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A B S T R A C T

Predicting the kinetics of reactions involving nucleic acid strands is a fundamental task in biology and
biotechnology. Reaction kinetics can be modeled as an elementary step continuous-time Markov chain, where
states correspond to secondary structures and transitions correspond to base pair formation and breakage.
Since the number of states in the Markov chain could be large, rates are determined by estimating the
mean first passage time from sampled trajectories. As a result, the cost of kinetic predictions becomes
prohibitively expensive for rare events with extremely long trajectories. Also problematic are scenarios where
multiple predictions are needed for the same reaction, e.g., under different environmental conditions, or
when calibrating model parameters, because a new set of trajectories is needed multiple times. We propose a
new method, called pathway elaboration, to handle these scenarios. Pathway elaboration builds a truncated
continuous-time Markov chain through both biased and unbiased sampling. The resulting Markov chain has
moderate state space size, so matrix methods can efficiently compute reaction rates, even for rare events.
Also the transition rates of the truncated Markov chain can easily be adapted when model or environmental
parameters are perturbed, making model calibration feasible. We illustrate the utility of pathway elaboration on
toehold-mediated strand displacement reactions, show that it well-approximates trajectory-based predictions of
unbiased elementary step models on a wide range of reaction types for which such predictions are feasible, and
demonstrate that it performs better than alternative truncation-based approaches that are applicable for mean
first passage time estimation. Finally, in a small study, we use pathway elaboration to optimize the Metropolis
kinetic model of Multistrand, an elementary step simulator, showing that the optimized parameters greatly
improve reaction rate predictions. Our framework and dataset are available at https://github.com/DNA-and-
Natural-Algorithms-Group/PathwayElaboration.
1. Introduction

Reactions involving nucleic acid strands play key roles in cellular
processes, are valuable tools in synthetic biology, and are the basis
for programming in the field of DNA computing. Examples of such
reactions include the folding of tRNA strands, which aid in protein
synthesis in the cell; RNA toehold switching, which can be used to
detect the presence of small molecules or biomolecules (Angenent-Mari
et al., 2020), and DNA three-way strand displacement, which is used
to implement logic circuits and oscillators (Soloveichik et al., 2010;
Srinivas et al., 2017). Each reactant is a single strand or a complex
comprised of a small handful of short strands, plus its associated
secondary structure (set of complementary base pairs) if any. The
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reaction’s products involve the same strand(s), in a new structural
configuration.

Good software simulators would be a boon to scientists and engi-
neers who study and design such reactions. Simulators could flexibly
model different environmental conditions such as temperature, could
predict reaction rates, and could sample folding trajectories that pro-
vide detailed insight on mechanistic principles or unexpected behav-
iors. Some simulators use coarse-grained models that consider large
conformational changes (Sun et al., 2018; Isambert and Siggia, 2000),
while others use elementary step models that consider the formation or
breaking of individual base pairs (Flamm et al., 2000; Schaeffer et al.,
2015). Molecular dynamic models that follow the three-dimensional
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motion of the polymer chains are also well-established (Ouldridge
et al., 2011; Šulc et al., 2012). In this work, we are interested in
elementary step models because they are computationally more ef-
ficient than molecular dynamics, yet they can uncover unexpected
secondary structures in intermediate states. The Kinfold unimolecu-
lar simulator (Flamm et al., 2000) proceeds in elementary steps, or
transitions, in which a base pair forms or breaks. Multistrand (Scha-
effer, 2013; Schaeffer et al., 2015) adopts the same principles, and
can simulate unimolecular and bimolecular reactions involving multi-
stranded DNA complexes. These simulators do not explicitly store all
possible states, i.e., secondary structures of the reacting strand(s), since
the number of states can be exponential in the total strand lengths.
Rather, they stochastically generate successive secondary structures
of a trajectory on the fly, along with the time for each transition,
in a manner consistent with kinetic and thermodynamic models and
detailed balance.

However, trajectory-based simulation of all but the simplest ex-
amples is computationally costly, particularly for reactions, such as
rare events, with long folding trajectories. The cost is amplified when
doing simulations at multiple temperatures, because new trajectories
are needed for each temperature setting. Another problem is that, in
contrast with thermodynamic ‘‘nearest neighbor’’ models which have
been extensively trained using experimental data, current kinetic mod-
els are rather simplistic. Kinfold’s Metropolis and Kawasaki kinetic
models use a single parameter, and Multistrand’s Metropolis model
has two parameters, one for unimolecular and one for bimolecular
reactions. Rate predictions with current kinetic parameters can be off
by orders of magnitude. A 15-parameter kinetic model that is based
on Arrhenius principles shows promise (Zolaktaf et al., 2019), but the
model parameters have not yet been well calibrated, because of the
cost of running multiple inference steps, each relying on a new set of
trajectories for each of a large set of reactions.

What is needed is a way to efficiently and adaptably approximate
the predictions of elementary step nucleic acid kinetic simulators. Effi-
ciency makes simulation of rare events possible, and adaptability makes
efficient updates possible when the parameters of the kinetic model
or environment change. There is extensive literature, discussed further
in Section 2, on simulation of molecular folding, but none is well
suited to address the unique combination of technical challenges here–
exponentially large state spaces, rare events, inference on trajectory
space rather than state space, and changing model parameters. Briefly,
methods that rely on sampled trajectories alone are not adaptable since
(as noted already above) they require new trajectories when the model
changes. Alternative approaches use coarse-graining or probabilistic
roadmaps to build approximate Markov chain models with significantly
fewer states than the full elementary step model, making it possible
to use matrix methods to efficiently compute reaction rates. However,
these methods are not adaptable because calculating transition rates
between states typically involves costly estimation of energy barriers.
The most promising methods build truncated Markov chains (Kuntz
et al., 2021), where the state space and transitions are subsets of those
in the elementary step model, and so the cost to update each transition
rate is constant. However, current truncation-based approaches either
require prohibitively many states, or simulation time, or choose states
via biased sampling alone, thereby omitting deep energy basins that
strongly influence reaction rates.

In this work we propose a new approach, called pathway elabo-
ration, illustrated in Fig. 1. Pathway elaboration leverages the Multi-
strand simulator to select a subset of the states through biased path
sampling (1a) as well as unbiased (1b) exploration. Biased sampling
efficiently finds trajectories from initial to final states even for rare
events, while unbiased elaboration from states of the biased samples
can discover low-energy basins in which a reaction can get ‘‘trapped’’.
Elementary step transitions are added (1c) between pairs of explored
states that are adjacent, i.e., differ by one base pair. A pruning step (1d)
2

then removes states and associated transitions, while keeping reaction
rate estimates within predetermined upper bounds. The result is a
continuous-time, truncated Markov chain representation of the reac-
tion. With this truncated representation, matrix methods can efficiently
estimate reaction rates, even for rare events, and trajectories can be
sampled. The same representation can be used even when parameters
of the kinetic model, or temperature, are slightly perturbed (1e), and
can be updated in time proportional to the number of states for larger
perturbations. As a result, it is possible to amortize the initial cost of
running pathway elaboration to reduce the cost of kinetic parameter
inference (1f) or rate estimation of the same reaction at different
temperatures (1g).

We evaluate pathway elaboration in several ways. We first use
a case study to illustrate how pathway elaboration provides insight
on the kinetics of two contrasting DNA reactions. Both reactions in-
volve toehold-mediated strand displacement, with the second differing
from the first by the introduction of a single mismatch between the
invading strand and the substrate to which it binds. Pathway elab-
oration correctly predicts that the second is roughly three orders of
magnitude slower than the first, and a visualization of the trajectories
sampled from the truncated Markov chain shows how the energy
barrier introduced by the mismatch slows down the reaction.

We then compare pathway elaboration’s predictions with Multi-
strand’s unbiased stochastic simulation (Gillespie, 1977; Doob, 1942).
We compare with this unbiased ‘‘gold standard’’ simulation mode,
rather than with experimentally determined reaction rates, because
we want to understand the degree to which pathway elaboration’s
truncation changes the predicted rate. For this study, we use a diverse
set of 237 unimolecular and bimolecular reactions for which unbiased
simulation is feasible. While the reaction rate constants predicted by
unbiased simulation on this dataset differ by over 7 orders of magni-
tude, pathway elaboration’s predictions differ from unbiased simulation
by a factor of just 13% on average, an encouraging finding. In our
experiments, pathway elaboration is on average 5 times faster than
stochastic simulation. The quality of pathway elaboration’s predictions
is better on average than an alternative truncation-based method that
we implemented, based on transition path sampling (Bolhuis et al.,
2002).

Finally, we use pathway elaboration to rapidly evaluate perturbed
model parameters during optimization of Multistrand’s two kinetic
parameters. We use the experimentally determined rates of the same
237 reactions to train the optimizer and an additional 30 reactions as
our testing set. On these 30 reactions, which involve rare events and
have large state spaces, unbiased stochastic simulation is too costly to
run (requiring more than two weeks per reaction on our system). Here
we compare the experimentally determined reaction rates (rather than
the rates predicted by unbiased simulation) with the rates produced by
pathway elaboration before and after optimization, since the purpose
is to see if pathway elaboration’s truncated model shows promise
as a practical approach for parameter optimization. On the training
set, a 26.9-fold average error in the predicted reaction rate constant
reduces to a 2.8-fold average error, and for the 30 test reactions, a
13.4-fold average error reduces to a 4.3-fold average error. The entire
optimization and evaluation takes less than five days.

2. Background and related work

In Section 2.1 we provide background on the continuous-time
Markov chain (CTMC) model to which our pathway elaboration method
(Section 3) applies and also provide related definitions. In Section 2.2,
we describe the most relevant concepts for interacting nucleic acid
strands. We also describe how the Multistrand kinetic simulator models
the kinetics of multiple interacting nucleic acid strands as CTMCs and
how it estimates reaction rate constants from mean first passage time
(MFPT) estimates for these reactions. Finally, in Section 2.3 we provide
further related work on MFPT and reaction rate constant estimation and

model calibration.
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Fig. 1. The pathway elaboration method and its applications. Pathway elaboration can be used for mean first passage time estimation of rare events and the rapid evaluation
of perturbed parameters. Here, in the underlying detailed-balance continuous-time Markov chain, boxes in a square grid represent states of the continuous-time Markov chain,
with transitions between adjacent boxes, initial state I at bottom left and target state F at top right. (a) From state I, sample paths that are biased towards the target state
F. Three sampled paths are shown with blue, pink and purple dotted lines. (b) From each sampled state found in the previous step, run short unbiased simulations to fill in
the neighborhood. Simulations from two states are shown with green dashed lines. The green states and transitions are sampled. (c) Include all missing transitions between the
states that were sampled in steps a and b. The red transitions are included. (d) Prune states that are expected to reach the target state quickly by redirecting their transitions
into a new target state. (e) For perturbed model parameters, keep the topology of the truncated continuous-time Markov chain, but update the transition rates. (f) We can use
truncated continuous-time Markov chains for perturbed parameters, such as to estimate model parameters or (g) to predict forward (𝑘+) and reverse (𝑘−) reaction rate constants
as temperature changes.
2.1. Continuous-time Markov chain

Continuous-time Markov chain (CTMC). We indicate a CTMC as a
tuple  = ( ,𝐊, 𝜋0,target ), where  is a countable set of states,
𝐊 ∶  ×  → R≥0 is the rate matrix and 𝐊(𝑠, 𝑠) = 0 for 𝑠 ∈ ,
𝜋0 ∶  → [0, 1] is the initial state distribution in which ∑

𝑠∈ 𝜋0(𝑠) = 1,
and target is the set of target states. We define the set of initial states as
init =

{

𝑠 ∈  ∣ 𝜋0(𝑠) ≠ 0
}

. For CTMCs considered here, target ∩init =
∅. A transition between states 𝑠, 𝑠′ ∈  can occur only if 𝐊(𝑠, 𝑠′) > 0. The
probability of moving from state 𝑠 to state 𝑠′ is defined by the transition
probability matrix 𝐏 ∶  ×  → [0, 1] where

𝐏(𝑠, 𝑠′) = 𝐊(𝑠, 𝑠′)
𝐄(𝑠, 𝑠)

. (1)

Here 𝐄 ∶  ×  → R≥0 is a diagonal matrix in which 𝐄(𝑠, 𝑠) =
∑

𝑠′∈ 𝐊(𝑠, 𝑠′) is the exit rate. The time spent in state 𝑠 before a transi-
tion is triggered is exponentially distributed with exit rate 𝐄(𝑠, 𝑠). The
generating matrix 𝐐 ∶  ×  → R is 𝐐 = 𝐊 − 𝐄.

