Complexity of Restricted and Unrestricted Models of Molecular
Computation*

May 1, 1995

Erik Winfreet

Computation and Neural Systems
California Institute of Technology
Pasadena, California 91125, USA

email: winfree@hope.caltech.edu

Abstract

In [Li1] and [Ad2] a formal model for molecular computing was proposed, which makes focused use of affinity
purification. The use of PCR was suggested to expand the range of feasible computations, resulting in a
second model. In this note, we give a precise characterization of these two models in terms of recognized
computational complexity classes, namely branching programs (BP) and nondeterministic branching pro-
grams (NBP) respectively. This allows us to give upper and lower bounds on the complexity of desired
computations. Examples are given of computable and uncomputable problems, given limited time.

1 Introduction

Molecular computation, as introduced by [Ad1], provides a new approach to solving combinatorial inverse
problems, where we are interested in computing f~!(1) for n-bit strings z and boolean function f. Instances
of NP-complete problems can be expressed in this form; for example 3-SAT. Adleman’s technique involves
using individual DNA strands to represent potential solution bit-strings z, then operating on a test tube
containing all possible solutions to separate those which satisfy f from those which don’t. In many instances,
the number of sorting operations required is a low-order polynomial in 7, suggesting that — given exponential
space to store the DNA! — hard combinatorial problems can be solved efficiently with this technique.

It was not immediately clear, however, what class of boolean functions f could be efficiently inverted. In a
clarifying paper by Lipton [Lil], it was shown that if f can be represented as a size L formula of AND-OR-
NOT (AON) operations, then f can be inverted using 2L molecular steps using affinity purification® only.
Lipton suggested further that the use of PCR? to duplicate the contents of a test tube would allow an even
greater class of functions to be inverted using molecular computation. In this note we follow his program
and characterize exactly to what extent PCR helps, in terms of known complexity classes.

*To appear in the Princeton DIMACS Technical Report on the April 4, 1995 workshop on DNA-based computers.

TThis work is supported in part by National Institute for Mental Health (NIMH) Training Grant # 5 T32 MH 19138-05;
also by General Motors’ Technology Research Partnerships program.

'In this note we grant that O(2") volume is “reasonable”. Using substantially more DNA, e.g. to search over additional
non-deterministic variables, is considered “cheating”. In other words, the question being addressed here is, “Given a fixed
amount of DNA, what functions can we easily solve?”

20r some equivalent technique.

30r some equivalent technique.



As individual steps can take on the order of 15 minutes to an hour, small differences in complexity quickly
make the difference between feasible and infeasible experiments. Thus it is of importance to characterize the
complexity of these models of molecular computation as carefully as possible. Classes such as “polynomial-
size” are too rough to be really useful — we really want to know exactly what polynomial it is.

After defining the two models of molecular computation, we will demonstrate their correspondence with
branching programs, and conclude with a few implications of the correspondence.

2 Abstract Models of Molecular Computation

We use the models described in [Lil] and [Ad2], and use similar notation. These models assume perfect
performance of each operation, although in practice the molecular biology techniques are known to be
somewhat unreliable. Initial comments on this aspect of the models, and other practical matters, can be
found in [Ad2], and will not be address here.

The Restricted Model:

A test tubeis a set of molecules of DNA encoding bit-strings of length n. We operate on test tubes as follows:

e Separate. Given a tube T and an index* i, produce two tubes +(T,i) and —(T,i), where +(T,i)
contains all strings where bit i is set, and —(T',.S) contains all strings where bit i is cleared. Tube T
is destroyed.

e Merge. Given tubes T, and T}, pour T} into T, thereby making T, < T, UT. Tube T} is destroyed.

At the end of the computation®, when we presumably have a single test tube containing all strings in f~1(1),
we can use the following operation to sequence the strings z in the test tube, as described in [Ad2]:

e Detect. Given a tube T, say ‘yes’ if T' contains at least one DNA molecule, and say ‘no’ if it contains
none. Tube T is preserved.

6

A program® is a sequence of operations on labelled test tubes. Each statement is of the form:

<+(Taai) = Ty; _(Ta:i) = Te; >;

where the arrow means “is to be merged with”. In other words, one separation and two merges occur for
every statement (but note that T, or T, may be empty prior to the merge). For clarity, programs can be
shown diagrammatically (see Figure 1). At the beginning, all test tubes are empty except for Ty, which
contains all 2" DNA strands encoding all possible input vectors z. If at the end of the program execution
there is a test tube containing exactly those bit strings which satisfy f, then we say say the program has
inverted f, or has solved f. The size of a program is considered to be the number of statements (here
Separate operations) in the program. Since programs are considered to be executed sequentially, the size of
a program to invert f is often refered to as the time to solve f. The width of a program is the maximum
number of test tubes co-existing at any given time.

