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Living organisms rely on molecular networks, such as gene
circuits and signaling pathways, for information process-
ing and robust decision-making in crowded, noisy environ-
ments. Recent advances show that interacting biomolecules
self-organize by phase transitions into coexisting spatial
compartments called condensates, often on cellular sur-
faces such as chromatin and membranes. In this paper, we
demonstrate that multicomponent fluids can be designed
to recruit distinct condensates to surfaces with differing
compositions, performing a form of surface classification
by condensation. We draw an analogy to multidimensional
classification in machine learning and explore how hidden
species, analogous to hidden nodes, expand the expressiv-
ity and capacity of these interacting ensembles to facilitate
complex decision boundaries. By simply changing levels of
individual species, we find that the same molecular reper-
toire can be reprogrammed to solve new tasks. Together,
our findings suggest that the physical processes underlying
biomolecular condensates can encode and drive adaptive
information processing beyond compartmentalization.

Introduction

Living organisms process information through networks of
interacting constituents spanning molecular to ecological
scales. In cells, classic examples include gene regulatory
circuits and signal transduction pathways where molecu-
lar features such as binding and copy number combine
to drive biological decisions such as discrimination, feed-
back control, adaptation, and bistability (1–4). Although
biological pathways are often described as modular (2),
where a dedicated decision-making module drives distinct
downstream events, some computational capability is em-
bedded in processes that appear to serve different cellular
tasks. For instance, the very act of building a macromolec-
ular assembly can encode and interpret high-dimensional
inputs to trigger context-specific outcomes (5–10). As an-
other example, while genetic control circuits can be engi-
neered to reduce fluctuations in molecular concentrations
(11, 12), the same control naturally emerges from the ther-
modynamics that underlies single-species phase separa-
tion (13). More generally, this kind of embedded and dis-
tributed computational power is often quite robust due to
the underlying collective physics that drives it.

Recently, biomolecular condensation has emerged as a
conserved mechanism for spatially organizing the cellular
milieu across the tree of life (14–16). Rather than being
well-mixed, molecules in cells often self-organize to form
dozens of coexisting compartments called condensates.
These compartments condense multiple biomolecules
through phase transitions (14, 17, 18), typically around in-
tracellular surfaces. Prominent examples span gene reg-
ulatory condensates that form at specific DNA (19–23) or
RNA scaffolds (24, 25), and signaling condensates that
are membrane-localized (26–28). At many surfaces, a par-
ticular combination of surface-resident molecules (i.e. “in-
puts”) like DNA-bound transcription factors or membrane-
localized receptors facilitates assembly of specific multi-
component condensates. These condensates, in turn,
selectively recruit biomolecules (i.e. “outputs”) like poly-
merases or signaling messengers from the cellular mi-
lieu to drive surface-specific downstream functions—like,
for instance, activating certain genes but not others. In
multicomponent fluids such as biomolecular condensates,
the mapping from molecular parameters to emergent high-
dimensional phase behavior is typically nonlinear (29–39).
Leveraging this, recent theoretical (40, 41) and experi-
mental (42–48) work highlights the potential of conden-
sates to perform computations beyond compartmentaliza-
tion. There is interest to understand the design principles
and constraints that accompany biomolecular condensate-
mediated computations.

In this paper, we explore the computational abilities of
biomolecular fluids to assemble surface-specific conden-
sates, i.e., a form of surface classification by condensa-
tion. First, we model the exchange of molecules between
a surface—characterized by its composition of surface-
resident input species—with the broader cellular milieu, or
“reservoir”. By exploiting differentiable methods, we tune
molecular parameters like intermolecular interactions and
reservoir makeup to imbue fluids with desired phase be-
havior. With this framework, we demonstrate that designed
fluids can deploy distinct condensates on surfaces that
only subtly differ in their input compositions. This surface
classification is driven by the formation of condensates that
recruit to certain surfaces, but not others, high concentra-
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tions of an output molecule necessary for executing spe-
cific downstream functions. The addition of extra hidden
species that can interact with all other species but can-
not functionally substitute output molecules enhances the
capacity to sculpt complex decision boundaries. We show
that this expanded expressivity is driven by encoding novel
phases that are distinct in hidden species composition but
recruit the same outputs. Once designed, we show that
simply adjusting hidden species levels in the reservoir en-
ables the same molecular repertoire to classify new tasks.
Together, our study suggests that the physics underlying
multicomponent condensates offers flexible and versatile
mechanisms for information processing in living and syn-
thetic systems.

Model Framework

Motivation
Surface condensation plays a key role in regulating in-
tracellular processes, such as the formation of activating
or silencing condensates on distinct genetic loci or vary-
ing signaling condensates on the plasma membrane (Fig.
1A) (20, 26). Typically, the combination of loci-specific
DNA-bound transcription factors (or surface-localized “in-
put” species) facilitates the assembly of particular conden-
sates. These loci-specific condensates, in turn, selectively
recruit either gene-activating polymerases (an example of
an “output” species, Fig. 1A, green) or gene-silencing re-
pressors (an example of another “output” species, Fig. 1A,
pink) that drive distinct downstream functions. Beyond in-
put and output species, transcriptional cofactors and chro-
matin remodelers (“hidden” species) often regulate phase
behavior and molecular recruitment but ultimately do not
directly drive output response. Surface-localized receptor
combinations (inputs), downstream messengers or tran-
scription factors (outputs), and adaptors/kinases (hidden
species) play analogous roles in membrane-localized con-
densation. Although these represent different biological
pathways, they share similarities in that surface-specific
properties enable the assembly of function-specific con-
densates, a form of classification by condensation.

This motivates a minimal model for the surface conden-
sation of molecules from a complex cellular milieu. The
cellular milieu is modeled as an infinite molecular reser-
voir that exchanges molecules with a surface of volume
V . Here, V describes an effective volume occupied by
the biological scaffold and adjacent interacting molecules,
and it can generically describe 2D membranes or 3D DNA
loci. In the model, species are partitioned into three types.
Input species are localized to the surface at a fixed com-
position, and distinct surfaces differ in the combination of
input species they localize. Unlike the input species, both
the output and hidden species freely exchange between
the surface and the reservoir.

With this model, our goal is to design a molecular network
such that one specific output molecule is recruited to sur-
faces with specific combinations of input molecules, and a

different output molecule is recruited to surfaces with other
input combinations. The recruitment of distinct outputs to
surfaces with specific combinations of input molecules is
possible when the molecular network encodes for multi-
ple types of condensates, i.e., multiple phases where each
phase is enriched in only one output species. The forma-
tion of one condensate over another in response to sub-
tle differences in input combinations represents a sharp
phase transition that can, in principle, be exploited to en-
gineer for ultra-sensitive switches in the recruitment of dif-
ferent output molecules by designing phase boundaries in
the space of input composition (41, 49) (Fig. 1B).

Model formulation
Towards this goal, we model a multicomponent fluid with
N solute species and an additional solvent species. These
N solutes consist of Nin input, Nout output, and Nh hidden
species (N = Nin + Nout + Nh). For simplicity, the sizes
of all species are assumed to be equal to the volume ν
of the solvent molecule, and the mean volume fraction of
species i is therefore related to the absolute number of
particles ni within the surface by ϕi = niν/V . We work in
the mean-field limit and assume that the surface remains
well-mixed. The surface is therefore described by its mean
composition vector, labeled as ϕ⃗ ≡ ϕin ◦ ϕout ◦ ϕh, where ◦
indicates vector concatenation and

ϕin = (ϕin,1, ...,ϕin,Nin) (1)

ϕout = (ϕout,1, ...,ϕout,Nout) (2)

ϕh = (ϕh,1, ...,ϕh,Nh) . (3)

The subvectors denote the input, output and hidden com-
position vectors, respectively, and the total volume fraction
of (non-solvent) species is ϕT =

∑N
i=1 ϕi. The surface

only exchanges hidden and output species with the infi-
nite reservoir. Within our framework, we don’t prescribe
any specific model of the reservoir (see SI Note 7) and as-
sume that it can maintain output and hidden species at a
constant chemical potential described by

µ⃗res =
(
µres

out,1, . . . ,µres
out,Nout

,µres
h,1, . . . ,µres

h,Nh

)
. (4)

The non-dimensionalized free energy density of such a
surface is

Ωsurface = βνf(ϕ⃗,χ)−βµ⃗res · ϕ⃗oh (5)

where ϕ⃗oh = ϕ⃗out ◦ ϕ⃗h and β = 1/kBT is the inverse tem-
perature. The quantity βµ⃗res · ϕ⃗oh therefore describes the
external coupling of the output and hidden species to the
reservoir. Additionally, f is the internal free energy density
of the surface, approximated in Flory-Huggins theory as

βνf(ϕ⃗,χ) =
N∑

i=1
ϕi logϕi +(1−ϕT ) log(1−ϕT )

+ 1
2

N∑
i=1

N∑
j=1

ϕiχijϕj

(6)

2 Zentner et al.



cytoplasmic
reservoir (µres)

A

Interactions (χ)

genomic loci 2genomic loci 1

B

Input

Output

Output

surface

input species
(surface bound)

output species
(freely exchanging)

Target

Training Parameters Mean-Field Dynamics

[Input 1]

Classification

[In
pu

t 2
]

Predicted

[In
pu

t 2
]

Backpropagation
Δχij, Δμres,i

ϕ o
ut

Output 1

ϕ o
ut

Output 2

ϕ o
ut

time

ϕ o
ut

...Reservoir potential (μres)

nuclear
reservoir (µres)

+15 -15

0 -5

Fig. 1. (A) The model is motivated by multiple cellular condensates that form on surfaces such as DNA and bilayers. Species that are localized primarily to the surface,
such as transcription factors (DNA) and membrane proteins (bilayer), are modeled as input species (black and gray). Other species, such as coactivators (DNA) or kinases
(bilayer), freely exchange between the surface and the cellular environment, or reservoir. Output species (green, pink), in particular, are freely exchanging molecules that
can drive a particular downstream function—for example, polymerases (DNA) that turn on genes or allosteric activators (bilayer) that can translocate to complete signal
transduction. Polymerases are recruited to active genes (green) and repressors to silenced genes (pink). (B) Motivated by (A), we consider a simplified model in which
surfaces characterized by the presence of different combinations of input species recruit distinct output species from an infinite reservoir. (Left) The key parameters of the
model are the interactions χ between the species and the reservoir chemical potentials µ⃗res. (Middle) We consider the evolution of surfaces in the well-mixed, mean-field
limit. (Right) The recruitment of distinct outputs is accomplished through forming multiple phases in the parameter space of input concentrations. The coexistence line across
which the system undergoes an abrupt phase transition functions as a decision boundary in a classification of surfaces. (Loop) We use JAX to iteratively tune χ and µ⃗res with
the goal of recruiting the desired output species (based on the phase label, x vs o) for each training data point.

where χ is the effective interaction matrix,

χij = zβ

(
ϵij −

ϵii + ϵjj

2

)
(7)

and z is the number of nearest interacting neighbors, with
ϵij being the microscopic nearest-neighbor contact energy
between species i and species j. Note that since χii = 0
by definition, the i = j terms do not contribute to the above
equation, and further the equation assumes negligible ef-
fective solute-solvent interactions.

We next write a dynamical model to probe the steady-
state composition of a surface characterized by a fixed in-
put species composition ϕ⃗in. The volume fractions of all
non-input species evolve over time due to the exchange
with the reservoir until a steady-state is reached. We treat
these compositional dynamics as near-equilibrium relax-
ation that, to a first approximation, is driven by linear gradi-
ents of the free energy with respect to the surface’s compo-
sition (50). Here, we assume that solvent molecules have
much faster dynamics than solutes, which improves nu-
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merical stability of the optimization but does not affect the
steady-state (Fig. S6). Thus, the temporal evolution of
the surface composition ϕ⃗oh of the exchanging output and
hidden species is written as (SI Note 1)

dϕ⃗oh

dt
≈ −D

dΩsurface

d⃗ϕoh

= −βD(µ⃗− µ⃗res) (8)

where βµi = ∂(βνf)/∂ϕoh,i is the intrinsic (non-
dimensionalized) chemical potential of exchanging
species i. D is the (Nout + Nh) × (Nout + Nh) mobility
matrix that sets the rate of exchange between the surface
and reservoir and is chosen, for simplicity, to be diagonal,
identical for solutes, and consistent with Fick’s law at dilute
equilibrium conditions (36) (SI Note 1). At steady state,
the surface and reservoir must have identical chemical
potentials in the non-input species but can have distinct
compositions—a feature of multiphase systems that we
aim to exploit.

Designing multiphase classifiers
With this forward model, our goal is to identify an effective
interaction matrix χ and reservoir chemical potential µ⃗res
(at β = 1) such that, for a surface defined by a given in-
put vector ϕ⃗in, the steady state is enriched in the desired
output species and depleted in all other outputs (Fig. 1B).
This output convention is akin to “one-hot” representations
common in machine learning. To train this model, we em-
ploy a differentiable implementation of the above dynam-
ical description amenable to gradient-based optimization
methods that minimize a loss function (51).

In particular, we require that the following criteria be cap-
tured by our loss function: first, the final concentration of
the desired output species should be above some thresh-
old value ϕmax = A/N , where A is a value to be speci-
fied. Second, the final concentrations of the undesired out-
put species should be below some threshold ϕmin = B/N ,
where B is a value to be specified. These two criteria in
turn enforce that the ratio of desired to undesired outputs
should be above a set threshold A/B, and that this ra-
tio is attained with a sufficiently enriched output species.
We choose A = 1.1 (mild enrichment above 1/N ), and
B = 0.25 (significant depletion below 1/N ).

We find empirically that the following loss function gives
the best performance in optimizing for these two criteria:

L(χ,µ⃗res) = 1
nbatch

nbatch∑
a=1

lj(a)

(
χ,µ⃗res; ϕ⃗a

)
(9)

where the sum is over nbatch data points in the training
set, data point a corresponds to a surface that reaches
steady-state concentrations ϕ⃗a, and j(a) is the index of
the desired output species for data point a. We define the
function

lj(χ,µ⃗res) = log(1+Npj)+
Nout∑
k=1

(k ̸=j)

log(1+Nqk) ≥ 0 (10)

where

pj = max(0,ϕmax −ϕout,j) (11)

qk = max
(
0,ϕout,k −ϕmin

)
. (12)

The term lj is therefore at a global minimum when pj =
qk = 0, and L is at a global minimum when this condition
is satisfied for all data points a.

