFP plasmid had no measurable effect
on overall extract metabolism, suggesting that cell-free protein synthesis is using
relatively little energy compared to other background metabolic processes. The only
factor that we found to have statistically significant differences between individual
metabolites was the specific extract culture batch (Figure 5.1B) suggesting that
variability in growth conditions, when cells are harvested, and other details of the
extract preparation protocol can have significant effects on extract metabolism.

Then we simultaneously increased the statistical power of our data and provided
a higher level view of E. coli extract metabolism by statistically combining the
measurements of multiple metabolites involved in the same metabolic pathway
[282]. This analysis found that 47 out of 55 analyzed pathways vary significantly in
time. Cell culture batch was also revealed to have dramatic changes in 40 pathways

119

1,
2-

di
pa

lm
ito

yl
-G

PE
 (1

6:
0/

16
:0

)*
1,

2-
di

pa
lm

ito
yl

-G
PG

 (1
6:

0/
16

:0
)

1-
m

yr
ist

oy
l-2

-p
al

m
ito

yl
-G

PG
 (1

4:
0/

16
:0

)*
1-

pa
lm

ito
yl

-2
-s

te
ar

oy
l-G

PE
 (1

6:
0/

18
:0

)*
2'

-O
-m

et
hy

la
de

no
sin

e
2'

-O
-m

et
hy

lu
rid

in
e

2'
-d

eo
xy

gu
an

os
in

e
5'

-m
on

op
ho

sp
ha

te
 (d

GM
P)

2,
3-

di
hy

dr
ox

y-
5-

m
et

hy
lth

io
-4

-p
en

te
no

at
e

(D
M

TP
A)

*
2-

hy
dr

ox
y-

4-
(m

et
hy

lth
io

)b
ut

an
oi

c
ac

id
2-

ox
oa

rg
in

in
e*

3-
am

in
oi

so
bu

ty
ra

te
3-

de
hy

dr
oq

ui
na

te
3-

de
hy

dr
os

hi
ki

m
at

e
3-

hy
dr

ox
yb

ut
yr

at
e

(B
HB

A)
4-

hy
dr

ox
yb

en
zy

l a
lco

ho
l

4-
hy

dr
ox

yp
he

ny
lp

yr
uv

at
e

4-
m

et
hy

l-2
-o

xo
pe

nt
an

oa
te

7-
m

et
hy

lg
ua

ni
ne

Co
A-

gl
ut

at
hi

on
e*

FA
D

FM
N

N-
ac

et
yl

gl
yc

in
e

N-
ac

et
yl

hi
st

id
in

e
N-

ac
et

yl
iso

le
uc

in
e

N-
ac

et
yl

le
uc

in
e

N-
ac

et
yl

pr
ol

in
e

N-
ac

et
yl

se
rin

e
N-

ac
et

yl
th

re
on

in
e

N-
ca

rb
am

oy
la

sp
ar

ta
te

N-
fo

rm
yl

ph
en

yl
al

an
in

e
N-

su
cc

in
yl

-le
uc

in
e

N-
su

cc
in

yl
-p

he
ny

la
la

ni
ne

N2
-a

ce
ty

lly
sin

e
N6

-d
im

et
hy

la
lly

la
de

ni
ne

NA
DH

S-
la

ct
oy

lg
lu

ta
th

io
ne

TM
P

UM
P

ac
et

yl
ph

os
ph

at
e

ad
en

os
in

e
5'

-d
ip

ho
sp

ho
rib

os
e

(A
DP

-ri
bo

se
)

ag
m

at
in

e
al

an
yl

-g
lu

ta
m

yl
-m

es
o-

di
am

in
op

im
el

at
e

al
ph

a-
hy

dr
ox

yi
so

ca
pr

oa
te

al
ph

a-
hy

dr
ox

yi
so

va
le

ra
te

al
ph

a-
ke

to
gl

ut
ar

at
e

ar
ab

on
at

e/
xy

lo
na

te
be

nz
oa

te
ca

pr
oa

te
 (6

:0
)

ca
pr

yl
at

e
(8

:0
)

cy
tid

in
e

tri
ph

os
ph

at
e

dC
M

P
er

yt
hr

on
at

e*
fru

ct
os

e
ga

m
m

a-
gl

ut
am

yl
iso

le
uc

in
e*

ga
m

m
a-

gl
ut

am
yl

va
lin

e
gl

ut
am

in
e

gl
ut

at
hi

on
e,

 o
xi

di
ze

d
(G

SS
G)

gl
yc

in
e

ho
m

oc
ys

te
in

e
hy

po
xa

nt
hi

ne
la

ct
at

e
ly

sin
e

m
al

on
yl

 C
oA

m
an

ni
to

l/s
or

bi
to

l
m

et
hi

on
in

e
ni

co
tin

am
id

e
rib

on
uc

le
ot

id
e

(N
M

N)
ni

co
tin

am
id

e
rib

os
id

e
ni

co
tin

ic
ac

id
 m

on
on

uc
le

ot
id

e
(N

aM
N)

or
ni

th
in

e
or

ot
at

e
ox

in
do

ly
la

la
ni

ne
p-

hy
dr

ox
yb

en
za

ld
eh

yd
e

pa
nt

et
he

in
e

pa
nt

oa
te

ph
en

yl
py

ru
va

te
ph

os
ph

at
e

pr
ol

in
e

pt
er

in
pu

tre
sc

in
e

py
ru

va
te

rib
of

la
vi

n
(V

ita
m

in
 B

2)
se

do
he

pt
ul

os
e-

7-
ph

os
ph

at
e

th
re

on
in

e
ur

ac
il

ur
id

in
e

xa
nt

hi
ne

xa
nt

ho
pt

er
in

12

6

3

0

Ti
m

e
(H

ou
rs

)

A

2-
hy

dr
ox

yg
lu

ta
ra

te
1-

pa
lm

ito
yl

-2
-o

le
oy

l-G
PE

 (1
6:

0/
18

:1
)

de
ox

yc
ar

ni
tin

e
sp

hi
ng

an
in

e
va

lin
e

al
an

in
e

m
yr

ist
at

e
(1

4:
0)

as
pa

ra
gi

ne
gl

yc
er

op
ho

sp
ho

et
ha

no
la

m
in

e
ga

m
m

a-
gl

ut
am

yl
al

an
in

e
ph

os
ph

oe
th

an
ol

am
in

e
(P

E)
1,

2-
di

pa
lm

ito
le

oy
l-G

PE
 (1

6:
1/

16
:1

)*
di

am
in

op
im

el
at

e
2,

3-
di

hy
dr

ox
yi

so
va

le
ra

te
pa

lm
ita

te
 (1

6:
0)

ga
m

m
a-

gl
ut

am
yl

gl
ut

am
at

e
gl

yc
er

op
ho

sp
ho

se
rin

e*
1,

3-
di

am
in

op
ro

pa
ne

pa
lm

ito
yl

 e
th

an
ol

am
id

e
ga

m
m

a-
am

in
ob

ut
yr

at
e

(G
AB

A)
al

ph
a-

ke
to

gl
ut

ar
am

at
e*

ur
at

e
ga

m
m

a-
gl

ut
am

yl
m

et
hi

on
in

e
ad

en
os

in
e

try
pt

am
in

e
qu

in
at

e
1-

pa
lm

ito
le

oy
l-2

-o
le

oy
l-G

PE
 (1

6:
1/

18
:1

)*
ch

ol
in

e
ga

m
m

a-
gl

ut
am

yl
-2

-a
m

in
ob

ut
yr

at
e

ha
rm

an
e

2,
4-

di
-te

rt-
bu

ty
lp

he
no

l
1-

pa
lm

ito
le

oy
l-2

-o
le

oy
l-G

PG
 (1

6:
1/

18
:1

)*
gl

ut
am

yl
-m

es
o-

di
am

in
op

im
el

at
e

(2
 o

r 3
)-d

ec
en

oa
te

 (1
0:

1n
7

or
 n

8)
N6

-m
et

hy
lly

sin
e

2-
hy

dr
ox

yb
ut

yr
at

e/
2-

hy
dr

ox
yi

so
bu

ty
ra

te
ar

gi
ni

no
su

cc
in

at
e

1-
pa

lm
ito

yl
-2

-p
al

m
ito

le
oy

l-G
PG

 (1
6:

0/
16

:1
)*

3-
hy

dr
ox

yl
au

ra
te

N1
,N

12
-d

ia
ce

ty
lsp

er
m

in
e

iso
pr

op
yl

th
io

ga
la

ct
op

yr
an

os
id

e
(IP

TG
)

3-
hy

dr
ox

yp
al

m
ita

te

12

6

3

0

12

6

3

0

12

6

3

0

Ti
m

e
(H

ou
rs

)

B

Ba
tc

h
eS

C5
(N

=2
)

Ba
tc

h
W

P2
(N

=5
)

Ba
tc

h
W

P1
(N

=5
)

Timecourse

DNA
vs

No DNA

Mg5
vs

Mg10

NormalO2
vs

Extra O2

French Press
vs

Sonication

Dialysis
vs

No Dialysis
Cell Culture

Batch

Energy
TCA Cycle
Oxidative Phosphorylation
Nucleotide
Dinucleotide
Purine Metabolism, Adenine containing
Pyrimidine Metabolism, Cytidine containing
Purine Metabolism, Guanine containing
Purine Metabolism, (Hypo)Xanthine/Inosine containing
Pyrimidine Metabolism, Uracil containing
Pyrimidine Metabolism, Thymine containing
Pyrimidine Metabolism, Orotate containing
Amino Acid
Polyamine Metabolism
Leucine, Isoleucine and Valine Metabolism
Methionine, Cysteine, SAM and Taurine Metabolism
Glutathione Metabolism
Urea cycle; Arginine and Proline Metabolism
Tyrosine Metabolism
Phenylalanine Metabolism
Alanine and Aspartate Metabolism
Glycine, Serine and Threonine Metabolism
Glutamate Metabolism
Lysine Metabolism
Histidine Metabolism
Tryptophan Metabolism
Peptide
Dipeptide
Gamma-glutamyl Amino Acid
Carbohydrate
Glycolysis, Gluconeogenesis, and Pyruvate Metabolism
Pentose Metabolism
Aminosugar Metabolism
Fructose, Mannose and Galactose Metabolism
Lipid
Medium Chain Fatty Acid
Phosphatidylethanolamine (PE)
Phosphatidylglycerol (PG)
Lysophospholipid
Fatty Acid, Dicarboxylate
Fatty Acid, Monohydroxy
Long Chain Saturated Fatty Acid
Phospholipid Metabolism
Glycerolipid Metabolism
Fatty Acid Synthesis
Cofactors and Vitamins
Pantothenate and CoA Metabolism
Pterin Metabolism
Nicotinate and Nicotinamide Metabolism
Riboflavin Metabolism
Xenobiotics
Food Component/Plant
Chemical
Bacterial/Fungal
Benzoate Metabolism

Energy

Nucleotide

Amino
Acid

Peptide

Carbohydrate

Lipid

Cofactors
and

Vitamins

Xenobiotics

C
3 2 1 0 1 2 3 4

Metabolite Measurement (log Scale, AU)

50 40 30 20 10
log p-value

Figure 5.1: An overview of the significant results from the metabolomics statistical
analysis. A. Average time course data for all the metabolites which statistically
significantly change in time. B. Average data for individual metabolites which vary
between extract batches. C. Overview of statistically significantly varying pathways.

emphasizing our previous findings that growth conditions play a major role in
extract variability. Lysis method (sonication versus French press) and magnesium-
glutamate concentration also resulted in a handful of statistically significant pathway
level metabolic changes (Figure 5.1C). Strikingly, even with the increased statistical
power afforded by pathway level analysis, cell-free protein synthesis did not result
in any statistically significant changes in metabolism.

Fuel and DNA Spiking Experiments
We performed a number of additional experiments to understand how cell extract
metabolism effects CFPS and simultaneously understand if CFPS can be used to

120

0 1 2 3 4 5 6 7 8 9 10
Time (hours)

0.0

0.2

0.4

0.6

0.8

1.0

GF
P

(u
M

)

Baseline
No Spike

0 1 2 3 4 5 6 7 8 9 10
Time (hours)

0.0

0.2

0.4

0.6

0.8

1.0

GF
P

(u
M

)

DNA Spikes
Spike @ 1.15 hours
Spike @ 1.93 hours
Spike @ 3.73 hours
Spike @ 6.17 hours

0 1 2 3 4 5 6 7 8 9 10
Time (hours)

0.0

0.2

0.4

0.6

0.8

1.0

GF
P

(u
M

)

3-PGA Spikes

Spike @ 0.0 hours
Spike @ 1.0 hours
Spike @ 1.88 hours
Spike @ 2.95 hours
Spike @ 5.25 hours

Figure 5.2: A comparison between model simulations for the 100 most likely
parameters (light lines) and the experimental spiking and baseline data (dashed
lines).

measure high level metabolic effects. First, we added a constitutive expressing
GFP construct into extract mixed with energy buffer after various incubation times.
These experiments show that extract’s innate metabolism diminishes and eventually
stops CFPS (as opposed to negative feedback from CFPS itself). Then, we tried
adding three additives: additional fuel (3-PGA), HEPES buffer, and water to a
CFPS reaction at various times. These results show that adding additional fuel is
in fact slightly toxic to extract (Figure 5.2). Decreasing pH had been hypothesized
to be responsible for loss of extract function, but HEPES buffer does not appear to
dramatically increase CFPS (Figure 5.4). Finally, the water spikes act as a control—
it turns out that molecular crowding plays an important role in extract function
[283, 284] and therefore relative concentrations and the addition of water can effect
CFPS (Figure 5.4). However, we statistically compared the effects of adding water
to those of adding HEPES and 3PGA and found that they produced statistically
significant differences in the final amount of protein produced. Additionally, when
the 3-PGA and HEPES experiments are renormalized to account for the effects of
adding water, they still have a statistically significant effect on CFPS. A breakdown
of these statistics can be seen in table 5.2. Finally, we measured an ATP time
course of extract mixed with buffer which shows that the available amount of ATP
diminishes over the course of six hours (Figure 5.3).

A Phenomenological Model of Cell Extract Metabolism
Although the metabolomics measurements produced a significant amount of data,
they are not sufficient to fully parameterize a systems level model of E. coli extract
metabolism. Relatively recent E. coli flux balance models (FBA) typically have
on the order of over 2000 reactions between over 1000 metabolites involving over

121

1000 genes [13]. We expect that a systems level extract model would have to be
of a similar size considering that most metabolic pathways appear to be active.
Furthermore, as discussed in the introduction, the steady state assumption used in
flux balance models is not valid for extracts. Therefore, we cannot ignore reaction
rate parameters in favor of stoichiometric constraints and optimization used in
FBA. Considering that we measured less than 30% of the metabolites likely active
in extract metabolism, we chose to take a phenomenological approach to modeling
extractmetabolism [285, 286]. First, we note that extract is powered by one dominant
fuel source (in our experiments 3PGA). This fuel source is fed directly into the citric
acid cycle and presumably used for mixed acid fermentation [13]. This allows the
extract to regenerate ATP, GTP, NADH, and other energy carrying molecules while
simultaneously producing a whole host of other compounds and waste products.
Additionally, as shown in the data gathered in this chapter, we know that extract
energy buffer is fairly well optimized and that the addition of extra fuel, either
initially or later in time, does not improve extract performance and can even be
toxic. Finally, if DNA is added to extract after it has been incubated for a few hours,
that DNA does not express. Jointly, these observations suggest that waste products
build up in extracts which shut down parts of the extract’s metabolism.

