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Abstract

The structural similarity of neural networks and genetic regulatory net-
works to digital circuits, and hence to each other, was noted from the
very beginning of their study [1, 2]. In this work, we propose a simple
biochemical system whose architecture mimics that of genetic regula-
tion and whose components allow for in vitro implementation of arbi-
trary circuits. We use only two enzymes in addition to DNA and RNA
molecules: RNA polymerase (RNAP) and ribonuclease (RNase). We
develop a rate equation for in vitro transcriptional networks, and de-
rive a correspondence with general neural network rate equations [3].
As proof-of-principle demonstrations, an associative memory task and a
feedforward network computation are shown by simulation. A difference
between the neural network and biochemical models is also highlighted:
global coupling of rate equations through enzyme saturation can lead
to global feedback regulation, thus allowing a simple network without
explicit mutual inhibition to perform the winner-take-all computation.
Thus, the full complexity of the cell is not necessary for biochemical
computation: a wide range of functional behaviors can be achieved with
a small set of biochemical components.

1 Introduction

Biological organisms possess an enormous repertoire of genetic responses to everchang-
ing combinations of cellular and environmental signals. Characterizing and decoding the
connectivity of the genetic regulatory networks that govern these responses is a major chal-
lenge of the post-genome era [4]. Understanding the operation of biological networks is in-
tricately intertwined with the ability to create sophisticated biochemical networks de novo.
Recent work developing synthetic genetic regulatory networks has focused on engineered
circuits in bacteria wherein protein signals are produced and degraded [5, 6]. Although
remarkable, such network implementations in bacteria have many unknown and uncontrol-
lable parameters.

We propose a biochemical model system —a simplified analog of genetic regulatory circuits
— that provides well-defined connectivity and uses nucleic acid species as fuel and signals
that control the network. Our goal is to establish an explicit model to guide the laboratory
construction of synthetic biomolecular systems in which every component is known and
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Figure 1: (A) The components of an in vitro circuit. The switch template (blue) is shown
with the activator (red) attached. The dotted box indicates the promoter sequence and the
downstream direction. (B) The correspondence between a neural network and an in vitro
biochemical network. Neuron activity corresponds to RNA transcript concentration, while
synaptic connections correspond to DNA switches with specified input and output.

where quantitative predictions can be tested. Only two enzymes are used in addition to syn-
thetic DNA templates: RNA polymerase, which recognizes a specific promoter sequence
in double-stranded DNA and transcribes the downstream DNA to produce an RNA tran-
script, and ribonuclease, which degrades RNA but not DNA. In this system, RNA transcript
concentrations are taken as signals. Synthetic DNA templates may assume two different
conformations with different transcription efficiency: ON or OFF. Upon interaction with
a RNA transcript of the appropriate sequence, the DNA template switches between differ-
ent conformations like a gene regulated by transcription factors. The connectivity — which
RNA transcripts regulate which DNA templates — is dictated by Watson—Crick base-pairing
rules and is easy to program. The network computation is powered by rNTP that drives the
synthesis of RNA signals by RNAP, while RNase forces transient signals to decay. With
a few assumptions, we find that this stripped-down analog of genetic regulatory networks
is mathematically equivalent to recurrent neural networks, confirming that a wide range of
programmable dynamical behaviors is attainable.

2 Construction of thetranscriptional network

The DNA transcriptional switch. The elementary unit of our networks will be a DNA
switch, which serves the role of a gene in a genetic regulatory circuit. The basic require-
ments for a DNA switch are to have separate input and output domains, to transcribe poorly
by itself [7], and to transcribe efficiently when an activator is bound to it. A possible mech-
anism of activation is the complementation of an incomplete promoter region, allowing
more favorable binding of RNAP to the DNA template. Figure 1A illustrates our proposed
design for DNA transcriptional switches and circuits. We model a single DNA switch with
the following binding reactions:
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where D (blue) is a DNA template with an incomplete promoter region, A (red) is an
activator that complements the incomplete promoter region, and I (green) is an inhibitor
complementary to A. Thus, I can bind free A. Furthermore, activator A contains a “toe-
hold” region [8] that overhangs past the end of D, allowing inhibitor I to strip off A from
the DA complex. D is considered OFF and D A is considered ON, based on their efficiency
as templates for transcription. This set of binding reactions provides a means to choose the
threshold of the sigmoidal activation function, as will be explained later.



RNAP and RNase drive changes in RNA transcript concentration; their activity is modeled
using a first-order approximation for enzyme kinetics. For the moment, we assume that the
input species (activator and inhibitor) are held at constant levels by external control.

By RNA polymerase By RNase
DA™ DA+ R Rk
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where 0 < o < 1 due to lack of activation and ¢ represents the complete degradation of
RNA products by RNase. k4 and k, are set by the concentration of enzymes.

