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Abstract. DNA catalysts have been developed as methods of amplifying single-stranded nu-
cleic acid signals. The maximum turnover (gain) of these systems, however, often varies based
on strand and complex purities, and has so far not been well-controlled. Here we introduce
methods for controlling the asymptotic turnover of strand displacement-based DNA catalysts
and show how these could be used to construct linear classifier systems.

DNA nanotechnology has utilized the specific binding properties and the well-understood ther-
modynamics [11] and kinetics [21,23] of nucleic acid strand displacement reactions to construct
dynamic cascaded reactions, such as logic gates and circuits [12, 16,4, 9], motors [22,1], and ampli-

fication mechanisms [17, 3,5, 13,26, 19, 24].

DNA devices can operate in complex biochemical environ-
ments and can be programmed to specifically interact with bio-
logical nucleic acids such as messenger RNA or microRNA. DNA
circuits could be used to develop novel point-of-care diagnostic
devices that integrate detection with analysis and do not require
complex laboratory equipment. It has even been suggested [20,
15,2] to use DNA devices as “smart therapeutics” that operate
inside living cells and integrate detection of specific disease mark-
ers with the activation of a therapeutic response based on the
RNA interference pathway [7,18], on antisense oligonucleotides
[2] or ribozymes.

Such applications require nucleic acid circuitry that can reli-
ably identify a specific disease state. Characteristic RNA markers
that could serve as inputs to a DNA analytic circuit have been
identified for many diseases. However, it is often not sufficient to
simply detect the presence or absence of a set of RNA markers.
Instead, the classifiers that distinguishes a disease tissue from
healthy tissue (or other disease tissues) are often complex func-
tions of the concentrations of multiple RNA markers (see Refs. [6,
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Fig. 1: Sketch of a hypothetical two-
gene classifier. Samples from two
different tissue can be clearly dis-
tinguished based on the expression
profiles of two RNA molecules.

8,10] for examples of microRNA-expression based classifiers of varying complexity).

Here we propose a molecular implementation for a specific class of classifiers, namely linear
classifiers. The classifier circuit computes a linear combination with arbitrary (positive of negative)
weights on a set of inputs (i.e. RNA concentrations) and compares the result to a threshold value.
Fig. 1 shows a highly simplified sketch of a linear two-gene classifier: The line separating the two
different tissue types is given by an equation of the form a;[RNA;] + az[RNA3] = K. Given a
sample of unknown origin, we can now classify it as tissue type 1 or 2 based on a measurement of
two RNAs. Unlike in the more conventional case where the expressions of each RNA is individually
measured and the the linear classication analysis in performed in silico, here both detection and
analysis are done on the molecular level, allowing in situ and in vivo applications.



Previous DNA logic circuits were mostly designed for a situation where inputs can be represented
as Boolean variables and are either present at a high concentration or completely absent [12,9].
This does not necessarily require the original inputs to be at a specific level; DNA-based signal
restoration units consisting of a threshold gate and an amplifier can be used to restore an input with
an arbitrary concentration to the expected logical TRUE or FALSE values. Still, the digital nature
of such circuits is inherently incompatible with classication problems, in which the relative amounts
of inputs determines the value of the final output. The fixed gain amplication methods presented
here allows a reliable method of tuning analog sigals encoded in the concentrations of nucleic acids.

Fixed gain amplifiers: lowering catalytic turnover.

One key component of the proposed linear classifier is a DNA-based catalytic amplifier, that allows
one signal-stranded nucleic acid to specifically produce or release many single-stranded nucleic acid
molecules of independent sequence. Importantly, this amplifier needs to have a finite and controllable
gain « such that each input on average releases « copies of the output. Such a finite gain amplifier
would be useful not only in a linear classifier, where each detected RNA species is assigned a different
weight but could also be used for a pre-amplification of a set of low-concentration inputs while
maintaining their relative concentrations.