We require that our phenomenological model matches the following experimental
observations:

1. Extract loses the ability to express DNA after 4-6 hours.

2. Adding additional fuel to extract either initially or after a delay does not
improve extract performance.

3. Cell-free protein synthesis does not significantly impact extract metabolism.

We then build a simplified metabolic model consisting of three species: fuel �,
energy carriers �∗ (activated, e.g. ATP) and � (depleted, eg. ADP), and waste ,
which interact via the following reactions using Hill function kinetics reminiscent

122

of Michaelis-Menten enzyme kinetics [287]:

� + =�
dA46−−−→ , + =�∗ dA46 (�, �,,) = +A46

�

 � + �
�

 � + �
1

1 + (,/ ,)=,

(5.1)

�
d;40:
,−−−−→ , d;40:, (�) = + ;40:,

(�/ ;40:
�
)=�

1 + (�/ ;40:
�
)=�

(5.2)

�∗
d;40:
�−−−−→ � d;40:� (�∗) = + ;40:�

�∗/ ;40:
�

1 + �∗/ ;40:
�

. (5.3)

The first reaction (5.1) represents energy carrier regeneration from fuel. Here, =
is a constant that depends on the particular fuel source (we used = = 3 because 1
molecule of 3-PGA produces 3 ATP from 3 ADP, but recognize that this constant
is somewhat arbitrary for a non-mechanistic model). The rate function is given by
a product of Hill function with a maximum velocity +A46. The first term represents
the requirement that � be present for regeneration to occur. The second term
represents the requirement that � be present for regeneration to occur. The third
term represents the negative feedback due to buildup of waste , which eventually
shuts off metabolism.

The second reaction (5.2) represents the degradation of fuel � into waste products,
without regeneration of any energy carrier �∗. Because the strength of the negative
feedback of , on the rest of the system can be tuned via the constants =, and
 , , this reaction effectively includes all utilization of the fuel for non-regenerative
purposes, only some of which will produce toxic waste. The constants+ ;40:

,
, ;40:

�
,

and =� are the maximum velocity of this reaction, the fuel concentration where
this reaction reaches half its maximum velocity, and a Hill coefficient representing
how sharp quickly this process turns on as additional fuel is added to the system.
Intuitively, we expect this reaction to model the fact that adding additional fuel to
extract simply results in the accumulation of additional waste without improving
regeneration.

The third reaction (5.3) represents the innate use of energy carriers �∗ by the extract.
The parameters + ;40:4 and ;40:

�
denote the maximum velocity of this reaction and

how it depends on the amount of �∗ available. Intuitively, we expect this reaction
to model the majority of energy utilization in extract.

These three reactions can then be combined with a CFPS module representing gene
expression. For the purposes of this work, we coupled the metabolism model to a

123

one step gene expression model representing constitutive GFP production:

�
d4G−−→ � + ��% d4G (�, �∗) = +4G�

(�∗/ 4G
�
)=4G

1 + (�∗/ 4G
�
)=4G (5.4)

Here, +4G is the maximum rate of gene expression per unit of �. The Hill func-
tion term with parameters 4G

�
and =4G describe how gene expression depends on

the available energy carriers �∗. We note that saturation of gene expression and
explicitly modeling transcription and translation could easily be included in this
framework, but would require additional data to determine the necessary param-
eters [288]. Additionally, in a more complex model transcription and translation
could consume energy. For example, the methods used in [186] would likely work
in conjunction with this metabolism model provided that data were collected to fit
parameters for the entire system.

Bayesian Parameter Inference
We fit the phenomenological model to the spiking time course data using Bayesian
parameter inference (see Methods). This resulted in a moderately robust fit of our
model to the DNA spiking experiments and the baseline measurements. However,
the 3PGA spiking experiments were not well fit by the model. We suspect that
this is because the effect size of 3PGA spikes is small, resulting in 10% or less
reduction on protein expression. We believe that this fit could be improved with
more measurements involving larger titrations of 3PGA. A comparison of the mean
spiking data with simulations from the top 100 best sets of model parameters can
be seen in Figure 5.2.

Model Validation with ATP Time Course Experiments
We did not use the ATP timecourse measurements in order to fit our model. Instead,
these were kept separate from the optimization process as a validation data set.
Surprisingly, many sets of parameters fit this data better than they fit the 3PGA spik-
ing data. We believe this is evidence that our phenomenological model reasonably
approximates a more complex biochemical pathway. In the future, we aim to hone
our CFPS measurements in order to more accurately calibrate this model without
directly fitting to the ATP timecourse.

Discussion
We set off to build a model of E. coli cell extract metabolism. Initially, the hope was
that this model could be systems level and at least partially mechanistic. Unfortu-

124

0 1 2 3 4 5 6 7 8 9 10
Time (Hours)

0

1000

2000

3000

4000

5000

M

ATP Timecourse versus E * Model Dynamics
E *

ATP Measurements

0 1 2 3 4 5 6 7 8 9 10
Time (Hours)

0

5000

10000

15000

20000

25000

30000

M

Unmeasured Model Species

E
F
W

Figure 5.3: 100 best parameter sets simulated from the baseline condition. Left:
comparison between model simulations of the species �∗ (light lines) and ATP
timecourse data (dark dots). Right: simulated dynamics of the other model species
� , �, and, .

nately, themetabolomics datawe collected highlights the deep biological complexity
present in cell extracts and clarifies the scale of experiments and quantitative mea-
surements adequate to rigorously build a systems level extract model. On one hand,
this complexity can be seen as a reason to move towards more minimal in vitro
systems such as PURExpress [289, 290], genelets [291, 292], or PEN-DNA cir-
cuits [293]. On the other hand, it demonstrates that cell extract, despite not being
alive, has potential as a test bed to develop modeling techniques that work in the face
of biological uncertainty and unknown mechanisms at a systems-wide scale. To-
wards this end, we took steps towards developing a phenomenological model of cell
extract metabolism which can be calibrated using simple CFPS experiments. Such a
model provides a useful starting point for quantitatively understanding biochemical
circuit behavior in cell extracts as fuel supplies dwindle.

Although our model currently only fits the DNA spiking data well, we believe that
it can be made more accurate by collecting additional data including more dramatic
3PGA titrations (as a proxy for varying �) and NTP titrations in the extract buffer
(as a proxy for varying �∗ and �). This model was developed with modularity in
mind so it can be coupled to the diverse circuits used in extracts including state-of-
the-art vesicle and microfluidic systems. We aim to demonstrate this with future
experiments. The use of different fuel sources from 3PGA could also demonstrate
if this model is universal to a variety of extract conditions.

Indeed, we foresee that quantitative modeling will be necessary to deploy increas-
ingly complex synthetic biological circuits across diverse organisms. Although
whole-cell models are beginning to be available [294, 295], they are still difficult to

125

use for day-to-day engineering applications. Additionally, for non-standard systems
detailed mechanistic models will be lacking and instead thoughtful phenomenolog-
ical models derived from easy-to-gather empirical data will have to suffice. We
believe that this phenomenological cell extract metabolism model is a step in that
direction.

5.5 Methods
Cell-free Extract Reactions:
Extract Preparation: Crude extracts were all prepared according to the protocol
[271]. Briefly, all batches consist of 6 x 0.75L E. coli (BL21 Rosetta) cultures grown
in 2xYT media supplemented with phosphate buffer to an OD of ∼ 3 seeded from
7.5mL of culture grown for 8 hours. Cells are then pelleted and rinsed twice with
S30 buffer before being lysed either via sonication [276] or French press [271]. Post
lysis, the extract is purified via two rounds of centrifugation at 30000g. All batches
were then incubated for 1 hour at 37◦ C in a runoff reaction. Some batches were
dialyzed using 10k MWCODialysis Cassettes in S30 buffer. Finally, the extract was
flash frozen in liquid nitrogen for later use.
Energy Buffers and Additional Additives: Frozen cell extract samples were
thawed and mixed with an energy buffer which uses 3PGA as the main fuel source
and also supplements NTPs, amino acids, and a variety of co-factors listed in [271].
Extract (33% by volume) and energy buffer (25% by volume) was mixed together
with Mg-Glutamate (to a concentration of 5 or 10 mM), K-glutamate (100mM for
the metabolomics measurements, 200mM for spiking experiments), water, and, in
some experiments, a constitutively expressing deGFP plasmid [296] MIDI prepped
from an overnight cell culture and eluted in water.

Metabolomics
Sample Preparation: The only element of the energy buffer which is varied
across these experiments is magnesium glutamate, which is known to strongly
effect CFPS [271]. Some samples also received a constitutively expressing GFP
plasmid at a final concentration of 4nM. Cell-free reactions (volume = 150 uL) were
incubated at 37◦C for 0, 3, 6, or 12 hours in a sealed 96-well plate. Some samples
received exposure to extra oxygen by periodic unsealing and resealing of the 96-well
reaction plate during incubation. Reactions were stopped via the addition of cold
methanol (volume = 37.5 uL) [297] and immediately flash frozen in liquid nitrogen.

126

Condition
ID

DNA
(nM) Mg (uM) Extra O2 Culture

Batch ID
Prep
Method

U1 0 10 no WP2 FPD
U2 4 10 no WP2 FPD
U3 4 10 no WP2 FPD
U4 4 10 no WP2 FPD
U5 4 5 no WP1 SD
U6 4 5 no WP1 FPD
U7 4 5 no WP1 FP
U8 0 5 no WP1 FPD
U9 4 5 no eSC5 FP
U10 0 5 no eSC5 FP
T2 4 10 yes WP2 FPD
T6 4 5 yes WP1 FPD

Table 5.1: Cell extract conditions. For each sample condition, four time points
were collected from independent CFPS experiments which were quenched with
cold methanol and flash frozen at 0 hours, 3 hours, 6 hours, and 12 hours. This
resulted in a total of 48 different metabolomics samples. Around 328 metabolites
were identified across all these samples resulting in a total of 15744 individual small
molecule measurements. Prep Methods: FP = French Press; D = Dialysis; S =
Sonication.

All the sample conditions are listed in Table 5.1.

Mass Spectrography: Frozen samples were shipped on dry ice toMetabolon for Ul-
trahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-
MS/MS). We quote their technical description of their pipeline: “All methods
utilized a Waters ACQUITY ultra-performance liquid chromatography (UPLC) and
a Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer inter-
faced with a heated electrospray ionization (HESI-II) source and Orbitrap mass
analyzer operated at 35,000 mass resolution. The sample extract was dried then re-
constituted in solvents compatible to each of the four methods. Each reconstitution
solvent contained a series of standards at fixed concentrations to ensure injection
and chromatographic consistency. One aliquot was analyzed using acidic positive
ion conditions, chromatographically optimized for more hydrophilic compounds.
In this method, the extract was gradient eluted from a C18 column (Waters UPLC
BEH C18-2.1x100 mm, 1.7 µm) using water and methanol, containing 0.05% per-
fluoropentanoic acid (PFPA) and 0.1% formic acid (FA). Another aliquot was also
analyzed using acidic positive ion conditions, however it was chromatographically

127

optimized for more hydrophobic compounds. In this method, the extract was gradi-
ent eluted from the same afore mentioned C18 column using methanol, acetonitrile,
water, 0.05% PFPA and 0.01% FA and was operated at an overall higher organic
content. Another aliquot was analyzed using basic negative ion optimized con-
ditions using a separate dedicated C18 column. The basic extracts were gradient
eluted from the column usingmethanol andwater, however with 6.5mMAmmonium
Bicarbonate at pH 8. The fourth aliquot was analyzed via negative ionization fol-
lowing elution from a HILIC column (Waters UPLC BEH Amide 2.1x150 mm, 1.7
µm) using a gradient consisting of water and acetonitrile with 10mM Ammonium
Formate, pH 10.8. The MS analysis alternated between MS and data-dependent
MSn scans using dynamic exclusion. The scan range varied slighted between meth-
ods but covered 70-1000 m/z.” Finally, Metabolon used their proprietary software
and library of more than 3300 purified samples to identify different metabolites
and normalize the resulting data. We emphasize that even with these methods, the
metabolite abundances reported are unitless and can only be quantified relatively.

Spiking Experiments
Spiking experiments were conducted with 5 replicates on a 384-well plate using
10uL reaction volumes. Extract and buffer were mixed together and loaded by hand
into eachwell. Then a Labcyte Echo liquid handling robot was used to loadDNAand
water to a volume of 9uL. The following components were added as 1uL spikes using
the Labcyte Echo in different experiments: DNA (final concentration 2.4nM); water;
3PGA (30 mM); and HEPES (50mM). GFP fluorescent data was collected from a
Biotek plate reader. Raw data are can be seen in Figure 5.4. The DNA spikes used
a different biotek instrument than the other spikes, therefore data was normalized
so that the two baseline measurements (shown in red in Figure 5.4) have the same
steady final mean (these two conditions contain identical reagents). The other
measurements have been calibrated using purified deGFP protein. Additionally,
the HEPES and 3PGA spikes were normalized based upon the water spikes to
correct for variation due to concentration changes. These different experiments
have been statistically compared to each other in Table 5.2 using the Kruskal-Wallis
test to analyze variance in the final protein concentrations. Note that the optimal salt
concentrations of 10mMMgand 200mMKwere chosen based upon a salt calibration
screen for this particular extract batch. The extract used for these experiments was
lysed with sonication and was not dialyzed.

128

0 2 4 6 8 10
0.0

0.25

0.5

0.75

1.0

DN
A

Spike 0

0 2 4 6 8 10
0.0

0.25

0.5

0.75

1.0
Spike 1

0 2 4 6 8 10
0.0

0.25

0.5

0.75

1.0
Spike 2

0 2 4 6 8 10
0.0

0.25

0.5

0.75

1.0
Spike 3

0 2 4 6 8 10
0.0

0.25

0.5

0.75

1.0
Spike 4

0 2 4 6 8 10
0.0

0.25

0.5

0.75

1.0

3P
GA

0 2 4 6 8 10
0.0

0.25

0.5

0.75

1.0

0 2 4 6 8 10
0.0

0.25

0.5

0.75

1.0

0 2 4 6 8 10
0.0

0.25

0.5

0.75

1.0

0 2 4 6 8 10
0.0

0.25

0.5

0.75

1.0

0 2 4 6 8 10
0.0

0.25

0.5

0.75

1.0

HE
PE

S

0 2 4 6 8 10
0.0

0.25

0.5

0.75

1.0

0 2 4 6 8 10
0.0

0.25

0.5

0.75

1.0

0 2 4 6 8 10
0.0

0.25

0.5

0.75

1.0

0 2 4 6 8 10
0.0

0.25

0.5

0.75

1.0

0 2 4 6 8 10
Time (hours)

0.0

0.25

0.5

0.75

1.0

W
at

er

0 2 4 6 8 10
Time (hours)

0.0

0.25

0.5

0.75

1.0

0 2 4 6 8 10
Time (hours)

0.0

0.25

0.5

0.75

1.0

0 2 4 6 8 10
Time (hours)

0.0

0.25

0.5

0.75

1.0

0 2 4 6 8 10
Time (hours)

0.0

0.25

0.5

0.75

1.0

Normalized Data Spike baseline Raw Data

Figure 5.4: Spiking experiment raw data (gray) and renormalized data (blue). Red
lines show average baseline measurements from the DNA and Water Spikes C = 0.

Comparison P-value
Baseline: DNA spike 0 vs H2O spike 0 ? > 0.5
DNA spikes (C > 0) versus baseline ? < 10−7

H2O (C > 0) versus baseline ? < 0.01 for C > 1
3PGA spikes versus baseline ? < 0.01

3PGA spikes versus H2O spikes ? < 10−8

H2O-Renormalized 3PGA spikes versus baseline ? < 0.01
HEPES spikes versus baseline ? < 0.01 for C > 1

HEPES spikes versus H2O Spikes ? < 0.001 for C < 4
H2O-renormalized HEPES spikes versus baseline ? < 0.01 for C > 1

Table 5.2: Statistics showing that the spiking experiments result in significantly
different final protein expression compared to the baseline measurements or the
H2O control spikes. H2O-renormalized measurements are scaled by the reduction
in final output caused by H2O spikes in order to correct for changes in CFPS due to
crowding effects. In some cases, only early C < = or later C > = spikes were found
to be significant; if no spike number C is quoted, all spikes are significant.

129

ATP Time Course Measurements
ATP time course data was collected using the same extract batch and buffer con-
ditions as the spiking experiments. A 384-well plate was loaded with extract and
energy buffer and water (30uL total reaction volume per well) and a liquid handling
robot (Hamilton) was used to automatically measure the ATP levels using the Cay-
man Chemical Luciferase based ATP assay every hour for 10 hours (3 replicates per
time point).