Detailed-balance CTMC. In a detailed-balance CTMC 𝑅 = ( ,𝐊, 𝜋0,
target , 𝜋), also known as a reversible CTMC, a probability distribution
𝜋 ∶  → [0, 1] over the states exists that satisfies the detailed balance
condition 𝜋(𝑠)𝐊(𝑠, 𝑠′) = 𝜋(𝑠′)𝐊(𝑠′, 𝑠) for all 𝑠, 𝑠′ ∈ . The detailed
balance condition is a sufficient condition for ensuring that 𝜋 is a
stationary distribution (𝜋𝐏 = 𝜋). For a detailed-balance finite-state
CTMC, 𝜋 is the unique stationary distribution of the chain and is also
the unique equilibrium distribution (Whitt, 2006).

Boltzmann distribution. In many Markov models of physical systems,
eventually the population of states will stabilize and reach a Boltzmann
distribution (Schaeffer et al., 2015; Flamm et al., 2000; Tang, 2010) at
equilibrium. With this distribution, the probability that a system is in
a state 𝑠 is

𝜋(𝑠) = 1 𝑒
− 𝐸(𝑠)
𝑘𝐵𝑇 , (2)
3

𝑍

where 𝐸(𝑠) is the energy of the system at state 𝑠, 𝑇 is the temperature,
𝑘𝐵 is the Boltzmann constant, and 𝑍 =

∑

𝑠∈ 𝑒
− 𝐸(𝑠)
𝑘𝐵𝑇 is the partition func-

tion. To ensure that at equilibrium states are Boltzmann distributed, the
detailed balance conditions are
𝐊(𝑠, 𝑠′)
𝐊(𝑠′, 𝑠)

= 𝑒
− 𝐸(𝑠′)−𝐸(𝑠)

𝐾𝐵𝑇 . (3)

Reversible transition. In this work, a reversible transition between
states 𝑠 and 𝑠′ means 𝐊(𝑠, 𝑠′) > 0 if and only if 𝐊(𝑠′, 𝑠) > 0.

Trajectories and paths. A trajectory (𝑠0, 𝑡0), (𝑠1, 𝑡1, ),… , (𝑠𝑚, 𝑡𝑚, ) with
𝑚 transitions over a CTMC  = ( ,𝐊, 𝜋0,target ) is a sequence of states
𝑠𝑖 and holding times 𝑡𝑖 for which 𝐊(𝑠𝑖, 𝑠𝑖+1) > 0 and 𝑡𝑖 ∈ R>0 for
𝑖 ≥ 0. We define a path 𝑠0, 𝑠1,… , 𝑠𝑚 with 𝑚 transitions over a CTMC
 = ( ,𝐊, 𝜋0,target ) as a sequence of states 𝑠𝑖 for which 𝐊(𝑠𝑖, 𝑠𝑖+1) > 0.

The stochastic simulation algorithm (SSA). SSA (Gillespie, 1977;
Doob, 1942) simulates statistically correct trajectories over a CTMC
 = ( ,𝐊, 𝜋0,target ). At state 𝑠𝑖, the probability of sampling 𝑠𝑖+1 is
𝐏(𝑠𝑖, 𝑠𝑖+1). At a jump from state 𝑠𝑖, it samples the holding time 𝑇𝑖 from
an exponential distribution with exit rate 𝐄(𝑠, 𝑠) =

∑

𝑠′∈ 𝐊(𝑠, 𝑠′).

Mean first passage time (MFPT). In a CTMC  = ( ,𝐊, 𝜋0,target ), for
a state 𝑠 ∈  and a target state 𝑠f ∈ target , the MFPT 𝜏𝑠 is the expected
time to first reach 𝑠f starting from state 𝑠. For state 𝑠, the MFPT from
𝑠 to 𝑠f equals the expected holding time in state 𝑠 plus the MFPT to 𝑠f
from the next visited state (Suhov and Kelbert, 2008), so

𝜏𝑠 =
1

𝐄(𝑠, 𝑠)
+

∑

𝑠′∈

𝐊(𝑠, 𝑠′)
𝐄(𝑠, 𝑠)

𝜏𝑠′ . (4)

Multiplying the equation by the exit rate 𝐄(𝑠, 𝑠) =
∑

𝑠′∈ 𝐊(𝑠, 𝑠′) then
yields
∑

𝐊(𝑠, 𝑠′)(𝜏𝑠′ − 𝜏𝑠) = −1. (5)

𝑠′∈
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Fig. 2. Examples of unimolecular and bimolecular interacting nucleic acid strand reactions. (a) Hairpin closing is a unimolecular reaction. It has one reactant complex (𝐴) and
one product complex (𝐶). The reverse reaction, hairpin opening, is also a unimolecular reaction. (b) Helix dissociation is a unimolecular reaction. It has one reactant complex
(𝐴) and two product complexes (𝐶 and 𝐷). The reverse reaction, helix association, is a bimolecular reaction. (c) Toehold-mediated three-way strand displacement is a bimolecular
reaction. It has two reactant complexes (𝐵 and 𝐹 ) and two product complexes (𝐺 and 𝐻).
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Now writing 𝐭 ∶  ⧵ 𝑠f → R≥0 to be the vector of MFPTs for each state,
such that 𝐭[𝑠] = 𝜏𝑠, we find a matrix equation as

𝐐̃𝐭 = −𝟏, (6)

where 𝐐̃ is obtained from 𝐐 by eliminating the row and column
corresponding to the target state, and 𝟏 is a vector of ones. If there
exists a path from every state to the final state 𝑠f, then 𝐐̃ is a weakly
chained diagonally dominant matrix and is non-singular (Azimzadeh
and Forsyth, 2016). The MFPT from the initial states to the target state
𝑠f is found as

𝜏𝜋0 =
∑

𝑠∈
𝜋0(𝑠)𝜏𝑠. (7)

If instead of a single target state 𝑠f we have a set of target states
target , then to compute the MFPT to target we convert all target states
into one state 𝑠f so that ∗ =  ⧵ target ∪

{

𝑠f
}

. For 𝑠, 𝑠′ ∈ ∗ ⧵
{

𝑠f
}

, we
update the rate matrix 𝐊∗ ∶ ∗ → R≥0 by 𝐊∗(𝑠, 𝑠f) =

∑

𝑠′′∈target 𝐊(𝑠, 𝑠′′),
∗(𝑠, 𝑠′) = 𝐊(𝑠, 𝑠′), and 𝐊∗(𝑠f, 𝑠) is not used in the computation of the
FPT (see Eq. (6)).

runcated CTMC. Let ̂ ⊆  be a subset of the states over the CTMC
= ( ,𝐊, 𝜋0,target ) or detailed-balance CTMC 𝑅 = ( ,𝐊, 𝜋0,target , 𝜋)

and let ̂target ⊆ ̂. We construct the rate matrix 𝐊̂ ∶ ̂ × ̂ → R≥0 as

𝐊̂(𝑠, 𝑠′) = 𝐊(𝑠, 𝑠′). (8)

We construct the initial probability distribution 𝜋̂0 ∶ ̂ → [0, 1] as

̂0(𝑠) =
𝜋0(𝑠)

∑

𝑠∈̂ 𝜋0(𝑠)
. (9)

e define the truncated CTMC as ̂ = (̂ , 𝐊̂, 𝜋̂0, ̂target ) and ̂𝑅 =
̂ , 𝐊̂, 𝜋̂0, ̂target , 𝜋̂) for  and 𝑅, respectively. For a detailed-balance ̂𝑅,
𝜋̂ ∶ ̂ → [0, 1] defined as

𝜋̂(𝑠) =
𝜋(𝑠)

∑

𝑠∈̂ 𝜋(𝑠)
, (10)

atisfies the detailed balance conditions in ̂𝑅 and is the unique equi-
ibrium distribution of ̂ in ̂𝑅 (Whitt, 2006).

.2. The multistrand kinetic model of interacting nucleic acid strands

Multistrand is a kinetic simulator that is based on SSA for analyzing
he folding kinetics of multiple interacting nucleic acid strands. Multi-
trand can handle both a system of DNA strands and a system of RNA
trands.2

nteracting nucleic acid strands (reactions). Following Multistrand,
e are interested in modeling the interactions of nucleic acid strands

2 Currently, Multistrand does not handle a system of mixed DNA and
NA strands, though it can be extended to handle such systems using good

hermodynamic parameters.
4

G

in a stochastic regime. In this regime, we have a discrete number
of nucleic acid strands (a set called Ψ∗) in a fixed volume 𝑉 (the
‘box’’) and under fixed conditions, such as the temperature 𝑇 and the
oncentration of Na+ and Mg2+ cations. This regime can be found in
ystems that have a small volume with a fixed count of each molecule,
nd can also be applied to larger volumes when the system is well
ixed. Moreover, it can be used to derive reaction rate constants

f reactions in a chemical reaction network that follows mass-action
inetics (Schaeffer et al., 2015).

Following Multistrand, a complex is a subset of strands of Ψ∗ that
re connected through base pairing (see Fig. 2). A complex microstate is
he complex base pairs, that is secondary structure. A system microstate
s a set of complex microstates, such that each strand 𝜓 ∈ Ψ∗ is part
f exactly one complex. A unimolecular reaction with reaction rate
onstant 𝑘1 (units s−1) has the form
𝑘1
←←←←←←←←←←→ 𝐶 +𝐷, (11)

nd a bimolecular reaction at low concentration with reaction rate
onstant 𝑘2 (units M−1s−1) can be written in the form of

𝐵 + 𝐹
𝑘2
←←←←←←←←←←→ 𝐺 +𝐻. (12)

ach reactant and product is a complex; 𝐴, 𝐵, 𝐹 , 𝐶 and 𝐺 are nonempty
ut 𝐷 and 𝐻 may be empty complexes. For example, hairpin closing
Fig. 2(a)) is a unimolecular reaction involving one strand, where
omplexes 𝐴 and 𝐶 are comprised of this one strand, while 𝐷 is empty.
elix dissociation (Fig. 2(b)) is an example of a unimolecular reaction
here complex 𝐴 has two strands while 𝐶 and 𝐷 are each of one of

hese strands. An example of a bimolecular reaction with two reactants
nd two non-empty products is toehold-mediated three-way strand
isplacement (Fig. 2(c)). We discuss these type of reactions further in
ection 4. We are interested in computing the reaction rate constants
f such reactions.

he Multistrand kinetic model. The Multistrand kinetic model is a
etailed-balance CTMC 𝑅 = ( ,𝐊, 𝜋0,target , 𝜋) for a set of interacting
ucleic acid strands Ψ∗ in a fixed volume 𝑉 (the ‘‘box’’) and under fixed
onditions, such as the temperature 𝑇 and the concentration of Na+
nd Mg2+ cations. The state space  of the CTMC is the set of all non-
seudoknotted system microstates3 of the set Ψ∗ of interacting strands.
he transition rate 𝐊(𝑠, 𝑠′) is non-zero if and only if 𝑠 and 𝑠′ differ
y a single base pair.4 Multistrand distinguishes between unimolecular

3 A pseudoknotted secondary structure has at least two base pairs in which
ne nucleotide of a base pair is intercalated between the two nucleotides of
he other base pair. A non-pseudoknotted system microstates does not contain
ny pseudoknotted secondary structures. Currently, Multistrand excludes pseu-
oknotted secondary structures due to computationally difficult energy model
alculations.