Existing DNA amplifiers have intrinsically finite
turnover; strand displacement-based nucleic acid
catalysts typically convert on the order of 10-100 1.0}
substrates before being inactivated [13,26]. Inac- 08!
tivation is most likely due to irreversible binding
of the catalyst to defective substrate complexes or 0.6
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turnover of a catalytic system, it seems intuitively rate constants k1 and k2 for the catalytic and the
clear that we can lower the turnover further either competitive reaction.

by increasing the fraction of imperfect substrate or through addition of an alternative competitive
inhibitor that irreversibly binds to the catalyst. However, it may be less intuitive how to best adjust
the turnover to any specific desired value.

To address the question of how to control turnover we first consider a simple model for a catalytic
reaction with competitive inhibition and then turn to simulating a specific DNA implementation
using measured reaction parameters. A catalytic reaction in the presence of an impurity can be
modeled as

P_/S,

c+Stco+p (1)
c+D%yg. (2)

In the first reaction a catalyst C transforms a substrate S into a product P. The rate constant for
this reaction is k,. The catalyst can also participate in a second, unproductive reaction with an
inhibitor (or damper) D. This reaction proceeds at a rate constant ky.



The differential equations resulting from this model can be integrated with initial conditions
C(0) = Cy, S(0) = Sp, D(0) = Dy and P(0) = 0. Solving for the product P(t) we get

l—p

ka /Kb
P(t) = So — So <m) : (3)

where we introduced the ratio p = Cy/ Dy and the difference A = Cy — Dy of the initial amounts of
catalyst and inhibitor.

In an ideal system without competitive inhibition the final product concentration is always equal
to the initial concentration of substrate. Given enough time the catalyst will convert all substrate
into product. In a system with competitive inhibition this is not necessarily true. The final amount
of product produced in that case can be computed by taking the limit ¢ — oo in Eq. 3:

Co > Dy

S07
lim P(t) = Py, =
i P() {50—30(1—P)ka/kb,CO<Do

Jim (4)
Not surprisingly, if we start out with more catalyst than inhibitor, the reaction will eventually go to
completion. The opposite limit is more interesting.

First, consider the case where the rate for the catalytic reaction is much faster than the inhibition
reaction, k, > kp (blue trace in Fig. 2). In this case the inhibitor has a relatively minor effect that
is most pronounced at low concentrations of catalyst compared to the inhibitor.

In the limit where the catalytic reaction occurs at
exactly the same rate as the inhibitory reaction, i.e.
ko = kp (red trace in Fig. 2) Eq. 4 predicts that the
final amount of product is linear in the initial amount

k1 -1 _—1
S+Ck:11+SP ko=5M s
2

of catalyst, i.e. Poo = aCy where v = Sy/Dy. That is,
by adjusting the relative concentration of substrate
to inhibitor we can get any finite gain we need.

The situation where the rate for the inhibitor re-
action is faster than the rate for the catalytic reac-
tion is also interesting. In that case, the amount or
product is sub-linear in the initial amount of cata-
lyst for Cy < Dy but reaches a fixed value Sy in the
opposite regime. The concentration of the competi-
tive inhibitor I therefore acts as a threshold for the
catalytic reaction. Such a threshold element is use-
ful for reliable signal propagation for example in the
context of chemical digital circuits.

We now turn to a specific DNA implementation
of such a system. Our implementation is based on the
entropy-driven catalytic amplifier of Ref. [26] which
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Table 1: Reactions simulated in Fig. 2.

was further characterized in Ref. [24]. Turnover for this amplifier was measured to be about 100.
The reaction mechanism for this system, including the side reactions leading to intrinsically finite
turnover, is shown in Fig. 3 (A). As a competitive inhibitor we here propose to use a damper DNA
gate that irreversibly binds the catalytic input (Fig. 3 (B)). In order to match the reaction rate
constants of the catalyst with this inhibitor to that of the catalyst with the active substrate we
simply choose the toeholds for both reactions to be identical.