Statistical Methodology
Statistics comparing measurements between individual metabolites were generated
from the Kruskal-Wallis test (a non-parametric ANOVA) [298] between two or more
sets of the same metabolite < in difference conditions. Specifically, the time course
variation p-value for an individual metabolite < was generated from the Kruskal-
Wallis test between four sets of measurements: one for each time point (pooled
across all samples). The preparation method p-value for an individual metabolite
< was generated from the Kruskal-Wallis test between different sets of preparation
methods and/or extract batches (pooled across all timepoints).

Other p-values reported were generated by combining p-values using Empirical
Brown’s Method [282], an extension of Fisher’s method which takes into account
covariances in the data used to generate the p-values. Specifically, time course
variation p-values between different conditions (e.g. DNA vs No DNA) were
generated by computing a p-value with the Kruskal-Wallis test for a metabolite
< and timepoint C between the two conditions. The p-values for this metabolite
and conditions across all timepoints were then combined with Empirical Brown’s
Method to get a single time-varying p-value for that condition and metabolite.

Pathway level statistics were computed by combining either time course variation
or preparation p-values of many metabolites grouped together based on the path-
way annotations provided by Metabolon using Empirical Brown’s Method. This
methodology significantly enhances the statistical power of the data by allowing less
significant variability to contribute to grouped meta-statistical p-values.

Significance testing was conducted at a threshold ? < 0.01 rescaled for multiple
testing using the Holm–Bonferroni correction. A total of 3280 metabolite-specific
p-values were computed comparing different conditions of which 171 were found
to be significant. Similarly, 550 pathway p-values were computed across different
conditions of which 157 were found to be significant.

130

Simulations and Parameter Inference
Models were produced using BioCRNpyler [136], saved as SBML files [149], and
then loaded into Bioscrape [137] which uses the Emcee package [299] for black-box
Bayesian parameter inference. The cost function used was the !2 norm between
the mean simulated data for baseline measurements, DNA spike measurements, and
3-PGA Spike measurements, specifically:

L(?) =
√∑
2∈C

∑
C

("2 (C) − - (C, ?, -0(2)))2. (5.5)

Here, L(?) is the likelihood of the parameters ?. C is a set of all experimental
conditions. "2 (C) denotes the measurement of condition 2 at time C. - (C, ?, -0(2))
denotes a simulated trajectory of the CRN evaluated at time C using parameter ?
with initial condition -0(2) dependent on the specific measurement. Spiking was
modeled by having time dependent rate constants which turn on at the spike times
allowing a DNA or Fuel to flow into the system. Inference was split into two
runs, the first with 50 walkers for 5000 steps and the second with 100 walkers for
10000 steps. Each step corresponds to simulating each walker with a given set
of parameters at each different initial condition. This resulted in over ten million
individual simulations with a total of 1250250 parameter combinations sampled.
The likelihood of different parameter combinations can be visualized by looking at
the marginals and pairwise marginals of the 13 model parameters as shown in 5.5.

131

0 2 4
0.0

0.1

0.2

0.3

nW

0.01 4
nW

0.01

4

n F

2 4
0.0

0.1

0.2

0.3

0.4

nF

0.01 4
nW

1000

100000

K W

0.01 4
nF

1000

100000

K W

0 50000 100000
0.0

0.5

1.0

1.5
1e 5 KW

0.01 4
nW

1000

100000

K F

0.01 4
nF

1000

100000

K F

1000 100000
KW

1000

100000

K F

0 50000 100000
0.0

0.5

1.0

1.5
1e 5 KF

0.01 4
nW

10

5000

K E

0.01 4
nF

10

5000

K E

1000 100000
KW

10

5000

K E

1000 100000
KF

10

5000

K E

0 2000 4000
0.0000

0.0001

0.0002

0.0003
KE

0.01 4
nW

10

5000

K
le

ak
F

0.01 4
nF

10

5000

K
le

ak
F

1000 100000
KW

10

5000

K
le

ak
F

1000 100000
KF

10

5000

K
le

ak
F

10 5000
KE

10

5000

K
le

ak
F

0 2000 4000
0.0000

0.0001

0.0002

0.0003
K leak

F

0.01 4
nW

1000

100000

K
le

ak
F

0.01 4
nF

1000

100000

K
le

ak
F

1000 100000
KW

1000

100000

K
le

ak
F

1000 100000
KF

1000

100000

K
le

ak
F

10 5000
KE

1000

100000

K
le

ak
F

10 5000
K leak

F

1000

100000

K
le

ak
F

0 50000 100000
0.0

0.5

1.0

1.5
1e 5 K leak

F

0.01 4
nW

0.1

100

V r
eg

0.01 4
nF

0.1

100

V r
eg

1000 100000
KW

0.1

100

V r
eg

1000 100000
KF

0.1

100

V r
eg

10 5000
KE

0.1

100

V r
eg

10 5000
K leak

F

0.1

100

V r
eg

1000 100000
K leak

F

0.1

100

V r
eg

0 50 100
0.000

0.005

0.010

Vreg

0.01 4
nW

0.1

100

V
le

ak
E

0.01 4
nF

0.1

100

V
le

ak
E

1000 100000
KW

0.1

100

V
le

ak
E

1000 100000
KF

0.1

100

V
le

ak
E

10 5000
KE

0.1

100

V
le

ak
E

10 5000
K leak

F

0.1

100

V
le

ak
E

1000 100000
K leak

F

0.1

100

V
le

ak
E

0.1 100
Vreg

0.1

100

V
le

ak
E

0 50 100
0.000

0.005

0.010

0.015
V leak

E

0.01 4
nW

0.1

100

V
le

ak
W

0.01 4
nF

0.1

100

V
le

ak
W

1000 100000
KW

0.1

100

V
le

ak
W

1000 100000
KF

0.1

100

V
le

ak
W

10 5000
KE

0.1

100

V
le

ak
W

10 5000
K leak

F

0.1

100

V
le

ak
W

1000 100000
K leak

F

0.1

100

V
le

ak
W

0.1 100
Vreg

0.1

100

V
le

ak
W

0.1 100
V leak

E

0.1

100

V
le

ak
W

0 50 100
0.000

0.005

0.010

V leak
W

0.01 4
nW

0.01

4

n e
x

0.01 4
nF

0.01

4

n e
x

1000 100000
KW

0.01

4

n e
x

1000 100000
KF

0.01

4

n e
x

10 5000
KE

0.01

4

n e
x

10 5000
K leak

F

0.01

4

n e
x

1000 100000
K leak

F

0.01

4

n e
x

0.1 100
Vreg

0.01

4

n e
x

0.1 100
V leak

E

0.01

4

n e
x

0.1 100
V leak

W

0.01

4

n e
x

0 2 4
0.0

0.1

0.2

0.3

nex

0.01 4
nW

0.01

5000

K
ex E

0.01 4
nF

0.01

5000

K
ex E

1000 100000
KW

0.01

5000

K
ex E

1000 100000
KF

0.01

5000

K
ex E

10 5000
KE

0.01

5000

K
ex E

10 5000
K leak

F

0.01

5000

K
ex E

1000 100000
K leak

F

0.01

5000

K
ex E

0.1 100
Vreg

0.01

5000

K
ex E

0.1 100
V leak

E

0.01

5000

K
ex E

0.1 100
V leak

W

0.01

5000

K
ex E

0.01 4
nex

0.01

5000

K
ex E

0 2000 4000
0.0000

0.0001

0.0002

0.0003
Kex

E

0.01 4
nW

0.01

1

V e
x

0.01 4
nF

0.01

1

V e
x

1000 100000
KW

0.01

1

V e
x

1000 100000
KF

0.01

1

V e
x

10 5000
KE

0.01

1

V e
x

10 5000
K leak

F

0.01

1

V e
x

1000 100000
K leak

F

0.01

1

V e
x

0.1 100
Vreg

0.01

1

V e
x

0.1 100
V leak

E

0.01

1

V e
x

0.1 100
V leak

W

0.01

1

V e
x

0.01 4
nex

0.01

1

V e
x

0.01 5000
Kex

E

0.01

1

V e
x

0.0 0.5 1.0
0.0

0.5

1.0

1.5
Vex

0.0 0.2 0.4 0.6 0.8 1.0
Relative Likelihood

Figure 5.5: Parameter Posterior Visualization. Off-diagonal plots show the pairwise
marginals of sampled parameters with the likelihood indicated by the color bar.
Diagonal plots show the marginal distributions of each individual parameters.

132

AFTERWORD

I would like to end this thesis by presenting an alternative reading of the preceding
chapters as a graphical reordering. In the spirit of the preface, this is speculative
science, meant to be provocative as opposed to rigorously correct.

20 40 60 80 100

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

Chemical Boltzmann Machines

In Chapter 3, we argue that probabilistic inference, as embodied by the machine
learning algorithm called a Boltzmann machine, is a plausible model for how a
biochemical network, such as a cell, could sense and make decisions based upon a
noisy environment. Furthermore, we show that this algorithm can, theoretically, be
implemented in multiple ways from purely chemical components.

A

B

Detailed Balanced Chemical Reaction Networks
as Generalized Boltzmann Machines

In Chapter 4, we develop a formalism by which the broad class of detailed balanced
chemical reaction networks can be interpreted as natural probabilistic inference

133

machines. One example highlighted in this chapter are looping conformations of
polymers in small volumes at low copy numbers, such as the genome of a cell. These
inferential capabilities can be controlled by the evolution of the DNA’s sequence
and by auxiliary species (shown in blue) which might favor or inhibit particular
conformations.

C

Other Species
glucose internal
lactose internal
cAMP
allolactose
glucose external
lactose external
rna
rna polymerase
ribosome
rnaase
empty set

B R RC P Z Y AR

Lac Operon [CombinatorialConformationPromoter, DNA_assembly]

LacR Tetramer [ChemicalComplex]

c-CRP [ChemicalComplex]

Lactose Permease [Enzyme]

Glucose Permease [Enzyme]

β-Galactosidase [ChemicalComplex, Enzyme]

Components

Catalysis

Binding

Conformation Change

Dilution

Transcription

Translation

RNA Degradation

Mechanisms

Mixture: E. coli
A

BioCRNpyler: Compiling Chemical Reaction Networks from
Biomolecular Parts in Diverse Contexts

In Chapter 2, we describe a BioCRNpyler specification for one of the best studied
models inmolecular and cell biology, the lac operon. This system naturally produces
3 looped and one open DNA conformation with looping induced by the presence of
the lac repressor protein (illustrated at the bottom of panel B). The conformation of
the DNA allows or prevents the transcription of three genes which play central roles
in E. coli’s metabolism.

In Chapter 5, we show experimental data suggesting that nearly all of E. coli’s
metabolism is active in cell extract. This suggests that most metabolic enzymes
are present in the cells used to produce the extract. However, in a single cell,
are all metabolic enzymes present? Our knowledge of the lac operon suggests
that that metabolism at the single cell level might be probabilistically controlled in
a way analogous to probabilistic graphical models. This would result in a diverse
population of single cell state metabolic states.2 Maybe the global metabolic activity
observed in extract is a population level effect, caused by proteins from billions of
cells being pooled in a single extract batch. Does this hypothesis help us engineer
cell extracts? Not yet, but it suggests that we could improve extracts simply by
changing their growth conditions to “probabilistically shift” them into the metabolic
space needed for a particular application.

2And indeed, some recent experimental work supports this theory [300].

134

1,
2-

di
pa

lm
ito

yl
-G

PE
 (1

6:
0/

16
:0

)*
1,

2-
di

pa
lm

ito
yl

-G
PG

 (1
6:

0/
16

:0
)

1-
m

yr
ist

oy
l-2

-p
al

m
ito

yl
-G

PG
 (1

4:
0/

16
:0

)*
1-

pa
lm

ito
yl

-2
-s

te
ar

oy
l-G

PE
 (1

6:
0/

18
:0

)*
2'

-O
-m

et
hy

la
de

no
sin

e
2'

-O
-m

et
hy

lu
rid

in
e

2'
-d

eo
xy

gu
an

os
in

e
5'

-m
on

op
ho

sp
ha

te
 (d

GM
P)

2,
3-

di
hy

dr
ox

y-
5-

m
et

hy
lth

io
-4

-p
en

te
no

at
e

(D
M

TP
A)

*
2-

hy
dr

ox
y-

4-
(m

et
hy

lth
io

)b
ut

an
oi

c
ac

id
2-

ox
oa

rg
in

in
e*

3-
am

in
oi

so
bu

ty
ra

te
3-

de
hy

dr
oq

ui
na

te
3-

de
hy

dr
os

hi
ki

m
at

e
3-

hy
dr

ox
yb

ut
yr

at
e

(B
HB

A)
4-

hy
dr

ox
yb

en
zy

l a
lco

ho
l

4-
hy

dr
ox

yp
he

ny
lp

yr
uv

at
e

4-
m

et
hy

l-2
-o

xo
pe

nt
an

oa
te

7-
m

et
hy

lg
ua

ni
ne

Co
A-

gl
ut

at
hi

on
e*

FA
D

FM
N

N-
ac

et
yl

gl
yc

in
e

N-
ac

et
yl

hi
st

id
in

e
N-

ac
et

yl
iso

le
uc

in
e

N-
ac

et
yl

le
uc

in
e

N-
ac

et
yl

pr
ol

in
e

N-
ac

et
yl

se
rin

e
N-

ac
et

yl
th

re
on

in
e

N-
ca

rb
am

oy
la

sp
ar

ta
te

N-
fo

rm
yl

ph
en

yl
al

an
in

e
N-

su
cc

in
yl

-le
uc

in
e

N-
su

cc
in

yl
-p

he
ny

la
la

ni
ne

N2
-a

ce
ty

lly
sin

e
N6

-d
im

et
hy

la
lly

la
de

ni
ne

NA
DH

S-
la

ct
oy

lg
lu

ta
th

io
ne

TM
P

UM
P

ac
et

yl
ph

os
ph

at
e

ad
en

os
in

e
5'

-d
ip

ho
sp

ho
rib

os
e

(A
DP

-ri
bo

se
)

ag
m

at
in

e
al

an
yl

-g
lu

ta
m

yl
-m

es
o-

di
am

in
op

im
el

at
e

al
ph

a-
hy

dr
ox

yi
so

ca
pr

oa
te

al
ph

a-
hy

dr
ox

yi
so

va
le

ra
te

al
ph

a-
ke

to
gl

ut
ar

at
e

ar
ab

on
at

e/
xy

lo
na

te
be

nz
oa

te
ca

pr
oa

te
 (6

:0
)

ca
pr

yl
at

e
(8

:0
)

cy
tid

in
e

tri
ph

os
ph

at
e

dC
M

P
er

yt
hr

on
at

e*
fru

ct
os

e
ga

m
m

a-
gl

ut
am

yl
iso

le
uc

in
e*

ga
m

m
a-

gl
ut

am
yl

va
lin

e
gl

ut
am

in
e

gl
ut

at
hi

on
e,

 o
xi

di
ze

d
(G

SS
G)

gl
yc

in
e

ho
m

oc
ys

te
in

e
hy

po
xa

nt
hi

ne
la

ct
at

e
ly

sin
e

m
al

on
yl

 C
oA

m
an

ni
to

l/s
or

bi
to

l
m

et
hi

on
in

e
ni

co
tin

am
id

e
rib

on
uc

le
ot

id
e

(N
M

N)
ni

co
tin

am
id

e
rib

os
id

e
ni

co
tin

ic
ac

id
 m

on
on

uc
le

ot
id

e
(N

aM
N)

or
ni

th
in

e
or

ot
at

e
ox

in
do

ly
la

la
ni

ne
p-

hy
dr

ox
yb

en
za

ld
eh

yd
e

pa
nt

et
he

in
e

pa
nt

oa
te

ph
en

yl
py

ru
va

te
ph

os
ph

at
e

pr
ol

in
e

pt
er

in
pu

tre
sc

in
e

py
ru

va
te

rib
of

la
vi

n
(V

ita
m

in
 B

2)
se

do
he

pt
ul

os
e-

7-
ph

os
ph

at
e

th
re

on
in

e
ur

ac
il

ur
id

in
e

xa
nt

hi
ne

xa
nt

ho
pt

er
in

12

6

3

0

Ti
m

e
(H

ou
rs

)

