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ABSTRACT

Copying and counting are useful primitive operations for computation and construction. We have made DNA crystals that copy and crystals
that count as they grow. For counting, 16 oligonucleotides assemble into four DNA Wang tiles that subsequently crystallize on a polymeric
nucleating scaffold strand, arranging themselves in a binary counting pattern that could serve as a template for a molecular electronic
demultiplexing circuit. Although the yield of counting crystals is low, and per-tile error rates in such crystals is roughly 10%, this work
demonstrates the potential of algorithmic self-assembly to create complex nanoscale patterns of technological interest. A subset of the tiles
for counting form information-bearing DNA tubes that copy bit strings from layer to layer along their length.

The challenge of engineering complex devices at the na-
nometer scale has been approached from two radically
different directions. In top-down synthesis, information about
the desired structure is imposed by an external apparatus, as
in photolithography. In bottom-up synthesis, structure arises
spontaneously due to chemical and physical forces intrinsic
to the molecular components themselves. A significant
challenge for bottom-up techniques is how to design
molecules containing information capable of guiding the self-
assembly process to create the desired supramolecular
structure. Borrowing a trick from biology, information can
be stored in a heteropolymer that will subsequently fold and/
or assemble with other molecules as directed by the sequence
information. This approach has been especially fruitful for
designing nanostructures using the two premier biological
polymers, peptides1,2 and nucleic acids.3,4 Biological organ-
isms must use additional principles to create large structures
with sophisticated organization, such as whales, containing
upward of 1024 macromolecules. To make such structures,
information cannot be used as a blueprint that directly
specifies where each molecule or cell should go (there is
not enough information); it must instead specify the target
structure implicitly via a set of rules (an algorithm) for how
to construct it according to growth processes. This general
principle, that computation has an essential role in construc-
tion tasks, was clearly expounded by von Neumann in his

study of self-reproducing machines.5 The complex genetic
regulatory circuits that direct development are perhaps the
most conspicuous example of this principle.

Somewhat surprisingly, computation also arises naturally
within phenomena used by existing bottom-up fabrication
methods, such as macromolecular self-assembly.6,7 Building
on Wang’s insights connecting geometry and computation
in the context of mathematical tiling theory,8,9 algorithmic
self-assemblyhas been proposed as a generalization of crystal
growth processes and is capable of creating complex shapes
and patterns.10-14 In this paradigm, assembly instructions are
programmed into a set of tiles by choice of specific binding
interactions, and self-assembly occurs spontaneously. Simple
examples of algorithmic self-assembly have been demon-
strated, first in one-dimension15,16 and then in two dimen-
sions,17 using molecular Wang tiles made of DNA.18,19Here
we show that algorithmic self-assembly can be used to create
an extended patternsbinary countingsof technological
relevance for molecular electronics as the layout for a
demultiplexing circuit20-24 and of fundamental theoretical
interest due to its appearance as a primitive for many other
computation and construction tasks.25-27 Additionally, using
a subset of these tiles we show that a string of binary
information can be propagated along the length of a DNA
tube, which is of independent interest to the study of crystal
evolution and the origin of life.28

The binary counter pattern consists of an array in which
each row represents an integer in binary, and each subsequent
row represents the integer following the one below it. Table
1 shows counting from 0 to 8. In principle, this array could
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be extended to the left with zeros, and extended upward to
make an unbounded counter. Without any a priori knowledge
of integer arithmetic or binary representation, this table can
be generated by following simple rules based on the logic
of the classical ripple-carry adder.29 Starting with a row of
all zeros, complete each subsequent row as follows. Provide
a “carry bit” to the rightmost position, instructing it to
increment. Then evaluate each position, from right to left:
Write a 1 if either a carry bit was received or if the bit
directly below on the previous row was 1, but not both.
Otherwise, write a 0. Additionally, if both a carry bit and a
1 are received, provide a carry bit to the next position to the
left. This can be summarized in equations as

wherebi
n is the bit in theith column andnth row of the

binary counting array, andci
n is the carry bit provided by

that position to its leftward neighbor.
These rules for constructing the binary counting table can