In general, a set of chemical reactions obeying mass action have dynamics described by
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where kg is the rate constant, rf is the stoichiometry of species X; as a reactant (typically

0 or 1), and pf is the stoichiometry of X; as a product in reaction 5. Analysis of our
system is greatly simplified by the assumption that the binding reactions are fast and go
to completion. We define D! as the sum of free and bound species: D't = [D] + [DA].
Similarly, 1*°* = [I]+[AI] and A** = [A]+[DA]+[AI]. Then, [D A] depends on D*°* and
A, where A = A%t — Jtot Because I can scavenge A whether the latter is free or bound
to D, A can activate D only when A > 0. The amount of [D 4] is proportional to A when
0 < A < Dt asshown in Figure 2A. It is convenient to represent this nonlinearity using a

piecewise-linear approximation of a sigmoidal function, specifically, o(x) = W
Thus, We can represent [D A] using o and a rescaled A: [DA] = 3 D™*(1 + o(A)), where

A= 28, — 1is called the signal activity. At steady-state, kq[R] = k,[DA] + ak,[D];
thus,

L5 prot((1 - a)o(A) + 1+ a) .
2 kg
If we consider the activator concentration as an input and the steady-state transcript con-
centration as an output, then the (presumed constant) inhibitor concentration, 7¢°¢, sets the
threshold, and the function assumes a sigmoidal shape (Fig. 2D). Adjusting the amount of
template, D!, sets the magnitude of the output signal and the width of the transition re-
gion (Fig. 2C). We can adjust the width of the transition region independent of the threshold
such that a step function would be achieved in the limit. Thus, we have a sigmoidal func-
tion with an adjustable threshold, without reliance on cooperative binding of transcription
factors as is common in biological systems [9].

[R] =

Networks of transcriptional switches. The input domain of a DNA switch is upstream
of the promoter region; the output domain is downstream of the promoter region. This
separation of domains allows us to design DNA switches that have any desired connectivity.
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Figure 2: (A) [DA] as a function of A. (B) The sigmoid o (). (C,D) [R] as a function of
Atet for three values of D and It°¢, respectively.



We assume that distinct signals in the network are represented as distinct RNA sequences
that have negligible crosstalk (undesired binding of two molecules representing different
signals). The set of legitimate binding reactions is as follows:
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where D;; is the DNA template that has the jth input domain and ith output domain, the
activator A; complements the incomplete promoter region of D;;, and the inhibitor I; is
complementary to A ;. Note that I; can strip off A; from the D;; A; complex, thus imposing
a sharp threshold as before. Again, we assume fast and complete binding reactions.

The set of enzyme reactions for the transcriptional network is as follows:
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where s;; € {+1, —1} indicates whether switch 45 will produce an activator or an inhibitor.

This notation reflects that the production of I; is equivalent to the consumption of A;. The
change of RNA concentrations over time is easy to express with A; = A°t — [tot:

dA;

dt
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;

Network equivalence. We show next that the time evolution of this biochemical network
model is equivalent to that of a general Hopfield neural network model [3]:
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Equation 1 can be rewritten to use the same nonlinear activation function o defined earlier.

Let A; = 12)%;; — 1 be arescaled difference between activator and inhibitor concentrations,

where Dot |s the load on A;, i.e., the total concentration of all switches that bind to A;:
Dt = 57, D2t and D" = [D;;A;] + [Dij]. Then, we can derive the following rate

equation, where A; plays the role of unit i’s activity z;:
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Given the set of constants describing an arbitrary transcriptional network, the constants for
an equivalent neural network can be obtained immediately by comparing Equations 2 and
3. The time constant 7 is the inverse of the RNase degradation rate: fast turnover of RNA
molecules leads to fast response of the network. The synaptic weight w;; is proportional to
the concentration of switch template i, attenuated by the load on A;. However, the thresh-
old 6; is dependent on the weights, perhaps implying a lack of generality. To implement
an arbitrary neural network, we must introduce two new types of switches to the transcrip-
tional network. To achieve arbitrary thresholds, we introduce bias switches D;p which




have no input domain and thus produce outputs constitutively; this adds an adjustable con-
stant to the right hand side of Equation 3. To balance the load on A;, we add null switches
Dy; which bind to A; but have no output domain; this allows us to ensure that all D%%" are
equal. Consequently, given any neural network with weights w;; and thresholds 6;, we can
specify concentrations Df-;-’t such that the biochemical network has identical dynamics, for
some 7.