A
2-

hy
dr

ox
yg

lu
ta

ra
te

1-
pa

lm
ito

yl
-2

-o
le

oy
l-G

PE
 (1

6:
0/

18
:1

)
de

ox
yc

ar
ni

tin
e

sp
hi

ng
an

in
e

va
lin

e
al

an
in

e
m

yr
ist

at
e

(1
4:

0)
as

pa
ra

gi
ne

gl
yc

er
op

ho
sp

ho
et

ha
no

la
m

in
e

ga
m

m
a-

gl
ut

am
yl

al
an

in
e

ph
os

ph
oe

th
an

ol
am

in
e

(P
E)

1,
2-

di
pa

lm
ito

le
oy

l-G
PE

 (1
6:

1/
16

:1
)*

di
am

in
op

im
el

at
e

2,
3-

di
hy

dr
ox

yi
so

va
le

ra
te

pa
lm

ita
te

 (1
6:

0)
ga

m
m

a-
gl

ut
am

yl
gl

ut
am

at
e

gl
yc

er
op

ho
sp

ho
se

rin
e*

1,
3-

di
am

in
op

ro
pa

ne
pa

lm
ito

yl
 e

th
an

ol
am

id
e

ga
m

m
a-

am
in

ob
ut

yr
at

e
(G

AB
A)

al
ph

a-
ke

to
gl

ut
ar

am
at

e*
ur

at
e

ga
m

m
a-

gl
ut

am
yl

m
et

hi
on

in
e

ad
en

os
in

e
try

pt
am

in
e

qu
in

at
e

1-
pa

lm
ito

le
oy

l-2
-o

le
oy

l-G
PE

 (1
6:

1/
18

:1
)*

ch
ol

in
e

ga
m

m
a-

gl
ut

am
yl

-2
-a

m
in

ob
ut

yr
at

e
ha

rm
an

e
2,

4-
di

-te
rt-

bu
ty

lp
he

no
l

1-
pa

lm
ito

le
oy

l-2
-o

le
oy

l-G
PG

 (1
6:

1/
18

:1
)*

gl
ut

am
yl

-m
es

o-
di

am
in

op
im

el
at

e
(2

 o
r 3

)-d
ec

en
oa

te
 (1

0:
1n

7
or

 n
8)

N6
-m

et
hy

lly
sin

e
2-

hy
dr

ox
yb

ut
yr

at
e/

2-
hy

dr
ox

yi
so

bu
ty

ra
te

ar
gi

ni
no

su
cc

in
at

e
1-

pa
lm

ito
yl

-2
-p

al
m

ito
le

oy
l-G

PG
 (1

6:
0/

16
:1

)*
3-

hy
dr

ox
yl

au
ra

te
N1

,N
12

-d
ia

ce
ty

lsp
er

m
in

e
iso

pr
op

yl
th

io
ga

la
ct

op
yr

an
os

id
e

(IP
TG

)
3-

hy
dr

ox
yp

al
m

ita
te

12

6

3

0

12

6

3

0

12

6

3

0
Ti

m
e

(H
ou

rs
)

B

Ba
tc

h
eS

C5
(N

=2
)

Ba
tc

h
W

P2
(N

=5
)

Ba
tc

h
W

P1
(N

=5
)

Timecourse

DNA
vs

No DNA

Mg5
vs

Mg10

NormalO2
vs

Extra O2

French Press
vs

Sonication

Dialysis
vs

No Dialysis
Cell Culture

Batch

Energy
TCA Cycle
Oxidative Phosphorylation
Nucleotide
Dinucleotide
Purine Metabolism, Adenine containing
Pyrimidine Metabolism, Cytidine containing
Purine Metabolism, Guanine containing
Purine Metabolism, (Hypo)Xanthine/Inosine containing
Pyrimidine Metabolism, Uracil containing
Pyrimidine Metabolism, Thymine containing
Pyrimidine Metabolism, Orotate containing
Amino Acid
Polyamine Metabolism
Leucine, Isoleucine and Valine Metabolism
Methionine, Cysteine, SAM and Taurine Metabolism
Glutathione Metabolism
Urea cycle; Arginine and Proline Metabolism
Tyrosine Metabolism
Phenylalanine Metabolism
Alanine and Aspartate Metabolism
Glycine, Serine and Threonine Metabolism
Glutamate Metabolism
Lysine Metabolism
Histidine Metabolism
Tryptophan Metabolism
Peptide
Dipeptide
Gamma-glutamyl Amino Acid
Carbohydrate
Glycolysis, Gluconeogenesis, and Pyruvate Metabolism
Pentose Metabolism
Aminosugar Metabolism
Fructose, Mannose and Galactose Metabolism
Lipid
Medium Chain Fatty Acid
Phosphatidylethanolamine (PE)
Phosphatidylglycerol (PG)
Lysophospholipid
Fatty Acid, Dicarboxylate
Fatty Acid, Monohydroxy
Long Chain Saturated Fatty Acid
Phospholipid Metabolism
Glycerolipid Metabolism
Fatty Acid Synthesis
Cofactors and Vitamins
Pantothenate and CoA Metabolism
Pterin Metabolism
Nicotinate and Nicotinamide Metabolism
Riboflavin Metabolism
Xenobiotics
Food Component/Plant
Chemical
Bacterial/Fungal
Benzoate Metabolism

Energy

Nucleotide

Amino
Acid

Peptide

Carbohydrate

Lipid

Cofactors
and

Vitamins

Xenobiotics

C
3 2 1 0 1 2 3 4

Metabolite Measurement (log Scale, AU)

50 40 30 20 10
log p-value

Reducing the Complexity of E. coli Cell Extract
Metabolism with Phenomenological Modeling

This emergent narrative points to the central theme of this thesis: biochemical com-
putation at the molecular level can naturally implement algorithms reminiscent of
machine learning algorithms. These parallels between probabilistic graphical mod-
els and polymer conformations regulating metabolism are just one of many possible
areas where this perspective can bring new interpretations, inspire discoveries, and
ultimately enable science to program and control living systems.

135

BIBLIOGRAPHY

[1] D. Del Vecchio and R. M. Murray, Biomolecular Feedback Systems. Prince-
ton University Press, 2014.

[2] J. C. Baez and J.D.Biamonte,QuantumTechniques in StochasticMechanics.
World Scientific, 2018.

[3] D. T. Gillespie, “A Rigorous Derivation of the Chemical Master Equation,”
Physica A: Statistical Mechanics and its Applications, vol. 188, no. 1-3,
pp. 404–425, 1992.

[4] T. G. Kurtz, “The Relationship Between Stochastic and Deterministic Mod-
els for Chemical Reactions,” The Journal of Chemical Physics, vol. 57,
no. 7, pp. 2976–2978, 1972.

[5] S. A. Benner and A. M. Sismour, “Synthetic Biology,” Nature Reviews
Genetics, vol. 6, no. 7, pp. 533–543, 2005.

[6] D. Del Vecchio, D. Densmore, H. El-Samad, D. Ingber, A. Khalil, S. Kosuri,
and C. Tang, “What Have the Principles of Engineering Taught Us about
Biological Systems,” Cell Systems, vol. 2, no. 1, pp. 5–7, 2016.

[7] L. Pasotti, M. Bellato, D. De Marchi, and P. Magni, “Mechanistic Models
of Inducible Synthetic Circuits for Joint Description of DNA Copy Number,
Regulatory Protein Level, and Cell Load,” Processes, vol. 7, no. 3, p. 119,
2019.

[8] M. K. Transtrum and P. Qiu, “Bridging Mechanistic and Phenomenological
Models of Complex Biological Systems,” PLoS Computational Biology,
vol. 12, no. 5, e1004915, 2016.

[9] A. Pandey and R. M. Murray, “Model Reduction Tools For Phenomenolog-
ical Modeling of Input-Controlled Biological Circuits,” bioRxiv, 2020.

[10] J. Gelles and R. Landick, “RNA Polymerase as a Molecular Motor,” Cell,
vol. 93, no. 1, pp. 13–16, 1998.

[11] T. Ghosh, D. Bose, and X. Zhang, “Mechanisms for Activating Bacterial
RNA Polymerase,” FEMS Microbiology Reviews, vol. 34, no. 5, pp. 611–
627, 2010.

[12] B. Sendy, D. J. Lee, S. J. Busby, and J. A. Bryant, “RNA Polymerase Sup-
ply and Flux Through the Lac Operon in Escherichia Coli,” Philosophical
Transactions of the Royal Society B: Biological Sciences, vol. 371, no. 1707,
p. 20 160 080, 2016.

136

[13] J. D. Orth, T. M. Conrad, J. Na, J. A. Lerman, H. Nam, A.M. Feist, and B. Ø.
Palsson, “A Comprehensive Genome-scale Reconstruction of Escherichia
Coli Metabolism—2011,”Molecular Systems Biology, vol. 7, no. 1, p. 535,
2011.

[14] U.Alon,An Introduction to SystemsBiology:DesignPrinciples of Biological
Circuits. CRC press, 2019.

[15] P. Wong, S. Gladney, and J. D. Keasling, “Mathematical Model of the Lac
Operon: Inducer Exclusion, Catabolite Repression, and Diauxic growth on
Glucose and Lactose,” Biotechnology Progress, vol. 13, no. 2, pp. 132–143,
1997.

[16] V.Hsiao, A. Swaminathan, andR.M.Murray, “Control Theory for Synthetic
Biology: Recent Advances in System Characterization, Control Design, and
Controller Implementation for Synthetic Biology,” IEEE Control Systems
Magazine, vol. 38, no. 3, pp. 32–62, 2018.

[17] C. Y. Hu, J. D. Varner, and J. B. Lucks, “Generating Effective Models and
Parameters for RNA Genetic Circuits,” ACS Synthetic Biology, vol. 4, no. 8,
pp. 914–926, 2015.

[18] H.-L. Chen, D. Doty, and D. Soloveichik, “Deterministic Function Com-
putation with Chemical Reaction Networks,” Natural Computing, vol. 13,
no. 4, pp. 517–534, 2014.

[19] H.-L. Chen, D. Doty, and D. Soloveichik, “Rate-independent Computation
in Continuous Chemical Reaction Networks,” in Proceedings of the 5th
Conference on Innovations in Theoretical Computer Science, 2014, pp. 313–
326.

[20] R. Cummings, D. Doty, and D. Soloveichik, “Probability 1 Computation
with Chemical Reaction Networks,” Natural Computing, vol. 15, no. 2,
pp. 245–261, 2016.

[21] L. Qian, D. Soloveichik, and E. Winfree, “Efficient Turing-universal Com-
putation with DNA Polymers,” in International Workshop on DNA-Based
Computers, Springer, 2010, pp. 123–140.

[22] D. Soloveichik, G. Seelig, and E. Winfree, “DNA as a Universal Substrate
for Chemical Kinetics,” Proceedings of the National Academy of Sciences,
vol. 107, no. 12, pp. 5393–5398, 2010.

[23] S. Badelt, S. W. Shin, R. F. Johnson, Q. Dong, C. Thachuk, and E. Win-
free, “A General-purpose CRN-to-DSD Compiler with Formal Verification,
Optimization, and Simulation Capabilities,” in International conference on
DNA-based computers, Springer, 2017, pp. 232–248.

[24] L. Qian and E.Winfree, “Scaling UpDigital Circuit Computation with DNA
StrandDisplacement Cascades,” Science, vol. 332, no. 6034, pp. 1196–1201,
2011.

137

[25] A. Padirac, T. Fujii, and Y. Rondelez, “Nucleic Acids for the Rational Design
of Reaction Circuits,” Current Opinion in Biotechnology, vol. 24, no. 4,
pp. 575–580, 2013.

[26] N. Srinivas, J. Parkin, G. Seelig, E. Winfree, and D. Soloveichik, “Enzyme-
free Nucleic Acid Dynamical Systems,” Science, vol. 358, no. 6369, 2017.

[27] J. Chappell, K. E.Watters,M.K. Takahashi, and J. B. Lucks, “ARenaissance
in RNA Synthetic Biology: New Mechanisms, Applications and Tools for
the Future,”Current Opinion in Chemical Biology, vol. 28, pp. 47–56, 2015.

[28] J.Kim andE. Franco, “RNANanotechnology in SyntheticBiology,”Current
Opinion in Biotechnology, vol. 63, pp. 135–141, 2020.

[29] A. Padirac, T. Fujii, and Y. Rondelez, “Bottom-up Construction of In Vitro
Switchable Memories,” Proceedings of the National Academy of Sciences,
vol. 109, no. 47, E3212–E3220, 2012.

[30] J. Kim and E. Winfree, “Synthetic in Vitro Transcriptional Oscillators,”
Molecular Systems Biology, vol. 7, no. 1, p. 465, 2011.

[31] J. K. Rosenstein, C. Rose, S. Reda, P.M.Weber, E. Kim, J. Sello, J. Geiser, E.
Kennedy, C. Arcadia, A. Dombroski, et al., “Principles of Information Stor-
age in Small-molecule Mixtures,” IEEE Transactions on Nanobioscience,
vol. 19, no. 3, pp. 378–384, 2020.

[32] W. An and J. W. Chin, “Synthesis of Orthogonal Transcription-translation
Networks,” Proceedings of the National Academy of Sciences, vol. 106,
no. 21, pp. 8477–8482, 2009.

[33] B. Wang, R. I. Kitney, N. Joly, and M. Buck, “Engineering Modular and
Orthogonal Genetic Logic Gates for Robust Digital-like Synthetic Biology,”
Nature Communications, vol. 2, no. 1, pp. 1–9, 2011.

[34] S. Zhang and C. A. Voigt, “Engineered dCas9 with Reduced Toxicity in
Bacteria: Implications for Genetic Circuit Design,” Nucleic Acids Research,
vol. 46, no. 20, pp. 11 115–11 125, 2018.

[35] D. Del Vecchio, A. J. Dy, and Y. Qian, “Control Theory Meets Syn-
thetic Biology,” Journal of The Royal Society Interface, vol. 13, no. 120,
p. 20 160 380, 2016.

[36] S. M. Brooks and H. S. Alper, “Applications, Challenges, and Needs for
Employing Synthetic Biology Beyond the Lab,” Nature Communications,
vol. 12, no. 1, pp. 1–16, 2021.

[37] A. A. K. Nielsen, B. S. Der, J. Shin, P. Vaidyanathan, V. Paralanov, E. A.
Strychalski, D. Ross, D. Densmore, andC. A. Voigt, “Genetic Circuit Design
Automation,” Science, vol. 352, no. 6281, aac7341–aac7341, Apr. 2016,
issn: 0036-8075. doi: 10.1126/science.aac7341.

https://doi.org/10.1126/science.aac7341

138

[38] M. W. Gander, J. D. Vrana, W. E. Voje, J. M. Carothers, and E. Klavins,
“Digital Logic Circuits in Yeast with CRISPR-dCas9 NOR Gates,” Nature
Communications, vol. 8, no. 1, pp. 1–11, 2017.

[39] C. Briat, A. Gupta, and M. Khammash, “Antithetic Integral Feedback En-
sures Robust Perfect Adaptation in Noisy Biomolecular Networks,” Cell
Systems, vol. 2, no. 1, pp. 15–26, 2016.

[40] Y.-H. Wang, K. Y. Wei, and C. D. Smolke, “Synthetic Biology: Advancing
the Design of Diverse Genetic Systems,” Annual Review of Chemical and
Biomolecular Engineering, vol. 4, pp. 69–102, 2013.

[41] R. Sarpeshkar, “Analog Synthetic Biology,” Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engineering Sciences,
vol. 372, no. 2012, p. 20 130 110, 2014.