be translated into a set of geometrical tiles, known as Wang
tiles, that represent the 0’s and 1’s by their color and enforce
the logical rules by markings or indentations on their sides.
This is possible because the rules for computing each bit
are local: each bit depends only on the bit below and the
carry bit from its right. As shown in Figure 1a, each tile
contains four “binding domains” whose shape either matches
information provided by the tile below and by the tile to its
right (the inputs) or provides information to the tiles above
and to its left (the outputs). There are four rule tiles, one for
each possible combination of inputs; each rule tile corre-
sponds to a single entry in the lookup table for the equations
given above. Thus, at sites where a new tile can bind by
both of its input domains (such as the top of Figure 1b),
there is a unique tile that can do so. This ensures that
assemblies without mismatches will produce the correct
binary counting pattern, if started from a row of zeros.31 Note
that if tiles may be added only when they bind by at least
two domains, which we calllegal growth, then a finite-sized
assembly cannot grow beyond existing rows and columns;
for example, the assembly shown in Figure 1b will add
exactly five tiles on the upper right and four tiles at the lower
left. (Although they bind using different sides of the tiles,
the latter tile additions are also each uniquely determined
and correspond to counting backward!).

Unlike previously considered tile sets for binary counters,25,32

for experimental simplicity the tile set and scaffold discussed
here do not provide a mechanism for initiating the counter
at a specific number. Presuming that growth begins with just
a column of blue scaffold tiles of some finite length, there
is in fact no site where legal growth can occur. However,
when a tile attaches by a single binding domain for
sufficiently long, termed aninsufficient attachment,33 sub-
sequent legal growth will complete the column above and
below the initial tile. This initial tile may, randomly, represent
either a 0 or a 1.Effectively, this means that rather than
starting at zero, our crystals will seem to start at a random
number, but count correctly thereafter. If more than one
insufficient attachment occurs in a given column, however,
then it is possible that the random choices will be incompat-
ible with each other, and an error in the pattern will result.
It is therefore important that, when implemented molecularly,
tiles attaching by a single binding domain will be rare under
the physical conditions that we will study.

Abstract Wang tiles can be translated directly into artificial
DNA molecules, such as double-crossover molecules,18 by
encoding the shapes of the abstract tile’s four binding
domains as four stickyend sequences on the corresponding
molecular tile;31 complementary shapes correspond to comple-
mentary sequences. This results in the set of four DAE-E
molecules shown in Figure 1c. (Although this double-
crossover motif has been shown previously to have intrinsic
curvature that encourages assemblies of tiles to roll up into
tubes,17,34assemblies grown from long scaffolds in that work
usually contained 5 to 15 layers of rule tiles, which we
predicted would be sufficient for our investigations here.)
To distinguish tiles representing 0’s from tiles represent-
ing 1’s, we decorated the latter with protruding hairpin
motifs that provide topographic contrast when imaged by
atomic force microscopy (AFM). Creating long, covalently
bound columns of scaffold tiles required the synthesis of a
long scaffold strand with periodic sequence, as shown in
Figure 1d. As in previous work using scaffold strands,17,35,36

the molecular implementation consists of a long single-
stranded DNA molecule upon which short oligonucleotides
assemble to form a molecular structure equivalent to several
fully formed tiles covalently joined along one strand at each
sticky-end. Unlike the previous work, in which the overall
path of the scaffold strand could be routed such that it never
forms intentional base pairs with itself, the scaffold strand
for the binary counter design here must wrap from helix to
helix along a diagonal, which requires hairpin sequences at
periodic intervals. To reduce problematic interference of
secondary structure during synthesis of the scaffold strand
by assembly PCR,37 we chose exclusively-AT sequences for
the hairpin domains. Furthermore, to specifically amplify
the single-stranded sense strand at the end of assembly
PCR (which produces long periodic double-stranded DNA),
the entire scaffold strand sequence consists of only A,T,C;
the final stage of synthesis, therefore, is provided only
those nucleotides. Experimental protocols and the sequences
of all strands used here are given in the Supporting In-
formation.