We minimize L with respect to χ and µ⃗res over several
thousand training epochs using an RMSProp algorithm
from the Optax library (51, 52). Once trained, we evalu-
ate the performance of the classifier using a success cri-
terion that follows from the definition of the loss function:
given a test point a of input concentrations, the surface’s
steady-state composition must be enriched above ϕmax in
the j(a)’th output and depleted below ϕmin in all other out-
puts for the point to be considered successfully classified.
The classification success is therefore

Sc = 1
nset

nset∑
a=1

[
1−Θ(lj(a))

]
(13)

where nset = 500 is the number of points in the valida-
tion/test set and Θ(x) = 0 if x = 0 and is 1 otherwise.

In training the system over χ and µ⃗res, we impose several
constraints. First, since we are modeling liquid phases,
we require that energies be of order kBT and therefore
enforce that each entry of the chi matrix has |χij | < 15,
which is O(z). Second, since we are designing surfaces to
only enrich one particular output species, we require that
output-output interactions be repulsive, with χij > 10 for
distinct output species i and j. Third, we enforce that all
output species have the same reservoir chemical potential
as a design criterion, which is meant to mimic the surface
choosing from outputs that are at "identical" potentials in
the reservoir. Finally, since input-input interactions and in-
put chemical potentials don’t affect steady-state behavior
in the mean-field limit, they are omitted from the model and
not treated as free design parameters.

Results

Tuned molecular networks drive linear classification
Armed with this model, we first aim to create linear clas-
sifiers. In a simple mixture comprising only 2 input and 2
output species, our target is to design surface condensates
that recruit a specific output molecule (green or pink) de-
pending on which input species is at higher concentrations
(Fig. 2A), i.e., an ultrasensitive ratiometric sensor. With
this objective in mind, we initialize a non-interacting liquid
mixture and train the molecular interactions and reservoir
potential over multiple epochs (Fig. 2B). The learned inter-
action matrix broadly matches physical intuition, with each
input preferring to mix with the cognate output and demix
from the non-cognate output. Upon testing, our model ex-
hibits a sharp switch in composition across the boundary
(Fig. 2C). This switch is consistent with a first-order phase
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Fig. 2. (A) The target linear decision boundary is shown, with each axis being the concentration of one of the input species. Green and pink denote regions where we desire
condensates enriched in the green and pink component, respectively. (B) Predictions from the trained model for different input compositions in the test set. The axes depict
the input concentrations while each dot is a test input condition, colored by the ratio of the two output species at steady-state (displayed on a log-scale). Along the solid black
line, the system undergoes a discontinuous transition in mean-field composition across the boundary, as shown in the right-most panel. (C) Evolution of training loss and
parameters over the optimization. The training parameters converge to a solution that is analytically consistent with the formation of a linear decision boundary (SI Note 3).

transition (Fig. 2C) that is characterized by a temperature-
dependent discontinuity in output recruitment (Fig. S1B).

To understand how the decision boundary emerges from
molecular parameters, we develop a simple analytical ap-
proach (SI Note 3). We first define the decision boundary
as the manifold where all output species are recruited at
identical levels. We find that the expressivity (or repertoire
of encodable manifolds) of mixtures with 2 inputs and 2
outputs is limited to linear boundaries, and this theoretical
prediction is supported by simulation (Fig. S2A, SI Note
3). More generally, we show that liquids with input and
output species can only typically encode linear decision
boundaries in input space (SI Note 3). Consistent with this
prediction, we find that our model still sharply classifies
higher-dimensional linear manifolds (Fig. S2B).

To test our model’s prediction that purely input-output mix-
tures cannot classify nonlinear boundaries, we train a 2
input and 2 output mixture to separate an elementary non-
linear manifold: an upper quadrant AND-like distribution,
in which one output is recruited only when both inputs are
present at high concentrations; otherwise, the other out-
put is recruited. After training, we find that input-output
mixtures fail to encode this nonlinear decision boundary,
instead showing a best-fit linear approximation (Fig. S4).

Hidden species expand capacity for nonlinear com-
plex decisions
The inability to form nonlinear decision boundaries with
simple input-output networks motivates the introduction of
hidden species. In our model, hidden species are similar to
output species in that they can interact with all molecules
and be recruited to surfaces from the reservoir, thereby
influencing the steady-state condensate that forms. How-
ever, their steady-state concentrations are taken to be ir-
relevant in performing the classification of the surface; they
therefore play a role analogous to that of hidden nodes in
a neural network (53).

We explore how adding hidden species to our model could
enhance classification (Fig. 3A). Extending our analyti-
cal approach, we find that the addition of a single hidden
species offers enough flexibility to encode decision bound-
aries of varying curvatures (Fig. S2C, SI Note 3). We thus
explore classification of complex, high-dimensional deci-
sion boundaries by including multiple hidden species.

First, we demonstrate the effectiveness of hidden species
by programming an AND-like upper quadrant decision
boundary with two additional hidden species (gold and
cyan in Fig. 3B). Analyzing the trained molecular network
reveals a complex interplay of interactions that leads to es-
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Fig. 3. (A) Hidden species, depicted in cyan in the interaction matrix and analogous to hidden nodes in Boltzmann machines, shape emergent overall phase behavior by
interacting with input and output species but cannot directly drive output function. (B) Using only 2 hidden species (gold and cyan), we train for parameters to form an AND-like
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with other nonlinear decision boundaries in the mean-field limit. (left to right) A XOR boundary trained with 6 hidden species, a circular boundary trained with 10 hidden
species, a sine curve boundary trained with 12 hidden species, and a checkerboard boundary trained with 20 species.

sentially binary responses in the output species recruited
to the surface (Fig. 3C, Fig. S4). Like the linear clas-
sifier, and consistent with a phase transition, our trained
AND system exhibits a sharp switch in composition across
the decision boundary (Fig. 3C). With the addition of
more hidden species, the model can encode increasingly
nonlinear decision boundaries such as XOR, circle, sinu-
soidal, and checkerboard patterns (Fig. 3D). Similar to the
AND boundary, each of these systems exhibit sharp, near-
discontinuous switches in the recruited species across the
boundary (Fig. S5). The trained parameters for each deci-
sion boundary are shown in Fig. S7.

Hidden species expand capacity by encoding multiple
modular, encrypted phases
To understand how hidden species enhance expressiv-
ity, we trained mixtures with varying numbers of hidden

species to solve a range of decision boundaries, and eval-
uated the classification success (as defined in eq. 13).
We find that the addition of hidden species improves clas-
sification but saturates beyond a decision-boundary spe-
cific threshold (Fig. 4A, left). While surface condensates
correctly enrich the pertinent output, we find that surfaces
with the same output molecules often recruit varying con-
centrations of hidden species. To better understand this,
we estimated how many distinct phases were formed as
defined by the overall composition of hidden and output
species on surfaces. Collecting the compositions across
multiple surfaces (nset test points into a matrix of size
nset × (Nout +Nh)), we perform principal component anal-
ysis and use a Marchenko-Pastur (54) based threshold to
estimate the number of distinct phases from the significant
eigenmodes. We then perform hierarchical clustering to
identify the average composition of each phase (see SI
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Note 5). We find that the number of steady-state phases
with distinct compositions grows with hidden species (Fig.
4A, right). This suggests that encoding multiple phases
plays an important role in improving expressivity of multi-
component condensates.

To explore this deeper, we consider the trained XOR liquid
with 6 hidden species (Fig. 4B). Compositional analysis re-
veals that the XOR decision boundary is achieved through
4 distinct phases. For example, areas with high output 1
(green output) are encoded by 2 distinct phases (e.g., red
and yellow phases, or Ph2 and Ph4) that recruit different
hidden species but the same output species. Identifying
each point with an independent surface, our model shows
that multiple surfaces that condense the same output re-
cruit distinct hidden species, and thus vary in phase com-
position. Biologically, such a solution might look like con-
densates that drive gene activation at different DNA loci by
recruiting high concentrations of the functional polymerase
but varying concentrations of coactivator molecules. Thus,
the encoding of multiple encrypted phases, which differ in
hidden species but recruit similar output molecules, is the
primary mechanism by which hidden species improve ex-
pressivity.

In the XOR liquid, we find that the 4 distinct encrypted

phases modularly partition the input space into quadrants,
such that groups of related inputs drive condensation of
a particular phase. When we extend this analysis to other
nonlinear decision boundaries, we find that hidden species
generally learn modular representations of related input
surfaces (Figs S8-S12). We next explore whether we can
repurpose this modular multiphase representation learned
by hidden species for other tasks.

Changing reservoir composition of hidden-species
drives solution of new classification tasks
Motivated by the modularity of encoded phases, we hy-
pothesized that once trained with sufficient hidden species,
the same molecular ensembles could be adapted to solve
new decision tasks by simply tuning the reservoir of hid-
den species without changing interactions. This idea is
analogous to machine-learning architectures comprising
modules where an upstream (typically randomly-wired)
network remains fixed and solutions to new tasks are
achieved by training only the parameters of a small down-
stream network (55, 56). To demonstrate this idea, we
revisit the trained XOR liquid and ask whether it can be re-
purposed to solve AND or OR decision boundaries only by
changing reservoir composition. We find that changing the
potential of a few key hidden species is sufficient to fine-
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random interaction network) for various classification tasks.

tune the same molecular mixture to perform distinct tasks
(Fig. 5A).

Given this finding, we next explored whether liquids with-
out designed interactions, e.g., with randomly chosen
molecular interactions χij , could nevertheless be trained
to classify surfaces through fine-tuning the reservoir alone.
To test this, we generated liquids with 2 inputs, 2 out-
puts, and a large number of hidden species (Nh = 30,
SI Note 6). The interactions between species were sam-
pled from a near-uniform distribution such that |χij | ≲ 12;
for a fixed decision boundary, we report the distribution of
model performance over n = 30 different interaction net-

works (SI Note 6). Through training only the reservoir
makeup, we show that liquids with randomly chosen and
fixed interactions χ contain the ability to model both linear
and nonlinear decision boundaries, albeit with decreasing
performance as we increase the complexity of the decision
boundaries that we seek to approximate (Fig. 5B).

Our results suggest that rather than constantly redesign-
ing or evolving new interactions, the physics of surface
condensation provides a flexible mechanism to redeploy
the same molecular repertoire to solve new tasks by ad-
justing compositions of the reservoir. An analogous idea
has been explored previously by Elowitz and coauthors in
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the context of BMP signaling and dimerization networks
(4, 57) where they show that tuning stoichiometries but not
binding affinities in dilute molecular ensembles can facili-
tate solving distinct tasks. Together, this highlights that the
physics embedded in collective molecular networks per-
mits flexible computations at distinct hierarchies.

Surface condensates classify high-dimensional
datasets
Our motivation for physically embedded computation in
phase separation is to process chemical stimuli in cells
through concentration-dependent condensation, not to
build a general-purpose classifier for arbitrary domains
(e.g., distinguishing cat vs. dog images). In the same
spirit, related work has evaluated physical systems as
classifiers of physical stimuli in many domains (58), rang-
ing from molecular concentrations to mechanical forces
(59, 60). Molecular examples include winner-take-all
reaction networks (61), self-assembly with Hebbian-like
interactions (8, 10), and multicomponent liquids (40, 41).
Nevertheless, to evaluate expressivity of these physical
systems on high-dimensional inputs in a standardized way,
we follow this literature and use symbolic ML datasets as
benchmarks, not as an end in themselves: each feature is
reinterpreted as a molecular concentration and presented
to the system as a physical stimulus.

We start by classifying the near-linear Seaborn Iris
dataset, which comprises 4 analog flower features (petal
and sepal length and width) and 3 output labels (flower
species). The value of the j’th feature xaj of the a’th data
point xa is encoded as an input concentration according to
the linear, scaled mapping ϕaj = ϕ0

(
xaj−mina xaj

maxa xaj−mina xaj

)
,

where mina xaj and maxa xaj denote the minimum and
maximum xaj across all data points a, respectively, and
ϕ0 = 0.5/4 = 0.125, such that the input species can occupy
a maximum of half of the volume. We incorporate 1 out-
put species per label to mimic a species-specific molecule.
Once trained, we demonstrate that this 7-component mix-
ture can directly classify the IRIS dataset without the use
of hidden nodes (Fig. S13).

Next, we turn to the higher-dimensional MNIST dataset, a
collection of labeled hand-drawn images of digits, to study
how our model generalizes to larger interaction networks.
We first coarse-grain each grayscale image from 28 × 28
to 7 × 7 by averaging pixel values in a 4 × 4 block and as-
sign each pixel in the reduced image to an input species.
Then, we map the volume fraction ϕin,i of an input species
to its corresponding pixel value (xi) by ϕin,i = ϕ0(xi/255),
where ϕ0 = 0.5/49 ≈ 0.01. We train the mixture to initially
discriminate between two digits, achieving strong perfor-
mance with just a few hidden nodes (∼2-3). However,
digits that are traditionally harder to distinguish (Fig. 6B,
red, 3 vs 5) reached lower performance levels compared to
easier ones (Fig. 6B, blue, 0 vs 1). Extending the model to
simultaneously classify all ten digits requires more hidden
nodes (∼ 15) and saturating performance is lower (Fig. 6B,
black). As we relax the classification stringency by requir-
ing lower and lower excess of the desired output species
over the undesired ones without retraining the system (Fig.
6B inset), the success in classifying MNIST increases from
∼ 75% to a saturating test success of ∼ 85%. The confu-
sion matrices for each of these three cases is shown in
(Fig S13). More generally, the ability to design conden-
sates with large numbers of species for high-dimensional
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capacity is improved with hidden nodes but typically satu-
rates.

These results are generally consistent with recent findings
from (41), where the authors develop a 3D lattice conden-
sate model and train it with a probabilistic learning algo-
rithm derived from classical Boltzmann machines to clas-
sify MNIST digits with ∼ 75% accuracy. Their lattice liquid
with a “semipermeable membrane” is conceptually equiv-
alent to our approximation of “surface-localized inputs”.
In (10), which explores crystalline self-limited assembly,
MNIST digit classification is similarly demonstrated in a
theoretical model with ∼ 85−90% accuracy depending on
the design constraints. Together, these results highlight
the potential of multicomponent interacting mixtures to ef-
fectively classify high-dimensional decision boundaries de-
spite the different choices in microscopic physics, training
algorithms, design constraints, and problem encodings.