[42] D. J. MacKay and D. J. Mac Kay, Information Theory, Inference and Learn-
ing Algorithms. Cambridge University Press, 2003.

[43] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” Communications of the ACM,
vol. 60, no. 6, pp. 84–90, 2017.

[44] Y. Wang and J. Zeng, “Predicting Drug-target Interactions Using Restricted
BoltzmannMachines,” Bioinformatics, vol. 29, no. 13, pp. i126–i134, 2013.

[45] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A.
Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language Models are
Few-shot Learners,” arXiv preprint arXiv:2005.14165, 2020.

[46] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K.
Tunyasuvunakool, R. Bates, A. Žıdek, A. Potapenko, et al., “HighlyAccurate
Protein Structure Prediction with AlphaFold,” Nature, pp. 1–11, 2021.

[47] Z.Ghahramani, “ProbabilisticMachineLearning andArtificial Intelligence,”
Nature, vol. 521, no. 7553, pp. 452–459, 2015.

[48] M. I. Jordan and C. Bishop, An Introduction to Graphical Models, 2004.

[49] D. C. Knill and W. Richards, Perception as Bayesian inference. Cambridge
University Press, 1996.

[50] S. J. Gershman, “The Generative Adversarial Brain,” Frontiers in Artificial
Intelligence, vol. 2, p. 18, 2019.

[51] F. Nielsen, “What is an Information Projection,”Notices of the AMS, vol. 65,
no. 3, pp. 321–324, 2018.

[52] F. Rosenblatt, “The Perceptron: a Probabilistic Model for Information Stor-
age and Organization in the Brain.,” Psychological Review, vol. 65, no. 6,
p. 386, 1958.

139

[53] J. Hopfield, “Neural Networks and Physical Systems with Emergent Col-
lective Computational Abilities,” Proceedings of the National Academy of
Sciences, vol. 79, no. 8, pp. 2554–2558, 1982, issn: 0027-8424.

[54] O. Rössler, “A Synthetic Approach to Exotic Kinetics (with Examples),” in
Physics and Mathematics of the Nervous System, Springer, 1974, pp. 546–
582.

[55] A.Hjelmfelt, E.Weinberger, and J. Ross, “Chemical Implementation ofNeu-
ral Networks and Turing Machines,” Proceedings of the National Academy
of Sciences, vol. 88, no. 24, pp. 10 983–10 987, 1991.

[56] A. Hjelmfelt and J. Ross, “Chemical Implementation and Thermodynamics
of Collective Neural Networks,” Proceedings of the National Academy of
Sciences, vol. 89, no. 1, pp. 388–391, 1992.

[57] A. Hjelmfelt, F. Schneider, and J. Ross, “Pattern Recognition in Coupled
Chemical Kinetic Systems,” Science, vol. 260, pp. 335–335, 1993.

[58] S. McGregor, V. Vasas, P. Husbands, and C. Fernando, “Evolution of As-
sociative Learning in Chemical Networks,” PLoS Computational Biology,
vol. 8, no. 11, e1002739, 2012.

[59] D. F. Anderson, B. Joshi, and A. Deshpande, “On Reaction Network Im-
plementations of Neural Networks,” Journal of the Royal Society Interface,
vol. 18, no. 177, p. 20 210 031, 2021.

[60] J. Kim, J. J. Hopfield, and E. Winfree, “Neural Network Computation by In
Vitro Transcriptional Circuits,” Advances in Neural Information Processing
Systems, vol. 17, pp. 681–688, 2004.

[61] A. Moorman, C. C. Samaniego, C. Maley, and R. Weiss, “A Dynamical
Biomolecular Neural Network,” in 2019 IEEE 58th Conference on Decision
and Control (CDC), 2019, pp. 1797–1802. doi: 10.1109/CDC40024.
2019.9030122.

[62] C. C. Samaniego, A. Moorman, G. Giordano, and E. Franco, “Signaling-
based Neural Networks for Cellular Computation,” in 2021 American Con-
trol Conference (ACC), 2021, pp. 1883–1890. doi: 10.23919/ACC50511.
2021.9482800.

[63] J. Kim, K. White, and E. Winfree, “Construction of an In Vitro Bistable Cir-
cuit from Synthetic Transcriptional Switches,” Molecular Systems Biology,
vol. 2, p. 68, 2006.

[64] R. Daniel, S. S. Woo, L. Turicchia, and R. Sarpeshkar, “Analog Transistor
Models of Bacterial Genetic Circuits,” in 2011 IEEE Biomedical Circuits
and Systems Conference (BioCAS), IEEE, 2011, pp. 333–336.

[65] R. Daniel, J. R. Rubens, R. Sarpeshkar, and T. K. Lu, “Synthetic Analog
Computation in Living Cells,” Nature, vol. 497, no. 7451, pp. 619–623,
2013.

https://doi.org/10.1109/CDC40024.2019.9030122
https://doi.org/10.1109/CDC40024.2019.9030122
https://doi.org/10.23919/ACC50511.2021.9482800
https://doi.org/10.23919/ACC50511.2021.9482800

140

[66] A. J. Genot, T. Fujii, and Y. Rondelez, “Scaling Down DNA circuits with
Competitive Neural Networks,” Journal of The Royal Society Interface,
vol. 10, no. 85, p. 20 130 212, 2013.

[67] X. Liu and K. K. Parhi, “Molecular and DNAArtificial Neural Networks via
Fractional Coding,” IEEE Transactions on Biomedical Circuits and Systems,
vol. 14, no. 3, pp. 490–503, 2020. doi: 10.1109/TBCAS.2020.2979485.

[68] K. M. Cherry and L. Qian, “Scaling UpMolecular Pattern Recognition with
DNA-based Winner-take-all Neural Networks,” Nature, vol. 559, no. 7714,
pp. 370–376, 2018.

[69] H. Pei, X. Xiong, T. Zhu, Y. Zhu, M. Cao, J. Xiao, L. Li, F. Wang, and
C. Fan, “Molecular Convolutional Neural Networks with DNA Regulatory
Circuits,” 2021. doi: https://doi.org/10.21203/rs.3.rs-926838/
v1.

[70] D. Bray, “Intracellular Signalling as a Parallel Distributed Process,” Journal
of Theoretical Biology, vol. 143, no. 2, pp. 215–231, 1990.

[71] J.-C. Chen and M. Conrad, “Pattern Categorization and Generalization with
a Virtual Neuromolecular Architecture,” Neural Networks, vol. 10, no. 1,
pp. 111–123, 1997.

[72] P. Banda, C. Teuscher, and M. R. Lakin, “Online Learning in a Chemical
Perceptron,” Artificial Life, vol. 19, no. 2, pp. 195–219, 2013.

[73] P. Banda, C. Teuscher, and D. Stefanovic, “Training an Asymmetric Signal
Perceptron Through Reinforcement in an Artificial Chemistry,” Journal of
The Royal Society Interface, vol. 11, no. 93, p. 20 131 100, 2014.

[74] M. R. Lakin and D. Stefanovic, “Supervised Learning in Adaptive DNA
Strand Displacement Networks,” ACS Synthetic Biology, vol. 5, no. 8,
pp. 885–897, 2016.

[75] D. Blount, P. Banda, C. Teuscher, andD. Stefanovic, “FeedforwardChemical
Neural Network: An In Silico Chemical System that Learns XOR,” Artificial
life, vol. 23, no. 3, pp. 295–317, 2017.

[76] Y. Katz, M. Springer, and W. Fontana, Embodying Probabilistic Inference
in Biochemical Circuits, 2018. eprint: https://arxiv.org/abs/1806.
10161.

[77] M. Gopalkrishnan, “A Scheme for Molecular Computation of Maximum
Likelihood Estimators for Log-Linear Models,” in DNA Computing and
Molecular Programming, vol. 9818 of Lecture Notes in Computer Science
(LNCS), Springer, 2016, pp. 3–18.

[78] E. Mjolsness, D. H. Sharp, and J. Reinitz, “A Connectionist Model of
Development,” Journal of Theoretical Biology, vol. 152, no. 4, pp. 429–
453, 1991.

https://doi.org/10.1109/TBCAS.2020.2979485
https://doi.org/https://doi.org/10.21203/rs.3.rs-926838/v1
https://doi.org/https://doi.org/10.21203/rs.3.rs-926838/v1
https://arxiv.org/abs/1806.10161
https://arxiv.org/abs/1806.10161

141

[79] G. Marnellos and E. D. Mjolsness, “Gene Network Models and Neural
Development,” Modeling Neural Development, pp. 27–48, 2003.

[80] N. Buchler, U. Gerland, and T. Hwa, “On Schemes of Combinatorial Tran-
scription Logic,”Proceedings of the National Academy of Sciences, vol. 100,
no. 9, pp. 5136–5141, 2003, issn: 0027-8424.

[81] J. J. Teo, S. S. Woo, and R. Sarpeshkar, “Synthetic Biology: a Unifying
Biew andReviewUsingAnalogCircuits,” IEEETransactions on Biomedical
Circuits and Systems, vol. 9, no. 4, pp. 453–474, 2015.

[82] N. E. Napp and R. P. Adams, “Message Passing Inference with Chemical
Reaction Networks,” Advances in Neural Information Processing Systems,
vol. 26, pp. 2247–2255, 2013.

[83] M. V. Virinchi, A. Behera, and M. Gopalkrishnan, “A Stochastic Molecular
Scheme for an Artificial Cell to Infer its Environment from Partial Obser-
vations,” in International Conference on DNA-Based Computers, Springer,
2017, pp. 82–97.

[84] M. V. Virinchi, A. Behera, and M. Gopalkrishnan, “A Reaction Network
Schemewhich Implements the EMAlgorithm,” in International Conference
on DNA Computing and Molecular Programming, Springer, 2018, pp. 189–
207.

[85] G. E. Hinton, T. J. Sejnowski, and D. H. Ackley, Boltzmann Machines:
Constraint Satisfaction Networks that Learn. Carnegie-Mellon University,
Department of Computer Science Pittsburgh, PA, 1984.

[86] N.G.VanKampen, Stochastic Processes in Physics andChemistry. Elsevier,
1992, vol. 1.

[87] C. Maes and K. Netočn, “Time-reversal and Entropy,” Journal of Statistical
Physics, vol. 110, no. 1, pp. 269–310, 2003.

[88] J. S. Lamb and J. A. Roberts, “Time-reversal Symmetry in Dynamical
Systems: a Survey,” Physica D: Nonlinear Phenomena, vol. 112, no. 1-2,
pp. 1–39, 1998.

[89] G. G. Hammes and S. Hammes-Schiffer, Physical Chemistry for the Bio-
logical Sciences. John Wiley & Sons, 2015.

[90] M. Polettini andM.Esposito, “Irreversible Thermodynamics ofOpenChem-
ical Networks. I. Emergent Cycles and Broken Conservation Laws,” The
Journal of Chemical Physics, vol. 141, no. 2, 07B610_1, 2014.

[91] R. Rao and M. Esposito, “Nonequilibrium Thermodynamics of Chemical
Reaction Networks: Wisdom from Stochastic Thermodynamics,” Physical
Review X, vol. 6, no. 4, p. 041 064, 2016.

142

[92] T. E. Ouldridge, “The importance of Thermodynamics for Molecular Sys-
tems, and the Importance of Molecular Systems for Thermodynamics,”
Natural Computing, vol. 17, no. 1, pp. 3–29, 2018.

[93] D. F. Anderson, G. Craciun, and T. G. Kurtz, “Product-form Stationary
Distributions for Deficiency Zero Chemical Reaction Networks,” Bulletin
of Mathematical Biology, vol. 72, no. 8, pp. 1947–1970, 2010.

[94] P. Siuti, J. Yazbek, and T. K. Lu, “Synthetic Circuits Integrating Logic and
Memory in Living Cells,” Nature Biotechnology, vol. 31, no. 5, pp. 448–
452, 2013.

[95] S. Regot, J. Macia, N. Conde, K. Furukawa, J. Kjellén, T. Peeters, S.
Hohmann, E. De Nadal, F. Posas, and R. Solé, “Distributed Biological
Computation with Multicellular Engineered Networks,” Nature, vol. 469,
no. 7329, pp. 207–211, 2011.

[96] Y. Chen, J. K. Kim, A. J. Hirning, K. Josić, and M. R. Bennett, “Emer-
gent Genetic Oscillations in a Synthetic Microbial Consortium,” Science,
vol. 349, no. 6251, pp. 986–989, 2015.

[97] D. M. McCarthy and J. I. Medford, “Quantitative and Predictive Genetic
Parts for Plant Synthetic Biology,” Frontiers in Plant Science, vol. 11,
p. 1510, 2020.

[98] R. A. Le Feuvre andN. S. Scrutton, “ALiving Foundry for Synthetic Biolog-
ical Materials: a Synthetic Biology Roadmap to New Advanced Materials,”
Synthetic and Systems Biotechnology, vol. 3, no. 2, pp. 105–112, 2018.

[99] K. French, “Harnessing Synthetic Biology for Sustainable Development,”
Nature Sustainability, vol. 2, no. 4, pp. 250–252, 2019.

[100] L. T. Bereza-Malcolm, G. Mann, and A. E. Franks, “Environmental Sensing
of Heavy Metals through Whole Cell Microbial Biosensors: a Synthetic
Biology Approach,” ACS Synthetic Biology, vol. 4, no. 5, pp. 535–546,
2015.

[101] S. Shi, E. L. Ang, and H. Zhao, “In Vivo Biosensors: Mechanisms, Develop-
ment, and Applications,” Journal of Industrial Microbiology and Biotech-
nology, vol. 45, no. 7, pp. 491–516, 2018.

[102] D.Braff,D. Shis, and J. J. Collins, “SyntheticBiologyPlatformTechnologies
forAntimicrobialApplications,”AdvancedDrugDelivery Reviews, vol. 105,
pp. 35–43, 2016.

[103] J. H. Esensten, J. A. Bluestone, and W. A. Lim, “Engineering Therapeu-
tic T cells: from Synthetic Biology to Clinical Trials,” Annual Review of
Pathology: Mechanisms of Disease, vol. 12, pp. 305–330, 2017.

[104] M.-R. Wu, B. Jusiak, and T. K. Lu, “Engineering Advanced Cancer Thera-
pieswith SyntheticBiology,”NatureReviewsCancer, vol. 19, no. 4, pp. 187–
195, 2019.

143

[105] C.M. Agapakis and P. A. Silver, “Synthetic Biology: Exploring and Exploit-
ing Genetic Modularity through the Design of Novel Biological Networks,”
Molecular BioSystems, vol. 5, no. 7, pp. 704–713, 2009.

[106] D. Del Vecchio, “Modularity, Context-dependence, and Insulation in Engi-
neered Biological Circuits,” Trends in Biotechnology, vol. 33, no. 2, pp. 111–
119, 2015.

[107] S.Cardinale andA. P.Arkin, “ContextualizingContext for SyntheticBiology–
Identifying Causes of Failure of Synthetic Biological Systems,” Biotechnol-
ogy Journal, vol. 7, no. 7, pp. 856–866, 2012.

[108] S. C. Sleight and H. M. Sauro, “Visualization of Evolutionary Stability
Dynamics and Competitive Fitness of Escherichia Coli Engineered with
Randomized Multigene Circuits,” ACS Synthetic Biology, vol. 2, no. 9,
pp. 519–528, 2013.

[109] H. V. Westerhoff and B. O. Palsson, “The Evolution of Molecular Biology
into Systems Biology,” Nature Biotechnology, vol. 22, no. 10, pp. 1249–
1252, 2004.

[110] H.Kitano, “SystemsBiology: aBriefOverview,” Science, vol. 295, no. 5560,
pp. 1662–1664, 2002.

[111] J. Raes and P. Bork, “Molecular Eco-systems Biology: Towards an Under-
standing of Community Function,” Nature Reviews Microbiology, vol. 6,
no. 9, pp. 693–699, 2008.

[112] M. Tyers and M. Mann, “From Genomics to Proteomics,” Nature, vol. 422,
no. 6928, pp. 193–197, 2003.