Table 1

l l l l
‚‚‚ 1 0 0 0
‚‚‚ 0 1 1 1
‚‚‚ 0 1 1 0
‚‚‚ 0 1 0 1
‚‚‚ 0 1 0 0
‚‚‚ 0 0 1 1
‚‚‚ 0 0 1 0
‚‚‚ 0 0 0 1
‚‚‚ 0 0 0 0

bi+1
n+1 ) bi+1

n XOR ci
n+1

ci+1
n+1 ) bi+1

n AND ci
n+1
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To determine whether the designed tiles assemble as
expected, we first tested the tiles without the scaffold. In
this case, the intrinsic curvature of DAE-E tiles was expected
to encourage the formation of tubes. In fact, the tiles here
called VE-NO and SEJ-N1 are identical to the tiles VE-00
and SEs(1,5:h14) reported in ref 34 to each form single-tile
tubes, frequently longer than 5µm with a circumference

typically between 4 and 12 tiles and with the tile axis parallel
to the length of the tubes. In this work, single-tile tubes are
prepared by mixing each relevant strand at 200 nM in
TAE/Mg2+ buffer (40 mM Tris acetate, 1 mM EDTA, 12.5
mM Mg acetate, pH 8.3) and annealing from 90 to 20°C at
1 °C/min. After 1-24 h at room temperature, samples were
examined by adding 5µL to a 30µL droplet of annealing

Figure 1. Abstract binary counter tile set and DNA Wang tile implementation. (a) The four binary counter rule tiles, VE-N0, UE-C1,
REJ-C0, and SEJ-N1, corresponding to the four possible input pairs for ripple-carry adder logic. The first part of each tile name refers to
the DNA tile core sequences used in previous work,30 while the second part refers to the input pair that the tile matches. The two lower
binding domains (with names containing overbars) on each tile act as inputs, while the upper two act as outputs. Each tile outputs either
0 or 1 to the tile above it and outputs either a carry bit (c) or not (n) to the tile to its left. (b) Assembly of the rule tiles on a linear scaffold
(blue). At sites where a new tile can attach by both input binding domains, a unique tile matches correctly (black arrow) and two tiles
match partially (red arrows). To compare to Table 1, see inset for orientation. The tiles in the row representing the number 4 (0100 in
binary) have been explicitly labeled in the diagram. (c) Molecular implementation of the four rule tiles as DNA Wang tiles. Each tile is
assembled from five single strands: two of 37 nucleotides (nt) (top & bottom, #1 & #5, red & magenta), two of 26 nt (left & right, #2 &
#4, yellow & green), and one of 42 nt (central, #3, blue). For two tiles, hairpin-containing 59-mers replace the 37-mers, providing topographic
contrast for AFM imaging. Triangles mark two crossover points, separated by two helical turns (21 nt). Arrowheads point from 50 to 30.
Sticky ends (5 nt) are at the ends of the #2 and #4 strands, and have sequences corresponding to the logical labels in (a). (d) Self-assembly
of the DNA Wang tiles on the scaffold (not to scale). Diagram is exploded to show matching of complementary sticky ends. Crossover
points in the scaffold are stretched in the diagram to accommodate the exploded spacing, but the molecules contain no nucleotides at the
crossover points; the secondary structure of the SCA scaffold tile is consistent with the DAE-E motif. The scaffold consists of a single long
periodic scaffold strand (blue) and three scaffold tile strands (SCA; red, yellow, green, of lengths 37, 26, 42). The intrinsic curvature of the
DAE-E tiles is such that the radius of curvature points up out of the page; red stars indicate diagram artifacts at the nicks due to flattening
the structure.
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buffer on freshly cleaved mica for AFM imaging using fluid
tapping mode (as described for counting “tube falling events”
in ref 34). During AFM imaging, after landing on the mica,
tubes first appear as thick indistinct linear objects (closed
tubes) and subsequently pop open to lie flat on the mica such
that individual tiles can be resolved.

Assembly using both tiles VE-N0 and SEJ-N1 together
(and no others) is a particularly interesting case: these being
the tiles without any carry bit input or output, they copy a
bit pattern unchanged from one layer to the next. Hence we
call the resulting algorithmic assemblies “COPY tubes”. Like
the single-tile tubes, COPY tubes can grow to multi-
micrometer lengths (Figure 2a). The bit pattern carried by a
particular tube is determined during the nucleation stage
(which we assume to be random with some bias) and copied
from layer to layer by growth processes thereafter. Because
the axis of curvature is perpendicular to the helix axes of
the tiles, the resulting stripe patterns should appear as
diagonal stripes that wrap helically around the tubes.
However, samples prepared with the single-tile tube anneal-
ing schedule were found to predominantly consist of either
all-VE-N0 tubes or all-SEJ-N1 tubes (distinguished by the
presence of their topographic label).