Mean-field solutions translate to successful classi-
fiers in 3D lattice liquids
We next aim to understand whether the mean-field de-
sign of liquids transfers to a more detailed 3D model that
explicitly captures spatial correlations. Following earlier
work (31, 41, 62), we adopt a lattice liquid formulation in
which we treat a surface as a lattice of length L × L × L
with 1 molecule per site. Interactions between 18 near-
est neighbors, i.e., those within a

√
2 lattice distance, con-

tribute to the overall energy of the system, which thus de-
pends on the spatial configuration of molecules (SI Note
4). To mimic our mean-field treatment of surface-localized
and well-mixed input species, we fixed their counts and
positions on the lattice, thereby treating them as immo-
bile and non-exchanging in the canonical ensemble (Fig.
7A). Output and hidden species are allowed to exchange
with the reservoir at a fixed chemical potential, i.e., in the
grand-canonical ensemble. Finally, we sample this mixed-
ensemble model through parallelized Monte-Carlo simu-
lations to ensure sufficiently equilibrated thermodynamic
properties and compositions (SI Note 4, Fig. S14B).

Unlike (41), we do not train molecular parameters using
this lattice liquid; instead, we simulate the lattice liquid with
trained parameters from the mean-field model and evalu-
ate it’s ability to classify surfaces. The designed mean-
field interactions are rescaled to account for the number of
nearest-neighbors to parameterize this lattice liquid. We
find empirically that decreasing temperature (or increas-
ing β) sharpens the decision boundary in the lattice model
(Fig. S14A), and all test data shown is at β = 2 in Fig. 7.

Using liquids trained on a range of decision boundaries
reported in Figs 2-3, we parameterize and sample the
equilibrium configurations of the 3D lattices. Overall, we
find that lattice liquids broadly encode similar classification
boundaries as their mean-field counterparts (Fig. 7B) with
a few key differences. Near the decision manifolds, we
find that lattice liquids exhibit more continuous variation
unlike the abrupt jumps in mean-field liquids - likely aris-

ing from coexisting but spatially isolated pockets of both
output species. Away from the boundary, output species
ratios still reach 10 − 100× ratios of correct over incor-
rect species (see Fig. S15). Finally, we find that as the
decision boundary increases in complexity , and thus re-
quires more hidden species, the asymptotic classification
success in the 3D liquid typically decreases (Fig. 7B, Fig
S14A). Together, the broad concordance between mean-
field and 3D lattice liquids supports the generality of our
results and motivates direct avenues for experimental test-
ing.

Discussion

Across the tree of life, biomolecules in cells can self-
organize into membraneless organelles called conden-
sates that regulate biological pathways. Motivated by this
fact, we explore the computational capabilities that are em-
bedded in and arise from the physical processes shap-
ing condensation in multicomponent mixtures. We find
that multicomponent liquids can recruit distinct molecules
(and thus condensates) to surfaces that differ only subtly
in their composition of surface-resident “input” molecules.
This high-dimensional surface classification is offered as a
model of how cells might assemble transcriptionally active
condensates at certain genetic loci (with a particular com-
bination of DNA-bound transcription factors) but repressive
ones at other DNA surfaces (with a different combination
of transcription factors). Together, our work suggests that
emergent condensation in multicomponent liquids like the
cellular milieu can drive computations and information pro-
cessing that may be necessary for regulating complex bio-
logical functions.

We show that inclusion of hidden species—molecules
that shape condensation but do not drive downstream
function—expands expressivity (63), i.e., the ability to en-
code increasingly complex classification boundaries. We
find that hidden species improve expressivity through en-
coding novel phases that differ in composition of hid-
den molecules but still recruit the same functional output
species. The role of such species could be played by dif-
ferent coactivators that recruit the same polymerases to
drive gene activity (64), varying co-receptors and adap-
tor proteins that recruit the same downstream kinase to
membranes to propagate signaling cascades (26), and
more generally by regulatory molecular cascades. In addi-
tion, hidden species simultaneously facilitate adaptability
by allowing reuse of the same molecular interaction net-
works, including even purely random ones , to perform dis-
tinct tasks (Fig. 5A-B) simply by changing makeup of the
cellular milieu. This adaptability loosely mimics cell-type
specific expression, in which cellular compositions can
use the same genetically-encoded molecular ensemble to
drive different gene programs with the same functional
molecular output species—a feature that emerges in other
multicomponent biomolecular networks (4, 65, 66). More
generally, the features of multicomponent phase separa-
tion naturally provide cells with regulatory knobs such as
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changing composition (by expression) or interactions (by
post-translational modifications) to leverage condensate-
mediated computations. Finally, our results emphasize
an expanded view of biological condensates through the
“hidden-output” axis: since condensates in vivo are typi-
cally characterized by visualizing only a subset of hidden
and/or output species, it is possible that (a) condensates
that appear similar (by hidden species) could carry out dis-
tinct functions (by recruiting distinct output species that are
not visualized), and vice versa (b) condensates that ap-
pear distinct (by hidden species) could still perform similar
functions (by recruiting similar output species that are not
visualized).

We show that increasing hidden species generally im-
proves the precision of classification but eventually sat-
urates. In principle, the physics underlying our multi-
component surface condensation model is flexible enough
to universally approximate arbitrary decision boundaries
through scaling the number of hidden nodes (SI Note 3,
Fig. S3), but physical and/or numerical factors, such as
those described below and in SI Note 3, are likely to con-
strain this flexibility. For example, the saturation in preci-
sion we observe could arise from a limitation in our opti-
mization formulation, including in our choice of loss func-
tion or parameter constraints, that may make it difficult to
find global minima of the loss landscape. Second, the sat-
uration could point to a more fundamental limit that arises
from two competing physical constraints in our model:
(a) with more species, there is an overall dilution that in-

creases the entropic cost of condensation, and (b) the re-
quirement of liquid-like condensates, i.e., energy scales of
order kBT , limits the enthalpic stabilization that is possi-
ble to encode in our simple model of pairwise interactions.
While not captured in our simple thermodynamic model,
biology points to the need for more complex models that
may expand the scope of computations possible through
condensation—including through leveraging higher-order
interactions such as discrete sticker-spacers or excluded-
volume interactions that expand capacity of the underlying
free-energy landscape (17, 67, 68), multimerization do-
mains that function as sinks to reduce entropic costs of
demixing (69), and more generally, out-of-equilibrium re-
action cascades that provide additional axes for tunable
multiphase behavior.

The balance of entropy-energy trade-offs direct surfaces
with differing input compositions to recruit distinct conden-
sates and behave as a classifier. Our model has partial
parallels to well-known architectures in inference—for ex-
ample, the free energy governing phase behavior in our
model resembles that of a Hopfield network (70). Our
model more closely resembles Boltzmann machines (53)
in that we exploit hidden species to encode more com-
plex stimuli-response behaviors, i.e., higher expressivity
(49, 71). While we focus on classification, emerging stud-
ies argue for broader computational capabilities embed-
ded in multicomponent liquids. For example, (40) ex-
plore the capacity of condensates to store and retrieve
patterns as stable phases (or memories) analogous to
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Hopfield models trained with the Hebbian rule. More re-
cently, (41) use a simple wake-sleep learning algorithm,
based on competition between Hebbian learning and anti-
Hebbian unlearning as in classical Boltzmann machines
(53), to train molecular parameters of 3D lattice liquids to
form complex spatial architectures and to perform general
probabilistic inference, including for MNIST digit classifi-
cation. Further, our work finds that MNIST classification
saturates (∼ 85%)—potentially hinting at limitations in the
physics of condensation and/or in the choice of data en-
coding/representation. More generally, it would be valu-
able to delineate and contrast the principles and limits of
computations performed by different physical systems with
and in addition to condensation—for example, dimeriza-
tion networks (4), self-assembly (8–10, 72), mechanical
systems (73, 74), and stochastic biomolecular reactions
(75–77).

We characterize the computational capabilities of pro-
grammed multiphase fluids that are trained through
gradient-descent based global optimization routines.
While we focus on classifier function, the ways by which
molecular networks can learn, potentially autonomously,
or be trained represents an important area for investiga-
tion. For instance, (41) use sleep-wake training rules that
are spatially local to train lattice liquids. In conjunction
with other recent studies, these suggest that molecular
networks can be trained in situ through physical learn-
ing rules that directly modify parameters like interactions
or composition (41, 58, 78, 79). In particular, we show
that only changing levels of hidden and output species in
the reservoir—a variable amenable to modification in liv-
ing systems—of trained fluids enables adaptation to new
tasks (Fig. 5A). If the levels of reservoir species could
be directly regulated by condensate formation—for exam-
ple through engineered genetic feedback circuits where
condensation of output species alters gene expression of
reservoir species—this would permit learning over longer
time-scales. Together, these hint at biologically plausi-
ble mechanisms for autonomous and continual learning in
biomolecular fluids without any electrical computers in the
loop.

Finally, we demonstrate concordance of our mean-field
designs with function in a 3D lattice model that explicitly
captures spatial correlations that are relevant in vitro—
motivating opportunities for experimental testing and re-
finement. Promising avenues include (a) designed DNA
(10, 42, 80) molecules, along with surface-functionalized
or immobilized DNA strands, and (b) emerging synthetic
biology approaches (81–84) that combine genetic re-
porter systems with coexpression of phase-separation pro-
teins. More generally, the confluence of machine-learning,
physics-based models, and multiplexed experimental tech-
niques will inform future opportunities to dissect as well as
design biological computation through condensation.

Limitations of the study
In this paper, we explore how the emergent physics under-

lying condensation in multicomponent liquids can classify
surfaces with distinct compositions. Towards this, we intro-
duce a simple mean-field description of liquids comprising
molecules of identical size with pairwise interactions. As a
consequence, we are unable to explore the computational
capacity and constraints that are afforded through explicit
consideration of complex molecules - including effects of
polydispersity, higher-order interactions, and anisotropic
molecular architectures that all typify biomolecules. We
focus on mean-field surface condensation from a large (in-
finite) cellular reservoir that we posit maintains any learned
chemical potential. Thus, a limitation of the model is that
molecules are maintained at well-mixed compositions in-
side the surface and intra-surface demixing is not explic-
itly studied. Thus, further studies are required to explicitly
study the effects of finite copy numbers, surface-surface
competition, and dynamics of nucleation. Since our model
does not explicitly specify the mechanisms by which the
reservoir can be maintained, either in biological or phys-
ical systems, new models that explicitly consider specific
reservoir models will provide insights on how to realize
them.

Acknowledgments

We thank Francesco Mottes, Ryan Krueger, Mason
Rouches, William Jacobs, Suriyanarayanan Vaikun-
thanathan, David Zwicker, Serena Carra, and members
of the Murugan, Brenner, Winfree, and Shrinivas labs for
helpful discussions on this manuscript. E.V.H. acknowl-
edges support from NSF NRT 2021900 - Synthesizing Bi-
ology Across Scales. A.Z. and M.P.B. acknowledge sup-
port from NSF AI Institute of Dynamic Systems 2112085.
K.S. acknowledges funding and support from Northwest-
ern University. E.W. and C.C. acknowledge support from
NSF CCF/FET 2008589 and 2212546. A.M acknowledges
support from the National Science Foundation through the
Center for Living Systems (grant no. 2317138) and DMR-
2239801. K.S. acknowledges helpful discussions related
to this paper at the Kavli Institute for Theoretical Physics
(KITP) workshop: Physical Principles Shaping Biomolecu-
lar Condensates supported in part by NSF PHY-2309135
and the Gordon and Betty Moore Foundation Grant No.
2919.02. The computations in this paper were in part run
on the FASRC Cannon cluster supported by the FAS Di-
vision of Science Research Computing Group at Harvard
University. This research was supported in part through
the computational resources and staff contributions pro-
vided for the Quest high performance computing facility at
Northwestern University.

Code availability

We make all mean-field code available via the fol-
lowing GitHub repository: https://github.com/
shrinivaslab/2025_zentner_multiphase_
classification

12 Zentner et al.

https://github.com/shrinivaslab/2025_zentner_multiphase_classification
https://github.com/shrinivaslab/2025_zentner_multiphase_classification
https://github.com/shrinivaslab/2025_zentner_multiphase_classification


Bibliography
1. Uri Alon. An Introduction to Systems Biology: Design Principles of Biological

Circuits. CRC Press, July 2019. ISBN 978-1-000-00132-7. Google-Books-ID:
Lg3MDwAAQBAJ.

2. Leland H. Hartwell, John J. Hopfield, Stanislas Leibler, and Andrew W. Mur-
ray. From molecular to modular cell biology. Nature, 402(6761):C47–C52,
December 1999. ISSN 1476-4687. doi: 10.1038/35011540. Publisher: Nature
Publishing Group.

3. Wendell A. Lim, Connie M. Lee, and Chao Tang. Design Principles of Regula-
tory Networks: Searching for the Molecular Algorithms of the Cell. Molecular
Cell, 49(2):202–212, January 2013. ISSN 1097-2765. doi: 10.1016/j.molcel.
2012.12.020. Publisher: Elsevier.

4. Jacob Parres-Gold, Matthew Levine, Benjamin Emert, Andrew Stuart, and
Michael B. Elowitz. Contextual computation by competitive protein dimeriza-
tion networks. Cell, 188(7):1984–2002.e17, April 2025. ISSN 1097-4172. doi:
10.1016/j.cell.2025.01.036.

5. M. Conrad. Self-assembly as a mechanism of molecular computing. In Im-
ages of the Twenty-First Century. Proceedings of the Annual International En-
gineering in Medicine and Biology Society,, pages 1354–1355 vol.4, Novem-
ber 1989. doi: 10.1109/IEMBS.1989.96236.

6. Johann Elbaz, Oleg Lioubashevski, Fuan Wang, Françoise Remacle,
Raphael D. Levine, and Itamar Willner. DNA computing circuits using libraries
of DNAzyme subunits. Nature Nanotechnology, 5(6):417–422, June 2010.
ISSN 1748-3395. doi: 10.1038/nnano.2010.88. Publisher: Nature Publishing
Group.