Michaelis—-Menten enzyme reactions. Next, we explore the validity of our assumption
that enzyme Kinetics are first-order reactions. A basic but more realistic model is the
Michaelis—Menten mechanism [10], in which the enzyme and substrate bind to form an
enzyme-substrate complex. For example, if E is RNAP,

k
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An important ramification of Michaelis—Menten reactions is that there is competition for
the enzyme by the substrates, because the concentration of available enzymes is reduced
as they bind to substrates, leading to saturation when the enzyme concentration is limit-
ing. Using the steady-state assumption for Michaelis—Menten reactions, we establish the
following relations to the rate constants of first-order reactions:
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where k.. and Ky, = (k- + keqt)/k4 are the catalytic constant (enzyme’s speed) and
Michaelis constant (enzyme’s affinity to target) of RNAP for the ON state switch, &/, and
K, are for the OFF state switch, and k4 ..+ and K, as are the constants of RNase. E*°*

and E°* are the concentrations of RNAP and RNase, respectively. L = (DisAy]

ij Kau T
> [1’25] is the load on RNAP and Ly = >, [Aj”[[f]*}[;ifij]*[l?’”Aj] is the load on
RNase (i.e., the total concentration of binding targets divided by the Michaelis constants of
the enzymes), both of which may be time varying. To make the first-order approximation
valid, we must keep L and L, constant. Introduction of a new type of switch with different
Michaelis constants can make L constant by balancing the load on the enzyme. A scheme

to keep L4 constant is not obvious, so we set reaction conditions such that Ly < 1.

3 Example computations by transcriptional networks

Feed-forward networks. We first consider a feed-forward network to compute
f(x,y,2) = Tyz+ 5z +x. From the Boolean circuit shown in Figure 3A, we can construct
an equivalent neural network. We label units 1 through 6: units 1, 2, 3 correspond to inputs
x, y, z whereas units 4, 5, 6 are computation units. Using the conversion rule discussed
in the network equivalence section, we can calculate the parameters of the transcriptional
network. Under the first-order approximation of Equation 3, the simulation result is exact
(Fig. 3C). For comparison, we also explicitly simulated mass action dynamics for the full
set of chemical equations with the Michaelis—Menten enzyme reactions, using biologically
plausible rate constants and with E*°* and E’°* calculated from Equation 4 using estimated
values of L and L. The full model performs the correct calculation of f for all eight 3-bit
inputs, although the magnitude of signals is exaggerated due to an underestimate of RNase
load (Fig. 3C).

Associative memories. Figure 4A shows three 4-by-4 patterns to be memorized in a con-
tinuous neural network [3]. We chose orthogonal patterns because a 16 neuron network has
limited capacity. Our training algorithm is gradient descent combined with the perceptron
learning rule. After training, the parameters of the neural network are converted to the
parameters of the transcriptional network as previously described. Starting from a random
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Figure 3: (A,B) A Boolean circuit and a neural network to compute f(z,y, z) = Zyz+yz+
z. (C) The activity of computation units (first-order approximation: solid lines; Michaelis-
Menten reaction: dotted lines) for x=True=1, y=False=—1, z=True=1.
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Figure 4: (A) The three patterns to be memorized. (B) Time-course for the transcriptional
network recovery of the third pattern. (odd columns: blue lines, even columns: red lines)

initial state, a typical response of the transcriptional network (with the first-order approx-
imation of Equation 3) is shown in Figure 4B. Thus, our in vitro transcriptional networks
can support complex sets of stable steady-states.

A winner-take-all network. Instead of trying to compensate for the saturation phenomena
of Michaelis—Menten reactions, we can make use of it for computation. As an example,
consider the winner-take-all computation [11], which is commonly implemented as a neu-
ral network with O(N?2) mutually inhibitory connections (Fig. 5A), but which can also be
implemented as an electrical circuit with O(NN) interconnections by using a single global
inhibitory feedback gate [12]. In a biochemical system, a limited global resource, such as
RNAP, can act to regulate all the DNA switches and thus similarly produce global inhibi-
tion. This effect is exploited by the simple transcriptional network shown in Figure 5B, in
which the output from each DNA switch activates the same DNA switch itself, and mutual
inhibition is achieved by competition for RNAP. Specifically, we have switch templates D;;
with fixed thresholds set by I;, and D,; produces A; as its output RNA. With the instant
binding assumption, we then derive the following equation:
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The production rate of A; depends on Af°* and on L, while the degradation rate of A;
depends on A‘°* and on L, as shown in Figure 6A. For a winner-take-all network, an ON
state switch draws more RNAP than an OFF state switch (because of the smaller Michaelis
constant for the ON state). Thus, if the other switches are turned OFF, the load on RNAP
(L) becomes small, leading to faster production of the remaining ON switches. When the
production rate curve and the degradation rate curve have three intersections, bistability is
achieved such that the switches remain ON or OFF, depending on their current state.