[113] J. R. Idle and F. J. Gonzalez, “Metabolomics,” Cell Metabolism, vol. 6,
no. 5, pp. 348–351, 2007.

[114] Z. Wang, M. Gerstein, and M. Snyder, “RNA-Seq: a Revolutionary Tool for
Transcriptomics,” Nature Reviews Genetics, vol. 10, no. 1, pp. 57–63, 2009.

[115] C. Bock,M. Farlik, andN. C. Sheffield, “Multi-omics of Single Cells: Strate-
gies and Applications,” Trends in Biotechnology, vol. 34, no. 8, pp. 605–608,
2016.

[116] J. Packer and C. Trapnell, “Single-cell Multi-omics: an Engine for New
Quantitative Models of Gene Regulation,” Trends in Genetics, vol. 34, no. 9,
pp. 653–665, 2018.

[117] F. R. Pinu,D. J. Beale, A.M. Paten,K.Kouremenos, S. Swarup,H. J. Schirra,
and D. Wishart, “Systems biology and Multi-omics Integration: Viewpoints
from the Metabolomics Research Community,” Metabolites, vol. 9, no. 4,
p. 76, 2019.

144

[118] M. Bizzarri, D. E. Brash, J. Briscoe, V. A. Grieneisen, C. D. Stern, and M.
Levin, “A Call for a Better Understanding of Causation in Cell Biology,”
Nature Reviews Molecular Cell Biology, vol. 20, no. 5, pp. 261–262, 2019.

[119] M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain, “Stochastic Gene
Expression in a Single Cell,” Science, vol. 297, no. 5584, pp. 1183–1186,
2002.

[120] P. S. Swain, M. B. Elowitz, and E. D. Siggia, “Intrinsic and Extrinsic
Contributions to Stochasticity in Gene Expression,” Proceedings of the
National Academy of Sciences, vol. 99, no. 20, pp. 12 795–12 800, 2002.

[121] E. M. Ozbudak, M. Thattai, I. Kurtser, A. D. Grossman, and A. Van Oude-
naarden, “Regulation of Noise in the Expression of a Single Gene,” Nature
Genetics, vol. 31, no. 1, pp. 69–73, 2002.

[122] D. Huh and J. Paulsson, “Non-genetic Heterogeneity from Stochastic Par-
titioning at Cell Division,” Nature Genetics, vol. 43, no. 2, pp. 95–100,
2011.

[123] J. M. Raser and E. K. O’shea, “Noise in Gene Expression: Origins, Conse-
quences, and Control,” Science, vol. 309, no. 5743, pp. 2010–2013, 2005.

[124] H. Qian, “Reducing Intrinsic Biochemical Noise in Cells and its Thermody-
namic Limit,” Journal of Molecular Biology, vol. 362, no. 3, pp. 387–392,
2006.

[125] A. Eldar andM.B. Elowitz, “Functional Roles forNoise inGenetic Circuits,”
Nature, vol. 467, no. 7312, pp. 167–173, 2010.

[126] G. M. Church, From Systems Biology to Synthetic Biology, 2005.

[127] C. L. Barrett, T. Y. Kim, H. U. Kim, B. Ø. Palsson, and S. Y. Lee, “Systems
Biology as a Foundation for Genome-scale Synthetic Biology,” Current
Opinion in Biotechnology, vol. 17, no. 5, pp. 488–492, 2006.

[128] P. Kirk, T. Thorne, andM. P. Stumpf, “Model Selection in Systems and Syn-
thetic Biology,” Current Opinion in Biotechnology, vol. 24, no. 4, pp. 767–
774, 2013.

[129] K. L. Frieda, J. M. Linton, S. Hormoz, J. Choi, K.-H. K. Chow, Z. S. Singer,
M. W. Budde, M. B. Elowitz, and L. Cai, “Synthetic Recording and in Situ
Readout of Lineage Information in Single Cells,”Nature, vol. 541, no. 7635,
pp. 107–111, 2017.

[130] E. Agmon, R. K. Spangler, C. J. Skalnik, W. Poole, S. M. Peirce, J. H. Mor-
rison, and M. W. Covert, “Vivarium: an Interface and Engine for Integrative
Multiscale Modeling in Computational Biology,” 2021.

[131] M. Djordjevic, A. Rodic, and S. Graovac, “From Biophysics to ‘Omics and
Systems Biology,” European Biophysics Journal, vol. 48, no. 5, pp. 413–
424, 2019.

145

[132] W. Gilpin, Y. Huang, and D. B. Forger, “Learning Dynamics from Large
Biological Datasets: Machine Learning Meets Systems Biology,” Current
Opinion in Systems Biology, 2020.

[133] A. D. Silverman, A. S. Karim, andM.C. Jewett, “Cell-freeGene Expression:
an Expanded Repertoire of Applications,”Nature Reviews Genetics, vol. 21,
no. 3, pp. 151–170, 2020.

[134] Z. Z. Sun, E. Yeung, C. A. Hayes, V. Noireaux, and R. M. Murray, “Lin-
ear DNA for Rapid Prototyping of Synthetic Biological Circuits in an Es-
cherichia Coli Based TX-TL Cell-free System,” ACS Synthetic Biology,
vol. 3, no. 6, pp. 387–397, 2014.

[135] W. B. Dunn and D. I. Ellis, “Metabolomics: Current Analytical Platforms
and Methodologies,” TrAC Trends in Analytical Chemistry, vol. 24, no. 4,
pp. 285–294, 2005.

[136] W. Poole, A. Pandey, Z. Tuza, A. Shur, and R. M. Murray, “BioCRNpyler:
CompilingChemical ReactionNetworks fromBiomolecular Parts inDiverse
Contexts,” BioRxiv, 2020. doi: https://doi.org/10.1101/2020.08.
02.233478,

[137] A. Swaminathan, W. Poole, V. Hsiao, and R. M. Murray, “Fast and Flexi-
ble Simulation and Parameter Estimation for Synthetic Biology Using Bio-
scrape,” bioRxiv, 2019.doi:10.1101/121152. [Online]. Available:https:
//www.biorxiv.org/content/early/2019/03/25/121152.

[138] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, et al., “Pytorch: An Imperative Style,
High-performanceDeepLearningLibrary,”Advances inNeural Information
Processing Systems, vol. 32, pp. 8026–8037, 2019.

[139] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S.
Ghemawat, G. Irving,M. Isard, et al., “Tensorflow:ASystem for Large-scale
Machine Learning,” in 12th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 16), 2016, pp. 265–283.

[140] The MathWorks, Inc, MATLAB Simbiology Toolbox. [Online]. Available:
https://www.mathworks.com/help/simbio/.

[141] E. T. Somogyi, J.-M. Bouteiller, J. A. Glazier, M. König, J. K. Medley,
M. H. Swat, and H. M. Sauro, “libRoadRunner: a High Performance SBML
Simulation and Analysis Library,” Bioinformatics, vol. 31, no. 20, pp. 3315–
3321, 2015.

[142] N. Le Novere, B. Bornstein, A. Broicher, M. Courtot, M. Donizelli, H.
Dharuri, L. Li, H. Sauro, M. Schilstra, B. Shapiro, et al., “BioModels
Database: a Free, Centralized Database of Curated, Published, Quantita-
tive Kinetic Models of Biochemical and Cellular Systems,” Nucleic Acids
Research, vol. 34, no. suppl_1, pp. D689–D691, 2006.

https://doi.org/https://doi.org/10.1101/2020.08.02.233478
https://doi.org/https://doi.org/10.1101/2020.08.02.233478
https://doi.org/10.1101/121152
https://www.biorxiv.org/content/early/2019/03/25/121152
https://www.biorxiv.org/content/early/2019/03/25/121152
https://www.mathworks.com/help/simbio/

146

[143] S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus,M. Singhal, L. Xu,
P. Mendes, and U. Kummer, “COPASI—a Complex Pathway Simulator,”
Bioinformatics, vol. 22, no. 24, pp. 3067–3074, 2006.

[144] K. Choi, J. K. Medley, M. König, K. Stocking, L. Smith, S. Gu, and H. M.
Sauro, “Tellurium: an Extensible Python-based Modeling Environment for
Systems and Synthetic Biology,” Biosystems, vol. 171, pp. 74–79, 2018.

[145] S. Guiziou, G. Pérution-Kihli, F. Ulliana, M. Leclère, and J. Bonnet, “Ex-
ploring the Design Space of Recombinase Logic Circuits,” bioRxiv, 2019.
doi: 10.1101/711374.

[146] S. Badelt, C. Grun, K. V. Sarma, B. Wolfe, S. W. Shin, and E. Winfree, “A
Domain-level DNA Strand displacement Reaction Enumerator Allowing
Arbitrary Non-pseudoknotted Secondary Structures,” Journal of the Royal
Society Interface, vol. 17, no. 167, p. 20 190 866, 2020.

[147] M. Vasić, D. Soloveichik, and S. Khurshid, “CRN++: Molecular Program-
ming Language,” Natural Computing, pp. 1–17, 2020.

[148] C. Spaccasassi, M. R. Lakin, and A. Phillips, “A Logic Programming Lan-
guage for Computational Nucleic Acid Devices,” ACS Synthetic Biology,
vol. 8, no. 7, pp. 1530–1547, 2018.

[149] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano,
A. P. Arkin, B. J. Bornstein, D. Bray, A. Cornish-Bowden, et al., “The
Systems Biology Markup Language (SBML): a Medium for Representation
and Exchange of Biochemical Network Models,” Bioinformatics, vol. 19,
no. 4, pp. 524–531, 2003.

[150] M. Galdzicki, K. P. Clancy, E. Oberortner, M. Pocock, J. Y. Quinn, C. A.
Rodriguez, N. Roehner, M. L. Wilson, L. Adam, J. C. Anderson, et al., “The
Synthetic Biology Open Language (SBOL) Provides a Community Standard
for Communicating Designs in Synthetic Biology,” Nature Biotechnology,
vol. 32, no. 6, pp. 545–550, 2014.

[151] C. J. Myers et al., “iBioSim: a Tool for the Analysis and Design of Genetic
Circuits,” Bioinformatics, vol. 25, no. 21, pp. 2848–2849, 2009.

[152] L. Watanabe, T. Nguyen, M. Zhang, Z. Zundel, Z. Zhang, C. Madsen, N.
Roehner, and C. Myers, “iBioSim 3: a Tool for Model-based Genetic Circuit
Design,” ACS Synthetic Biology, vol. 8, no. 7, pp. 1560–1563, 2018.

[153] L. A. Harris et al., “BioNetGen 2.2: Advances in Rule-based Modeling,”
Bioinformatics, vol. 32, no. 21, pp. 3366–3368, 2016.

[154] C. F. Lopez, J. L. Muhlich, J. A. Bachman, and P. K. Sorger, “Programming
Biological Models in Python using PySB,” Molecular Systems Biology,
vol. 9, no. 1, p. 646, 2013.

https://doi.org/10.1101/711374

147

[155] Z. A. Tuza et al., “An In Silico Modeling Toolbox for Rapid Prototyping of
Circuits in a Biomolecular “Breadboard” System,” in 52nd IEEEConference
on Decision and Control, Dec. 2013, pp. 1404–1410. doi: 10.1109/CDC.
2013.6760079.

[156] Biocrnpyler, https://github.com/BuildACell/BioCRNpyler..

[157] B. S. Der, E. Glassey, B. A. Bartley, C. Enghuus, D. B. Goodman, D. B.
Gordon, C. A. Voigt, and T. E. Gorochowski, “DNAplotlib: Programmable
Visualization of Genetic Designs and Associated Data,” ACS Synthetic Bi-
ology, vol. 6, no. 7, pp. 1115–1119, 2017.

[158] T. S. Gardner, C. R. Cantor, and J. J. Collins, “Construction of a Genetic
Toggle Switch in Escherichia coli,”Nature, vol. 403, no. 6767, pp. 339–342,
2000.

[159] M. B. Elowitz et al., “A Synthetic Oscillatory Network of Transcriptional
Regulators,” Nature, vol. 403, no. 6767, pp. 335–338, 2000.

[160] B. F. Cress, Ö. D. Toparlak, S. Guleria, M. Lebovich, J. T. Stieglitz, J. A.
Englaender, J. A. Jones, R. J. Linhardt, and M. A. Koffas, “CRISPathBrick:
Modular Combinatorial Assembly of Type II-A CRISPR Arrays for dCas9-
mediated Multiplex Transcriptional Repression in E. Coli,” ACS Synthetic
Biology, vol. 4, no. 9, pp. 987–1000, 2015.

[161] S. Jayanthi, K. S. Nilgiriwala, and D. Del Vecchio, “Retroactivity Controls
the Temporal Dynamics of Gene Transcription,” ACS Synthetic Biology,
vol. 2, no. 8, pp. 431–441, 2013.

[162] S. C. Strutt, R. M. Torrez, E. Kaya, O. A. Negrete, and J. A. Doudna,
“RNA-dependent RNA Targeting by CRISPR-Cas9,” elife, vol. 7, e32724,
2018.

[163] D. T. Dang and A. T. Phan, “Development of a Ribonuclease Containing
a G4-specific Binding Motif for Programmable RNA Cleavage,” Scientific
Reports, vol. 9, no. 1, pp. 1–7, 2019.

[164] X. Yan, T. A. Hoek, R. D. Vale, and M. E. Tanenbaum, “Dynamics of
Translation of Single mRNA Molecules In Vivo,” Cell, vol. 165, no. 4,
pp. 976–989, 2016.

[165] R. Milo and R. Phillips, Cell Biology by the Numbers. Garland Science,
2015.

[166] M. Santillán and M. C. Mackey, “Quantitative Approaches to the Study of
Bistability in the Lac Operon of Escherichia Coli,” Journal of The Royal
Society Interface, vol. 5, no. suppl_1, S29–S39, 2008.

[167] D. T. Gillespie, “Stochastic Simulation of Chemical Kinetics,” Annual Re-
view of Physical Chemistry, vol. 58, pp. 35–55, 2007.

https://doi.org/10.1109/CDC.2013.6760079
https://doi.org/10.1109/CDC.2013.6760079
https://github.com/BuildACell/BioCRNpyler.

148

[168] J. Gunawardena, “Chemical Reaction Network Theory for In-Silico Biol-
ogists,” Lecture Notes, 2003. [Online]. Available: http://vcp.med.
harvard.edu/papers/crnt.pdf.

[169] D. Soloveichik, M. Cook, E. Winfree, and J. Bruck, “Computation with
Finite Stochastic Chemical Reaction Networks,” natural computing, vol. 7,
no. 4, pp. 615–633, 2008.

[170] T. Schmiedl and U. Seifert, “Stochastic Thermodynamics of Chemical Reac-
tionNetworks,”The Journal of Chemical Physics, vol. 126, no. 4, p. 044 101,
2007.

[171] M. J. Morrison, M. Razo-Mejia, and R. Phillips, “Reconciling Kinetic and
EquilibriumModels ofBacterial Transcription,” arXiv preprint arXiv:2006.07772,
2020.

[172] E. Cinquemani, “Identifiability and Reconstruction of Biochemical Reaction
Networks from Population Snapshot Data,” Processes, vol. 6, no. 9, p. 136,
2018.

[173] Bokeh Development Team, Bokeh: Python Library for Interactive Visual-
ization, 2020. [Online]. Available: https://bokeh.org/.

[174] M. Jacomy, T. Venturini, S. Heymann, and M. Bastian, “ForceAtlas2, a
Continuous Graph Layout Algorithm for Handy Network Visualization De-
signed for the Gephi Software,” PLoS ONE, vol. 9, no. 6, M. R. Muldoon,
Ed., e98679, Jun. 2014, issn: 1932-6203. doi: 10.1371/journal.pone.
0098679.

[175] S. J. Moore, J. T. MacDonald, S. Wienecke, A. Ishwarbhai, A. Tsipa, R.
Aw, N. Kylilis, D. J. Bell, D. W. McClymont, K. Jensen, et al., “Rapid Ac-
quisition and Model-based Analysis of Cell-free Transcription–Translation
Reactions from Nonmodel Bacteria,” Proceedings of the National Academy
of Sciences, vol. 115, no. 19, E4340–E4349, 2018.