7. Arvind Murugan, Zorana Zeravcic, Michael P. Brenner, and Stanislas Leibler.
Multifarious assembly mixtures: Systems allowing retrieval of diverse stored
structures. Proceedings of the National Academy of Sciences, 112(1):54–59,
January 2015. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1413941112.

8. Weishun Zhong, David J. Schwab, and Arvind Murugan. Associative Pat-
tern Recognition Through Macro-molecular Self-Assembly. Journal of Statis-
tical Physics, 167(3):806–826, May 2017. ISSN 1572-9613. doi: 10.1007/
s10955-017-1774-2.

9. Damien Woods, David Doty, Cameron Myhrvold, Joy Hui, Felix Zhou, Peng
Yin, and Erik Winfree. Diverse and robust molecular algorithms using re-
programmable DNA self-assembly. Nature, 567(7748):366–372, March 2019.
ISSN 1476-4687. doi: 10.1038/s41586-019-1014-9. Publisher: Nature Pub-
lishing Group.

10. Constantine Glen Evans, Jackson O’Brien, Erik Winfree, and Arvind Murugan.
Pattern recognition in the nucleation kinetics of non-equilibrium self-assembly.
Nature, 625(7995):500–507, January 2024. ISSN 1476-4687. doi: 10.1038/
s41586-023-06890-z. Publisher: Nature Publishing Group.

11. Jeff Hasty, David McMillen, and J. J. Collins. Engineered gene circuits. Na-
ture, 420(6912):224–230, November 2002. ISSN 1476-4687. doi: 10.1038/
nature01257. Publisher: Nature Publishing Group.

12. Timothy Frei, Ching-Hsiang Chang, Maurice Filo, Asterios Arampatzis, and
Mustafa Khammash. A genetic mammalian proportional–integral feedback
control circuit for robust and precise gene regulation. Proceedings of the
National Academy of Sciences, 119(24):e2122132119, June 2022. doi:
10.1073/pnas.2122132119. Publisher: Proceedings of the National Academy
of Sciences.

13. A. Klosin, F. Oltsch, T. Harmon, A. Honigmann, F. Jülicher, A. A. Hyman, and
C. Zechner. Phase separation provides a mechanism to reduce noise in cells.
Science, 367(6476):464–468, January 2020. doi: 10.1126/science.aav6691.
Publisher: American Association for the Advancement of Science.

14. Salman F. Banani, Hyun O. Lee, Anthony A. Hyman, and Michael K. Rosen.
Biomolecular condensates: organizers of cellular biochemistry. Nature Re-
views. Molecular Cell Biology, 18(5):285–298, May 2017. ISSN 1471-0080.
doi: 10.1038/nrm.2017.7. Publisher: Nature Publishing Group.

15. Yongdae Shin and Clifford P. Brangwynne. Liquid phase condensation in cell
physiology and disease. Science, 357(6357):eaaf4382, September 2017. doi:
10.1126/science.aaf4382. Publisher: American Association for the Advance-
ment of Science.

16. Andrew S. Lyon, William B. Peeples, and Michael K. Rosen. A framework
for understanding the functions of biomolecular condensates across scales.
Nature Reviews Molecular Cell Biology, pages 1–21, November 2020. ISSN
1471-0080. doi: 10.1038/s41580-020-00303-z. Publisher: Nature Publishing
Group.

17. Jeong-Mo Choi, Alex S. Holehouse, and Rohit V. Pappu. Physical Principles
Underlying the Complex Biology of Intracellular Phase Transitions. Annual
Review of Biophysics, 49(Volume 49, 2020):107–133, May 2020. ISSN 1936-
122X, 1936-1238. doi: 10.1146/annurev-biophys-121219-081629. Publisher:
Annual Reviews.

18. Frank Jülicher and Christoph A. Weber. Droplet Physics and Intracellu-
lar Phase Separation. Annual Review of Condensed Matter Physics, 15

(Volume 15, 2024):237–261, March 2024. ISSN 1947-5454, 1947-5462. doi:
10.1146/annurev-conmatphys-031720-032917. Publisher: Annual Reviews.

19. Denes Hnisz, Krishna Shrinivas, Richard A. Young, Arup K. Chakraborty, and
Phillip A. Sharp. A Phase Separation Model for Transcriptional Control. Cell,
169(1):13–23, March 2017. ISSN 0092-8674. doi: 10.1016/j.cell.2017.02.007.

20. Krishna Shrinivas, Benjamin R. Sabari, Eliot L. Coffey, Isaac A. Klein, Ann
Boija, Alicia V. Zamudio, Jurian Schuijers, Nancy M. Hannett, Phillip A. Sharp,
Richard A. Young, and Arup K. Chakraborty. Enhancer Features that Drive
Formation of Transcriptional Condensates. Molecular Cell, 75(3):549–561.e7,
August 2019. ISSN 1097-2765. doi: 10.1016/j.molcel.2019.07.009. Publisher:
Elsevier.

21. Woonyung Hur, James P. Kemp, Marco Tarzia, Victoria E. Deneke, William F.
Marzluff, Robert J. Duronio, and Stefano Di Talia. CDK-Regulated Phase Sep-
aration Seeded by Histone Genes Ensures Precise Growth and Function of
Histone Locus Bodies. Developmental Cell, 54(3):379–394.e6, August 2020.
ISSN 1534-5807. doi: 10.1016/j.devcel.2020.06.003.

22. Jose A. Morin, Sina Wittmann, Sandeep Choubey, Adam Klosin, Stefan
Golfier, Anthony A. Hyman, Frank Jülicher, and Stephan W. Grill. Sequence-
dependent surface condensation of a pioneer transcription factor on DNA. Na-
ture Physics, 18(3):271–276, March 2022. ISSN 1745-2481. doi: 10.1038/
s41567-021-01462-2. Publisher: Nature Publishing Group.

23. Agnieszka Pancholi, Tim Klingberg, Weichun Zhang, Roshan Prizak, Irina Ma-
montova, Amra Noa, Marcel Sobucki, Andrei Yu Kobitski, Gerd Ulrich Nien-
haus, Vasily Zaburdaev, and Lennart Hilbert. RNA polymerase II clusters form
in line with surface condensation on regulatory chromatin. Molecular Systems
Biology, 17(9):e10272, 2021. doi: https://doi.org/10.15252/msb.202110272.
_eprint: https://www.embopress.org/doi/pdf/10.15252/msb.202110272.

24. Charles S. Bond and Archa H. Fox. Paraspeckles: nuclear bodies built on long
noncoding RNA. The Journal of Cell Biology, 186(5):637–644, September
2009. ISSN 0021-9525. doi: 10.1083/jcb.200906113.

25. Wilton T. Snead, Mary K. Skillicorn, Krishna Shrinivas, and Amy S. Gladfelter.
Immiscible proteins compete for RNA binding to order condensate layers. Pro-
ceedings of the National Academy of Sciences, 122(32):e2504778122, Au-
gust 2025. doi: 10.1073/pnas.2504778122. Publisher: Proceedings of the
National Academy of Sciences.

26. Lindsay B. Case, Jonathon A. Ditlev, and Michael K. Rosen. Regulation
of Transmembrane Signaling by Phase Separation. Annual Review of Bio-
physics, 48(1):465–494, 2019. doi: 10.1146/annurev-biophys-052118-115534.
_eprint: https://doi.org/10.1146/annurev-biophys-052118-115534.

27. Yan G. Zhao and Hong Zhang. Phase Separation in Membrane Biology:
The Interplay between Membrane-Bound Organelles and Membraneless Con-
densates. Developmental Cell, 55(1):30–44, 2020. ISSN 18781551. doi:
10.1016/j.devcel.2020.06.033. Publisher: Elsevier Inc.

28. Wilton T. Snead. Condensate-membrane interactions shape membranes, tune
cytoskeletal assembly, and localize mRNAs. Current Opinion in Cell Biology,
95:102540, August 2025. ISSN 0955-0674. doi: 10.1016/j.ceb.2025.102540.

29. Richard P. Sear and José A. Cuesta. Instabilities in Complex Mixtures with
a Large Number of Components. Physical Review Letters, 91(24):245701,
December 2003. doi: 10.1103/PhysRevLett.91.245701. Publisher: American
Physical Society.

30. Peter Sollich. Predicting phase equilibria in polydisperse systems. Journal of
Physics: Condensed Matter, 14(3):R79, December 2001. ISSN 0953-8984.
doi: 10.1088/0953-8984/14/3/201.

31. William M. Jacobs and Daan Frenkel. Predicting phase behavior in multicom-
ponent mixtures. Journal of Chemical Physics, 139(2):024108, July 2013.
ISSN 00219606. doi: 10.1063/1.4812461. Publisher: American Institute of
PhysicsAIP.

32. William M. Jacobs. Self-Assembly of Biomolecular Condensates with Shared
Components. Physical Review Letters, 126(25):258101, June 2021. doi: 10.
1103/PhysRevLett.126.258101. Publisher: American Physical Society.

33. Fan Chen and William M. Jacobs. Programmable phase behavior in fluids with
designable interactions. The Journal of Chemical Physics, 158(21):214118,
June 2023. ISSN 0021-9606. doi: 10.1063/5.0147211.

34. David Zwicker and Liedewij Laan. Evolved interactions stabilize many coexist-
ing phases in multicomponent liquids. Proceedings of the National Academy
of Sciences, 119(28):e2201250119, July 2022. doi: 10.1073/pnas.2201250119.
Publisher: Proceedings of the National Academy of Sciences.

35. Krishna Shrinivas and Michael P. Brenner. Multiphase coexistence capacity
in complex fluids, October 2022. Pages: 2022.10.19.512909 Section: New
Results.

36. Krishna Shrinivas and Michael P. Brenner. Phase separation in fluids with
many interacting components. Proceedings of the National Academy of
Sciences, 118(45), November 2021. ISSN 0027-8424, 1091-6490. doi:
10.1073/pnas.2108551118. Publisher: National Academy of Sciences Section:
Biological Sciences.

37. Yicheng Qiang, Chengjie Luo, and David Zwicker. Scaling of phase

Zentner et al. 13



count in multicomponent liquids, May 2024. arXiv:2405.01138 [cond-mat,
physics:physics].

38. Mason Rouches, Sarah L. Veatch, and Benjamin B. Machta. Surface densities
prewet a near-critical membrane. Proceedings of the National Academy of
Sciences, 118(40), October 2021. ISSN 0027-8424, 1091-6490. doi: 10.1073/
pnas.2103401118. Publisher: National Academy of Sciences Section: Physical
Sciences.

39. Sheng Mao, Derek Kuldinow, Mikko P. Haataja, and Andrej Košmrlj. Phase
behavior and morphology of multicomponent liquid mixtures. Soft Matter, 15
(6):1297–1311, 2019. doi: 10.1039/C8SM02045K. Publisher: Royal Society
of Chemistry.

40. Rodrigo Braz Teixeira, Giorgio Carugno, Izaak Neri, and Pablo Sartori. Liquid
Hopfield model: Retrieval and localization in multicomponent liquid mixtures.
Proceedings of the National Academy of Sciences, 121(48):e2320504121,
November 2024. doi: 10.1073/pnas.2320504121. Publisher: Proceedings of
the National Academy of Sciences.

41. Cameron Chalk, Salvador Buse, Krishna Shrinivas, Arvind Murugan, and Erik
Winfree. Learning and Inference in a Lattice Model of Multicomponent Con-
densates. In DROPS-IDN/v2/document/10.4230/LIPIcs.DNA.30.5. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi: 10.4230/LIPIcs.DNA.
30.5.

42. Gabrielle R Abraham, Aria S Chaderjian, Anna B N Nguyen, Sam Wilken,
and Omar A Saleh. Nucleic acid liquids. Reports on Progress in Physics,
87(6):066601, May 2024. ISSN 0034-4885. doi: 10.1088/1361-6633/ad4662.
Publisher: IOP Publishing.

43. Sungho Do, Chanseok Lee, Taehyun Lee, Do-Nyun Kim, and Yongdae Shin.
Engineering DNA-based synthetic condensates with programmable mate-
rial properties, compositions, and functionalities. Science Advances, 8(41):
eabj1771, October 2022. doi: 10.1126/sciadv.abj1771. Publisher: American
Association for the Advancement of Science.

44. Jaimie Marie Stewart, Shiyi Li, Anli A. Tang, Melissa Ann Klocke, Martin Vin-
cent Gobry, Giacomo Fabrini, Lorenzo Di Michele, Paul W. K. Rothemund, and
Elisa Franco. Modular RNA motifs for orthogonal phase separated compart-
ments. Nature Communications, 15(1):6244, July 2024. ISSN 2041-1723. doi:
10.1038/s41467-024-50003-x. Publisher: Nature Publishing Group.

45. Giacomo Fabrini, Nada Farag, Sabrina Pia Nuccio, Shiyi Li, Jaimie Marie
Stewart, Anli A. Tang, Reece McCoy, Róisín M. Owens, Paul W. K. Rothe-
mund, Elisa Franco, Marco Di Antonio, and Lorenzo Di Michele. Co-
transcriptional production of programmable RNA condensates and synthetic
organelles. Nature Nanotechnology, 19(11):1665–1673, November 2024.
ISSN 1748-3395. doi: 10.1038/s41565-024-01726-x. Publisher: Nature Pub-
lishing Group.

46. Jing Gong, Nozomi Tsumura, Yusuke Sato, and Masahiro Takinoue. Com-
putational DNA Droplets Recognizing miRNA Sequence Inputs Based on
Liquid–Liquid Phase Separation. Advanced Functional Materials, 32(37):
2202322, 2022. ISSN 1616-3028. doi: 10.1002/adfm.202202322. _eprint:
https://advanced.onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.202202322.

47. Masahiro Takinoue. DNA droplets for intelligent and dynamical artificial cells:
from the viewpoint of computation and non-equilibrium systems. Interface
Focus, 13(5):20230021, August 2023. doi: 10.1098/rsfs.2023.0021. Publisher:
Royal Society.