4We consider only the case where one variable at a time is tested. More sophisticated operations where multiple DNF
minterms are tested simultaneously (see [Bol]) require more lengthy preparation; thus we argue that the single variable case is
not unreasonable for measuring complexity.

5We do not consider here whether Detect could be used to advantage in the middle of a computation.

SThe class of programs as given here is slightly different from that given in [Ad2]. In particular, we insist that a labelled
test tube is not re-used after its contents have been used (i.e. “destroyed”). The differences are merely a matter of notation,
and inconsequential.



Figure 1:
Implementing an arbitrary symmetric function in
W separations (restricted model).
f@=90<) &<
i
Given T1 = {Oa 1}n. Tg= ">(1+U><727+x3 ="
(+(T1,1) = T35 —(T1, 1) — To;) T
4]
(+(T2,2) = T5; —(T2,2) — Ty;) ‘
(+(To,4) = Tr; —(To,4) — Tr;)
{(+(Tho0,4) = Tr; —(Th0,4) = Tr;)
Return Tr. To= f(x) Te= f(x)

The Unrestricted Model:

The unrestricted model allows one addition type of operation during the computation:
o Amplify. Given a tube T produce two tubes 77 and T, with contents identical to T'. T is destroyed.

Programs for the unrestricted model consist of statements similar to those for the restricted model, but with
the additional form:

<Ta — Ty, T¢; )
Here the arrow means, “is to be copied into.” Unrestricted model programs can also be shown diagrammat-
ically (see Figure 2).

Figure 2:

Implementing a random function using the wunre-
stricted model. ( f(z) = za(z2+23)+Ta(z1T2+T123+
fs.’l)z). )

Tr= f(x) TiGNORE




We might expect that the unrestricted model is siginificantly more powerful than the restricted model. This
expectation is quantified and explored in what follows.

3 Branching Programs

Since branching programs are not as familiar a model as formulas, finite-state automata, circuits, Turing
machines, etc., it is worthwhile to present an exact definition here. We quote from [We], p. 414:

A branching program (BP) is a directed acyclic graph consisting of one source (no predeces-
sor), inner nodes of fan-out 2 labelled by Boolean variables and sinks of fan-out 0 labelled by
Boolean constants. The computation starts at the source which is also an inner node. If one
reaches an inner node labelled by x;, one proceeds to the left successor, if the i-th input bit a;
equals 0, and one proceeds to the right successor, if a; equals 1. The BP computes f € B," if
one reaches for the input a a sink labelled by f(a).

The size of a BP is the number of inner nodes. Many measures of BP have been studied, especially depth
and width.

Figure 3:

Implementing PARITY of 4 variables using a branch-

ing program of width 2. x1
X2 X2
X3 X3
x4 x4
1 0

We follow [Ra] in defining a nondeterministic branching program (NBP): we additionally include unlabelled
“guessing nodes” of fan-out 2 where both branches are allowed®. The NBP computes f € B, if by some
allowable path one reaches a sink labelled 1 for all @ € f~!(1). The size of an NBP includes the guessing
nodes. BP and NBP may be viewed pictorially, as in Figures 3 and 4, in which the designations “left” and
“right” are replaced by “dotted-line” and “solid-line” respectively.

7B, is the set of all n-input boolean functions.
8This definition of NBP coincides exactly with Meinel’s 1-time-only nondeterministic branching programs. His more general
definitions seem not to be useful in the context of molecular computing.



Figure 4:

Implementing a function using a nondeterministic

branching program. f(x) = “x is palindromic except source
for isolated (non-adjacent) errors”. NBP(f) < 2n+2. o

Eiiuinis i

4 Correspondence of Models

Restricted Model ~ Branching Programs

In this section we show that the class of functions which the restricted model can invert in a given time are
exactly those functions computed by a branching program of the same size.

Examining Figures 1 and 3, it is clear that not much needs to be proved. The models are essentially identical,
except for interpretation. Each separation step corresponds to an inner node of the BP. A strand of DNA
corresponds to an input vector for the BP. In summary:

1. If restricted model program P solves f in k steps, then there is a BP G which computes f and is of
size k.

2. If BP G computes f and is of size k, then there is a restricted model program P which solves f in k
steps.

A single strand of DNA will flow through the test tubes of a restricted model program exactly in the order
of inner nodes executed by the associated BP running on an equivalent input vector®. Since all possible
strands are run in parallel, those that end up in the ouput test tube 77 are exactly the inputs that the BP
accepts; i.e. f71(1).