4 Multistrand allows Watson–Crick base pairs to form, that is A-T and G-C
n DNA and A-U and G-C in RNA. Additionally, it provides an option to allow

-T in DNA and G-U in RNA.
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transitions, in which the number of strands in each complex remains
constant, and bimolecular transitions where this is not the case. There
are bimolecular join moves, where two complexes merge, and bimolec-
ular break moves, where a complex falls apart and releases two separate
complexes.

The transition rates in the Multistrand kinetic model obey detailed
balance as

𝐊(𝑠, 𝑠′)
𝐊(𝑠′, 𝑠)

= 𝑒−
𝛥𝐺◦box(𝑠

′)−𝛥𝐺◦box(𝑠)
𝑅𝑇 , (13)

here 𝛥𝐺◦
box(𝑠) is the free energy of state 𝑠 (units: kcal mol−1) and

epends on the temperature 𝑇 (units: 𝐾) as 𝛥𝐺 = 𝛥𝐻 − 𝑇𝛥𝑆, and
≈ 1.98×10−3 kcal K−1 mol−1 is the gas constant. The enthalpy 𝛥𝐻 and

ntropy 𝛥𝑆 are fixed and calculated in the model using thermodynamic
odels that depend on the concentration of Na+ and Mg2+ cations and

lso on a volume-dependent entropy term. The detailed balance condi-
ion determines the ratio of rates for reversible transitions. A standard
inetic model that is used in Multistrand to determine the transition
ates is the Metropolis kinetic model (Metropolis et al., 1953), where
ll energetically favorable transitions occur at the same fixed rate and
nergetically unfavorable transitions scale with the difference in free
nergy. Unimolecular transition rates are given as

(𝑠, 𝑠′) =

⎧

⎪

⎨

⎪

⎩

𝑘uni if𝛥𝐺◦
box(𝑠) < 𝛥𝐺

◦
box(𝑠

′),

𝑘uni𝑒
−
𝛥𝐺◦box(𝑠

′)−𝛥𝐺◦box(𝑠)
𝑅𝑇 otherwise,

(14)

and bimolecular transition rates are given as

𝐊(𝑠, 𝑠′) =

⎧

⎪

⎨

⎪

⎩

𝑘bi𝑢 join move,

𝑘bi𝑒
−
𝛥𝐺◦box(𝑠

′)−𝛥𝐺◦box(𝑠)+𝛥𝐺
◦
volume

𝑅𝑇 × M break move,
(15)

here 𝑢 is the concentration of the strands (units: M), 𝛥𝐺◦
volume =

−𝑅𝑇 ln 𝑢, 𝑘uni > 0 is the unimolecular rate constant (units: s−1), and
bi > 0 is the bimolecular rate constant (units: M−1 s−1). The kinetic
arameters 𝜃 = {𝑘uni, 𝑘bi} are calibrated from experimental measure-
ents (Wetmur and Davidson, 1968; Morrison and Stols, 1993).

The distribution 𝜋0 is an initial distribution over the microstates of
he reactant complexes, and the set target is a subset of the microstates
f the product complexes, which we determine based on the type of
he reaction (see Section 4). To set 𝜋0 for unimolecular reactions, we
se particular complex microstates. One illustrative example is the
unimolecular) hairpin closing reaction, where we set 𝜋0(ℎ) = 1 for
he system microstate that has no base pairs and 𝜋0(𝑠) = 0 for all
ther structures, and target is the system microstate where the strand
as a fully formed duplex and a loop. For a bimolecular reaction,
hen the bimolecular transitions are slow enough between the two

omplexes, it is valid to assume the complexes each reach equilibrium
efore bimolecular transitions occur and therefore are Boltzmann dis-
ributed (Schaeffer, 2013). Let  be the set of all possible complex
icrostates of a complex 𝐵 in a volume. A distribution 𝜋𝑏 is Boltzmann
istributed with respect to complex 𝐵 if and only if

𝑏(𝑐′) =
𝑒−𝛥𝐺(𝑐′)∕𝑅𝑇

∑

𝑐∈ 𝑒−𝛥𝐺(𝑐)∕𝑅𝑇
(16)

or all complex microstates 𝑐′ ∈ . In a bimolecular reaction of the
orm in Eq. (12), for a system microstate 𝑠 that has complex microstates
and 𝑐′ corresponding to complexes 𝐵 and 𝐹 , we define the initial

istribution as 𝜋0(𝑠) = 𝜋𝑏(𝑐) × 𝜋𝑏(𝑐′). For all other states, we define
0(𝑠) = 0.

Following the conventions of Multistrand, we estimate the reaction
ate constant for a reaction from its MFPT 𝜏𝜋0 (Eq. (7)). For a reaction
n the form of Eq. (11),

1 =
1 . (17)
5

𝜏𝜋0
In the limit of low concentrations for a reaction in the form of Eq.
(12),

𝑘2 =
1
𝑢

1
𝜏𝜋0

. (18)

2.3. Related work

Stochastic simulation approaches. There exist numerous Monte
Carlo techniques (Rubino and Tuffin, 2009) for driving simulations
towards the target states or to reduce the variance of estimators. For
example, importance sampling techniques (Hajiaghayi et al., 2014;
Doucet and Johansen, 2009) use an auxiliary sampler to bias simu-
lations, after which estimates are corrected with importance weights.
Moreover, many accelerated variants of SSA have been developed for
CTMC models of chemically reacting systems (Gillespie, 2007; Cao
et al., 2007; Gillespie, 2001; Turner et al., 2004; Sandmann, 2008),
which can be adapted to simulate arbitrary CTMCs. There also exists
a proliferation of rare event simulation methods for molecular dynam-
ics (Zuckerman and Chong, 2017; Allen et al., 2009; Bolhuis et al.,
2002). The ideas behind these methods can be adapted for CTMCs
and can be used along with SSA for more efficient computations. For
example, in transition path sampling (TPS) (Bolhuis et al., 2002) an
ensemble of paths are generated using a Monte Carlo procedure. First, a
single path is generated that connects the initial and target states. New
paths are then generated by picking random states along the current
paths and running time-limited simulations from the states. Sampled
states along paths that do not reach the initial or target states are
rejected. Even though we could use TPS along with SSA to simulate
rare events for CTMCs (Eidelson and Peters, 2012), it is likely that many
of the simulated paths require a long simulation time. For example, if
the energy landscape has more than one local maximum between the
initial and target states, then paths simulated from in between these
local maxima could require a long simulation time to reach either the
initial or the target states. Moreover, the simulated paths could be
correlated and depend on the initial path, and therefore the estimations
of different runs could have a high variance. The correlation of paths
could be reduced by retaining a fraction of the paths but it would also
reduce the computational efficiency.

Stochastic simulations are usually not reusable for the rapid evalu-
ation of perturbed parameters and have to be adapted. This is because
the holding times of simulated trajectories need to be updated, which
requires that information about all transitions from each sampled state
is also stored. Stochastic simulation methods have been to some extent
adapted for the rapid evaluation of perturbed parameters. SSA has
been adapted in the fixed path ensemble inference approach (Zolaktaf
et al., 2019) for parameter estimation. In this approach, an ensemble
of paths are generated using SSA and are then compacted and reused
for mildly perturbed parameters. To estimate MFPTs, a Monte Carlo
approach is used based on expected holding times of states. Despite
being useful for parameter estimation in general, this method is not
suitable for rare events, because the paths are generated according
to SSA. In Section 5.3.3, we use SSA as a baseline method to build
truncated CTMCs for MFPT estimation.

Truncation-based approaches. An alternative to sampling meth-
ods is to develop a smaller CTMC, whose MFPT well approximates
that of the original large CTMC model. As is the case with sampling
methods, techniques that have been developed to approximate the
continuous state spaces of molecular dynamics simulations can be
adapted for this purpose. In the context of predicting protein folding
kinetics, the collection of paths produced by TPS has been used to
build a so-called Markovian state model (MSM) (Singhal et al., 2004).
The MSM is the CTMC obtained by including all states and transitions
along the sampled paths; since each state appears once, the MSM is
more compact then the underlying set of paths. The MSM approach
can easily be adapted to build approximations to large CTMC models,
for the purpose of estimating MFPTs and other properties of the CTMC.
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The resulting MSM is a truncated CTMC. That is, it contains a subset
of the states of the original CTMC, with transitions between states that
are adjacent in the original CTMC. In Section 5.3.3, we use TPS as a
baseline method to build truncated CTMCs for MFPT estimation.

A probabilistic roadmap is another type of graph-based model,
related to our work (Kavraki et al., 1996; Tang et al., 2005). States in a
probabilistic roadmap can be selected by random sampling or according
to relevant properties, such as having low free energy. Then edges
are added to connect nearby (though not necessarily adjacent) states.
However, there are some challenges with this method that make it
unsuitable for our purposes. First, it is not clear that sampling methods
based on state (as opposed to path) properties will include important
states on the most likely folding trajectories from initial to target states.
Another challenge is determining appropriate transition rates between
states that are not adjacent in the CTMC model.

Error estimation. Another important problem in CTMCs is com-
uting transient probabilities, that is the probability distribution of
he states over time. Transient probabilities can be computed exactly
ith the master equation (Van Kampen, 1992) for CTMCs that have
feasible state space size. An important tool that has been developed

o quantify the error of transient probability estimations for truncated
TMCs is the finite state projection (FSP) method (Munsky and Kham-
ash, 2006). The FSP method tells us that as the size of the state

pace of the truncated CTMC grows, the approximation monotonically
mproves and provides upper and lower bounds on the true transient
robabilities. As the authors of the FSP method mention, there are
any ways to grow the state space, for example by iteratively adding

tates that are reachable from the already-included states within a fixed
umber of steps. There have been many attempts to enumerate a suit-
ble set of states that provides good approximations while being small
nough that transient probabilities can be computed efficiently (Dinh
nd Sidje, 2016). In the Krylov-FSP-SSA approach (Sidje and Vo, 2015)
n SSA approach is used to drive the FSP and adaptive Krylov methods
re used to efficiently evaluate the matrix exponential for transient
robability estimation. In brief, the method starts from an initial state
pace and proceeds iteratively in three steps. First, it drops states that
ave become improbable. Second, it runs SSA from each state of the
emaining state space to incorporate probable states. Third, it adds
tates that are reachable within a fixed number of steps. Despite its
reat potential, this way of building the state space may not be suitable
or estimating MFPTs of rare events.

The Krylov-FSP-SSA method has also been used to build truncated
TMCs for the purpose of optimizing parameter sets that are used

or transient probability estimation (Dinh and Sidje, 2017). More-
ver, in related work (Georgoulas et al., 2017), an ensemble of trun-
ated CTMCs is used to obtain an unbiased estimator of transient
robabilities, which are further used for Bayesian inference.

. The pathway elaboration method

We are interested in efficiently estimating MFPT of rare events
n detailed-balance CTMCs and also the rapid evaluation of mildly
erturbed parameters. Our approach is to create a reusable in-memory
epresentation of CTMCs, which we call a truncated CTMC, and to
ompute the MFPTs through matrix equations (Eqs. (6) and (7)).

We propose the pathway elaboration method for building a truncated
detailed-balance CTMC ̂𝑅 for a detailed-balance CTMC 𝑅. We call
this approach the pathway elaboration method as we build a truncated
CTMC by elaborating an ensemble of prominent paths in the system.
The method has three main steps to build a truncated CTMC, and
an additional step for the rapid evaluation of perturbed paramet-
ers.

1. The ‘‘pathway construction’’ step uses biased simulations to find
an ensemble of short paths from the initial states to the target
6

states. This step is inspired by importance sampling (Madras,
Algorithm 1: The pathway elaboration method.
Function PathwayElaboration(𝑅,𝑁,𝛽,𝐾,𝜅, 𝜋′)

( ,𝐊, 𝜋0,target , 𝜋) = 𝑅

0 ← ConstructPathway(𝑅,𝑁,𝛽,𝜋′)
̂ ← 0
for 𝑠 ∈ 0 do

 ′ ← ElaborateState(𝑠,𝑅,K, 𝜅) // Run SSA 𝐾
times from 𝑠 with a time limit of 𝜅 and return
the visited states.