48. Hirotake Udono, Jing Gong, Yusuke Sato, and Masahiro Takinoue. DNA
Droplets: Intelligent, Dynamic Fluid. Advanced Biology, 7(3):2200180,
2023. ISSN 2701-0198. doi: 10.1002/adbi.202200180. _eprint:
https://advanced.onlinelibrary.wiley.com/doi/pdf/10.1002/adbi.202200180.

49. Arvind Murugan, David Zwicker, Charlotta Lorenz, and Eric R. Dufresne.
Could Living Cells Use Phase Transitions to Process Information? arXiv,
July 2025. doi: 10.48550/arXiv.2507.23384. arXiv:2507.23384 [physics].

50. P. C. Hohenberg and B. I. Halperin. Theory of dynamic critical phenom-
ena. Reviews of Modern Physics, 49(3):435–479, July 1977. doi: 10.1103/
RevModPhys.49.435. Publisher: American Physical Society.

51. James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris
Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas,
Skye Wanderman-Milne, and Qiao Zhang. JAX: composable transformations
of Python+NumPy programs. 2018. URL: http://github.com/google/jax.

52. DeepMind, Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju,
Jake Bruce, Peter Buchlovsky, David Budden, Trevor Cai, Aidan Clark, Ivo
Danihelka, Antoine Dedieu, Claudio Fantacci, Jonathan Godwin, Chris Jones,
Ross Hemsley, Tom Hennigan, Matteo Hessel, Shaobo Hou, Steven Kaptur-
owski, Thomas Keck, Iurii Kemaev, Michael King, Markus Kunesch, Lena
Martens, Hamza Merzic, Vladimir Mikulik, Tamara Norman, George Papa-
makarios, John Quan, Roman Ring, Francisco Ruiz, Alvaro Sanchez, Lau-
rent Sartran, Rosalia Schneider, Eren Sezener, Stephen Spencer, Srivatsan
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Supplementary Information: Information processing driven by multicomponent
surface condensates

Supplementary Note 1: Model A Dynamics

Deriving Mean-Field Dynamics
In this section, we derive the mean-field dynamics for an effective interaction matrix χ and reservoir potential µ⃗res used
in the manuscript. For simplicity in deriving these dynamics, we make no distinction between input, output, and hidden
species, and we assume that inputs can also exchange with the reservoir; we relax this assumption at the end of the
derivation by setting their mobilities to 0. Accordingly, the surface exchanges with an infinite reservoir held at a chemical
potential vector µ⃗′′

res. In a slight abuse of notation compared to the manuscript, we extend objects (ϕ⃗, χ, µ⃗′′
res) to have

an additional 0 index to denote the solvent, such that when the solvent is included as an explicit variable, we index
from 0 to N rather than from 1 to N . We additionally define the chemical potential vector µ⃗′

res ≡ 0 ◦ µ⃗
(in)
res ◦ µ⃗res, where

µ′
res,i = µ′′

res,i −µ′′
res,0 is the reservoir potential of species i relative to the solvent. Written in this way, the vector µ⃗res is the

same as in the manuscript.

When the concentration vector ϕ⃗ is treated as a function of space, the Landau-Ginzburg Hamiltonian describes the
effective free energy of the surface as

βH =
∫

dV

[
ΩG

(
ϕ⃗,χ

)
+ κ

2

(
∇ϕ⃗
)2
]

(S1)

where
(

∇ϕ⃗
)2

=
∑N

i=0
∑d

n=1 (∂xnϕi)2. The κ term penalizes spatial gradients in the homogeneous system and the
grand-potential is as described above for the surface exchanging with an infinitely large reservoir. For an open system at
some initial composition, the relaxation to steady-state is driven by an exchange of species (without conserving counts).
Near equilibrium, model A dynamics (50) characterizes these relaxation dynamics as purely downhill: the decrease in the
overall free energy of the system is, to a first approximation, driven by linear gradients of the free energy with respect to
the system’s composition. Since we assume our surface remains well-mixed, we neglect the contributions from spatial
gradients (and thus the interfacial energy between the surface volume and the reservoir). Thus, the temporal evolution of
the average volume fraction ϕi of species i within the system can be written as

∂ϕi(t)
∂t

= −
N∑

j=0
D′

ij
δ(βH)

δϕj
+ηi(t) (S2)

= −
N∑

j=0
D′

ij
∂ΩG

∂ϕj
+ηi(t) (S3)

where D′ is the mobility matrix, again with index 0 corresponding to the solvent, that sets the rate of exchange between
the system and reservoir. The above equation reflects the fact that, rather than purely decreasing energies, model A
dynamics also explicitly permits modeling the effect of temporally uncorrelated thermal fluctuations, described by ηi, such
that

⟨ηi(t)ηj(t′)⟩ = 2βD′
ijδijδ(d)(t− t′). (S4)

We mention this term for completeness but focus on the purely deterministic limit in this paper. Thus, the effective
dynamics of the system’s composition as it exchanges with the reservoir are given by

dϕi

dt
≈ −

N∑
j=0

D′
ij

∂ΩG

∂ϕj
(S5)

In writing our solute dynamics in the main manuscript, we treat the solvent implicitly. We first show below that this is tacit
to assuming that the solvent molecules rearrange and equilibrate quickly to any small changes in solutes. The free energy
is

Ωsurface =
N∑

i=0
ϕi logϕi + 1

2

N∑
i=0

N∑
j=0

ϕiχijϕj − µ⃗′′
res · ϕ⃗ (S6)

There is still a constraint
∑N

i=0 ϕi = 1. We derive the dynamics of the system assuming Model A dynamics, where the
mobility matrix D′ is determined by first assuming that the mobility follows Fick’s law of diffusion in the dilute limit, such

16 Zentner et al.



that D′
ij = diϕiδij (35), and imposing the constraint via a Lagrange multiplier, so that ΩG = Ωsurface − λ

(∑N
i=0 ϕi −1

)
.

The dynamics from eq. S5 are therefore

∂ϕi

∂t
= −diϕi

(
∂Ωsurface

∂ϕi
−λ

)
= −diϕi

[
β
(
µ′′

i −µ′′
res,i

)
−λ
]

(S7)

where

βµ′′
i = 1+logϕi +

N∑
j=0

χijϕj (S8)

The constraint is given by dΩG
dλ = 0, which once differentiated is

N∑
i=0

∂ϕi

∂t
= −

N∑
i=0

diϕi

[
β
(
µ′′

i −µ′′
res,i

)
−λ
]

= 0 =⇒ λ =

∑N
j=0 djϕjβ

(
µ′′

j −µ′′
res,j

)
∑N

k=0 dkϕk

(S9)

Substituting λ and grouping the terms gives the dynamics

∂ϕ⃗

∂t
= −D′β

(
µ⃗′′ − µ⃗′′

res
)

, D′
ij = diϕi

(
δij −

djϕj∑N
k=0 dkϕk

)
(S10)

We now apply model assumptions. We assume first that d0 ≫ di for i > 0 (implying that the solvent relaxes much faster
than the solutes), second that the solvent is inert (taking χ0j = 0 for all j), we can express the system dynamics in terms
of the solute concentrations,

∂ϕ0
∂t

≈
N∑

j=1
βdjϕj

(
µ′

j −µ′
res,j

)
(S11)

∂ϕi

∂t
≈ −βdiϕi

(
µ′

i −µ′
res,i

)
, i > 0 (S12)

or
∂ϕ⃗

∂t
≈ −D′

fβ
(
µ⃗′ − µ⃗′

res
)

,
(
D′

f
)

ij
=
{

djϕj(δ0j −1), i = 0
diϕiδij , i > 0

(S13)

where

βµ′
i = β

(
µ′′

i −µ′′
0
)

= logϕi − log(1−ϕT )+
N∑

j=1
χijϕj (S14)

is the intrinsic (non-dimensionalized) chemical potential vector and ϕT =
∑N

i=1 ϕi is the total solute volume fraction (i.e.
omitting the solvent). The equations for i > 0 therefore form a matrix equation that is approximately diagonal in the limit
of fast solvent dynamics.

Furthermore, this equation provides the solute dynamics used throughout this paper when we set di = 0 for 1 ≤ i ≤ Nin
and di = d for i > Nin, where d is a constant whose value does not affect the steady state. In this case, the input
species are confined to the box, and the solute dynamics can be further simplified to be written only in terms of the
(Nout +Nh)× (Nout +Nh) lower block of the full mobility matrix D′

f ; this truncated matrix, which we label D, is the mobility
matrix used in eq. 8. Likewise, because the solvent is being treated implicitly and the inputs cannot exchange with the
reservoir, the reservoir can be described by the length-(Nout + Nh) chemical potential vector µ⃗res that includes only the
output and hidden species—the convention used throughout the paper.

The solvent equation (i = 0) follows from—and implies—the constraint ϕ0 = 1−ϕT , since the solvent balances the flux of
the solutes. Empirically, we also find that relaxing this assumption (by taking the solvent to have finite mobility compared
to the solutes) essentially does not alter steady-state (or "performance") of trained multiphase fluids (Fig. S6).

Parameterizing the Dynamics
This section offers a parametrization for the case where we have fast solvent dynamics. Again, for the simplicity of the
derivation, we consider all solutes (including input species) as mobile and therefore also take the reservoir potential vector
to again be µ⃗′

res, which is measured with respect to the solvent chemical potential.
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Proposed Parametrization. In practice, the logarithmic terms in eq. S14 become unstable for ϕi → 0 or ϕT → 1, making
even the simplified model in eq. S13 difficult to integrate. Eq. S14 therefore suggests the following parametrization:

xi = log
(

ϕi

1−ϕT

)
⇐⇒ ϕi = exp(xi)

1+
∑N

j=1 exp(xj)
(S15)

In this parametrization, the chemical potential vector simplifies to

βµ⃗′(x⃗,χ) = x⃗+χϕ⃗(x⃗) (S16)

This parametrization has the benefit that it spans all real numbers, thereby transforming the problem from a system of
ODEs with constraints ϕi > 0 and ϕT < 1 to one that is unconstrained.

The inverse Jacobian of this transformation is

(J−1)ij = ∂xi

∂ϕj
= 1

ϕj
δij + 1

1−ϕT
(S17)

As a result, the time-evolution of x⃗ is governed by

dx⃗

dt
=

N∑
j=1

dx⃗

dϕj

dϕj

dt
= −

N∑
j,k=1

dx⃗

dϕj

(
D′

f
)

jk

∂ΩG

∂ϕk
= −βJ−1D′

f
[
µ⃗′(x⃗,χ)− µ⃗′

res
]

(S18)

where µ⃗′(x⃗,χ) is as defined in eq. S16. The transformed mobility matrix has components(
J−1D′

f
)

ij
= δij +dj exp(xj) (S19)

In the case of fixed input concentrations, we take di = 0 for 1 ≤ i ≤ Nin, such that ϕ′
i(t) = 0 for the input species. Note

that in the new parametrization, the input parameters x⃗in = x⃗in(ϕ⃗) are no longer constant. However, the total input
concentration of the surface is fixed at

∑
1≤j≤Nin

ϕj ≡ ϕin,T , and thus the non-input xi can be evolved without needing to
simultaneously evolve the input xi, since

1+
N∑

j=1
exp(xj) =

1+
∑

j>Nin
exp(xj)

1−ϕin,T
(S20)

This relation allows for the non-input components of ϕ⃗(x⃗) in eq. S16 to be written independent of the input xi coordinates.
In turn, eq. S18 depends only on the (fixed) values of ϕ⃗in and the non-input parameters xi.
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Supplementary Note 2: Training the model

Learning Rules
We optimize over both the χ matrix and the reservoir chemical potential µ⃗res, with the target being an enrichment in the
desired output species for a given input concentration vector ϕ⃗in. Unlike in the case of an artificial neural network, where
there are no physical constraints on the weights assigned to the hidden layers, a surface is constrained to have total
volume fraction 1. Therefore, unlike the unconstrained problem, the cross-entropy of the output vector is not a favorable
loss function, because imposing that the desired output concentration be as close as possible to 1 depletes the volume
fraction available to the hidden species, thereby limiting their effectiveness. We require instead that the following criteria
be captured by our loss function:

1. The final concentration of the desired output species should be above some threshold value ϕmax = A/N , where N
is the total number of particle species and A is a value to be specified.

2. The final concentrations of the undesired output species should be below some threshold ϕmin = B/N , where B is
a value to be specified.

These two criteria in turn enforce that the ratio of desired to undesired outputs should be above a set threshold A/B, and
that this ratio is attained with a sufficiently enriched output species. In principle, for a steady-state concentration vector ϕ⃗
where the j’th output is desired to be enriched, the above criteria are satisfied by a contribution to eq. 9 of

l
(0)
j (χ,µ⃗res) = −

∑
k ̸=j

log
[

min(1,ϕout,j/ϕmax)
max

(
1,ϕout,k/ϕmin

)] (S21)

which enforces that the ratio in the argument of the log be as close as possible to 1, and therefore that ϕout,j/ϕout,k >

ϕmax/ϕmin, while the numerator and denominator are independent of ϕ⃗out when their values are above and below (re-
spectively) their corresponding threshold values. This function indeed allows for successful decision boundaries to be
sculpted. In practice, we further adjust this loss empirically to improve training. In particular, we use the fact that

− log
(

min(1,x)
max(1,y)

)
= − log(min(1,x))+ log(max(1,y)) (S22)

= − log(1−max(0,1−x))+ log(1+max(0,y −1)) (S23)

= log(1+max(0,1−x))+ log(1+max(0,y −1))+O(x2) (S24)

Motivated by this expansion, and combined with empirical tests, we use the loss function

lj(χ,µ⃗res) = log
(

1+Amax
(

0,1−
ϕout,j

ϕmax

))
+
∑
k ̸=j

log
(

1+B max
(

0,
ϕout,k

ϕmin
−1
))

(S25)

We’ve deviated from the expansion of eq. S21 by dropping the factor of (N − 1) that would otherwise be on the i-
dependent logarithm and also by introducing the hyperparameters A = ϕmaxN and B = ϕminN as prefactors in the
logarithms. We find that this choice for the loss loss gives strong results near decision boundaries. Substituting the
expressions for A and B results in the form of the loss function in the main text.