Unrestricted Model ~ Nondeterministic Branching Programs

In this section we show that the class of functions which the unrestricted model can invert in a given time
are exactly those functions computed by a nondeterministic branching program of the same size.

Examining Figures 2 and 4, it is clear that not much needs to be proved. We additionally associate amplify
statements with guessing nodes in the NBP. Just to be clear, we show:

9The author is reminded of some friends who needed to transfer a lot of graphics images from San Francisco to Los Angeles.
They considered using ftp over the internet, but on second thought realized it would be faster to put the data in their car and
drive, so they did. We are doing the same thing here: We physically move a bunch of DNA through the virtual CPU, one gate
at a time — but lots of data simultaneously.



1. If unrestricted model program P solves f in k steps, then there is a NBP G which computes f and is
of size k.

2. If NBP G computes f and is of size k, then there is a unrestricted model program P which solves f in

k steps.

We use essentially the same argument as above. However now we say that the set of test tubes which a
DNA strand passes through is the same as the set of nodes of the NBP which could be activated by the
associated input vector. Thus the output test tube contains all strands which could cause the NBP to accept;

ie. f71(1).

5 Corollaries and Conclusions

We now have a theoretical handle on precisely what can and cannot be computed by the restricted and
unrestricted models. First, by looking at the polynomial size complexity hierarchy, we can separate the
classes of functions solvable by the DNA models.

Many useful results follow immediately from the literature on branching programs. Here is a brief sampler:

e poly-size BP are equivalent to log-space non-uniform TM! [Me].

e poly-size NBP are equivalent to log-space non-uniform NTM [Me].

e poly-size circuits!! are equivalent to poly-time non-uniform TM [We].

e thus poly-size BP C poly-size NBP C poly-size circuits, where the inclusions are believed to be proper.
¢ poly-size, constant-width BP are equivalent to log-depth circuits [Ba] [Li2].

o {/C(f) = NBP(f) 2 BP(f) X L(f) [Ra]'">.

o U < BP(f) <L(f) +1 [We]'2.

With each of these results there is typically an efficient simulation [Pu]. Other known linear simulations by
branching programs include finite-state automata (FSA) and 2-way finite-state automata [Ba].

10(N)TM = (nondeterministic) Turing machine.

Tn this note we consider circuits where gates are fan-in 2, arbitrary fan-out, and have arbitrary logic.
12C(f) is circuit size, L(f) is AON formula size, etc. F' < G means F = O(G).

13Note this construction for formulas is better than that given in [Lil].



As mentioned earlier, results on polynomial equivalence are only of theoretical and not practical relevance.
We would like more exact bounds on the complexity of implementing specific functions. The literature on
branching programs gives us some such bounds, although admitedly the knowledge is very incomplete. Some
known bounds'# for a few functions'® are summarized in Table 1.

Table 1. Lower and upper bounds on complexities under known models for various functions.

function fn || L(f) (AON) | BP(f) | NBP(f) | ¢ (B2)
PARITY n? n? | 2n—1 2n — 1 2n—1 | n—1 n—1
DISTINCT Q( lo"an ) O(n’logn) | Q( ﬁ) Q( 1"035/: ) Q(n) O(nlogn)
MAJORITY Q(n?) o337 | o( l:gffg"n )  O(nlog®n) | Q(nlogloglog* n) Q(n) O(n)
sYMMETRIC || Q(nloglogn) o(n*37) Q(%) O(%) om3’?y | Q(n) O(n)

6 Discussion

Do we gain anything by using the amplify operation? Theoretically, yes, but very little. Contrary to the
suggestion in [Li1]'®, we probably cannot invert functions defined by circuits in linear size. Furthermore, in
addition to concerns about the reliability of PCR, we should realize that each amplify at least doubles the
volume of DNA that we have to handle. After just a few such operations, we could practically be unable
to continue the computation. For example, if we conclude for practical reasons that 25° molecules of DNA
are the most we can handle in one test tube, then we must be very careful not to exceed this limit when
merging the products of amplification!”.

The restricted and unrestricted models of molecular computation are still a long way from allowing us to
invert algorithmically defined boolean functions. It seems that new molecular operations are necessary if
we need this functionality — for example, operations which modify DNA during the computation, such as
Adleman’s memory model [Ad2] which can be implemented via site-directed mutagenesis, Beaver’s Turing
Machine simulation [Be] which uses similar mechanisms, or Boneh’s Append [Bo2], perhaps the simplest and
most elegant extension.