̂ ← ̂ ∪  ′

𝐊̂ ← Construct rate matrix from ̂ and 𝐊 // Eq. (8).
return ̂𝑅 = (̂ , 𝐊̂, 𝜋̂0, ̂target , 𝜋̂)
// For 𝜋̂0 and 𝜋̂, see Eq. (9) and Eq. (10),
respectively.

Function ConstructPathway(,𝑁,𝛽,𝜋′)
( ,𝐊, 𝜋0,target ) = 
0 ← ∅
for n = 1 to N do

Sample 𝑠 ∼ 𝜋0
0 ← 0 ∪ {𝑠}
Sample 𝑠𝑏 ∼ 𝜋′

for t =1,2, ... do
if 𝑠 = 𝑠𝑏 then break
Sample 𝑧 ∼ Uniform(0, 1)
if 𝑧 < 𝛽 then // Bias simulations towards 𝑠𝑏
using Eq. (19).

Sample 𝑠′|𝑠 ∼ 𝐏(⋅|𝑋𝑡−1 = 𝑠)
else

Sample 𝑠′|𝑠 ∼ 𝐏̆𝑠𝑏 (⋅|𝑋𝑡−1 = 𝑠)
0 ← 0 ∪ 𝑠′

𝑠 ← 𝑠′
return 0

2002; Rubino and Tuffin, 2009; Andrieu et al., 2003; Hajiaghayi
et al., 2014) and exploration–exploitation trade-offs (Sutton and
Barto, 2018).

2. The ‘‘state elaboration’’ step uses SSA from every state in the
pathway to add additional states to the pathway, with the inten-
tion of increasing accuracy. This step is inspired by the string
method (Weinan et al., 2002).

3. The ‘‘transition construction’’ step creates a matrix of transitions
between every pair of states obtained from the first and second
steps.

4. The ‘‘𝛿-pruning’’ step prunes the CTMC obtained from the previ-
ous steps to facilitate the rapid evaluation of perturbed parame-
ters.

These steps result in a truncated detailed-balance CTMC ̂𝑅 = (̂ , 𝐊̂, 𝜋̂0,
̂target , 𝜋̂). Fig. 1, parts (a) to (d), illustrates the key steps of the pathway
elaboration method, and Algorithm 1 provides high-level pseudocode.
We next describe these steps in detail.

Pathway construction. We construct a pathway by biasing 𝑁 SSA
simulations towards the target states. We bias a simulation by using the
shortest-path distance function 𝑑 ∶ ×target → R≥0 from every state 𝑠 ∈
 to a fixed target state 𝑠𝑏 ∈ target (Kuehlmann et al., 1999; Hajiaghayi
et al., 2014). For every biased path, we can use a different 𝑠𝑏. Therefore,
in general, we can sample 𝑠𝑏 from a probability distribution 𝜋′ over
the target states. Given 𝑠𝑏, we use an exploitation–exploration trade-
off approach. At each transition, the process randomly based on a
threshold 𝛽 chooses to either decrease the distance to 𝑠𝑏 or to explore
the region based on the actual probability matrix of the transitions.

Let 𝑠𝑏 (𝑠) be the set of all neighbors of 𝑠 whose distance with 𝑠𝑏 is
one less than the distance of 𝑠 with 𝑠 , and let 𝐏(𝑠, 𝑠′) be as in Eq. (1).
𝑏
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Instead of sampling states according to 𝐏, we use 𝐏̃ ∶  ×  → R≥0
where

𝐏̃(𝑠, 𝑠′) =
⎧

⎪

⎨

⎪

⎩

𝐏(𝑠, 𝑠′) = 𝐊(𝑠,𝑠′)
∑

𝑠′′∈ 𝐊(𝑠,𝑠′′) 0 ≤ 𝑧 ≤ 𝛽,

𝐏̆𝑠𝑏 (𝑠, 𝑠
′) =

𝐊(𝑠,𝑠′)𝟏{𝑠′∈𝑠𝑏 (𝑠)}
∑

𝑠′′∈ 𝐊(𝑠,𝑠′′)𝟏{𝑠′′∈𝑠𝑏 (𝑠)}
𝛽 < 𝑧 ≤ 1.

(19)

Here 𝑧 is chosen uniformly at random from [0, 1], 𝛽 is a threshold, and
𝟏{.} is an indicator function that is equal to 1 if the condition is met
and 0 otherwise. When 𝛽 = 1, then 𝐏̃(𝑠, 𝑠′) = 𝐏(𝑠, 𝑠′).

In Proposition 3.1, we show that if 𝛽 < 1∕2, then biased paths will
reach target states in an expected number of steps that is linear in the
distance from initial to target states. Lower values of 𝛽 help the process
reach the target states more quickly, but larger values of 𝛽 help the
process explore the state space. Using values of 𝛽 ≥ 1∕2 is also useful
in practice, as we have done in Section 5. However, in this work, for
𝛽 ≥ 1∕2 we have not established a bound on the expected number of
steps to reach the target states. When 𝛽 → 1, the pathway construction
step will perform as SSA.

Proposition 3.1. Let 𝑑max be the maximum distance from a state in a
CTMC to target state 𝑠𝑏. Then when 0 ≤ 𝛽 < 1∕2, the expected length of a
pathway that is sampled according to Eq. (19) is at most 𝑑max

1−2𝛽 .

Proof. Based on the distance of states with 𝑠𝑏, we can project a biased
path that is generated with Eq. (19) to a 1-dimensional random walk
𝑅, where coordinate 𝑥 = 0 corresponds to 𝑠𝑏 and coordinate 𝑥 > 0
corresponds to all states 𝑠 ≠ 𝑠𝑏 with 𝑑(𝑠, 𝑠𝑏) = 𝑥. From the definition of
𝐏̃ and since all states have a path to 𝑠𝑏 by a transition to a neighbor
state that decreases the distance by one, at each step, the random walk
either takes one step closer to 𝑥 = 0 with probability at least 1 − 𝛽 or
one step further from 𝑥 = 0 with probability at most 𝛽. If we let 𝐸(𝑅, 𝑘)
denote the expected time for random walk 𝑅 to reach 0 from 𝑘, then
we have that when 0 ≤ 𝛽 < 1∕2,

𝐸(𝑅, 𝑘) ≤ 𝑘
1 − 2𝛽

, (20)

which follows from classical results on biased random walks—see Feller
XIV.2 (Feller, 1968). Therefore, if 0 ≤ 𝛽 < 1∕2, the proposition holds,
and the state space built with 𝑁 biased paths from the initial state 𝑠0
to a target state 𝑠𝑏 has expected size

E[|̂|] ≤
𝑁 ⋅ 𝑑(𝑠0, 𝑠𝑏)

1 − 2𝛽
≤
𝑁 ⋅ 𝑑max
1 − 2𝛽

. (21)

If for each biased path, the initial state is sampled from 𝜋0 and the
target state is sampled from 𝜋′, then we sum over the 𝑁 sampled (initial
state, target state) pairs, and the total expected state space size is still
bounded by 𝑁 ⋅𝑑max

1−2𝛽 . □

For efficient computations, we should compute the shortest-path
distance efficiently. For elementary step models of interacting nucleic
acid strands, we can compute 𝑑(𝑠, 𝑠𝑏) by computing the minimum
number of base pairs that need to be deleted or formed to convert 𝑠
to 𝑠𝑏. Multistrand provides a list of base pairings for every complex
microstate in a system microstate (state) and we can calculate the
distance between two states in a running time of O(𝑏), where 𝑏 is the
number of bases in the strands.

State elaboration. By using Eq. (19), a biased path could have a
low probability of reaching a state that has a high probability of
being visited with SSA. For example, in some helix association reac-
tions (Zhang et al., 2018), intra-strand base pairs are likely to form
before completing hybridization. However, the corresponding states do
not lie on the shortest paths from the initial states to the target states.
Let 𝑐 be the minimum number of transitions from 𝑠0 that are required to
reach 𝑠 but which increase the distance to 𝑠𝑏. Let the random walk 𝑅 be
defined as the previous step. Let 𝑃1 denote the probability of reaching
𝑠 before reaching 𝑠 for this random walk. Following classical results on
7

𝑏

Fig. 3. Example used in the main text for the state elaboration step of pathway
elaboration. If in the elaboration step, the simulation finds 𝑠 and 𝑠′ but not 𝑠′′, then
without detailed balance, a slow transition from 𝑠′ to 𝑠 could result in an overestimation
of the MFPT from the initial state 𝐼 to the target state 𝐹 . However, in the full state
space, 𝑠′ might quickly reach 𝐹 via a fast transition to 𝑠′′.

biased random walks (Feller, 1968), for 𝛽 ≠ 1∕2, 𝑃1 ≥
( 𝛽
1−𝛽 )

𝑐−1

( 𝛽
1−𝛽 )

𝑑𝑠𝑏 (𝑠0)+𝑐−1
. In

the extreme case if 𝛽 = 0, then 𝑃1 = 1 and the probability of reaching
𝑠 will be 0.

Therefore, for detailed-balance CTMCs, we elaborate the pathway
to possibly include states that have a high probability of being vis-
ited with SSA but were not included with our biased sampling. State
elaboration with SSA has also been used in related work (Sidje and
Vo, 2015) for transient probability estimation. Here, we use SSA to
elaborate the pathway constructed from our previous step; we run 𝐾
simulations from each state of the pathway for a maximum simulation
time of 𝜅. A simulation stops as soon as the simulation time becomes
greater than 𝜅 or reaches a target state. By simulation time we mean
the time of a SSA trajectory, not the wall-clock time. The worst-case
average running time of elaborating the states in the pathway with
this approach is O(|0|𝐾𝜅𝐄max(𝑠, 𝑠)), where 0 is the state space of the
pathway constructed from the previous step and 𝐄max(𝑠, 𝑠) is the largest
exit rate in the CTMC for which the pathway is being constructed.

‘‘state elaboration’’ must only be applied with the next step ‘‘tran-
sition construction’’ to include both possible forward and backward
transitions between neighbor states otherwise only including the for-
ward transitions found with state elaboration will lead to spurious sink
states. Sink states that are not a target state make the MFPT to the target
states infinite.

Note: We recommend the state elaboration step only for reversible
and detailed-balance CTMCs. This is because a trajectory that stops
while visiting a non-target state might introduce a spurious sink into
the enumerated state space. Specifically, if in this trajectory the last
transition is irreversible and the last state was never previously visited,
then this last state may become a spurious sink state. For example in
Fig. 3, assume that the CTMC has rates 𝐊(𝑠, 𝑠′) and 𝐊(𝑠′, 𝑠′′) but does
not have 𝐊(𝑠′, 𝑠), and assume that 𝑠′′ can reach 𝐹 . Assume also that in
the state elaboration step, the simulation finds 𝑠 and 𝑠′, but not 𝑠′′ or
any other neighbor of 𝑠′. Then without the reverse transition 𝐊(𝑠′, 𝑠),
𝑠′ will become a spurious sink state and the MFPT to the target state
𝐹 will become infinite. Moreover, having reversible transitions that do
not obey the detailed balance condition may lead to an overestimate
of the MFPT. For example, in Fig. 3 assume that all transitions are
reversible, but assume that the reversible transitions between 𝑠 and
𝑠′ do not obey detailed balance. Also, assume that 𝜋(𝑠) and 𝜋(𝑠′) are
both high, and that 𝐊(𝑠, 𝑠′) is large whereas 𝐊(𝑠′, 𝑠) is small. Then,
if the elaboration stops at 𝑠′ and no other neighbors of 𝑠′ besides 𝑠
are discovered, the small value of 𝐊(𝑠′, 𝑠) will make the MFPT large.
However, in the full state space, 𝑠′ might quickly reach 𝐹 through a fast
transition to 𝑠′′. Thus, the state elaboration step may not be suitable for
non-detailed-balance CTMCs.