Hyperparameter choices
We minimize L with respect to χ and µ⃗res over several thousand training epochs using an RMSProp algorithm from the
Optax library (51, 52) with an initial learning rate of 0.01, followed by several thousand more epochs with a learning rate
of 0.001 to improve convergence. We use 5000 training points and a mini-batching scheme where nbatch = 128 randomly
selected training points are evaluated at each epoch. Once trained, we construct a validation set of 500 data points
to validate the classifier. For a given number of hidden species, we perform this optimization procedure over 15 initial
guesses in the loss landscape. Using the definition of success Sc in eq. 13, the trained model performance is evaluated
on the validation set and the best performing model is subsequently applied to an independent test set (of same size as
the validation set) and depicted in figures.
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Supplementary Note 3: Decision boundary

To understand the constraints on the shapes the decision boundary can encode in our model, we first provide insights
with a simplified model only 2 inputs and 2 output species, and expand in later sections to explore the effect of adding
more species.

2 input + 2 output + 0 hidden species
In the case of mixtures with 2 input species (with species labels i = 1,2) and 2 output species (with species labels i = 3,4),
the concentration vector is given by ϕ⃗ = (ϕin,1,ϕin,2,ϕout,1,ϕout,2). The decision boundary is defined as the manifold where
output species are equally recruited, with ϕout,1 = ϕout,2 ≡ ϕo. For a trained mixture with parameters (χ,µ⃗res), the steady-
state conditions of eq. S13 along this manifold are

µres
out,1 = log(ϕo)− log(1−ϕT )+

4∑
j=1

χ3jϕj (S26)

µres
out,2 = log(ϕo)− log(1−ϕT )+

4∑
j=1

χ4jϕj (S27)

Defining ∆µres,out = µres
out,1 − µres

out,2, the difference of the above two equations is independent of the specific value of the
output concentrations,

∆µres,out = (χ31 −χ41)ϕin,1 +(χ32 −χ42)ϕin,2 (S28)

and defines a decision manifold across which the recruited output species changes from species 1 to species 2. Recall
that all diagonal elements of χ are 0 by definition, and the output-output interaction contributions cancel exactly thanks to
the symmetry χij = χji. The decision boundary described in eq. S28 is therefore exactly linear in the inputs. Fig. S2A
shows two theoretically computed linear boundaries using eq. S28.

Nin input + Nout output + 0 hidden species
Generalizing to Nin input species (with species labels i = 1, . . . ,Nin) and Nout output species (with species labels i =
Nin +1, · · · ,Nin +Nout, such that ϕNin+n = ϕout,n for n = 1, . . . ,Nout), we see that the decision boundary between any two
output species at equal concentrations (ϕout,n ≡ ϕi = ϕo = ϕj ≡ ϕout,m) can similarly be written as

∆µ
(n,m)
res,out =

Nin∑
k=1

(χik −χjk)ϕin,k +
Nin+Nout∑
k=Nin+1
(k ̸=i,j)

(χik −χjk)ϕk(ϕ⃗in, µ⃗res,χ) (S29)

where ∆µ
(n,m)
res,out = µres

out,n − µres
out,m. The first term is the generalization of eq. S28 to sum over all inputs, and second term

is a sum over the remaining (non-boundary) output species. Unlike the previous case, here we treat the concentrations
of non-boundary output species as nonlinear functions of input species, and as such they could encode more complex
boundaries. Strictly speaking, as the energy landscape may have multiple local minima, the final output concentrations
may not be uniquely determined by the input concentrations; however, in this work, training appears to avoid this situation
for the cases we have tested, in part, because during training, the initial hidden/output concentrations are randomly
assigned at different epochs. When training is successful, target surfaces typically enrich a single output species with
the others being depleted, and the resulting output concentrations will have ϕk ≪ 1 for k ̸= i, j. Since the χ matrix
has components that are constrained to be |χij | < χmax, the second term in eq. S29 should therefore be negligible for
solutions obeying the loss criterion. As a result, trained mixtures of surface condensing species form generalized linear
boundaries as a function of input species concentrations:

∆µ
(n,m)
res,out ≈

Nin∑
k=1

(χik −χjk)ϕin,k (S30)

Fig. S2B shows two theoretically computed boundaries using eq. S30 for Nin = 2, Nout = 3, compared with numerical
results. This linearity breaks down in the vicinity of points in the input space where multiple classes meet, in which
case there are more than two relevant output species, and the second term in eq. S29 is no longer negligible. The
decision boundaries therefore resemble hyperplanes far from regions of multiclass intersection, but can also potentially
be nonlinear.
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2 input + 2 output + 1 hidden species
In general, with the inclusion of hidden nodes, the equations become analytically intractable. Here we consider the
inclusion of a single hidden species and show that this is sufficient for producing nonlinear decision boundaries. We
consider a concentration vector as defined above, where indices 1 and 2 correspond to input species, 3 and 4 correspond
to output species, and an additional component (species index 5) corresponds to the hidden species. The concentration
vector then reads as ϕ⃗ = (ϕin,1,ϕin,2,ϕout,1,ϕout,2,ϕh). When ϕout,1 = ϕout,2 = ϕo, the decision boundary follows eq. S28
with the the modification

∆µres,out = (χ31 −χ41)ϕin,1 +(χ32 −χ42)ϕin,2 +(χ35 −χ45)ϕh(ϕ⃗, µ⃗res,χ) (S31)

While the concentration of the hidden species is (assumed to be) an implicit function dependent on input concentrations,
the shape of this boundary is generically hard to interpret. The chemical potential of the hidden species is given by

µh = log(ϕh)− log(1−ϕT )+
5∑

k=1
χ5kϕk

Since χ5,5 = 0, the sum on the right hand side is independent of ϕh, and we can therefore isolate for ϕh as

eµh = ϕh

(1−ϕin,T −2ϕo)−ϕh
exp

(∑
k

χ5kϕk

)
=⇒ ϕh =

1−ϕin,T −2ϕo

1+exp(−µh +
∑

k χ5kϕk) (S32)

and the decision boundary in the input space thus obeys

∆µres,out = (χ31 −χ41)ϕin,1 +(χ32 −χ42)ϕin,2 +
(χ35 −χ45)((1−2ϕo)−ϕin,1 −ϕin,2)

1+exp(−µh +(χ35 +χ4,5)ϕo)exp(χ51ϕin,1 +χ52ϕin,2) (S33)

Fig. S2C shows two nonlinear decision boundaries for systems with a single hidden species, computed theoretically from
eq. S33, against numerical results. To see how this rather complex equation permits nonlinear boundaries, it is instructive
to look at the following limit when (a) input-output interactions are identical across species, (b) output-hidden interactions
are non-zero and different, and (c) hidden-input interactions are strong and of opposing signs. Here, the boundary will
primarily be defined by variances in the relative interaction of the hidden species with the two inputs. The features of such
a decision boundary in the input plane can be computed as an implicit derivative from the decision boundary since output
concentrations at the decision boundaries are low (ϕo ≈ 0) and hence eq. S33 is of the form f(ϕin,1,ϕin,2) = 0. As such,

dϕin,2
dϕin,1

= −
df/dϕin,1
df/dϕin,2

= −
1+g(µh, ϕ⃗in)(1+χ51(1−ϕin,1 −ϕin,2))
1+g(µh, ϕ⃗in)(1+χ52(1−ϕin,1 −ϕin,2))

(S34)

where
g(µh, ϕ⃗in) = exp(−µh)exp(χ51ϕin,1 +χ52ϕin,2) (S35)

While the prefactor functions g are always positive, the second factor of the form χ5j(1 − ϕin,1 − ϕin,2) for j ∈ [1,2] can
change the sign and magnitude of the whole term depending on a particular choice of parameters. In general, this implies
that not only is the decision boundary nonlinear (i.e. non-uniform slope for changing magnitude) but also capable of
changing curvatures (i.e. changing of slope signs).

Nin input + Nout output + p hidden species
In general, since ϕout,n and ϕh,m are implicit functions of the input volume fractions ϕin,k, one cannot assume any partic-
ular shape of the decision boundary on the input space.
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A potential route for a universal approximation construction
A hallmark of general-purpose machine learning architectures is that there is a well-defined sense in which they can
approximate any target function of any complexity by scaling their size. The universal approximation theorem for multilayer
sigmoidal feedforward networks used in early backpropagation algorithms is a canonical example of this kind of argument
(85, 86). Motivated by this, and making the assumptions outlined below, we discuss a path towards showing that arbitrary
continuous decision boundaries can be achieved by surface condensates by increasing the number of hidden species.

Linear decision boundaries and connection to winner-take-all dynamics. We first revisit the mixture considered above, con-
sisting of Nin input species and Nout output species, where all the output species are strongly mutually repulsive and thus
form distinct condensates that are each enriched only in one output species. The decision boundary between a conden-
sate of output species m and another with output species n is given by eq. S30 (where ϕout,m ≈ ϕout,n = ϕo ≫ ϕout,i̸=m,n),
rewritten for simplicity as

Nin∑
k=1

(χmk −χnk)ϕin,k − (µres
out,m −µres

out,n) = 0 (S36)

As originally noted, the decision boundaries are linear planes in the input space. Finally, the non-dimensionalized energy
of a surface (as seen in eq. 5) of a condensate enriched in output species m (ϕout,m ≈ ϕo) and only with negligible
amounts of other output species can be approximated as:

Ωm
surface ≈

N∑
i=1

ϕi logϕi +(1−ϕT ) log(1−ϕT )+(
Nin∑
i=1

χimϕin,i −µres
m )ϕo (S37)

We define the corresponding score function

fm(ϕ⃗in) =
Nin∑
k=1

χkmϕk −µres
m = w⃗m · ϕ⃗in + bm . (S38)

Assuming the output condensate composition doesn’t change majorly away from decision boundaries, the free energy
difference between surface condensates enriched in output pairs (m,n) can be written as:

Ωm
surface −Ωn

surface = ϕ0
(

fm(ϕ⃗in)−fn(ϕ⃗in)
)

(S39)

Since the mean-field model drives a steady-state composition that minimizes this free energy, we see that eq. S39 gives
rise to a winner-take-all (WTA) form of dynamics. That is to say, output n dominates other output species in the condensate
when

n = argminm fm(ϕ⃗in) = argminm w⃗m · ϕ⃗in + bm . (S40)

In this sense, surface condensation behaves as a locally linear classifier with tunable weights and biases (w,b) familiar in
machine learning (86). Thus the linear decision boundaries, in general, can be shaped with arbitrary slope and bias over
the input space (eq. S38), following the general existence argument for WTA-dependent universal approximators (86–88).
Interestingly, a number of distinct biophysical and synthetic molecular networks have been shown to exhibit such WTA
dynamics in the dilute limit arising from competitive binding or reactions (89–92).

Function approximation construction. We consider the following problem: Given Nin input species and Nout output species,
we desire a target decision function g(ϕ⃗in) ∈ {1, . . . ,Nout}. When g(ϕ⃗in) = j, as with the original model definition, we
require the output species j to be selectively recruited at much higher concentrations over other output species, i.e.,
ϕout,j = ϕ∗ ≫ ϕout,k ̸=j . Note that, in this formulation, we don’t require an absolute high value for ϕ∗, just that it is much
more than other output species. Our goal is to design χ and µ⃗res that can achieve this for arbitrary g.

To achieve this, we suggest the following construction, outlined in Fig. S3. First, we consider a linear partition of the
Euclidean input plane RNin into np cells. For example, a specific instantiation of this would be the Voronoi tesselation of

np prototypical input concentrations,
(

ϕ⃗1
in, ϕ⃗2

in, ...., ϕ⃗
np
in

)
. Importantly, np ≫ Nout is a free parameter, and as it increases,

one can achieve increasingly finer partitioning of the input space. With this partitioning, note that pairs of cells share linear
decision boundaries and a finite number of vertices where 3 or more decision boundaries meet.
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Following our connection to linear partitions in eq. S39, we propose including 1 species for each of the np classes,
which we label as hidden species (Nh = np). Despite the label name, hidden species are treated similar to outputs, in
that interactions between any two hidden species is unfavorable χij = (1 − δij)χpen for hidden species i and j, where
χpen ≫ 0. At strong interactions, this is sufficient to encode for condensates that are each enriched in 1 hidden species
and exclude all others. As described by eq. S30, the resulting molecular network encodes linear boundaries between
condensates enriched in pairs of hidden species m,n. From the score function eq. S38, we see that boundary slopes
(weights) and intercepts (biases) are determined by the subset of tunable interactions (χkm,µres

m ) are freely chosen for k
being any input species and m being any hidden species. For a desired partitioning, these values can be assigned by the
system of linear equations or gradient-descent based approaches.

With this construction, we return to the original objective of achieving a decision boundary of type g(ϕ⃗in) with Nout output
species. Note that, with np ≫ Nout, for a specific function g, we need to appropriately assign each of the np cells to the
appropriate output. To accomplish this, we enforce that each hidden species is repulsive with all but one output species,
with χij < 0 if the output species i is the desired coloring of the cell with enriched hidden species j. As before, all the
Nout species also have unfavorable interactions between each other. Generically, since multiple cells can be colored with
the same output, this provides a many-to-one attractive interaction from hidden species to outputs. We stipulate that the
output species reservoir potentials are identical, cannot directly interact with inputs, and are tuned to low levels so that
they don’t affect the equilibrium steady-state rich in hidden species. This is, in principle, analogous to a "client" (output)
and "scaffold" (hidden) relationship that has been proposed to study biological condensates (14). A different decision
boundary can be achieved by simply reassigning the hidden-output map of interactions as above. With sufficiently large
np, this model should enable for increasingly complex decision boundaries.

This construction provides sufficient basis for our universal function approximation claim subject to assumptions specified
below. Specifically, the input plane is partitioned into linearly separable regions that each exhibit WTA classification,
the number of regions can scale with the number of hidden species, and selective mapping of hidden-output species
can approximate arbitrary decision functions—analogous to what is known as a piecewise linear machine for pattern
recognition (86, 88). It is intriguing to note that although the universality of this construction relies on potentially using
many hidden species, any given resulting condensate is dominated by just one hidden species and one output species;
the molecular complexity of the system is not reflected in the simplicity of the outcome. Beyond existence, the surface
condensation driven WTA regions are more flexible than the Voronoi-inspired construction above, so they might be able
to achieve a given level of approximation with fewer units; similarly, gradient descent training may be able to find better
approximations with fewer units by exploiting non-"one-hot" hidden representations, direct input-to-output interactions, and
other nonlinearities.