In order to verify the predictions from our simple model Eq. 1 we simulated the full catalytic
system of Ref. [26] with a parallel inhibitory reaction using the measured rate constants and reaction
intermediates. The model is given in Table 1 and resulting data is shown in Fig 4 (A). As expected
from our model the final fluorescence depends linearly on the concentration of damper gate.
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Fig. 3: Methods for tuning catalytic turnover. (A) DNA amplification via catalysis, adapted from Zhang
et al. [24]. Catalyst strand C reacts with S to form side product SP and intermediate I1, the latter of
which subsequently reacts with F' to release output product OP, waste W, and catalyst C. However, a
small fraction of bad fuel with deletions and/or degradation near the 3’ end, denoted as F'b, will bind to
intermediate I1 to form an unreactive product X, thus permanently trapping catalyst C' and reducing the
observed catalytic turnover of the reaction. The ratio % was estimated to be 0.01 for HPLC-purified
fuel strands [24]. (B) The catalytic turnover of the reaction can be tuned to be lower via the addition of the
damping complexes D. Because C binds by the toehold to D as to S, it is assumed that this rate constant
is identical in value to that of k1.

Fixed gain amplifiers: increasing catalytic turnover.

The turnover of a catalytic reaction can be increased above the intrinsic limit set by defective
oligonucleotides. It seems clear that it should be possible to compensate for the loss of catalyst in
unproductive side reactions through the production of an extra catalyst in a parallel autocatalytic
reaction that proceeds at the same rate. A simple model motivated by this intuition is

C+Stc+p (5)
C+D %o, (6)
C+A%oc (7)

Here A is the substrate for the autocatalytic reaction which is present initially at a concentration
A(0) = Ap. With the same initial conditions as above we can solve the resulting differential equation.
The final product as a function of time is given by

1—o0 ka/ke
Pm_&—&<tzgﬁ) , (8)

where I' = Cy + Ag — Dy and o = Cy /(Do — Ap). The result is therefore of exactly the same form as
Eq. 3 if we make the substitution Dy — Dy — Ag. In the special case where the initial concentrations
of the inhibitor I and the substrate A for the autocatalytic reactions are the same, i.e. Ay = Dy,
these reactions cancel each other out and P(t) = Sp(1 — e #aC0?) as expected for an ideal catalytic
reaction. If A9 > Dy the overall kinetics of the reaction is that of an autocatalytic reaction. In
fact, for k, = ky Eq. 8 looks very similar to the logistic equation we obtain when solving a simple
autocatalytic reaction. The different limiting cases for the amount of product P, for ¢ — oo follow
from the discussion above if we make the substitution Dy — Dy — Ag.
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Fig. 4: Modulating turnover. (A) Simulations of the entropy-driven catalyst system with damper. [24].
Various amounts of D were present to achieve the fixed turnover a shown, with [D] = % — 0.3 nM. See
Table 1 for the full set of simulated reactions. (B) Simulations of the entropy-driven catalyst system with
autocatalytic substrate. At [A] = 0.3 nM, the increase of catalyst due the autocatalytic substrate nearly
matches the decrease of the catalyst due to bad fuel. With lower concentrations of A, asymptotic turnover
is limited. With higher concentrations of A, the reaction adopts autocatalytic characteristics, and becomes
less sensitive to the initial concentration of the catalyst.

A linear classifier circuit.

Based on the fixed gain amplifier systems explained above we can now build a linear classifier that
implements a function

Zai[Ri] =K. (9)

Here «; are the weights, [R;] the concentrations of the molecular species R; and K is the threshold.
A molecular implementation of this function thus requires that an initial concentration of R; results
in a concentration «;[R;] of some signal molecules that can be compared to each other and to the
concentration K of a threshold molecule.

An element of the sum with a positive weight «; is implemented as a catalytic reaction with a
fixed gain «;. An input R; at initial concentration [R;]o results in a final concentration of «;[R;]o
of an output strand AP of unrelated sequence. Importantly, the output strand is the same for all
reactions with a positive ¢;. Similarly, every reaction with a negative «; is implemented as a catalytic
reaction with a (positive) gain |«;| but a different output strand BP.

In principle, we could use reporters with two different colors to independently read out the the
positive and negative output strands AP and BP. Using fluorescence calibration curves, we could
then compute the respective concentrations as well as the difference between them and compare the
result to the threshold value K. However, such an approach would still require considerable inter-
vention form an experimentalist meaning that only part of the computation is actually implemented
as molecular computation.