Transition construction. The previous two steps produce a state space
̂. Now, for all pairs of states (𝑠, 𝑠′) in ̂, we set 𝐊̂(𝑠, 𝑠′) = 𝐊(𝑠, 𝑠′).
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Note that for detailed-balanced CTMC’s both forward and backward
transitions will be included. This ensures that no spurious sink states
are introduced and makes computations more accurate. In the related
roadmap planning work (Kavraki et al., 1996; Tang et al., 2005), states
are connected to their nearest neighbors as identified by a distance
metric. We include all missing transitions by checking for every state
in ̂ whether its neighbors are also in ̂ in O(|̂|𝑚}) time, where 𝑚 is
he maximum number of neighbors of the states in the original CTMC.

-pruning. Given a (truncated) CTMC in which we can compute the
FPT from every state to the target state, one question is: which

tates and transitions can be removed from the Markov chain without
hanging the MFPT from the initial states significantly? This question
s especially relevant for the rapid evaluation of perturbed parameters,
here MFPTs need to be recomputed often.

Given a CTMC  = ( ,𝐊, 𝜋0,target ) and a pruning bound 𝛿, let the
FPT from any state 𝑠 to target be 𝜏𝑠 and let the MFPT from the initial

tates to target be 𝜏𝜋0 . Let 𝛿𝑝 =
{

𝑠 ∈  ∣ 𝜏𝑠 < 𝛿𝜏𝜋0 and 𝜋0(𝑠) = 0
}

be
he set of states that are 𝛿-close to target and that are not an initial
tate. We construct the 𝛿-pruned CTMC 𝛿 = (𝛿 , 𝜋0,𝐊𝛿 , {𝑠𝑑}) over the

pruned set of states 𝛿 =  ⧵ 𝛿𝑝 ∪
{

𝑠𝑑
}

, where 𝑠𝑑 is the new target
state. For 𝑠, 𝑠′ ∈ 𝛿 ⧵

{

𝑠𝑑
}

, we update the rate matrix 𝐊𝛿 ∶ 𝛿 → R≥0 by
𝐊𝛿(𝑠, 𝑠𝑑 ) =

∑

𝑠′∈𝛿𝑝
𝐊(𝑠, 𝑠′) and 𝐊𝛿(𝑠, 𝑠′) = 𝐊(𝑠, 𝑠′). Note that 𝐊𝛿(𝑠𝑑 , 𝑠) is

not used in the computation of the MFPT (Eq. (6)), so we can simply
assume 𝐊𝛿(𝑠𝑑 , 𝑠) = 0. Alternatively, to retain detailed-balance condi-
tions, we can define the energy of 𝑠𝑑 as 𝐸(𝑠𝑑 ) = −𝑅𝑇 log

∑

𝑠′′∈𝛿𝑝 𝑒
− 𝐸(𝑠′′)

𝑅𝑇

see Eqs.7.1 and 7.2 from Schaeffer (2013)) and define 𝐊𝛿(𝑠𝑑 , 𝑠) =
− 𝐸(𝑠)−𝐸(𝑠𝑑 )

𝑅𝑇 𝐊𝛿(𝑠, 𝑠𝑑 ). For the pruned CTMC 𝛿 = (𝛿 , 𝜋0,𝐊𝛿 , {𝑠𝑑}), let the
MFPT 𝜏𝛿𝜋0 be given as usual (Eq. (7)). Then by construction

𝜏𝛿𝜋0 ≤
𝜏𝜋0
1 + 𝛿

. (22)

We can calculate the MFPT from every state to the target states
y solving Eq. (6) once for CTMC . Therefore, the running time of
-pruning depends on the running time of the matrix equation solver
hat is used. For a CTMC with state space , the running time of a
irect solver is at most O(||3). For iterative solvers the running time
s generally less than O(||3). After the equation is solved, the CTMC
an be pruned in O(||) for any 𝛿.

pdating perturbed parameters. We are interested in rapidly esti-
ating the MFPT to target states given mildly perturbed parameters,

or applications such as parameter estimation and functionality esti-
ation as temperature changes. Our approach is to reuse truncated
TMCs for mild parameter perturbations, similar to related work that
uilds MSM models using TPS sampling (Singhal et al., 2004). In
arameter estimation, to minimize bias in the optimized parameters,
e can periodically rebuild the truncated CTMCs from scratch, similar

o related-work that reuses SSA-generated paths (Zolaktaf et al., 2019).
ven though the MFPT estimates may be biased in this way, we could
ave significant savings in running time by avoiding the cost of sam-
ling and building truncated CTMCs from scratch for every parameter
et. In this approach, we would still have to solve Eq. (6), but it could
e negligible compared to the other costs. For example in Table 2, on
verage, solving the matrix equation is faster than SSA by a factor of
7 and is faster than building the truncated CTMC by a factor of 10.

A perturbed thermodynamic model parameter affects the energy of
he states. Therefore, to update the transition rates, we would also have
o recompute the energy of the states. A perturbed kinetic model only
ffects the transition rates. A perturbed experimental condition could
ffect both the energy of the states and the transition rates. Therefore,
ssuming the energy of a state can be updated in a constant time, the
runcated CTMC can be updated in O(|̂| + |̂|), where ̂ is the set
f transitions of the truncated CTMC. For nucleic acid kinetics with
lementary steps, the energy of a state can be computed from scratch in
(𝑏) time, or in O(1) time using the energy calculations of a neighbor
8

tate (Schaeffer, 2013).
Tuning parameters. In the pathway construction and state elab-
ration steps, 𝑁 , 𝛽, 𝐾, and 𝜅 are tuning parameters that affect the
uality of prediction. An efficient method to quantify the error of
FPT estimates would be beneficial to set the parameters as we discuss

n Section 6. But in its absence, to set these parameters one could
se similar values tuned on similar reactions. Alternatively, one could
roceed as follows. Initially, we set 𝛽 by starting with a small number of

biased simulations with 𝛽 = 0, then incrementing 𝛽 up to 1 until the
imulations becomes unfeasible. As shown in Proposition 3.1, if we set
to less than 1/2, then biased paths will reach target states in expected

ime that is linear in the distance from initial to target states. Similar
o SSA, for a fixed 𝛽 and when 𝐾 = 0 and 𝜅 = 0, we could increase

until the estimated MFPT stops changing significantly (based on the
aw of large numbers it will converge). Note that for 𝐾 = 0 and 𝜅 = 0
e could compute the MFPT by computing the average of the biased
aths without solving matrix equations. For setting 𝐾, one possibility
s to consider the number of neighbors of each state. A reaction where
tates have a lot of neighbors requires a larger 𝐾 compared to a reaction
here states have a smaller number of neighbors. 𝜅 should be set with

espect to 𝐾. As stated in Section 5, a large value of 𝜅 along with a small
alue of 𝐾 could result in excursions that do not reach any target state

and lead to overestimates of the MFPT. One could set 𝜅 to a small value
and then increase 𝐾 until the MFPT estimate stops changing, and could
repeat this process while feasible.

In 𝛿-pruning, for a given bound 𝛿, the running time for solving
Eq. (6) for the pruned CTMC 𝛿 might still be high. In that case, a larger
value of 𝛿 is required. To set 𝛿 in practice, it could be useful to consider
the number of states that will be pruned for a given 𝛿, that is |𝛿𝑝|.

4. Dataset of interacting DNA strands

Here we describe our dataset of DNA kinetics in which we use in
our computational experiments.

The speed at which nucleic acid strands interact is difficult to
predict and depends on reaction topology, strands’ sequences, and ex-
perimental conditions. The number of secondary structures interacting
nucleic strands may form is exponentially large in the length of the
strands. Typical to these reactions are high energy barriers that prevent
the reaction from completing, meaning that long periods of simulation
time are required before successful reactions occur. Consider reactions
that occur with rates lower than 10000 M−1 s−1 such as three-way
strand displacement at room temperature (see Table 1). These types of
reactions are slow to simulate not because the simulator takes longer to
generate trajectories for larger molecules, but the slowness is instead a
result of the energy landscape: at low temperatures, duplexes simply are
more stable, and require longer simulated time until their dissociation
is observed.

We curate a dataset of 267 interacting DNA strands from the pub-
lished literature, summarized in Table 1. The reactions are annotated
with the temperature, the buffer condition, and the experimentally
determined reaction rate constant. The dataset covers a wide range
of slow and fast unimolecular and bimolecular reactions where the
reaction rate constants vary over 8.6 orders of magnitude. For uni-
molecular reactions, we consider hairpin opening (Bonnet et al., 1998),
hairpin closing (Bonnet et al., 1998), and helix dissociation (Cisse et al.,
2012). For bimolecular reactions, we consider helix association (Hata
et al., 2018; Zhang et al., 2018) and toehold-mediated three-way strand
displacement (Machinek et al., 2014). The reactions from Cisse et al.
(2012) and Machinek et al. (2014) may have mismatches between the
bases of the strands. The type of reactions in Table 1 are widely used
in nanotechnology, such as in molecular beacon probes (Chen et al.,
2015).

For bimolecular reactions, we Boltzmann sample initial reacting
complexes. For reactions in which we define only one target state, in
the pathway construction step, we bias the paths towards that state. In
this work, for reactions in which we define a set of target states, we
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Table 1
Summary of the dataset of 267 nucleic acid kinetics. The initial concentration of the reactants is denoted as 𝑢 and 𝑘 is the experimental reaction rate constant.

Dataset No. Reaction type & sourcea # of reactions Mean # of bases [Na+] (M) T (◦C) u (M) log10𝑘

train

1 Hairpin opening (Bonnet et al., 1998) 63 25 [0.15–0.5] [10–49] 1 × 10−8 [1.4–4.6]
2 Hairpin closing (Bonnet et al., 1998) 62 25 [0.15–0.5] [10–49] 1 × 10−8 [3.2–4.8]
3 Helix dissociation (with mismatches)

(Cisse et al., 2012)
39 18 [0.01–0.2] [23–37] 1 × 10−8 [−1.2–0.9]

4 Helix association (Hata et al., 2018) 43 46 0.195 25 5 × 10−8 [4.0–6.7]
5 Helix association (Zhang et al., 2018) 20 72 0.75 [37–55] 1 × 10−5 [4.4–7.4]
6 Toehold-mediated three-way strand

displacement (with mismatches)
(Machinek et al., 2014)

10 102 0.05b 23 [5×10−9–1×10−8] [5.3–6.8]

test
7 Helix association (Hata et al., 2018) 4 46 0.195 25 5 × 10−8 [4.0–5.0]
8 Toehold-mediated three-way strand

displacement (Machinek et al., 2014)
26 100 0.05b 23 [5×10−9–1×10−8] [2.7–6.3]

aSee Fig. 2 for example figures of these reactions.
bThe experiment was performed without Na+ in the buffer.
Table 2
Pathway elaboration (𝑁 = 128, 𝛽 = 0.6, 𝐾 = 256, 𝜅 = 16 ns) versus SSA. The mean statistics are averaged over the ‘# of reactions’. Also, the pathway elaboration experiments are
repeated three times and their mean is calculated. MAE refers to the mean absolute error of pathway elaboration with SSA (Eq. (23)). |̂| is the size of the truncated state space.
See Fig. 6 for an illustration of individual reaction predictions.