To investigate whether this disproportionation could be
due to a difference in the binding affinities of the two tiles,
we examined the thermal formation and melting profiles of
each single-tile tube, using UV spectrophotometry. Degassed
1000µL samples with each strand at 200 nM in the anneal-
ing buffer were heated from room temperature to 90°C at
0.4 °C/min to fully melt the samples and equilibrate the
instrument. Data were collected as the samples were then
cooled at 0.15°C/min to either 15 or 20°C, held for 2 h,
and then heated back to 90°C at 0.15°C/min. Raw data for
absorbance at 260 nm (Figure 2b) show two transitions for

each sample: a transition between roughly 45 and 60°C
where individual tiles are presumed to form and a strongly
hysteretic transition between roughly 25 and 45°C where
tubes are presumed to form. All transitions are several
degrees lower for the SEJ-N1 tile than for the VE-N0 tile.
(These formation and melting curves reveal a number of
unusual characteristics, such as the hysteresis of the tile
formation and the large size of the tube formation transition,
that are the subject of a separate study. Hysteresis between
tube formation and melting is expected as a consequence of
a nucleation barrier, assembly of the smallest full-circumfer-
ence tube.) Although the absolute temperature at which
significant tube nucleation and growth occur will depend on
the speed of cooling, these results suggest that during the
annealing of COPY tubes, where both tiles are present in
the same solution, VE-N0 single-tile tubes may nucleate and
grow first, at a temperature too high for significant amounts
of SEJ-N1 tiles to nucleate either as single-tile tubes or as
heterogeneous COPY tubes.

Therefore, to observe nontrivial algorithmic growth on
tubessi.e., the copying of nontrivial bit patternsswe at-
tempted to avoid disproportionation during sample prepara-
tion. Samples were annealed as before, but upon reaching
45 °C, the temperature was dropped rapidly to 20°C for 3
min to nucleate tubes, then raised again to 35°C, and cooled
to 20 °C at 1°C/min. The intention was to favor legal tube
growth after fast random nucleation of seed assemblies at
the lower temperature; legal growth is most likely near the
tube melting temperature where legal tile additions are
thermodynamically favorable while illegal tile additions are
thermodynamically unfavorable.17,31This protocol results in
a higher frequency of tubes with stripe patterns, as well as
an increased fraction of assemblies with undefined character.

Figure 2. Tubes and crystals (a) Tiles VE-N0 and SEJ-N1 annealed together (at 200µM each tile) form tubes several micrometers in
length, which we term COPY tubes. AFM image. Scale bar is 5 um. (b) Thermal formation and melting profiles of VE-NO tubes (lower
trace) and SEJ-N1 tubes (upper trace), as measured by hypochromicity at 260 nm. (c) Detail of an opened COPY tube. AFM image. Scale
bar is 50 nm. (d) Interpretation of the COPY tube seen in (c). Red crosses mark tiles that mismatch their leftward neighbors. Green dots
indicate tiles presumed to have lost their hairpins or that were poorly imaged by AFM. Note that the tube has split parallel to the tube axis.
If the tube had a constant circumference of seven tiles, then five tiles must have fallen off as the tube opened, and four tiles subsequently
attached after the tube had opened on the mica. (e) All four binary counter tiles annealed together with the scaffold strand. Green arrows
indicate putative binary counting patterns growing from scaffold. Red “T”s mark what appear to be tubes nucleated without a scaffold
strand. Red stars indicate ill-formed assemblies of undefined nature. The inset shows scaffold strand annealed with just UE-C1 and REJ-
C0, which should assemble with just a single layer of tiles on the scaffold tiles. Typical lengths of the scaffold are mostly in the range
50-500 nm. Scale bar is 500 nm. Inset is the same scale.
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When AFM imaging of open tubes permits identification
of individual tiles, we observe stripes of the hairpin-labeled
SEJ-N1 tiles, indicating that the binary pattern of tiles was
successfully copied from layer to layer during tube growth
(Figure 2d). Stripes frequently “wrap around” from one side
to the other, suggesting that they formed a contiguous helical
stripe on the intact closed tube, that few tiles are lost during
the opening process, and that few tiles were gained by
assembly while on the mica. The stripe period can also give
an indirect measurement of tube circumference (in tiles).
However, we seldom see stripes continue for more than 10
layers without an error changing the stripe patternseither
losing or adding a stripe or several stripes. This is consistent
with the 1-10% per-tile error rate observed in previous
algorithmic self-assembly experiments with similar tiles.17