Consider n equivalent switches starting with initial activator concentrations above the
threshold, and with the highest concentration at least 6 above the rest (as a percentage).
Analysis indicates that a less leaky system (small «) and sufficient differences in initial
activator concentrations (large ) can guarantee the existence of a unique winner. Simula-
tions of a 10-switch winner-take-all network confirm this analysis, although we do not see
perfect behavior (Fig. 6B). Figure 6C shows a time-course of a unique winner situation.
Switches get turned OFF one by one whenever the activator level approaches the threshold,
until only one switch remains ON.
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Figure 5: (A) A 3-unit WTA network with explicit mutual inhibition. (B) An equivalent
biochemical network.
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Figure 6: For WTA networks: (A) Production rates (solid lines) for two different L’s,
compared to a linear degradation rate (dotted line). (B) Empirical probability of correct
output as a function of o and 4. (C) Time-course with 6 = 0.33% and o = 0.04.

Similarly, we can consider a k-WTA network where &k winners persist. If we set the pa-
rameters appropriately such that & winners are stable but £ + 1 winners are unstable, the
simulation result recovered k winners most of the time. Even a single k-WTA gate can
provide impressive computational power [13].

4 Discussion

We have shown that, if we treat transcriptionally controlled DNA switches as synapses
and the concentrations of RNA species as the states of neurons, then the in vitro transcrip-
tional circuit is equivalent to the neural network model and therefore can be programmed
to carry out a wide variety of tasks. The structure of our biochemical networks differs
from that of previous formal models of genetic regulatory circuits [14, 15, 16]. For exam-
ple, consider the work of [16], which established a connection to the class of Boltzmann
machines. There, the occupancy of regulatory binding sites corresponds to the state of neu-
rons, the weights are set by the cooperative interaction among transcription factors, and the
thresholds are the effective dissociation constants at a binding site. Thus, implementing a
general N-unit neural network requires only O(NV') biochemical species, but up to O(N?)
significant binding interactions must be encoded in the molecular sequences. Changing
or tuning a network is therefore non-trivial. In contrast, in our transcriptional networks,
each weight and threshold is represented by the continuously adjustable concentration of a
distinct species, and the introduction or deletion of any node is straightforward.

Each synapse is represented by a DNA switch with a single input—output specification, so
the number of DNA switches grows as O(NN?) for a fully recurrent neural network with
N neurons (unlike the circuits of [16]). This constraint may be relieved because, in many
networks of interest, most nodes have a small number of connections [17, 18]. The time
for computation will increase as O (V) due to finite hybridization rates because, if the total
concentration of all RNA signals is capped, the concentration of any given species will
decrease as 1/N. The weights are capped by the maximum gain of the system, which is the
production rate divided by the degradation rate. Since the time constant of the network is
the inverse of the degradation rate, if we wish to implement a network with large weights,
we must increase the time constant.

We can analyze the cost of computing by considering basic physical chemistry. The energy
consumption is about 2057 (= 10~19.7) per nucleotide incorporated, and 1 bit of informa-



tion is encoded by a sequence containing tens of nucleotides. The encoding energy is large,
since the molecule for each bit must contain specific instructions for connectivity, unlike
spatially arranged digital circuits where a uniform physical signal carrier can be used. Fur-
thermore, many copies (e.g., 103 for a 1M signal in 20u0) of a given species must be
produced to change the concentration in a bulk sample. Worse yet, because degradation is
not modulated in the transcriptional network, switching relies on selective change of pro-
duction rates, thus continually using energy to maintain an ON state. Devising a scheme to
minimize maintenance energy costs, such as in CMOS technology for electrical circuits, is
an important problem.

The theory presented here is meant to serve as a guide for the construction of real bio-
chemical computing networks. Naturally, real systems will deviate considerably from the
idealized model (although perhaps less so than do neural network models from real neu-
rons). For example, hybridization is neither instantaneous nor irreversible, strands can have
undesired conformations and crosstalk, and enzyme reactions depend on the sequence and
are subject to side reactions that generate incomplete products. Some problems, such as hy-
bridization speed and crosstalk, can be reduced by slowing the enzyme reactions and using
proper sequence design [19]. Ultimately, some form of fault tolerance will be necessary at
the circuit level. Restoration of outputs to digital values, achieved by any sufficiently high-
gain sigmoidal activation function, provides some level of immunity to noise at the gate
level, and attractor dynamics can provide restoration at the network level. A full under-
standing of fault tolerance in biochemical computing remains an important open question.

Future directions include utilizing the versatility of active RNA molecules (such as ap-
tamers, ribozymes, and riboswitches [20, 21]) for more general chemical input and output,
devising a biochemical learning scheme analogous to neural network training algorithms
[22], and studying the stochastic behavior of the transcriptional network when a very small
number of molecules are involved in small volumes [5].
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