Dataset No. # of reactions MAE Mean |̂| for pathway
elaboration

Mean matrix computation
time (s) for pathway
elaboration

Mean computation time (s)
for pathway elaboration

Mean computation time (s)
for SSA

1 63 0.04 5.7 × 102 4.5 × 10−3 1.0 × 103 2.7 × 101

2 62 0.03 1.8 × 103 1.5 × 10−2 1.0 × 103 1.2 × 101

3 39 0.04 5.3 × 102 6.8 × 10−3 1.6 × 103 3.8 × 103

4 43 0.29 8.1 × 104 3.0 × 101 2.1 × 104 4.9 × 105

5 20 0.51 3.8 × 105 2.3 × 104 1.6 × 105 3.7 × 104

6 10 0.31 3.0 × 105 1.3 × 103 1.3 × 105 3.8 × 105

All datasets 237 0.13 6.0 × 104 2.0 × 103 2.4 × 104 1.1 × 105
p
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bias paths towards only one target state, so that 𝜋′(𝑠𝑏) = 1 for one state
and 𝜋′(𝑠) = 0 for all other states. Next we describe these states.

airpin closing and hairpin opening. For a hairpin opening reaction,
e define the initial state to be the system microstate in which a strand
as fully formed a duplex and a loop (see Fig. 2(a)). We define the
arget state to be the system microstate in which the strand has no base
airs. Hairpin closing is the reverse reaction, where a strand with no
ase pair forms a fully formed duplex and a loop.

elix dissociation and helix association. For a helix dissociation
eaction, we specify the initial state to be the system microstate in
hich two strands have fully formed a helix (see Fig. 2(b)). We define

he set of target states to be the set of system microstates in which the
trands have detached and there are no base pairs within one of the
trands. We bias paths towards the target state in which there are no
ase pairs formed within any of the strands. Helix association is the
everse reaction. We Boltzmann sample the initial reacting complexes
n which the strands have not formed base pairs with each other. We
efine the target state to be the system microstate in which the duplex
as fully formed.

oehold-mediated three-way strand displacement. In this reaction,
n invader strand displaces an incumbent strand in a duplex, where
toehold domain facilitates the reaction (see Figs. 4 and 2(c)). We

oltzmann sample initial reacting complexes in which the incumbent
nd substrate form a complex through base pairing and the invader
orms another complex. We define the set of target states to be the set
f microstates where the incumbent is detached from the substrate and
here are no base pairs within the incumbent. We bias paths towards
he target state in which the substrate and invader have fully formed
ase pairs and there are no base pairs within the incumbent.

In datasets No. 1–6 from Table 1, we consider reactions that are
easible with SSA with our parameterization of Multistrand, given two
eeks computation time, since we compare SSA results with pathway
laboration results. We indicate these reactions as train since we also
se them as training set in Section 5.4. We indicate datasets No. 7–8 as
9

test since we use them as testing set in Section 5.4. u
5. Experiments for interacting DNA strands

We implement pathway elaboration for interacting DNA strands on
top of the Multistrand kinetic simulator. In Section 5.1, we describe our
experimental setup that is common in our experiments. In Section 5.2,
we use pathway elaboration in a case study to gain insight on the
kinetics of two contrasting DNA reactions. In Section 5.3, first we
evaluate estimations of pathway elaboration by comparing them with
estimations of SSA. Then we build truncated CTMCs using SSA and
TPS on a subset of our dataset and compare their performance with
pathway elaboration. After that, we show the effectiveness of the 𝛿-
runing step. Finally, in Section 5.4, we use pathway elaboration for
he rapid evaluation of perturbed parameters in parameter estimation.

.1. Experimental setup

Experiments are performed on a system with 64 2.13 GHz Intel
eon processors and 128 GB RAM in total, running openSUSE Leap
5.1. An experiment for a reaction is conducted on one processor. Our
ramework is implemented in Python, on top of the Multistrand kinetic
imulator. To solve the matrix equations in Eq. (6), we use the sparse di-
ect solver from SciPy (Virtanen et al., 2020) when possible.5 Otherwise
e use the sparse iterative biconjugate gradient algorithm (Fletcher,
976) from SciPy.

In all of our experiments, the thermodynamic parameters for pre-
icting the energy of the states are fixed and the energies are calculated
ith Multistrand. Each reaction uses its own experimental condition as
rovided in the dataset. In all our experiments, we use the Metropo-
is kinetic model from Multistrand. For all experiments except for
ection 5.4, we fix the kinetic parameters to the Metropolis Mode
arameter set (Zolaktaf et al., 2017), that is 𝜃1 = {𝑘uni ≈ 2.41 ×
06 s−1, 𝑘bi ≈ 8.01 × 105 M−1s−1}. To obtain MFPTs with SSA, we use

5 The implementation we used allowed the sparse direct solver to use only
p to 2 GB of RAM.
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Fig. 4. Results of truncated CTMCs built with pathway elaboration (𝑁 = 128, 𝛽 = 0.6, 𝐾 = 1024, 𝜅 = 16 ns) for two toehold-mediated three-way strand displacement reactions
from Machinek et al. (2014). (a) A toehold-mediated three-way strand displacement reaction that has a 6-nt toehold and a 17-nt displacement domain (Machinek et al., 2014). (b)
A toehold-mediated three-way strand displacement reaction that has a 6-nt toehold, a 17-nt displacement domain, and a mismatch exists between the invader and the substrate
at position 6 of the displacement domain (Machinek et al., 2014). Figs. 4(c), 4(d), 4(e), and 4(f) correspond to Fig. 4(a). Figs. 4(g),4(h),4(i), and 4(j) correspond to Fig. 4(b). In
Figs. 4(c), 4(d), 4(e), 4(g), 4(h), and 4(i), the 𝑥-axis corresponds to the number of base pairs between the invader and the substrate, and the 𝑦-axis corresponds to the number of
base pairs between the incumbent and the substrate. (c, g) At coordinate (𝑥, 𝑦), |𝑥,𝑦| is shown, where 𝑥,𝑦 is a system macrostate (a nonempty set of system microstates) equal
to the set of states with coordinate (𝑥, 𝑦). (d, h) At coordinate (𝑥, 𝑦), the free energy 𝛥𝐺𝑥,𝑦 is shown, which is defined as 𝛥𝐺𝑥,𝑦 = −𝑅𝑇 ln

∑

𝑠∈𝑥,𝑦
𝑒

−𝛥𝐺(𝑠)
𝑅𝑇 (Schaeffer, 2013). The free

energy of the paths in Figs. 4(f) and 4(j) are also shown with the ◦ marker in Figs. 4(d) and 4(h), respectively. (e, i) At coordinate (𝑥, 𝑦), the value of 𝛿𝑥,𝑦 =
∑

𝑠∈𝑥,𝑦
𝑤𝑠𝛿(𝑠)

∑

𝑠∈𝑥,𝑦 𝑤𝑠
is

shown, where 𝛿(𝑠) = 𝜏𝑠∕𝜏𝜋0 and 𝑤𝑠 = 𝑒
−𝛥𝐺(𝑠)
𝑅𝑇 . For ease of understanding, the green ‘‘halfway line’’ separates coordinates where 𝛿𝑥,𝑦 is greater than 0.5 from coordinates where 𝛿𝑥,𝑦

is less than 0.5. (f, j) The free energy landscape of a random path built with pathway elaboration (𝑁 = 1, 𝛽 = 0, 𝐾 = 0, 𝜅 = 0 ns) and the initial and the final states and some
states near the local extrema are illustrated.
1000 samples, except for three-way strand displacement reactions in
which we use 100 samples, since the simulations take a longer time to
complete.

5.2. Case study

Here we illustrate the use of pathway elaboration to gain insight on
the kinetics of two contrasting reactions from Machinek et al. (2014),
one being a rare event.

Figs. 4(a) and 4(b) show the two toehold-mediated three-way strand
displacement reactions that we consider (Machinek et al., 2014). In
the reaction in Fig. 4(a), the invader and substrate are complementary
strands in the displacement domain. In the reaction in Fig. 4(b), there is
a mismatch between the invader and the substrate in the displacement
domain. The rate of toehold-mediated strand displacement is usually
determined by the time to complete the first bimolecular transition,
in which the invader forms a base pair with the substrate for the
first time. However, the rate could be controlled by several orders
10
of magnitude by altering positions across the strand, such as using
mismatch bases (Machinek et al., 2014). The reaction in Fig. 4(b)
is approximately 3 orders of magnitude slower than the reaction in
Fig. 4(a). For the reaction in Fig. 4(a), log10𝑘 = 6.43, log10𝑘̂PE = 6.62,
log10𝑘̂SSA = 6.75, |̂| = 4.3 × 105, the computation time of pathway
elaboration is 1.4×105 s, and the computation time of SSA is 3.9×105 s.
For the reaction in Fig. 4(b), log10𝑘 = 3.17, log10𝑘̂PE = 3.59, |̂| = 7×105,
the computation time of pathway elaboration is 2.7 × 105 s, and SSA is
not feasible within 1 × 106 s.

In Figs. 4(c)–4(e) and 4(g)–4(i), we illustrate different properties of
the truncated CTMCs for the reactions in Figs. 4(a) and 4(b), respec-
tively. Comparing Fig. 4(c) with Fig. 4(g), we see that many states are
sampled midway in Fig. 4(g) due to the mismatch. In Figs. 4(d) and
4(h), we compare the energy barrier (increase in free energy) while
moving from the beginning of the 𝑥-axis towards the end of the 𝑥-axis.
In Fig. 4(d), we can see a noticeable energy barrier in the beginning.
However, in Fig. 4(h), we can see two noticeable energy barriers, one
in the beginning and one midway. Figs. 4(e) and 4(i) show states that
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Fig. 5. The MAE of pathway elaboration with SSA versus |̂| for different values of 𝑁 , 𝛽, 𝐾 and 𝜅. (a) datasets No. 1,2, and 3, (b) dataset No. 4, (c) dataset No. 5, and (d)
dataset No. 6. The annotated values on the figures correspond to 𝑁 , 𝛽, 𝐾, and 𝜅, respectively.
are 𝛿-close to the target states. These figures show that with 𝛿-pruning,
states that are further from the initial states and closer to the target
states will be pruned with smaller values of 𝛿, compared to states
that are closer to the initial states and further from the target states.
Comparing Fig. 4(e) with Fig. 4(i), the states quickly reach the target
states after the first several transitions in Fig. 4(e) (after the energy
barrier). However, in Fig. 4(i), the states do not quickly reach the target
states until after the second energy barrier. Fig. 4(f) and 4(j) show
the free energy landscape and some of the secondary structures for a
random path from an initial state to a target state for the reactions
in Figs. 4(a) and 4(b), respectively. For the reaction in Fig. 4(a), the
barrier is near the first transition. For the reaction in Fig. 4(b), there is
a noticeable barrier after several base pairs form between the invader
and the substrate, presumably near the mismatch.

5.3. Mean first passage time and reaction rate constant estimation

To evaluate the estimations of pathway elaboration, we compare
its estimations with estimations obtained from SSA for the reactions
in train. Note that for many of these reactions the size of the state
space is exponentially large in the length of the strands. Therefore,
exact matrix equations is not possible for them. Instead we use SSA
since it can generate statistically correct trajectories. We also compare
the wall-clock computation time of pathway elaboration with SSA.

We evaluate the estimations of pathway elaboration based on the
mean absolute error (MAE) with SSA, which is defined over a dataset
 as

MAE = 1
||

∑

𝑟∈
|log10𝜏𝑟SSA − log10𝜏𝑟PE| =

1
||

∑

𝑟∈
|log10𝑘̂𝑟SSA − log10𝑘̂𝑟PE|,

(23)

where 𝜏𝑟PE and 𝜏𝑟SSA are the estimated MFPTs of SSA and pathway
elaboration for reaction 𝑟, respectively, and 𝑘̂𝑟SSA and 𝑘̂𝑟PE are the
estimated reaction rate constants of SSA and pathway elaboration for
11
reaction 𝑟, respectively. The equality follows from Eqs. (17) and (18).
We use log10 differences since the reactions rate constants cover many
orders of magnitude. We use the MAE as our evaluation metric since
it is conceptually easy to understand. For example, here, an MAE of 1
means on average the predictions are off by a factor of 10. In the rest
of this subsection, we first look at the trade-off between the MAEs and
the size of the truncated state space set ̂, with regards to different
parameter settings of the pathway elaboration method. Then we look
at the trade-off between the MAE and the computation time.