We consider the above to only be a rough sketch for a universal approximation theorem for surface condensation. Our
framework makes several assumptions (below) that still require rigorous testing.

Key assumptions. First, note that this construction is only true away from parts of the input space where multiple decision
boundaries meet, i.e., vertices of the decision planes, which we assume only excludes a finite number of points from an
infinite plane. Second, within each decision region (a particular group of input surfaces as per our model definition), we
assume that the "one-hot" condensate encoded by the complementary hidden species is always the only steady-state with
negligible composition of other species. While this steady-state should naturally exhibit WTA behavior in the mean-field
limit (see eq. S39), this is unlikely in 3D liquids, where pockets of distinct phases may coexist within the same surface.
Third, we assume the selective inclusion of hidden-output favorable links do not destabilize or change overall boundaries.
Finally, since we require liquid-like condensates, the range of allowable χpen values are constrained. The extent to which
these assumptions hold require further investigation.
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Supplementary Note 4: Lattice liquid model

Lattice setup and boundary conditions
All simulations are performed on a three-dimensional cubic lattice of dimensions 24 × 24 × 24. Each lattice position
p = (z,y,x) can be occupied by a single species from the set {0,1, . . . ,N}. Species 0 is treated as an inert solvent with
zero chemical potential and inert interactions. The boundaries are walls meaning that no interactions wrap around from
one lattice face to its opposite face. Consequently, any site on a boundary has fewer neighbors than an interior site. To
capture interactions out to

√
2 in Euclidean distance, each lattice site has up to 18 neighbors. Specifically, if p1 and p2

differ by at most 1 in up to two of their three coordinates, then p2 is in the neighborhood of p1. Positions outside the lattice
bounds are ignored.

Free energy model
Let ϵij denote the pairwise interaction parameter between species i and j, and let µi denote the chemical potential of
species i. We work at inverse temperature β = 1/(kBT ). For a given configuration σ, the total interaction energy is
computed by summing over all lattice sites. A configuration σ induces a count ni for each molecule type i. Defining δa,b

as the Kronecker delta, which is 1 if a = b and 0 otherwise, the count ni is given by

ni =
∑

p
δσ(p), i, (S41)

where the sum is taken over all lattice sites p in the system. In practice, for each site p with species i = σ(p) and each
neighbor q with species j = σ(q), we add β χij . To avoid double counting, we include a factor of 1

2 in the total. The free
energy, including chemical potentials, for a particular configuration may be written as:

βH(σ) = 1
2 β
∑

p

∑
q∈V (p)

ϵσ(p),σ(q) + β

N∑
i=1

γi ni, (S42)

where V (p) denotes the neighborhood of site p, and species 0 (solvent) has µ0 = 0 by definition.

Parameter mapping from Model A
The interaction energies and chemical potentials used in these lattice Monte Carlo simulations are derived from Model
A. Specifically, a mapping is applied to convert the Model A parameters (denoted χ,µ⃗res) to lattice-gas (LG) parameters
(ϵij ,γi). First, to convert from the the mean field description (at β = 1) to our lattice gas formulation, the pairwise interaction
coefficients are scaled by a factor of 1

Nneighbors
which becomes:

ϵij = 1
18 χij (S43)

Note that, in this choice, the assumption of effective solute-solvent interactions as negligible is accomplished by setting
ϵii = ϵi0 = ϵ00 = 0 and thus χi0 = 0, where 0 indexes the solvent (as seen more clearly in a later subsection). We set the
solvent potential also to be γ0 = 0, and under these assumptions

γi = −µres,i ∀i ∈ (Nin +1,N) (S44)

Canonical vs. Grand Canonical moves
We implement two fundamental move types in each MC step:

(1) Canonical (NVT) moves, which exchange species between two lattice sites to conserve particle counts;

(2) Grand Canonical (µVT) moves, which insert or remove species at a single site, exchanging with an implicit infinite
reservoir.

We treat the “input” species (for example, species 1 and 2) as clamped, meaning they cannot exchange position within the
lattice or identity with the reservoir. For every move proposition, if an original site holds an input species, the replacement
probability is zero (no replacement allowed), keeping the counts and positions of input species fixed. By contrast, all other
species (including the solvent) can freely exchange within the remaining sites of the lattice and with the reservoir. These
species are handled using both canonical and grand canonical moves. This mixed ensemble preserves the total amount
and positions of each input species while allowing all other components to exchange with an infinite reservoir.
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Canonical (NV T ) moves. Starting from a selected collection of positions (described in more detail in GPU-Accelerated
Implementation and Masking):

• Pair up any two sites (p1,p2) (global swaps).

• Propose swapping the species at p1 and p2.

• Compute the change ∆H in interaction energy H(σ) induced by swapping the two species, and accept with the
Metropolis-Hastings probability

Paccept = min{1,exp[−β ∆H]}. (S45)

• If accepted and neither position contains a clamped species, exchange the species; otherwise leave them un-
changed.

Grand Canonical (µV T ) moves. Starting from a selected collection of positions:

• For a position p with current species i, propose one of the free (unclamped) species as new species j.

• Compute the combined energy change ∆H and chemical-potential difference ∆µ, then accept with probability

Paccept = min
{

1, exp
[
−β ∆H +β ∆µ

]}
. (S46)

• If accepted and the original species is unclamped, update the site to species j; otherwise leave it unchanged.

Initialization and equilibrium
The lattice is initialized with only input species and solvent. Input species are assigned randomly to lattice sites according
to a total sum of a fraction ϕi for each input species i. All remaining sites are filled with the inert solvent (i = 0).

Once initialized, the system is evolved via repeated MC moves (either NVT or µVT with equal probability) until the total
free energy and the species counts remain stable over a sufficiently long period (on the order of 105 accepted moves)
and independent of sampling protocol (i.e. frequency of NVT vs µVT swaps or lattice size). We record 1000 equally
spaced lattice configurations over the MC protocol and use the last 100 frames to estimate average species counts as the
near-equilibrium state for analysis. Each simulation condition is repeated in triplicate, i.e. with 3 different random seeds
but identical parameters, for averaging.

GPU-accelerated implementation and masking
All Monte Carlo sweeps are implemented in JAX and executed through the Accelerated Linear Algebra (XLA) compiler,
combining just-in-time compilation (JIT), batched parallelism (via vmap), and functional key splitting for pseudorandom
number generation (PRNG). To avoid race conditions involving calculation of the energy within the neighborhood of each
site, we paralellize each step by considering lattice positions spaced modulo four and synchronize all accepted moves
each step. Note that each step updates the entire lattice and each move within a step proposes an independent exchange
(of position or identity).

PRNG and data-flow structure. At the start of each full step, a master PRNG key is split into subkeys to select the candidate
positions of the ’reference grid’, pick per-site swap directions or replacement species, and draw Metropolis acceptance
variates. All arrays of positions, energy calculations, or acceptance evaluations are computed under a single JIT-decorated
function.

Single-mask strategy with offsets. We generate a ’reference grid’ by partitioning the cubic lattice into discrete modulo 4×4×4
blocks of sites:

ref_grid =
{

4(k, l,m) | 0 ≤ l < L/4, 0 ≤ l < L/4, 0 ≤ l < L/4
}

, (S47)

so that no two reference points share an edge. From this ’reference grid’ we can generate a shared ’offset grid’ by applying
a global offset to one of the 64 possible offset positions within each 4³ cube.
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Generating positions at each MC Step. At each step, we randomly select one of the 64 offset grids to parallelize the MC
moves. During a µVT step, we propose replacements at each site in the offset grid (excluding input species). During an
NVT step, one of 26 neighbor vectors (unit step in any x, y, and/or z) is independently applied to each offset grid point.
From these shifted points, we then draw a random permutation, split the points into equal halves, and pair them, such that
each point appears in at most one pair. This process yields non-overlapping swap proposals across the whole lattice.

Acceptance or rejection is then computed according to the Metropolis-Hastings criterion described above, independently
and in parallel for all proposed swaps, and all accepted moves are synchronized across the lattice. This parallelized pro-
cedure ensures that every lattice site has an opportunity to update while respecting the non-periodic boundary conditions
and the mixed canonical-grand-canonical setup.

Correctness versus effciency. By using one unified, randomized mask with per-site offsets and directions:

• Correctness: By construction, any two candidate sites generated from different reference points are at least two
lattice steps apart, so edges cannot be shared, and updates commute exactly. No two sites ever race to read
or write the same neighbor; counts cannot drift or desynchronize. Boundary sites (hard walls) simply have fewer
neighbor offsets.

• Efficiency: The entire nested-scan loop over all MC steps is traced once into a single XLA computation—there are
no host-side Python loops or repeated JIT invocations. All random draws, vectorized grid updates, and other per-
site operations are executed in one fused GPU kernel via vmap, giving efficient parallel throughput and minimizing
host/device synchronization and overhead.

Together, this approach delivers robust statistical correctness (no hidden synchronization bugs or particle number errors)
and optimized performance on modern hardware.

Deriving the mean-field model from the lattice liquid formulation
In this section, we establish a correspondence between the lattice model and the mean-field model discussed in the
paper. Briefly, the lattice model defines an energy for each lattice configuration (or microstate). In the mean-field limit,
we consider sets of configurations that share average species counts (or macrostates). In what follows, we show that
eq. 5 arises from the macrostate energies in the bulk limit, under certain assumptions. Furthermore, we relate the lattice
model parameters ϵij and γi to the mean field parameters χij and µres,i. This is a standard treatment, included here with
consistent terminology only as a convenience for the reader.

The lattice is a set L of positions, with ∥L∥ = S, such that the total volume of L is Sν, where ν is the volume per position.
We use η(p) to denote the neighbors of position p ∈ L, with ||η(p)|| = z being the effective valence of each particle. For
a system with N distinct solute species and 1 solvent species, a microstate configuration is σ, where σ(p) ∈ {0, . . . ,N} is
the species of the particle at position p and 0 indexes the solvent.

The energy of the lattice when in microstate σ is

H(σ) = 1
2
∑
p∈L

∑
q∈η(p)

ϵσ(p),σ(q) +
∑
p∈L

γσ(p) (S48)

=
N∑

i=0

N∑
j=i

nijϵij +
N∑

i=0
niγi (S49)

where ϵij = ϵji is the microscopic nearest-neighbor contact energy between species i and species j, and γi relates to
the reservoir chemical potential of species i. The number of i particles (a Delta function sum over all lattice sites) and i : j
interfaces are, respectively,

ni =
∑
p∈L

δi,σ(p) (S50)

nij = 1
2
∑
p∈L

∑
q∈η(p)

δi,σ(p) δj,σ(q) . (S51)

Note that the factor of 1/2 in the second sum ensures interfaces are not double counted for each pair of positions. To
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compute the sums in H(σ) symmetrically, we rewrite eq. (S49) as

H(σ) = 1
2

N∑
i=0

N∑
j=0

nijϵij(1+ δij)+
N∑

i=0
niγi (S52)

= S

1
2
∑
i̸=j

nij

S
ϵij +

∑
i

nii

S
ϵii +

∑
i

ni

S
γi

 . (S53)

The sum above has a prefactor of 1/2 for the total pair contact energies since, unlike eq. S49, the sum double counts over
all pairs of distinct species i ̸= j.

Now consider a macrostate Mn⃗ consisting of all microstates whose counts of species i are ni. As the Monte Carlo
sampling satisfies detailed balance with respect to H and the state space is fully connected, at equilibrium the probabilities
of microstates and macrostates will obey the Boltzmann distribution:

P (σ) = 1
Z

e−H(σ)/kBT where Z =
∑

σ

e−H(σ)/kBT (S54)

P (Mn⃗) =
∑

σ∈Mn⃗

P (σ) = 1
Z

e−G(Mn⃗)/kBT where G(Mn⃗) = −kBT ln

 ∑
σ∈Mn⃗

e−H(σ)/kBT

 . (S55)

We define ϕi = ni
S to be the volume fraction of species i and note that for well-mixed states, nij

S ≈ z ni
S

nj

S = zϕiϕj when
i ̸= j, and otherwise nii

S ≈ z
2 ϕ2

i . Such states σ all have similar energy

H(σ) ≈ S

z

2
∑
i̸=j

ϕiϕjϵij + z

2
∑

i

ϕ2
i ϵii +

∑
i

ϕiγi

 (S56)

= S

z

2
∑
i,j

ϕiϕj

(
ϵij −

ϵii + ϵjj

2

)
+ z

2
∑

i

ϕiϵii +
∑

i

ϕiγi

 . (S57)

In the mean-field limit, we assume that these well-mixed states dominate the free energy, and that the number of such
states is approximately ∥Mn⃗∥, which we can estimate using Stirling’s approximation that lnn! ≈ n lnn/e, so

ln∥Mn⃗∥ = ln
(

S

n⃗

)
(S58)

= ln S!∏N
i=0 ni!