[176] A. J. Meyer, T. H. Segall-Shapiro, and C. A. Voigt, “Marionette: E. coli Con-
taining 12 Highly-optimized Small Molecule Sensors,” bioRxiv, p. 285 866,
2018.

[177] L. P. Smith, M. Hucka, S. Hoops, A. Finney, M. Ginkel, C. J. Myers, I.
Moraru, andW.Liebermeister, “SBMLLevel 3 Package:HierarchicalModel
Composition, Version 1 Release 3,” Journal of Integrative Bioinformatics,
vol. 12, no. 2, pp. 603–659, 2015.

[178] K. Rutherford, P. Yuan, K. Perry, R. Sharp, and G. D. Van Duyne, “At-
tachment Site Recognition and Regulation of Directionality by the Serine
Integrases,” Nucleic Acids Research, vol. 41, no. 17, pp. 8341–8356, 2013.

[179] Buildacell youtube channel, https://www.youtube.com/watch?v=mu-
9MSntd2w&list=PLb2LmjoxZO-g2vbTr3HBcnvVZur8JFiqf.

http://vcp.med.harvard.edu/papers/crnt.pdf
http://vcp.med.harvard.edu/papers/crnt.pdf
https://bokeh.org/
https://doi.org/10.1371/journal.pone.0098679
https://doi.org/10.1371/journal.pone.0098679
https://www.youtube.com/watch?v=mu-9MSntd2w&list=PLb2LmjoxZO-g2vbTr3HBcnvVZur8JFiqf
https://www.youtube.com/watch?v=mu-9MSntd2w&list=PLb2LmjoxZO-g2vbTr3HBcnvVZur8JFiqf

149

[180] Z. Karagöz, L. Rĳns, P. Y. Dankers, M. van Griensven, and A. Carlier,
“Towards Understanding the Messengers of Extracellular Space: Computa-
tional Models of Outside-in Integrin Reaction Networks,” Computational
and Structural Biotechnology Journal, 2020.

[181] A. Pandey and R. M. Murray, “A Two-state Ribosome and Protein Model
Can Robustly Capture the Chemical Reaction Dynamics of Gene Expres-
sion,” bioRxiv, 2020. doi: 10.1101/2020.11.25.399287.

[182] L. N. Merk, A. S. Shur, A. Pandey, R. M. Murray, and L. N. Green, “Engi-
neering Logical Inflammation SensingCircuit forGutModulation,” bioRxiv,
2020. doi: 10.1101/2020.11.10.377085.

[183] Codecov, https://codecov.io/.

[184] M. Storch, M. C. Haines, and G. S. Baldwin, “DNA-BOT: a Low-cost, Auto-
mated DNA Assembly Platform for Synthetic Biology,” Synthetic Biology,
vol. 5, no. 1, ysaa010, 2020.

[185] N. Roehner, Z. Zhang, T. Nguyen, and C. J. Myers, “Generating Systems
Biology Markup Language Models from the Synthetic Biology Open Lan-
guage,” ACS Synthetic Biology, vol. 4, no. 8, pp. 873–879, 2015.

[186] V. Singhal, Z. A. Tuza, Z. Z. Sun, and R. M. Murray, “AMATLAB Toolbox
for Modeling Genetic Circuits in Cell-free Systems,” Synthetic Biology,
vol. 6, no. 1, ysab007, 2021.

[187] W. Poole, A. Ortiz-Munoz, A. Behera, N. S. Jones, T. E. Ouldridge, E.
Winfree, and M. Gopalkrishnan, “Chemical Boltzmann Machines,” in In-
ternational Conference onDNA-Based Computers, Springer, 2017, pp. 210–
231. doi: 10.1007/978-3-319-66799-7_14,

[188] D. Bray, “Protein Molecules as Computational Elements in Living Cells,”
Nature, vol. 376, no. 6538, p. 307, 1995.

[189] D. Bray,Wetware: a Computer in Every Living Cell. Yale University Press,
2009.

[190] H. McAdams and A. Arkin, “Stochastic Mechanisms in Gene Expression,”
Proceedings of the National Academy of Sciences, vol. 94, no. 3, pp. 814–
819, 1997, issn: 0027-8424.

[191] T. Perkins and P. Swain, “Strategies for Cellular Decision-making,”Molec-
ular Systems Biology, vol. 5, no. 1, p. 326, 2009, issn: 1744-4292.

[192] S. Muroga, Threshold Logic and its Applications. Wiley Interscience, 1971.

[193] K. Hellingwerf, P. Postma, J. Tommassen, and H.Westerhoff, “Signal Trans-
duction in Bacteria: Phospho-neural Network(s) in Escherichia Coli,”FEMS
Microbiology Reviews, vol. 16, no. 4, pp. 309–321, 1995.

https://doi.org/10.1101/2020.11.25.399287
https://doi.org/10.1101/2020.11.10.377085
https://codecov.io/
https://doi.org/10.1007/978-3-319-66799-7_14

150

[194] T. Mestl, C. Lemay, and L. Glass, “Chaos in High-dimensional Neural and
Gene Networks,” Physica D: Nonlinear Phenomena, vol. 98, no. 1, pp. 33–
52, 1996.

[195] J. Deutsch, “Collective Regulation by Non-coding RNA,” arXiv preprint
arXiv:1409.1899, 2014.

[196] J. Deutsch, “Associative Memory by Collective Regulation of Non-Coding
RNA,” arXiv preprint arXiv:1608.05494, 2016.

[197] L. Qian, E.Winfree, and J. Bruck, “Neural Network Computation with DNA
Strand Displacement Cascades,” Nature, vol. 475, no. 7356, pp. 368–372,
2011, issn: 0028-0836.

[198] I. Lestas, J. Paulsson, N. E. Ross, and G. Vinnicombe, “Noise in Gene
Regulatory Networks,” IEEE Transactions on Automatic Control, vol. 53,
no. Special Issue, pp. 189–200, 2008.

[199] I. Lestas, G. Vinnicombe, and J. Paulsson, “Fundamental Limits on the
Suppression ofMolecular Fluctuations,”Nature, vol. 467, no. 7312, pp. 174–
178, 2010.

[200] J. Veening, W. Smits, and O. Kuipers, “Bistability, Epigenetics, and Bet-
hedging in Bacteria,” Annual Review of Microbiology, vol. 62, pp. 193–210,
2008, issn: 0066-4227.

[201] G. Balázsi, A. van Oudenaarden, and J. Collins, “Cellular Decision Making
and Biological Noise: from Microbes to Mammals,” Cell, vol. 144, no. 6,
pp. 910–925, 2011, issn: 0092-8674.

[202] L. Tsimring, “Noise in Biology,” Reports on Progress in Physics, vol. 77,
no. 2, p. 26 601, 2014, issn: 0034-4885.

[203] V. Mansinghka, “Natively Probabilistic Computation,” Ph.D. dissertation,
Massachusetts Institute of Technology, 2009.

[204] S. Wang, X. Zhang, Y. Li, R. Bashizade, S. Yang, C. Dwyer, and A. R.
Lebeck, “Accelerating Markov Random Field Inference Using Molecular
Optical Gibbs Sampling Units,” in Proceedings of the 43rd International
Symposium onComputer Architecture, IEEEPress, 2016, pp. 558–569, isbn:
1467389471.

[205] J. Fiser, P. Berkes, G. Orbán, and M. Lengyel, “Statistically Optimal Per-
ception and Learning: from Behavior to Neural Representations,” Trends in
Cognitive Sciences, vol. 14, no. 3, pp. 119–130, 2010, issn: 1364-6613.

[206] A. Pouget, J. Beck, W. Ma, and P. Latham, “Probabilistic Brains: Knowns
and Unknowns,” Nature Neuroscience, vol. 16, no. 9, pp. 1170–1178, 2013,
issn: 1097-6256.

[207] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A Learning Algorithm for
Boltzmann Machines,” Cognitive science, vol. 9, no. 1, pp. 147–169, 1985.

151

[208] T. Tanaka, “Mean-field Theory of Boltzmann Machine Learning,” Physical
Review E, vol. 58, no. 2, p. 2302, 1998.

[209] Y. Tang and I. Sutskever, “Data Normalization in the Learning of Re-
strictedBoltzmannMachines,”Department of Computer Science, University
of Toronto, Technical Report UTML-TR-11-2, 2011.

[210] G.W. Taylor and G. E. Hinton, “Factored Conditional Restricted Boltzmann
Machines for Modeling Motion Style,” in Proceedings of the 26th Annual
International Conference on Machine Learning, 2009, pp. 1025–1032.

[211] G. Casella and E. George, “Explaining the Gibbs Sampler,” The American
Statistician, vol. 46, no. 3, pp. 167–174, 1992, issn: 0003-1305.

[212] H. Qian, “Phosphorylation EnergyHypothesis: Open Chemical Systems and
their Biological Functions,” Annual Review of Physical Chemistry, vol. 58,
pp. 113–142, 2007, issn: 0066-426X.

[213] D. Beard and H. Qian, Chemical Biophysics: Quantitative Analysis of Cel-
lular Systems. Cambridge University Press, 2008, isbn: 1139470078.

[214] T. Ouldridge, “The Importance of Thermodynamics for Molecular Systems,
and the Importance of Molecular Systems for Thermodynamics,” arXiv
preprint arXiv:1702.00360, 2017.

[215] B. Joshi, “A Detailed Balanced Reaction Network is Sufficient but Not
Necessary for its Markov Chain to Be Detailed Balanced,” arXiv preprint
arXiv:1312.4196, 2013.

[216] A. Erez, T. Byrd, R. Vogel, G. Altan-Bonnet, and A. Mugler, “Criticality of
Biochemical Feedback,” arXiv preprint arXiv:1703.04194, 2017.

[217] Y. LeCun, C. Cortes, and C. Burges, The MNIST Database of Handwritten
Digits, 1998.

[218] B.Alberts, D. Bray, K.Hopkin, A.D. Johnson, J. Lewis,M.Raff,K. Roberts,
and P. Walter, Essential Cell Biology. Garland Science, 2015.

[219] I. Santiago and F. C. Simmel, “Self-Propulsion Strategies for Artificial Cell-
Like Compartments,” Nanomaterials, vol. 9, no. 12, p. 1680, 2019.

[220] S. K. Aoki, G. Lillacci, A. Gupta, A. Baumschlager, D. Schweingruber, and
M. Khammash, “A Universal Biomolecular Integral Feedback Controller
for Robust Perfect Adaptation,” Nature, vol. 570, no. 7762, pp. 533–537,
2019.

[221] B.-Y. Xu, J. Xu, and T. Yomo, “A Protocell with Fusion and Division,”
Biochemical Society Transactions, vol. 47, no. 6, pp. 1909–1919, 2019.

[222] S. Slomovic, K. Pardee, and J. J. Collins, “Synthetic Biology Devices for
In Vitro and In Vivo Diagnostics,” Proceedings of the National Academy of
Sciences, vol. 112, no. 47, pp. 14 429–14 435, 2015.

152

[223] A. D. Gordon, T. A. Henzinger, A. V. Nori, and S. K. Rajamani, “Probabilis-
tic Programming,” in Future of Software Engineering Proceedings, 2014,
pp. 167–181.

[224] R. Ranganath, L. Tang, L. Charlin, and D. Blei, “Deep Exponential Fami-
lies,” in Artificial Intelligence and Statistics, PMLR, 2015, pp. 762–771.

[225] R. Sarpeshkar, “Analog versus Digital: Extrapolating from Electronics to
Neurobiology,” Neural Computation, vol. 10, no. 7, pp. 1601–1638, 1998.

[226] C. D. James, J. B. Aimone, N. E. Miner, C. M. Vineyard, F. H. Rothganger,
K. D. Carlson, S. A. Mulder, T. J. Draelos, A. Faust, M. J. Marinella, et
al., “A Historical Survey of Algorithms and Hardware Architectures for
Neural-inspired and Neuromorphic Computing Applications,” Biologically
Inspired Cognitive Architectures, vol. 19, pp. 49–64, 2017.

[227] N. E. Buchler, U. Gerland, and T. Hwa, “On schemes of Combinatorial
Transcription Logic,” Proceedings of the National Academy of Sciences,
vol. 100, no. 9, pp. 5136–5141, 2003.

[228] A. A. Faisal, L. P. Selen, and D.M.Wolpert, “Noise in the Nervous System,”
Nature reviews neuroscience, vol. 9, no. 4, pp. 292–303, 2008.

[229] J. J. Hopfield, “Kinetic Proofreading: aNewMechanism for Reducing Errors
in Biosynthetic Processes Requiring High Specificity,” Proceedings of the
National Academy of Sciences, vol. 71, no. 10, pp. 4135–4139, 1974.

[230] C. G. Evans and E. Winfree, “Physical Principles for DNA Tile Self-
assembly,”Chemical Society Reviews, vol. 46, no. 12, pp. 3808–3829, 2017.

[231] S. Hooshangi, S. Thiberge, and R.Weiss, “Ultrasensitivity and Noise Propa-
gation in a Synthetic Transcriptional Cascade,” Proceedings of the National
Academy of Sciences, vol. 102, no. 10, pp. 3581–3586, 2005.

[232] K. A. Fujita, Y. Toyoshima, S. Uda, Y.-i. Ozaki, H. Kubota, and S. Kuroda,
“Decoupling of Receptor and Downstream Signals in the Akt Pathway by its
Low-pass Filter Characteristics,” Science Signaling, vol. 3, no. 132, ra56–
ra56, 2010.

[233] L. Goentoro, O. Shoval, M. W. Kirschner, and U. Alon, “The Incoherent
Feedforward Loop can Provide Fold-change Detection in Gene Regulation,”
Molecular Cell, vol. 36, no. 5, pp. 894–899, 2009.

[234] J. Kim, I. Khetarpal, S. Sen, and R. M. Murray, “Synthetic Circuit for Exact
Adaptation and Fold-change Detection,” Nucleic acids research, vol. 42,
no. 9, pp. 6078–6089, 2014.

[235] D. Cappelletti, A. Ortiz-Muñoz, D. F. Anderson, and E.Winfree, “Stochastic
Chemical Reaction Networks for Robustly Approximating Arbitrary Prob-
ability Distributions,” Theoretical Computer Science, vol. 801, pp. 64–95,
2020.

153

[236] E. Winfree, “Chemical Reaction Networks and Stochastic Local Search,” in
International Conference on DNAComputing andMolecular Programming,
Springer, 2019, pp. 1–20.

[237] R. D.Shachter and M. A.Peot, “Decision Making Using Probabilistic Infer-
ence Methods,” Eighth Conference on Uncertainty in Artificial Intelligence,
pp. 276–283, 1992.

[238] R. Salakhutdinov, “Learning Deep Generative Models,” Annual Review of
Statistics and Its Application, vol. 2, pp. 361–385, 2015.

[239] T. J. Sejnowski, “Higher-order Boltzmann Machines,” in AIP Conference
Proceedings, American Institute of Physics, vol. 151, 1986, pp. 398–403.

[240] R. Salakhutdinov and G. Hinton, “Deep Boltzmann Machines,” in Artificial
Intelligence and Statistics, PMLR, 2009, pp. 448–455.

[241] Y. Tang, R. Salakhutdinov, and G. Hinton, “Robust Boltzmann Machines
for Recognition and Denoising,” in 2012 IEEE Conference on Computer
Vision and Pattern Recognition, IEEE, 2012, pp. 2264–2271.

[242] N. LeRoux andY.Bengio, “Representational Power ofRestrictedBoltzmann
Machines and Deep Belief Networks,” Neural Computation, vol. 20, no. 6,
pp. 1631–1649, 2008.

[243] H. Larochelle, M. Mandel, R. Pascanu, and Y. Bengio, “Learning Algo-
rithms for the Classification Restricted Boltzmann Machine,” The Journal
of Machine Learning Research, vol. 13, no. 1, pp. 643–669, 2012.