It is also consistent with tube joining processes that have
been observed in single-tile DAE-E tubes;38 here, COPY
tubes that nucleate with different bit patterns may also join
end-to-end if sufficiently many sticky ends match, resulting
in apparent copying errors.

To test the full set of all four rule tiles, which is not
expected to give clearly interpretable results when annealed
to form tubes and assemblies, we first created a scaffold
corresponding to the blue column in the abstract assembly
diagram (Figure 1b). The procedure is a variation of that
used in ref 17 and results in the desired repetitive single-
stranded DNA product as well as some undesired repetitive
double-stranded product. The total concentration of repeat
unit (in either form) was estimated by UV260 absorbance
after phenol/chloriform extraction and ethanol precipitation,
and a stock was prepared at a nominal 300 nM. An estimate
of the length of the scaffold strands can be obtained by
annealing the scaffold strands with the component strands
for the scaffold tile and tiles UE-C1 and REJ-C0, which
should be able to form just a single layer of tiles on the
scaffold. Each rule and scaffold tile component strand
concentration was 200 nM, while the scaffold repeat unit
concentration was nominally 25 nM. As imaged by AFM,
the resulting linear structures typically range from 50 to 500
nm in length (Figure 2e, inset). (They not appear clearly
perhaps due to insufficient adhesion to the mica surface.)
This was deemed sufficient for attempting to observe binary
counting crystallization to the extent that it will occur given
the expected error rates for algorithmic self-assembly with
this type of DNA tile.

For annealing of the scaffold strand, scaffold tiles, and
all four rule tiles, we chose a schedule that cools from 90
to 50 °C at 1 °C/min, then proceeds from 50 to 30°C
at 0.1 °C/min, and finally decreases from 30 to 20°C at
1 °C/min. On the basis of the thermal profiles of Figure 2b,
we estimate that scaffold tiles and rule tiles should be
completely formed by 45°C and that nucleation of rule tiles
on the scaffold assembly should begin to occur just below
the crystal melting temperature (and thus prior to tube
formation). The anneal proceeds slowly through this critical
phase, during which we presume that algorithmic self-
assembly occurs. Rule tile and scaffold tile component
strands were, as before, at 200 nM, while the scaffold repeat

unit was at a nominal 25 nM; if 10% of the scaffold material
was single-stranded, uniform growth exclusively on the
scaffold would complete 80 layers before exhausting the
VE-N0 rule tile. AFM imaging revealed a mixture of
qualitatively different DNA assemblies (Figure 2e). Unfor-
tunately, COPY tubes and all-0 tubes, apparently nucleated
without the scaffold strand, were common, as were ill-defined
assemblies that we have not been able to clearly interpret.
Searching revealed crystals that had one straight edge,
suggesting the presence of the scaffold strand, and a pattern
of bits along that edge that suggested pattern formation
according to the binary counting algorithm. Closer examina-
tion of these patterns revealed errors that disrupt the ideal
pattern. Figure 3a shows five of the clearest crystals with
mostly intact binary counting patterns. We interpret the
images as tile assemblies as shown in Figure 3b; unclear
imaging and lattice defects (missing tiles as well as inserted
rows and columns) prevent unambiguous interpretation at
some locations. According to the interpretation, there are six
perfect countings from 1 to 7, including two from 0 to 8,
and an overall error rate of 22 mistakes in 486 tiles (4.5%).
Given that we examined roughly 75 scaffold-nucleated
crystals (many at a resolution too poor to identify tiles) with
a total length of no more than 33µm, i.e., 2400 tiles, it is
exceedingly unlikely that we would have observed any
counting patterns similar to those in Figure 3a if the assembly
had been random (i.e., an error rate of 50% during assembly).
Had the error rate been as high as 15%, the probability of
observing any domain of 126 tiles with fewer than four errors
(such as the middle example) would have been less than 1%
(see Supporting Information). Therefore, although we have
no evidence that errors are independent, we are confident
that algorithmic self-assembly is indeed occurring with an
error rate no more than 15%, and we estimate that an error
rate of 10% is more characteristic of the process.