5.3.1. MAE of pathway elaboration with SSA versus |̂|
Fig. 5 shows the MAE of pathway elaboration with SSA versus |̂|

of pathway elaboration for different configurations of the 𝑁 , 𝛽, 𝐾,
and 𝜅 parameters. Figs. A.1 and A.2 from the Appendix represent
Fig. 5 by varying only two parameters at a time. Each subfigure in
these figures represent different datasets. The main differences between
the systems in Figs. 5(a), 5(b), 5(c), and 5(d) are the average number
of bases (as shown in Table 1), the state space size (which depends
on the number of bases and sequence of the strands), the sequence
of the strands which may lead to the formation of structures that
can slow down the reaction, and also the presence of mismatches
which also affect the reactions. Fig. 5(a) depicts unimolecular reactions
involving relatively short strands, including hairpin closing (Dataset
No. 1) and opening (Dataset No. 2) reactions and helix dissociation
with mismatches (Dataset No. 3) reactions. These reactions have small
state spaces and are relatively easy to simulate with pathway elabo-
ration, which is why we have grouped them together in Fig. 5(a). In
contrast, Fig. 5(b) (Dataset No. 4) and Fig. 5(c) (Dataset No. 5) illustrate
bimolecular helix association reactions with larger state spaces. These
strands may form intermediate structures which hinder the completion
of the reaction. The reactions in Figs. 5(b) and 5(c) differ in their design
of sequences and also the number of bases per reaction (Dataset No.
5 has 46 bases per reaction and Dataset No. 6 contains 72 bases per

reaction). Fig. 5(d) contains three-way strand displacement reactions



Computational Biology and Chemistry 104 (2023) 107837S. Zolaktaf et al.
Fig. 6. The log10𝑘̂SSA and log10𝑘̂PE (𝑁 = 128, 𝛽 = 0.6, 𝐾 = 256, 𝜅 = 16 ns) for (a) datasets No. 1,2, and 3, and (b) dataset No. 4, (c) dataset No. 5, and (d) dataset No. 6. The
reactions are ordered along the 𝑥-axis by their predicted log10𝑘̂SSA. The pathway elaboration experiments are repeated three times. For each reaction, log10𝑘̂PE is calculated by
the average of the three experiments. The shaded area for pathway elaboration indicates the range (minimum to maximum) of the three experiments. The shaded area for SSA
indicates the 95% percentile bootstrap of the log10𝑘̂SSA.
with mismatches (Dataset No. 6). The average number of nucleotides
is 100 per reaction and the reactions have large state spaces.

The figures show that generally as 𝑁 and 𝛽 increase, the MAE
decreases. This is because for a fixed 𝑁 as 𝛽 → 1 the ensemble of paths
will be generated by SSA. As 𝑁 → ∞, the truncated state space becomes
larger and is more likely to contain the most probable paths from the
initial states to the target states.

Comparing the MAE of configurations where 𝐾 = 0 and 𝜅 = 0 with
other settings where 𝐾 > 0 and 𝜅 > 0, shows that the elaboration step
helps reduce the MAE (in the Appendix, compare Figs. A.1(a)–A.1(d)
with Figs. A.1(i)–A.1(l)). Particularly, the elaboration step is useful for
Dataset No. 5, helix association from Zhang et al. (2018) where intra-
strand base pairs can form before completing hybridization in large
state spaces. The plots show that the elaboration step is more useful
when 𝛽 is small (in the Appendix, compare Figs. A.2(a)–A.2(d) with
Figs. A.2(i)–A.2(l)). This could be because elaboration helps find rate
determining states that were not explored due to the biased sampling.
When 𝛽 → 1 the pathway elaboration method will perform as SSA and
rate determining states can be found without elaboration.

Furthermore, the figures show that as 𝐾 increases, the MAE de-
creases. However, with a large value for 𝜅 and a small value of
𝐾 the performance could be diminished (such as in Fig. A.2(c) of
the Appendix). In particular, consider that 𝐾 and 𝜅 might involve
simulations that go on excursions outside the ‘main’ densely-visited
parts of the enumerated state space, and they might even terminate
out there. Such excursions might very well introduce significant local
minima into the enumerated state space — even when no significant
local minima exist in the original full state space. For example, consider
an excursion that goes off-path down a wide slope, perhaps towards
the target state. If it terminates before reaching a target state, then a
hypothetical simulation in the enumerated state space could get stuck,
needing to climb back up the slope to the point where the excursion
began. The expected hitting time in the enumerated state space will
account for such wasted time, thus leading to an over estimation of the
MFPT. Therefore, 𝜅 should be tuned with respect to 𝐾.

5.3.2. MAE of pathway elaboration with SSA versus computation time
Table 2 illustrates the MAE and the computation time of pathway

elaboration for when 𝑁 = 128, 𝛽 = 0.6, 𝐾 = 256, and 𝜅 = 16 ns
compared with SSA. We illustrate this parameter setting because it
provides a good trade-off between accuracy and computational time for
the larger reactions. For the smaller reactions, we could achieve the
same MAE with less computational time (by using smaller values for
the parameter setting). Fig. 6 further shows the prediction of pathway
elaboration for this parameter setting compared to the prediction of
SSA for individual reactions. In Table 2, the MAE for unimolecular
reactions is smaller than 0.05, whereas for bimolecular reactions it
is larger than 0.29. This is because the CTMCs for the bimolecular
12
reactions in our dataset are naturally bigger than the CTMCs for the
unimolecular reactions in our dataset, and require larger truncated
CTMCs. The MAE can be further reduced by changing the parameters
(as shown in Fig. 5). With our implementation of pathway elaboration,
the computation time of pathway elaboration for datasets No. 3, No. 4,
and No. 6 are 2 times, 20 times, 3 times smaller than SSA, respectively.
The computation time of SSA for datasets No. 1, No. 2, and No. 5
is smaller than the computation time of pathway elaboration. This is
because pathway elaboration has some overhead, and in cases where
SSA is already fast it can be slow. However, as we show in Section 5.4,
even for these reactions, pathway elaboration could still be useful for
the rapid evaluation of perturbed parameters. Also, the computation
time for pathway elaboration could be significantly improved with
more efficient implementations of the method.

5.3.3. Pathway elaboration versus other truncation-based approaches
In Section 5.3.1, we showed that the state elaboration step of

pathway elaboration improves predictions compared to only using
biased sampled from initial to target states, because it helps find deep
energy basins that strongly influence reaction rates. Here we compare
pathway elaboration with two other truncation-based approaches that
are applicable for MFPT estimation (explained in Section 2.3). (We do
not compare with the probabilistic roadmap method, because for MFPT
estimation the target states should be reachable from the initial states
and because of the difficulty of determining appropriate transition rates
between non-adjacent states as noted in our related work section.) The
first truncated CTMC model that we include in our comparison uses
SSA to sample paths from initial to target states, and builds a CTMC
from these states. We call this method SSA-T, where the ‘‘T’’ stands for
truncated. Since the sampled paths from SSA are statistically correct,
we want to see whether the estimate obtained by pathway elaboration
compares well with the unbiased SSA-T estimates. We compare SSA-T
with pathway elaboration only on our first two datasets, since SSA-
T, being unsuitable for rare events, is too slow to run on our other
datasets with the implementation that we used. Our second truncated
CTMC model uses transition path sampling, and so we call it TPS-T.
Our implementation of TPS-T first generates a single path that connects
the initial and target states, using SSA. Then a new path is generated
by choosing a random state in the most recently generated path, and
finding a path to the initial or target states from this randomly-chosen
state. In our experiments, we generate 128 paths in total for both SSA-
T and TSP-T. As in Table 2, for pathway elaboration, we use 𝑁 = 128,
𝛽 = 0.6, 𝐾 = 256, and 𝜅 = 16 ns.

Table 3 compares the MAE and computation time of CTMCs that
are built with pathway elaboration versus CTMCs that are built with
SSA and TPS. Fig. 7 further shows the prediction of these methods
compared for individual reactions. Datasets No. 1 and 2 are used in this
table which are hairpin opening and closing, respectively. The MAE of
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Table 3
Building truncated CTMCs with pathway elaboration versus building truncated CTMCs with SSA (which we call SSA-T) and TPS (which we call TPS-T). For pathway elaboration,
𝑁 = 128, 𝛽 = 0.6, 𝐾 = 256, and 𝜅 = 16 ns. For SSA-T and TPS-T, 128 successful simulations are used. The mean statistics are averaged over the ‘# of reactions’. Also, the experiments
for each truncation-based approach is repeated three times and their mean is calculated. MAE refers to the mean absolute error of a method with SSA. |̂| is the size of the
truncated state space. The mean matrix computation time for all methods is less than 0.1 (s). See Fig. 7 for an illustration of individual reaction predictions.

Dataset No. # of reactions Method MAE Mean |̂| Mean computation time (s)

1 63
Pathway elaboration 0.04 5.7 × 102 1.0 × 103

SSA-T 0.03 4.0 × 102 1.4 × 105

TPS-T 0.18 1.6 × 102 2.0 × 104

2 62
Pathway elaboration 0.03 1.8 × 103 1.0 × 103

SSA-T 0.03 1.7 × 103 1.3 × 104

TPS-T 0.34 3.2 × 102 1.7 × 103
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Fig. 7. The log10𝑘̂ of SSA, pathway elaboration, SSA-T, and TPS-T for datasets No.
1 and 2. The reactions are ordered along the 𝑥-axis by their predicted log10𝑘̂SSA. The
xperiments for each truncation-based approach is repeated three times, where for each
eaction, log10𝑘̂ is calculated by the average of the three experiments. The shaded area
or each truncation-based approach indicates the range (minimum to maximum) of its
hree experiments. The shaded area for SSA indicates the 95% percentile bootstrap of
he log10𝑘̂SSA. See Table 3 for parameter settings and mean statistics.

athway elaboration with SSA (0.04 and 0.03) compares well with the
AE of SSA-T with SSA (0.03 and 0.03). However, the MAE and the

ariance of TPS-T is high because the paths are correlated and depend
n the initial path (Singhal et al., 2004). Increasing the number of
imulations would reduce the variance of the predictions.

For a comparison of these methods with pathway elaboration re-
arding computation time, we have adapted our code for pathway
laboration to implement these methods. As shown in Table 3, in our
xperiments, the computation time of pathway elaboration is smaller
han both SSA-T and TPS-T and the computation time of TPS-T is
maller than the computation time of SSA-T.

.3.4. 𝛿-Pruning
Fig. 8 shows how 𝛿-pruning affects the quality of the log10 reaction

ate constant estimates, the size of the state spaces, and the computa-
ion time of solving the matrix equations, for dataset No. 6. The MFPT
stimates satisfy the bound given by Eq. (22) whilst 𝛿-pruning reduces
he computation time for solving the matrix equations by an order of
agnitude for 𝛿 = 0.6. Using larger values of 𝛿 we can further decrease

the computation time. If we reuse the CTMCs many times, such as in
parameter estimation, 𝛿-pruning could help reduce computation time
significantly.

5.4. Parameter estimation

In the previous subsections the underlying parameters of the CTMCs
were fixed. Here we assume the parameters of the kinetic model of
the CTMCs are not calibrated and we use pathway elaboration to build
truncated CTMCs to rapidly evaluate perturbed parameter sets during
parameter estimation. We use the 237 reactions indicated as train in
Table 1 as our training set. We use the 30 rare event reactions indicated
as test in Table 1 to show that given a well-calibrated parameter set for
13

the CTMC model, the pathway elaboration method can estimate MFPTs s
and reaction rate constants of reactions close to their experimental
measurement.