(S59)

≈ S lnS/e−
∑

i

ni lnni/e (S60)

= S

(
lnS/e−

∑
i

ϕi lnSϕi/e

)
(S61)

= −S

N∑
i=0

ϕi lnϕi . (S62)

The free energy for this macrostate of the lattice is therefore

G(Mn⃗) ≈ −kBT ln∥Mn⃗∥e−H(σ)/kBT (S63)

≈ H(σ)+kBTS
∑

i

ϕi lnϕi (S64)
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and the (non-dimensionalized) free energy of L per unit volume is

Ωsurface ≡ βν
G(Mn⃗)

νS
(S65)

≈ β
H(σ)

S
+

N∑
i=0

ϕi lnϕi (S66)

= β

z

2

N∑
i=0

N∑
j=0

ϕiϕj

(
ϵij −

ϵii + ϵjj

2

)
+ z

2

N∑
i=0

ϕiϵii +
N∑

i=0
ϕiγi

+
N∑

i=0
ϕi lnϕi (S67)

= 1
2

N∑
i=0

N∑
j=0

ϕiχijϕj +
N∑

i=0
ϕi lnϕi −β

N∑
i=0

ϕiµ
′
res,i (S68)

= βνf(ϕ⃗,χ)−βµ⃗′
res · ϕ⃗ (S69)

where β = 1/kBT and χij = βz(ϵij − 1
2 (ϵii + ϵjj)) and µ′

res,i = −(γi + z
2 ϵii). We used the fact that ϕ0 = 1 − ϕT is the

solvent volume fraction and χi0 = 0 by construction to equate the first term with eq. 6. Finally, since the input species are
non-exchanging, and recalling that µ′

res,i is the reservoir chemical potential of species i, with µ⃗′
res = 0◦ µ⃗(in)

res ◦ µ⃗res defined
in SI Note 1, we have that

µ⃗′
res · ϕ⃗ = µ⃗res · ϕ⃗oh + const. (S70)

and so, up to a constant,
Ωsurface = βνf(ϕ⃗,χ)−βµ⃗res · ϕ⃗oh (S71)

is in agreement with eq. 5. Note that for simplicity, lattice simulations are run with ϵii = 0 = ϵ0i, so ϵij = χij

βz for z = 18
and γi = −µ′

res,i.
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Supplementary Note 5: Analyses

Phase number and composition calculation
The steady-state compositions of the nset surfaces from the mean-field dynamics are gathered into a matrix B = nset ×
(Nout + Nh), and given the large number of surfaces, we generically assume Nout + Nh ≪ nset. Subsequently, the matrix
is normalized (mean-centered and standard-deviation set to 1) and the covariance matrix’s eigenvalues (i.e. eigenvalues
of BT B

Nout+Nh
) is computed. If the normalized matrix was populated purely with i.i.d values from N(0,σ = 1), the Marchenko-

Pastur distribution (54) guarantees that the eigenvalues would be smaller than λ =
(

1+
√

Nout+Nh
nset

)2
. Thus, eigenvalues

larger than this are unlikely to arise from compositions sampled randomly around a typical composition (i.e. of a particular
phase) and when no eigenvalues are significant, we assume that there is only 1 typical phase composition. Note that this
is an approximation since the MP distribution does not generically guarantee that eigenvalues from “signa” cannot be less
than the above λ, and only that the eigenmodes from “noise” cannot be larger—so the number of phases we estimate may
be lower than actually present. With that caveat, we use the number of significant modes (larger than above threshold) to
estimate number of phases as nphases = n(eig > λ) + 1. With this estimate, we employ a hierarchical clustering method
to group the nset surfaces into nphases compositions. The average composition of each phase is computed as the mean
composition of all the surfaces clustered into the same phase and reported in Fig. 4.

Zentner et al. 29



Supplementary Note 6: Random fluids

Fluids with random collection of interactions
We explore whether fluids with a random interaction network (as reported in Fig. 5) can be trained to classify distinct
decision boundaries by simply tuning concentrations. For this, we first initialize a system with 2 inputs, 2 outputs, and a
large ensemble (Nh = 30 in Fig. 5B) of hidden species. In a given trajectory, the relevant pairwise interaction (χij) are
directly sampled as follows: first a random variable x is sampled uniformly from [−1,1] and transformed to obtain χij =
χm tanh(x), where χm = 15 is chosen to set a maximum strength of interactions χmax ≈ 12. This resulting transformed
distribution is not perfectly uniform and is biased a bit towards higher values of χ. The output-output interactions are set
to favor demixing as above. With this initial, frozen interaction matrix, we perform training as described above, except over
3000 epochs, to minimize the loss by only changing the reservoir potential µ⃗res. Since the interaction matrix is sampled
randomly and frozen, we repeat this training across 30 replicates and for distinct decision boundaries. The results of these
tests are presented in the manuscript.
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Supplementary Note 7: Sharp edges of the model

Reservoir
A central assumption of the model is that the trained reservoir potential (µ⃗res) will be maintained by the cellular milieu,
likely through out-of-equilibrium mechanisms. Note that this assumption does not directly posit any further requirements
of such a reservoir. That is, it could exist as a single or multiple coexisting phases, and either be dense or dilute—as
long as the reservoir potential remains constant (µ⃗res) and unaffected by the exchange with surfaces. While not explicitly
modeled in our study, we briefly discuss potential considerations in designing biological/physical models of reservoirs.

Biological reservoirs: The cellular millieu typically contains the same molecular repertoire but is generically coupled
to various active processes. For example, molecules are routinely created and destroyed through active reactions, and
cytoplasm/nucleoplasm resident molecules like chaperones and disaggregases (93, 94) contribute to partial solubilization
of the reservoir. Thus, explicit models of the chemical potential remain challenging to describe.

Physically realizable reservoirs: In physical or synthetic systems, particularly those at equilibrium, one pertinent ques-
tion relates to properties of the reservoir. In particular, what are its corresponding composition and stability? This re-
quires a specific model of the reservoir. For example, one could allow for the same mean-field like treatment of the
entropy/interactions for the reservoir as was used for the surface, except it could exist at a different, larger volume Vres. If
we further assume that the reservoir is input-free—comprised of only hidden, output, and solvent species—one can invert
the 0⃗ input surface composition to get a reservoir composition from the model A dynamics.

We discuss next how this inferred composition is guaranteed to be thermodynamically stable i.e., outside of the spinodal,
and as such, will not spontaneously phase separate. This emerges because the criteria for the thermodynamic stability

of the surface is d2Ωsurface
dϕiϕj

= δij

ϕi
+ 1

ϕT
+ χij is positive semi-definite (i, j ∀ Non-input species). This is guaranteed by

construction, since the gradient descent procedure employed in the mean-field model finds local minima of Ωsurface that
must satisfy this constraint. Importantly, the input-associated terms and linear reservoir terms do not explicitly show up
in this Hessian. The above term is identical to the Hessian of the free energy that describes a box of finite volume
comprising non-input only species at the identified steady-state composition. Physically, this can be interpreted as the
stability of non-input species in a canonical ensemble, or in other words, following the βνf like-term that we describe in
eq. 6 only for the pertinent species. The lack of input-related terms, despite their contribution in the free-energy, stems
from their constraints in the model. Since inputs are both clamped in space and position, ϕin,i is not a free parameter that
is capable of fluctuations. Thus, their interactions with non-input species can be re-interpreted as an (linear) "internal"
chemical potential coupling, i.e., βEin−i,k = (χikϕin−i)ϕk ≡ µint

ik ϕk ∀k ∈ (Nhid,Nout), ∀i ∈ Nin An important caveat
to note is that this Hessian does not guarantee stability of a mixture where inputs also contain translational entropy
i.e. the ability to move in space. Although their counts are fixed, input species can now undergo spatial fluctuations,
and thus can change the stability of the surface. Evaluating the stability of the whole surface requires determining:
d2Ωsurface
dϕidϕj

, i, j ∀(Nin,Nout,Nhid) - inherently not possible directly in the spatially unresolved mean-field model described
here but could be studied by incorporating spatial gradient terms (as in eq. S1) leading to a Cahn-Hilliard type formulation
or through lattice models. Note that this stability would also depend on input-associated parameters like input-input
interactions, that are not directly learned or modified in our model. Preliminary investigations of lattice simulations with
mean-field parameters, but with inputs no longer immobilized, suggest a loss in classifier performance as well as stronger
intra-surface demixing. In such cases, since inputs strongly prefer distinct outputs and are still constrained to remain
in the box, they demix to form pockets of coexisting phases with distinct outputs and compositions. These suggest the
possibility of novel, or only partially overlapping, class of (microscopic) solutions may be discovered in a model where
inputs are free to move within the surface but still incapable of exchanging with the reservoir—bearing resemblance to the
model explored for MNIST classification by (41).

However, generally such an effective composition requires the multiple assumptions stated above. More generally, it may
be experimentally advantageous to directly specify a desired reservoir composition (ϕ⃗∗

res)—for instance, an equimolar,
dilute reservoir. One could incorporate this constraint by suitably modifying our formulation to instead require that as the
molecular interaction parameters χ evolve in the optimization procedure, the reservoir potential is implicitly derived as
µ⃗res = µ⃗(ϕ⃗∗

res,χ) from the mean-field model. This will need to include an additional constraint that the Hessian matrix of
the free-energy Hij = dµres,i

dϕj
be positive semi-definite at ϕ⃗∗

res (29, 95). However, in both methods outlined here, there is
still no guarantee that the reservoir composition is stable to fluctuation-driven nucleation.

Stability and properties of surface phases
In the model formulation, the surface is treated in the well-mixed mean-field limit. Thus, we don’t explicitly consider
whether the surface itself can demix within the volume that it occupies. In this section, we discuss the assumptions that
underlie this model and where they may break down.
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Biological motivation for mean-field treatment: We begin with the context presented in the paper i.e., DNA-bound TFs
as input species on genetic loci and mobile species (polymerases, cofactors etc.) that exchange with the nucleoplasm.
DNA-bound TFs (inputs) are treated as fixed in position and space within our framework. This is motivated by the fact
that the time-scales of free diffusion and exchange from the nucleoplasm of mobile molecules is significantly faster than
for DNA-bound TFs. For example, the diffusion coefficients of chromatin, and thus molecules stably bound to it, are
typically 2-3 orders of magnitude slower than those of nucleoplasmic proteins. We ignore any internal organization of the
inputs within the surface that may emerge from the 3D DNA conformation and treat it as uniform, i.e., well-mixed. Thus
the mobile species (hidden and outputs) in our model framework effectively live in a mean-field environment created by
the well-mixed inputs. More generally, there may exist other active mechanisms like, for example, chromatin associated
remodeler proteins that stir DNA, that may further contribute to keeping the input species well-mixed.

Stability of a surface: With the above assumption that inputs are effectively randomly well-mixed in the surface, the
composition of the exchanging species (as queried by the model A dynamics) is found as a minimum of the effective free-
energy of the surface. This means the surface will not spontaneously phase separate but may still form multiple phases
from nucleation. As described in the next section, we generally find that the explicit 3D lattice model shows a single-phase
in most regions except for the region adjacent the decision boundary.

Remarks from the lattice liquid model: In the lattice liquid (see SI Note 4), for each trajectory both the overall com-
position of the input species as well as their positions are held fixed to mimic immobile, non-exchanging TFs on short
timescales. Note that the initial positions of the inputs are randomly assigned in the lattice. With this implementation,
we find that parameters trained from the mean-field model successfully translate to 3D lattice fluids as measured by the
classifier performance. This supports the idea that under the assumption of immobile, localized input species, the lattice
model generally predicts a major, single phase within the surface. When closer to the decision boundary, we see that the
lattice models deviate from the mean-field predictions (Fig. 7B). At these points, we empirically find that multiple phases
can form within within the surface that are enriched in the two distinct outputs.

Input-free surfaces: Biologically, the no-input surface is explicitly considered as a finite volume DNA loci that has no
binding sites for any of the input molecules. Thus, the "output function" of a (0,0) surface is ascribed by condensing
the appropriate output (’green’ in AND, ’pink’ in XOR, and so on). More generally, a surface absent of input species
is nonetheless described by a fixed volume V that can freely exchange with the reservoir. As discussed above, in a
(non-biological) physical reservoir that is not actively disaggregated and is constrained to a finite volume (i.e. a canonical
ensemble), we expect the same condensed phase to emerge in the reservoir as in the (0,0) surface volume.
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Supplementary Figures: Information processing driven by multicomponent
surface condensates
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Fig. S1. (A) The absolute concentrations of the two output species, with the test prediction in the Fig. 2A reproduced on the left for
comparison. (B) The middle panel shows the dynamics of the mean-field composition at two points (labelled by the green and pink
dots) far away from the decision boundary. As an extension of Fig. 2B, the right panel depicts how the mean-field composition changes
across the decision boundary at multiple temperatures.

Zentner et al. 33



A
2-2-0

B
2-3-0

C
2-2-1

0.0 0.1 0.2
0.0

0.1

0.2

ϕ i
n,
2

0.0 0.1 0.2
0.0

0.1

0.2

ϕ i
n,
2

0.0 0.1 0.2
0.0

0.1

0.2

ϕ i
n,
2

0.0 0.1 0.2
ϕin,1

0.0

0.1

0.2

ϕ i
n,
2

0.0 0.1 0.2
ϕin,1

0.0

0.1

0.2

ϕ i
n,
2

0.0 0.1 0.2
ϕin,1

0.0

0.1

0.2

ϕ i
n,
2

10
−2

10
−1

10
0

10
1

10
2

ϕ o
ut
,1
/ϕ

ou
t,
2

10
−2

10
−1

10
0

10
1

10
2

ϕ o
ut
,1
/ϕ

ou
t,
2

10
−2

10
−1

10
0

10
1

10
2

ϕ o
ut
,1
/ϕ

ou
t,
2

10
−2

10
−1

10
0

10
1

10
2

ϕ o
ut
,1
/ϕ

ou
t,
2

Fig. S2. (A) Two theoretical boundary solutions to systems with only 2 input and 2 output species (computed using eq. S28). Only linear
boundaries are possible. (B) Two theoretical boundary solutions to systems with only 2 input and 3 output species (computed using
eq. S30). Away from intersection points between more than two classes, the decision boundaries remain linear. (C) Two theoretical
boundary solutions to systems with only 2 input, 2 output and 1 hidden species (computed using eq. S33), enabling the construction of
nonlinear boundaries.
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interactions can be chosen such that each cell of the input space partition recruits the target output species, in line with the decision
boundary being approximated. Increasing the number of hidden species could allow for a finer partitioning of the input space, leading
to a better approximation of the target decision boundary.
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Fig. S6. In training and testing the classifiers in the manuscript, we assume that the solvent has fast dynamics and can therefore
be treated implicitly according to the mass constraint of the system. However, the steady states of surfaces are largely insensitive to
the choice of solvent dynamics, as shown above. For each of the decision boundaries tested in Figs 1-3 (reproduced here for ease
of comparison as the “fast solvent” panels), we produce the same plot using dynamics in which the solvent is treated explicitly in the
dynamics and is given the same mobility as the solutes (presented as the “explicit solvent” panels). The result is a decision boundary
that looks nearly identical for all cases.
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Fig. S15. In the left column are the test predictions from Fig. 7 reproduced with a truncated colorbar ranging from 0.1 to 10 for greater
visual clarity. Next to each test prediction are the absolute concentrations of the two output species across the input space.
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