7 Acknowledgments

The author would like to thank Paul W. K. Rothemund, Sam Roweis, and Matthew Cook for their stimu-
lating discussion. Thanks especially to Jehoshua Bruck for pointing me to previous literature on branching
programs. Thanks to my advisor John Hopfield for his support and encouragement.

l45ee especially [We]: pp. 76, 85, 143, 243, 247, 261, 440; [Ra]: pp. 50, 51; [Bop]: pp. 793-797. Note Razborov incorrectly
quotes the BP lower bound on MAJORITY [Bab]. The upper bound comes from [Si]. The upper bound on formulas for
symmetric functions follows directly from the upper bound Wegener gives for MAJORITY. The upper bound on circuits for
DISTINCT comes from a simple application of SORT, followed by adjacent comparisions; a better bound may be achievable.
The upper bound on NBP for symmetric functions uses a construction by Lupanov for switching-and-rectifier circuits (see [Ra]);
the construction also works for NBP.

et m = ﬁJiﬂ = 2logn and DISTINCT(X,,...,X ) =0iff 3 # jst. X, = X MAJORITY(z) = 1 iff [z] > 5.
PARITY(z) = 1 iff [z] = 1 mod 2. f is SYMMETRIC if f depends only on |z|, the number of 1’s in z. The lower bounds are
for almost all symmetric f.

161t appears that Lipton realized this shortly after distributing his draft. He later characterizes his constructions in terms of
contact networks, which are related to branching programs (personal communication).

170n a similar note, even the restricted model can solve f computed by Meinel’s more general NBP model, simply by using
2™ times more DNA volume when there are m non-deterministic variables. This allows computation as efficient as circuits, but
at the cost of ridiculous amounts of DNA.



References

[Ad1]

[Ad2]

[Ba]

[Bab]

[Be]

[Bol]

[Bo2]

[Bop]

[Li1]

[Li2)]

Adleman, Leonard. Molecular computation of solutions to combinatorial problems. Science
266:1021-1024 (Nov. 11) 1994.

Adleman, Leonard. On Constructing a Molecular Computer. Draft Jan. 11, 1995.
(ftp:/ /usc.edu/pub/csinfo/papers/adleman/molecular_computer.ps).

Barrington, David A. Bounded Width Branching Programs. PhD Thesis, 1986, Massachusetts In-
stitute of Technology. TR# MIT/LCS/TR-361.

Babai, L., P. Pudlik, V. Rodl, E. Szemeredi. Lower Bounds to the Complexity of Symmetric
Boolean Functions. Theoretical Computer Science 74 (1990) 313-323.

Beaver, Don. A Universal  Molecular ~ Computer. Draft Feb. 6, 1995.
(http://www.cse.psu.edu/” beaver/research/molec.html).

Boneh, Dan, Christopher Dunworth, and Richard J. Lipton. Breaking DES
Using a  Molecular  Computer. Sumbitted to IEEE COMPUTER  journal.
(http:/www.cs.princeton.edu/~ dabo/papers/biocomp.ps)

Boneh, Dan, C. Dunworth, R. Lipton, and J. Sgall. On Computational Power of DNA. To appear.

Boppana, R. B. and M. Sipser. The Complexity of Finite Functions. In Handbook of Theoretical
Computer Science, ed. J. van Leeuwen, pp. 757-804, 1990. Elsevier Science Publishers B. V.

Lipton, Richard. Speeding up computations via molecular biology. Draft Dec. 9, 1994.
(http://www.cs.princeton.edu/~ rjl/bio.ps)

Lipton, Richard. Subquadratic Simulations of Circuits by Branching Programs. In 30t* Annual
Symposium on Foundations of Computer Science, pp. 568-573, 1989. IEEE Computer Society Press.

Meinel, Christoph. Modified Branching Programs and Their Computational Power, LNCS 370.
1989. Springer-Verlag.

Pudlék, Pavel. The Hierarchy of Boolean Circuits. Computers and Artificial Intelligence, 6 (1987),
No. 5, pp. 449-468.

Razborov, Alexander A. Lower Bounds for Deterministic and Nondeterministic Branching Pro-
grams. In Fundamentals of Computation Theory, LNCS 529, pp. 47-60, 1991. Springer-Verlag.

Sinha, Rakesh Kumar, and Jayram S. Thathachar. Efficient Oblivious Branching Programs for
Threshold Functions. In Proceedings of the 85th Symposium on Foundations of Computer Science,
pp- 309-317, 1994.

Wagner, K. and G. Wechsung. Computational Complexity. D. Reidel Publishing Company, 1986.
Wegener, Ingo. The Complexity of Boolean Functions. John Wiley & Sons, 1987.