[244] M. Cook, D. Soloveichik, E. Winfree, and J. Bruck, “Programmability of
Chemical ReactionNetworks,” inAlgorithmic Bioprocesses, Springer, 2009,
pp. 543–584.

[245] Y.-J. Chen, N. Dalchau, N. Srinivas, A. Phillips, L. Cardelli, D. Soloveichik,
and G. Seelig, “Programmable Chemical Controllers made from DNA,”
Nature Nanotechnology, vol. 8, no. 10, pp. 755–762, 2013.

[246] J. Leroux and S. Schmitz, “Reachability in Vector Addition Systems is
Primitive-recursive in Fixed Dimension,” in 2019 34th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), IEEE, 2019, pp. 1–13.

[247] T. M. Cover, Elements of information theory. John Wiley & Sons, 1999.

[248] N. A. Becker, A. M. Greiner, J. P. Peters, and L. J. Maher III, “Bacterial
Promoter Repression by DNA Looping without Protein–protein Binding
Competition,” Nucleic Acids Research, vol. 42, no. 9, pp. 5495–5504, 2014.

[249] A.M.Chiariello, C.Annunziatella, S.Bianco,A.Esposito, andM.Nicodemi,
“Polymer Physics of Chromosome Large-scale 3D Organisation,” Scientific
reports, vol. 6, no. 1, pp. 1–8, 2016.

[250] P.-G. De Gennes and P.-G. Gennes, Scaling Concepts in Polymer Physics.
Cornell University Press, 1979.

154

[251] E.Wallace,D.Gillespie, K. Sanft, andL. Petzold, “LinearNoiseApproxima-
tion isValid over Limited Times forAnyChemical System that is Sufficiently
Large,” IET Systems Biology, vol. 6, no. 4, pp. 102–115, 2012.

[252] N. v. Kampen, “A Power Series Expansion of the Master Equation,” Cana-
dian Journal of Physics, vol. 39, no. 4, pp. 551–567, 1961.

[253] T. E. Ouldridge, R. A. Brittain, and P. R. t. Wolde, “The Power of Be-
ing Explicit: Demystifying Work, Heat, and Free Energy in the Physics of
Computation,” arXiv preprint arXiv:1812.09572, 2018.

[254] R. A. Brittain, N. S. Jones, and T. E. Ouldridge, “What Would it Take to
Build a Thermodynamically Reversible Universal Turing Machine? Com-
putational and Thermodynamic Constraints in a Molecular Design,” arXiv
preprint arXiv:2102.03388, 2021.

[255] C. H. Bennett, “The Thermodynamics of Computation—-A Review,” In-
ternational Journal of Theoretical Physics, vol. 21, no. 12, pp. 905–940,
1982.

[256] E. Chitambar and G. Gour, “Quantum Resource Theories,” Reviews of Mod-
ern Physics, vol. 91, no. 2, p. 025 001, 2019.

[257] L. Shang, Y. Cheng, and Y. Zhao, “Emerging Droplet Microfluidics,”Chem-
ical reviews, vol. 117, no. 12, pp. 7964–8040, 2017.

[258] A. Gopinath, E. Miyazono, A. Faraon, and P. W. Rothemund, “Engineer-
ing and Mapping Nanocavity Emission Via Precision Placement of DNA
Origami,” Nature, vol. 535, no. 7612, pp. 401–405, 2016.

[259] N. Laohakunakorn, L. Grasemann, B. Lavickova, G. Michielin, A. Sha-
hein, Z. Swank, and S. J. Maerkl, “Bottom-up Construction of Complex
Biomolecular Systems with Cell-free Synthetic Biology,” Frontiers in Bio-
engineering and Biotechnology, vol. 8, p. 213, 2020.

[260] V. Noireaux and A. P. Liu, “The New Age of Cell-free Biology,” Annual
Review of Biomedical Engineering, vol. 22, pp. 51–77, 2020.

[261] E. G. Worst, M. P. Exner, A. De Simone, M. Schenkelberger, V. Noireaux,
N. Budisa, and A. Ott, “Cell-free Expression with the Toxic Amino Acid
Canavanine,” Bioorganic & Medicinal Chemistry Letters, vol. 25, no. 17,
pp. 3658–3660, 2015.

[262] J. E. Kay and M. C. Jewett, “A Cell-free System for Production of 2, 3-
butanediol is Robust to Growth-toxic Compounds,”Metabolic Engineering
Communications, vol. 10, e00114, 2020.

[263] S. J. Moore, J. T. MacDonald, S. Wienecke, A. Ishwarbhai, A. Tsipa, R.
Aw, N. Kylilis, D. J. Bell, D. W. McClymont, K. Jensen, et al., “Rapid Ac-
quisition and Model-based Analysis of Cell-free Transcription–Translation
Reactions FromNonmodel Bacteria,” Proceedings of the National Academy
of Sciences, vol. 115, no. 19, E4340–E4349, 2018.

155

[264] A. S. Karim, J. T. Heggestad, S. A. Crowe, and M. C. Jewett, “Controlling
Cell-free Metabolism Through Physiochemical Perturbations,” Metabolic
Engineering, vol. 45, pp. 86–94, 2018.

[265] R. Marshall, C. S. Maxwell, S. P. Collins, T. Jacobsen, M. L. Luo, M. B.
Begemann, B. N. Gray, E. January, A. Singer, Y. He, et al., “Rapid and Scal-
able Characterization of CRISPR Technologies Using an E. coli Cell-free
Transcription-Translation System,”Molecular Cell, vol. 69, no. 1, pp. 146–
157, 2018.

[266] L. E.Contreras-Llano andC.Tan, “High-throughput Screening ofBiomolecules
Using Cell-free Gene Expression Systems,” Synthetic Biology, vol. 3, no. 1,
ysy012, 2018.

[267] H. Niederholtmeyer, Z. Z. Sun, Y. Hori, E. Yeung, A. Verpoorte, R. M.
Murray, and S. J. Maerkl, “Rapid Cell-free Forward Engineering of Novel
Genetic Ring Oscillators,” elife, vol. 4, e09771, 2015.

[268] A. S. Karim and M. C. Jewett, “A Cell-free Framework for Rapid Biosyn-
thetic PathwayPrototyping andEnzymeDiscovery,”Metabolic Engineering,
vol. 36, pp. 116–126, 2016.

[269] K. A. Calhoun and J. R. Swartz, “Energizing Cell-free Protein Synthesis
with Glucose Metabolism,” Biotechnology and Bioengineering, vol. 90,
no. 5, pp. 606–613, 2005.

[270] F. Caschera and V. Noireaux, “Synthesis of 2.3 mg/ml of Protein with an All
Escherichia Coli Cell-free Transcription–translation System,” Biochimie,
vol. 99, pp. 162–168, 2014.

[271] Z. Z. Sun, C. A. Hayes, J. Shin, F. Caschera, R. M. Murray, and V. Noireaux,
“Protocols for Implementing an Escherichia Coli Based TX-TLCell-free Ex-
pression System for Synthetic Biology,” Journal of Visualized Experiments:
JoVE, no. 79, 2013.

[272] J. U. Bowie, S. Sherkhanov, T. P. Korman, M. A. Valliere, P. H. Opgenorth,
andH. Liu, “Synthetic Biochemistry: the Bio-inspired Cell-free Approach to
Commodity Chemical Production,” Trends in Biotechnology, vol. 38, no. 7,
pp. 766–778, 2020.

[273] N. Horvath, M. Vilkhovoy, J. A. Wayman, K. Calhoun, J. Swartz, and J. D.
Varner, “Toward a Genome Scale Sequence Specific Dynamic Model of
Cell-free Protein Synthesis in Escherichia Coli,” Metabolic Engineering
Communications, vol. 10, e00113, 2020.

[274] D. Garenne, S. Thompson, A. Brisson, A. Khakimzhan, and V. Noireaux,
“The All-E. Coli TXTL Toolbox 3.0: New Capabilities of a Cell-Free Syn-
thetic Biology Platform,” Synthetic Biology, 2021.

156

[275] J. Garamella, R. Marshall, M. Rustad, and V. Noireaux, “The All E. coli TX-
TL Toolbox 2.0: a Platform for Cell-free Synthetic Biology,” ACS Synthetic
Biology, vol. 5, no. 4, pp. 344–355, 2016.

[276] Y.-C. Kwon and M. C. Jewett, “High-throughput Preparation Methods of
Crude Extract for Robust Cell-free Protein Synthesis,” Scientific Reports,
vol. 5, no. 1, pp. 1–8, 2015.

[277] J. D. Orth, I. Thiele, and B. Ø. Palsson, “What is Flux Balance Analysis?”
Nature Biotechnology, vol. 28, no. 3, pp. 245–248, 2010.

[278] A. Khodayari, A. R. Zomorrodi, J. C. Liao, and C. D. Maranas, “A Kinetic
Model of Escherichia Coli Core Metabolism Satisfying Multiple Sets of
Mutant Flux Data,” Metabolic Engineering, vol. 25, pp. 50–62, 2014.

[279] E. Karzbrun, J. Shin, R. H. Bar-Ziv, and V. Noireaux, “Coarse-grained
Dynamics of Protein Synthesis in a Cell-free System,” Physical Review
Letters, vol. 106, no. 4, p. 048 104, 2011.

[280] R. Marshall and V. Noireaux, “Quantitative Modeling of Transcription and
Translation of an All-E. coli Cell-free System,” Scientific Reports, vol. 9,
no. 1, pp. 1–12, 2019.

[281] D. Siegal-Gaskins, Z. A. Tuza, J. Kim, V. Noireaux, and R. M. Murray,
“Gene Circuit Performance Characterization and Resource Usage in a Cell-
free “Breadboard”,” ACS Synthetic Biology, vol. 3, no. 6, pp. 416–425,
2014.

[282] W. Poole, D. L. Gibbs, I. Shmulevich, B. Bernard, and T. A. Knĳnenburg,
“Combining Dependent P-values with an Empirical Adaptation of Brown’s
Method,” Bioinformatics, vol. 32, no. 17, pp. i430–i436, 2016.

[283] R. J. Ellis, “Macromolecular Crowding: Obvious but Underappreciated,”
Trends in Biochemical Sciences, vol. 26, no. 10, pp. 597–604, 2001.

[284] X. Ge, D. Luo, and J. Xu, “Cell-free Protein Expression UnderMacromolec-
ular Crowding Conditions,” PloS One, vol. 6, no. 12, e28707, 2011.

[285] M. Basan, “Resource Allocation and Metabolism: the Search for Governing
Principles,” Current Opinion in Microbiology, vol. 45, pp. 77–83, 2018.

[286] D. Dutta and S. Saini, “Phenomenological Models as Effective Tools to
Discover Cellular Design Principles,” Archives of Microbiology, vol. 201,
no. 3, pp. 283–293, 2019.

[287] B. O. Palsson and E. N. Lightfoot, “Mathematical Modelling of Dynamics
and Control in Metabolic Networks. I. On Michaelis-Menten Kinetics,”
Journal of Theoretical Biology, vol. 111, no. 2, pp. 273–302, 1984.

157

[288] W. Halter, F. Allgower, R. M. Murray, and A. Gyorgy, “Optimal Experiment
Design and Leveraging Competition for Shared Resources in Cell-free Ex-
tracts,” in 2018 IEEE Conference on Decision and Control (CDC), IEEE,
2018, pp. 1872–1879.

[289] T. Matsuura, N. Tanimura, K. Hosoda, T. Yomo, and Y. Shimizu, “Reaction
Dynamics Analysis of a Reconstituted Escherichia Coli Protein Translation
System by Computational Modeling,” Proceedings of the National Academy
of Sciences, vol. 114, no. 8, E1336–E1344, 2017.

[290] T. Matsuura, K. Hosoda, and Y. Shimizu, “Robustness of a Reconstituted
Escherichia Coli Protein Translation System Analyzed by Computational
Modeling,” ACS Synthetic Biology, vol. 7, no. 8, pp. 1964–1972, 2018.

[291] M. Weitz and F. C. Simmel, “Synthetic In Vitro Transcription Circuits,”
Transcription, vol. 3, no. 2, pp. 87–91, 2012.

[292] S. W. Schaffter and R. Schulman, “Building in Vitro Transcriptional Reg-
ulatory Networks by Successively Tntegrating Multiple Functional Circuit
Modules,” Nature chemistry, vol. 11, no. 9, pp. 829–838, 2019.

[293] A. Baccouche, K. Montagne, A. Padirac, T. Fujii, and Y. Rondelez, “Dy-
namic DNA-toolbox Reaction Circuits: A Walkthrough,” Methods, vol. 67,
no. 2, pp. 234–249, 2014.

[294] J. R. Karr, J. C. Sanghvi, D. N. Macklin, M. V. Gutschow, J. M. Jacobs, B.
Bolival Jr, N. Assad-Garcia, J. I. Glass, and M. W. Covert, “A Whole-cell
Computational Model Predicts Phenotype from Genotype,” Cell, vol. 150,
no. 2, pp. 389–401, 2012.

[295] D. N. Macklin, T. A. Ahn-Horst, H. Choi, N. A. Ruggero, J. Carrera, J. C.
Mason, G. Sun, E. Agmon, M. M. DeFelice, I. Maayan, et al., “Simulta-
neous Cross-evaluation of Heterogeneous E. Coli Datasets via Mechanistic
Simulation,” Science, vol. 369, no. 6502, 2020.

[296] J. Shin andV.Noireaux, “EfficientCell-freeExpressionwith theEndogenous
E. Coli RNA Polymerase and Sigma Factor 70,” Journal of Biological
Engineering, vol. 4, no. 1, pp. 1–9, 2010.

[297] R. P. Maharjan and T. Ferenci, “Global Metabolite Analysis: the Influence
of Extraction Methodology on Metabolome Profiles of Escherichia Coli,”
Analytical Biochemistry, vol. 313, no. 1, pp. 145–154, 2003.

[298] A. Vargha and H. D. Delaney, “The Kruskal-Wallis Test and Stochastic
Homogeneity,” Journal of Educational and Behavioral Statistics, vol. 23,
no. 2, pp. 170–192, 1998.

[299] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, “Emcee: the
MCMC Hammer,” Publications of the Astronomical Society of the Pacific,
vol. 125, no. 925, p. 306, 2013.

158

[300] M. Kaiser, F. Jug, T. Julou, S. Deshpande, T. Pfohl, O. K. Silander, G.
Myers, and E. Van Nimwegen, “Monitoring Single-cell Gene Regulation
Under Dynamically Controllable Conditions with Integrated Microfluidics
and Software,” Nature Communications, vol. 9, no. 1, pp. 1–16, 2018.

	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	Preface
	Introduction
	Chemical Reaction Networks as a Biochemical Programming Language
	Machine Learning as a Programming Methodology
	Past Work Relating Machine Learning and Chemical Reaction Networks
	Statistical Physics Connects Chemical Reaction Networks to Machine Learning
	Synthetic and Systems Biology: Two Sides of the Same Coin

	BioCRNpyler: Compiling Chemical Reaction Networks from Biomolecular Parts in Diverse Contexts
	Forward
	Abstract
	Introduction
	Motivating Examples
	Framework and Compilation Overview
	Building an Open-Source Community
	Future Directions
	Supplemental: Code for Examples
	Supplemental: Tables of Features
	Supplemental: Creating Custom BioCRNpyler Classes

	Chemical Boltzmann Machines
	Forward
	Abstract
	Introduction
	Relevant Background
	Exact Constructions and Theorems
	Approximate Bimolecular Implementations
	Detailed Balanced CRN Learning Rule
	Discussion
	Appendix

	Detailed Balanced Chemical Reaction Networks as Generalized Boltzmann Machines
	Forward
	Abstract
	Introduction
	Background
	Effective Use of Hidden Species Requires Reachability Entanglement
	Inference with Detailed Balanced CRNs
	Autonomous Learning CRNs
	Thermodynamics of Learning and Inference
	Discussion

	Reducing the Complexity of E. coli Cell Extract Metabolism with Phenomenological Modeling
	Forward
	Abstract
	Introduction
	Results and Discussion
	Methods

	Afterword
	Bibliography