To embed the comparison of the concentrations of AP and BP in the DNA molecules themselves,
we use the annihilator gate design presented in Ref [25] (see also Fig. 5). In this design, each of AP
and BP bind to annihilator gate G reversibly, but the combination of the two irreversibly binds to G,
removing both from solution (Fig. 5). In an excess of annihilator gate G, only one of AP and BP will
be present in solution at significant concentration. G is present in solution from the beginning of the
beginning of the reaction, and serves to dynamically reduce the concentrations of both AP and BP.
Note that a similar mutual annihilation reaction could also be implemented using the mechanism
for implementing arbitrary bimolecular reactions explained in Ref. [14].



So far we have shown how to implement arbitrary positive and negative gains and how to perform
a molecular-level comparison of the concentrations of the resulting reporter strands AP or BP. This
would be sufficient to implement a classifier with K = 0. To implement a non-zero value for the
threshold K we add simple add K units of AP or BP depending on the sign of K at the beginning
of the reaction. In this way we can implement a molecular classifier with arbitrary values for o; and

K on the molecular level.

Fig. 6 shows an example of a simula-
tion of a simple two-input linear classifier.
The simulation uses a realistic model for
the underlying DNA reactions. Fig. 6 (A)
shows the expected final signal (i.e. the ex-
cess amount of AP or BP) for a variety of
“samples.” Each sample is characterized by a
pair ([R1], [R2]) of the two molecular concen-
trations of interest. Note that without fur-
ther amplification of the final output (either
AP or BP) the signal linearly increases with
the distance from the threshold line.

Conclusions

Here we have proposed a DNA implemen-
tation of fixed gain amplifiers and of linear
classifier circuits. The fixed gain amplifier
combines a DNA catalytic amplifier with a
threshold element or an autocatalytic reac-
tion in order to obtain arbitrary gain that
can be lower or higher than the intrinsic
gain of the DNA catalyst. Classifier circuits
similar to the one propose here can poten-
tially be used for the embedded analysis of
RNA expression levels in complex mixtures.
Such classification circuits could find appli-
cations in point-of-care diagnostics or could
even be used to analyze gene expression in
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Fig. 5: Implementing negative gain. We implement neg-
ative gain by having all inputs with positive gains cat-
alytically produce one product AP, and all inputs with
negative gains catalytically produce another product of
independent sequence, BP. The products AP and BP
stoichiometrically neutralize one another via the annihi-
lator gate AG [25]. Excess AP at the end of the reaction
denotes that the density classification expression evalu-
ated to positive, while excess BP denotes the expression
evaluated to negative.

living cells.

To apply the presented linear classifier
circuit to actual cell state classification, the classifier circuit must be able to deal with RNA in-
put concentrations that are often low and can vary by orders of magnitude. While in theory the
methods presented should be able to allow indefinitely high values of «, the precise control of large
values of o will be difficult in practice, because the intrinsic turnover set by strand purities will
not be known to great accuracy. Additionally, achieving high turnover will be slow, because each
turnover requires a fixed amount of time for reaction.

Multi-stage fixed turnover amplifiers can be used to combat the aforementioned difficulties. That
is, the products AP and BP can be themselves amplified by another fixed gain amplifier, and the
gains of the two systems will be multiplied. Achieving high turnovers with a 2-stage system will also
be quadratically faster. For extremely high turnovers, even more stages of fixed amplification can be
cascaded.

There are a likely alternatives implementations for linear classifier circuits. In particular, the
chemical reaction systems networks of Ref. [14] can be used to implement the reactions described



here. However, the catalytic system of Ref. [26] is currently the best characterized and also fastest
catalytic amplifier available which is why we chose base our design on that system.

The reactions and mechanisms used to construct the linear classifier have either been demon-
strated or are similar enough to well-understood reactions that they are expected to experimentally
function as designed. All simulation results shown include modeling of relevant intermediate species
and side reactions; similar modeling has been able to quantitatively predict the kinetics of similar
DNA constructions [23,24]. Thus, we are optimistic that we can experimentally demonstrate the
density classifier circuit in vitro in the near future.
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Fig. 6: DNA classifier. (A) Summary plot of the concentrations of AP and BP at the end of 6 hours of
simulated reaction for various initial concentrations of A and B. Size of crosses denote the final concentration
of AP; size of pluses denote final concentration of BP. (B), (C), (D) Sample concentration traces for AP
and BP.
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