Errors could be due to several types of (undesired)
processes, in addition to simple growth errors. Misfolded
tiles or tiles lacking some component strand could incorporate
into the crystal and cause an error; this problem could be
reduced by separately annealing and purifying each tile type.
(Previous studies in our group17 estimated that typically
between 80% and 95% of DAE-E tiles are well-formed.)
Because the linear scaffold here relies on an insufficient
attachment in order to initiate growth in each column layer,
multiple initiation sites could conflict logically (as discussed
above). Furthermore, initiation of the first layer of tiles at
distance sites on a scaffold could result in a “hinged” crystal
that, when it grows together, could contain many mismatch
errors and lattice defects at the seam. Previously proposed
tile sets for binary counters avoid these problems by
containing an orthogonal structure (e.g., a row of 1’s)
intended to quickly and controllably initiate growth into new
layers. Finally, the most striking problem in the work
reported here is that the overall yield is very low: by far
the majority of the material is in the form of tubes,
amorphous aggregates, and illegal growth from scaffold
strands. Improved control of nucleation for algorithmic self-
assembly, using more rigid nucleating structures, is needed
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to reduce these errors. Our thermodynamic study identified
factors essential for obtaining this control. Unless the
strengths of tile associations can be matched between tile
types, so that the crystal melting temperature is independent
of the tiles involved, annealing will first pass through a
temperature at which only certain (usually erroneous) patterns
can grow.

At the error rates demonstrated here, algorithmic self-
assembly is not yet useful for technological applications such
as creating scaffolds for arranging molecular electronic
components20,21,23,39-41 or as templates for chemical postpro-
cessing,42-44 because the largest error-free structures created
contain fewer than 100 tiles, and other more reliable non-
algorithmic methods are available at that scale.36,45-47

However, theory predicts that it should be possible to reduce
nucleation errors48 and growth errors33,49,50to any required
level, just by using similar DNA Wang tiles whose binding
logic has been reprogrammed to incorporate simple error
correcting codes. If experimental demonstration of these
approaches, or improved tile designs or control of physical

conditions, can achieve error rates of 10-4, then it will
become possible to create assemblies of 104 tiles with specific
algorithmically defined patterns. Reducing errors to this level
remains an important challenge.

This work provides further evidence that algorithmic self-
assembly provides a general mechanism for universal
construction in the sense of von Neumann. The same self-
assembly principles exploited here can easily be applied to
implement other logical rules and are sufficient for simulating
cellular automata, Turing machines, and other algorithmic
logic for controlling crystal growth and patterning.14,25,51

Although there are a limited number of unique 5-mer sticky-
ends that can be used to program DNA tiles with the DAE-E
motif described here, it is already sufficient for implementing
a number of universal Turing machines and cellular
automata.52-54 Furthermore, different tile geometries and
longer sticky ends can potentially increase the number of
unique tiles that can be created. Thus the complexity of
molecular objects synthesized by bottom-up fabrication
appears to be limited only by the ability to reduce error rates

Figure 3. AFM images of good counting, and reasonable interpretations. (a) Five examples. Areas shown are selected from larger crystals
that extend further to the left and/or right. The first one is an average of several scans of the same crystal. The last one has been “deghosted”
to reduce AFM artifacts due to a double tip. Scale bar is 100 nm. (b) Interpretations of the images to the left. Red cross indicates tiles that
mismatch their right or lower neighbor. Numbers give the binary integer represented by the nearby row; sometimes higher-order bits were
ignored. Areas with missing tiles or lattice mismatches were not interpreted. Of 486 interpreted tiles, there were 22 errors, giving an overall
4.5% error rate.
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and by our cleverness in designing small developmental
programs for algorithmic self-assembly of useful patterns.
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