We seek the parameter set that minimizes the mean squared error
(MSE) as

𝜃∗ = argmin
𝜃

1
|train|

∑

𝑟∈train

(log10𝜏𝑟 − log10𝜏𝑟PE(𝜃))
2 =

rgmin
𝜃

1
|train|

∑

𝑟∈train

(log10𝑘𝑟 − log10𝑘̂𝑟PE(𝜃))
2,

(24)

hich is a common cost function for regression problems. The equality
ollows from Eqs. (17) and (18). We use the Nelder–Mead optimization
lgorithm (Nelder and Mead, 1965; Virtanen et al., 2020) to minimize
he MSE. We initialize the simplex in the algorithm with 𝜃2 = {𝑘uni =
× 104 s−1, 𝑘bi = 5 × 104 M−1s−1} in which we choose arbitrarily and

wo perturbed parameter sets. Each perturbed parameter set is obtained
rom 𝜃2 by multiplying one of the parameters by 1.05, which is the
efault implementation of the optimization software (Virtanen et al.,
020). For every reaction, we also initialize the Multistrand kinetic
odel with 𝜃2. We build truncated CTMCs with pathway elaboration
𝑁 = 128, 𝛽 = 0.4, 𝐾 = 256, 𝜅 = 16 ns). Whenever the matrix
quation solving time is large (here we consider a time of 120 s large),
e use 𝛿-pruning (here we use 𝛿 values of 0.01 − 0.6) to reduce the

ime. During the optimization, for a new parameter set we update the
arameters in the kinetic model of the truncated CTMCs and we reuse
he truncated CTMC to evaluate the parameter set. To reduce the bias
nd to ensure that the truncated CTMCs are fair with respect to the
ptimized parameters, we can occasionally rebuild truncated CTMCs
rom scratch.

Although we use the MSE of pathway elaboration with experimental
easurements as our cost function in the optimization procedure, the
AE of pathway elaboration with experimental measurements also

ecreases. Fig. 9 shows how the parameters, the MSE, and the MAE
hange during optimization. The markers are annotated with the MSE
nd the MAE of train and datasets No. 7–8 when truncated CTMCs
re built from scratch. The MAE of train with the initial parameter
et 𝜃2 is 1.43. The optimization finds 𝜃∗ = {𝑘uni ≈ 3.61 × 106 s−1, 𝑘bi ≈
.12× 105 M−1 s−1} and reduces the MAE of train to 0.46. The MAE of
ataset No. 7 and dataset No. 8, which are not used in the optimization,
educe from 2.00 to 0.73 and from 1.00 to 0.63, respectively.

Overall, the experiment in this subsection shows that pathway
laboration enables MFPT estimation of rare events. It predicts their
FPTs close to their experimental measurements given an accurately

alibrated model for their CTMCs. Moreover, it shows that pathway
laboration enables the rapid evaluation of perturbed parameters and
akes feasible tasks such as parameter estimation which benefit from

uch methods. On average for the 30 reactions in the testing set, path-
ay elaboration takes less than two days, whereas SSA is not feasible
ithin two weeks. The entire experiment in Fig. 9 takes less than five
ays parallelized on 40 processors. Note that clearly our optimization
rocedure could be improved, for example by using a larger dataset or a
ore flexible kinetic model. However, this experiment is a preliminary

tudy; we leave a rigorous study on calibrating nucleic acid kinetic
odels with pathway elaboration and possible improvements to future
tudies.
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Fig. 8. The effect of 𝛿-pruning with different values of 𝛿 on truncated CTMCs that are built with pathway elaboration (𝑁 = 128, 𝛽 = 0.6, 𝐾 = 1024, 𝜅 = 16 ns) for dataset No. 6.
𝛿 = 0 indicates 𝛿-pruning is not used. (a) The log10𝑘̂. (b) The size of the truncated state space |̂|. (c) The computation time for solving Eq. (6).
Fig. 9. Results of parameter estimation using pathway elaboration (𝑁 = 128, 𝛽 = 0.4,
𝐾 = 256, 𝜅 = 16 ns). (a) The parameters are optimized from an initial simplex of
𝜃2 and its perturbations to 𝜃∗ = {𝑘uni ≈ 3.61 × 106 s−1 , 𝑘bi ≈ 1.12 × 105 M−1 s−1}. (b)
The parameters are optimized using train, shown with a line graph, and evaluated on
dataset No. 7 and No. 8. The red markers at iteration 0 are annotated with the MSE
and MAE of the datasets when the truncated CTMCs are built from scratch using the
initial parameter set 𝜃2. The same truncated CTMCs are used in the optimization until
iteration 200. At iteration 200, we build new CTMCs with the optimized parameter
set 𝜃∗. The blue markers at iteration 200 are annotated with the MSE and MAE of
the datasets when the truncated CTMCs are built from scratch using the optimized
parameter set 𝜃∗.

6. Discussion

In this work, we address the problem of estimating MFPTs of
rare events in CTMC models of nucleic acid reactions and also the
rapid evaluation of perturbed parameters. To this end, we propose the
pathway elaboration method, a time-efficient probabilistic truncation-
based CTMC approach. We conduct computational experiments on a
wide range of experimental measurements to show pathway elabora-
tion could provide reasonable estimates of rare-events’ MFPTs in small
runtimes, and shows promise as a practical approach for parameter
optimization. In summary, our results are promising, but there is still
room for improvement.

Using pathway elaboration, in the best possible case, the sampled
region of states and transitions is obtained faster than SSA, but without
significant bias in the collected states and transitions. The sampled
region may however qualitatively differ from what would be obtained
from SSA, which may compromise the MFPT estimates. Moreover,
reusing truncated CTMCs for significantly perturbed parameters could
lead to inaccurate estimation of the MFPT in the original CTMC. Hence,
a method to quantify the error of MFPT estimates when experimental
measurements are not available would be beneficial. It would help us
set values for 𝑁 , 𝛽, 𝐾 and 𝜅 for fixed model parameters, and also
evaluate when a truncated CTMC has a high error for perturbed model
parameters. One possible approach is to adapt the FSP method that
14
is developed to quantify the error of truncated CTMCs for transient
probabilities. We adapt it as follows. We combine all target states
into one single absorbing state 𝑠f. We project all states that are not
in the truncated CTMC into an absorbing state 𝑠𝑜 and we redirect all
transitions from the truncated CTMC to states out of the CTMC into 𝑠𝑜.
Then we use the standard matrix exponential equations to compute the
full distribution on the state space at a given time. However, we only
care about the probabilities that 𝑠f and 𝑠𝑜 are occupied. We search to
compute the half-completion time 𝑡1∕2 with bounds by
{

𝑡min s.t. 𝑝(𝑠f ; 𝑡min) + 𝑝(𝑠𝑜 ; 𝑡min) =
1
2 ,

𝑡max s.t. 𝑝(𝑠f ; 𝑡max) =
1
2 ,

(25)

where 𝑝(𝑠 ; 𝑡) is the probability that the process will be at state 𝑠 at
time 𝑡 starting from the set of initial states. Since 𝑠f and 𝑠𝑜 are the only
absorbing states, then 𝑡min exists and clearly 𝑡min ≤ 𝑡1∕2. Based on FSP,
𝑝(𝑠f ; 𝑡max) is an underestimate of the actual probability at time 𝑡max, if
it exists. A possible way to determine if a solutions exists is to determine
the probability of reaching state 𝑠f compared to state 𝑠𝑜 from the initial
states, which can be calculated by solving a system of linear equations
(see Eq. 2.13 from Metzner et al. (2009)). If the probability is greater
or equal to 1

2 then a solutions exists. If a solution does not exist for the
given statespace, then based on FSP the error is guaranteed to decrease
by adding more states and we can eventually find a solution to Eq. 6.
The search for 𝑡max can be completed with binary search. Thus, the true
𝑡1∕2 is guaranteed to satisfy 𝑡min ≤ 𝑡1∕2 ≤ 𝑡max. For exponential decay
processes, the relation between the half-completion time and the MFPT
is (Cohen-Tannoudji et al., 1977; Simmons, 1972)

𝑡1∕2 =
ln2
𝜆

and 𝜏 = 1
𝜆
→ 𝜏 =

𝑡1∕2
ln2 , (26)

where 𝜆 is the rate of the process. Thus, 𝑡min
ln2 ≤ 𝜏 ≤ 𝑡max

ln2 . A drawback
of this approach is that we might need a large number of states to
find a solution to Eq. 6, which might make the master equation or
the linear system solver infeasible in practice. Efficiently quantifying
the error of MFPT estimates in truncated CTMCs for exponential and
non-exponential decay processes is beyond the scope of this paper. It
might be possible to use some other existing work (Kuntz et al., 2019;
Backenköhler et al., 2019).

In the pathway elaboration method, we estimate MFPTs by solv-
ing matrix equations. Thus, its performance depends on the accuracy
and speed of matrix equation solvers. For example, applying matrix
equation solvers may not be suitable if the initial states lie very far
from the target states, since the size of the truncated CTMCs depends
on the shortest-path distance between these states. Although solving
matrix equations through direct and iterative methods has progressed,
both theoretically and practically (Fletcher, 1976; Virtanen et al., 2020;
Cohen et al., 2018), solving stiff (multiple time scales) or very large
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Fig. A.1. The effect of pathway construction with different values of 𝑁 and 𝛽 and fixed values of 𝐾 and 𝜅 on the MAE of pathway elaboration with SSA and the |̂| of pathway
elaboration. In (a–h), 𝐾 = 0 and 𝜅 = 0 ns are fixed. 𝐾 = 0 indicates that the states of the pathway are not elaborated. In (i–p), 𝐾 = 256 and 𝜅 = 16 ns are fixed. (a), (e), (i), and
m) correspond to datasets No. 1,2, and 3. (b), (f), (j), and (n) correspond to dataset No. 4. (c) (g), (k), and (o) correspond to dataset No. 5. (d), (h), (l), and (p) correspond to
ataset No. 6. For the missing settings, pathway elaboration did not finish within two weeks computation time.
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quations could still be problematic in practice. More stable and faster
olvers would allow us to estimate MFPTs for stiffer and larger trun-
ated CTMCs. Moreover, it might be possible to use fast updates for
olving the matrix equations (Brand, 2006; Parks et al., 2006). There-
ore, if we require to compute MFPT estimates with matrix equations
s we monotonically grow the size of the state space or for a perturbed
arameter set, the total cost for solving all the linear systems would be
he same cost as solving the final linear system from scratch.

We might be able to improve the pathway elaboration method
o relieve the limitations discussed above. For example, it might be
ossible to use an ensemble of truncated CTMCs to obtain an unbiased
stimate of the MFPT (Georgoulas et al., 2017). To avoid excursions
hat lead to overestimation of the MFPT in the state elaboration step,
e could run the pathway construction step from the last states visited
15

r

n the state elaboration step. This would also relax the constraint
f having reversible or detailed balance transitions. Presumably, an
lternating approach of the two steps would make the approach more
lexible. Moreover, currently we run the state elaboration step from
very state of the pathway with the same setting. Efficiently running the
tate elaboration step as necessary, could reduce the time to construct
he truncated CTMC in addition to the matrix computation time.

Finally, we used pathway elaboration in a small study to show it is
romising for parameter optimization of DNA kinetic models. However,
he parameter set obtained in this study requires further calibration
n a wider range of reactions and potentially on more flexible kinetic
odels (Zolaktaf et al., 2017) to improve generalizability. Also, we

valuated the pathway elaboration method in the context of DNA
eactions. However, the method is also applicable to RNA kinetics.
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Fig. A.2. The effect of state elaboration, with different values of 𝐾 and 𝜅 and fixed values of 𝑁 and 𝛽 on the MAE of pathway elaboration with SSA and the |̂| of pathway
laboration. 𝐾 = 0 indicates that the states of the pathway are not elaborated. In (a–h), 𝑁 = 128 and 𝛽 = 0.0 are fixed. In (i–p), 𝑁 = 128 and 𝛽 = 0.6 are fixed. (a), (e), (i), and
m) correspond to datasets No. 1,2, and 3. (b), (f), (j), and (n) correspond to dataset No. 4. (c) (g), (k), and (o) correspond to dataset No. 5. (d), (h), (l), and (p) correspond to
ataset No. 6. For the missing settings, pathway elaboration did not finish within two weeks computation time.
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oreover, it is applicable to other detailed-balance CTMC models, such
s chemical reaction networks (Anderson and Kurtz, 2011) and protein
olding (McGibbon and Pande, 2015).
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Appendix. The mean absolute error of the pathway elaboration
method for nucleic acid kinetics

Figs. A.1 and A.2 represent Fig. 5 by varying only two parameters
at a time.
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