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Physical principles for DNA tile self-assembly

Constantine G. Evans a and Erik Winfree *b

DNA tiles provide a promising technique for assembling structures with nanoscale resolution through

self-assembly by basic interactions rather than top-down assembly of individual structures. Tile systems

can be programmed to grow based on logical rules, allowing for a small number of tile types to

assemble large, complex assemblies that can retain nanoscale resolution. Such algorithmic systems can

even assemble different structures using the same tiles, based on inputs that seed the growth. While

programming and theoretical analysis of tile self-assembly often makes use of abstract logical models of

growth, experimentally implemented systems are governed by nanoscale physical processes that can

lead to very different behavior, more accurately modeled by taking into account the thermodynamics

and kinetics of tile attachment and detachment in solution. This review discusses the relationships

between more abstract and more physically realistic tile assembly models. A central concern is how

consideration of model differences enables the design of tile systems that robustly exhibit the desired

abstract behavior in realistic physical models and in experimental implementations. Conversely, we

identify situations where self-assembly in abstract models can not be well-approximated by physically

realistic models, putting constraints on physical relevance of the abstract models. To facilitate the

discussion, we introduce a unified model of tile self-assembly that clarifies the relationships between

several well-studied models in the literature. Throughout, we highlight open questions regarding the

physical principles for DNA tile self-assembly.

1 Introduction

Molecules that self-assemble into macromolecular structures are
found throughout nature. These structures can range from simple
homogeneous crystals to complex biological structures such as
cytoskeletal microtubules of tubulin, virus capsids, and actin
filaments.1–3 The simplicity and power of such self-assembly
is striking: while many synthetic structures, like houses or inte-
grated circuits, are fabricated individually by outside processes,
self-assembling structures are able to form from their basic
components as a consequence of physical principles, often
allowing a multitude of structures to form simultaneously.

The degree of complexity possible in self-assembled structures
is a theoretically compelling question. From a mathematical
perspective, the study of tiling theory made seminal contributions
to the understanding of periodic crystalline structures, such as
the classification of all two-dimensional and three-dimensional
symmetry groups.4 Tiling theory also uncovered more complex, and
often beautiful, possibilities, such as the existence of aperiodic
tilings related to quasicrystals.5,6 Perhaps more surprising, a direct

correspondence between tilings and Turing machines7,8 showed
that the geometry of fitting tiles together can induce patterns of
remarkable ‘‘algorithmic’’ complexity. There are even finite sets of
tiles that can tile the infinite plane (in the sense that mathematical
proof shows that a perfect tiling exists) but for which the resulting
pattern is non-algorithmic (in the sense that no Turing machine or
other computer can calculate how to correctly place the tiles).9,10

This ‘‘unreasonable effectiveness’’ of tiling theory suggests that
considerations of perfect tilings (equivalently, thermodynamic
ground states) do not adequately describe what structures can
and will actually form in a physical system. Consequently,
complexity questions about self-assembly involve not just thermo-
dynamic principles, but must also carefully treat the kinetics.
A theory of tile self-assembly, which treats not the existence of
tilings but rather their growth from a seed according to general-
ized crystal growth principles, has been developed and studied
extensively;11,12 while the ‘‘unreasonable effectiveness’’ of existen-
tial tiling theory is eliminated, the connection to Turing machine
computation and algorithmic patterns remains intact, and the
theory predicts that remarkably complex structures can be self-
assembled even from relatively small sets of tiles.

In theories of generalized crystal growth,16,17 we can identify
(at least) three different classes of self-assembly.

Periodic self-assembly includes classical crystal growth in
which the same element or set of elements are arranged
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periodically to create an object of unbounded size, as well as
analogous examples from biology such as microtubules that self-
assemble from a- and b-tubulin.3,18 Thus, each monomer type
appears within the final structure an unbounded number of times.

Uniquely-addressed self-assembly is in some sense the
opposite extreme, wherein each monomer type appears exactly
once and has binding interactions that each dictate a specific
neighbor. An example from biology would be the eukaryotic
ribosome, which self-assembles from nearly a hundred distinct
RNA and protein components.

Somewhere in between would be algorithmic self-assembly,
which actually encompasses the prior two classes as trivial
cases, but which also includes situations where the some or
all monomer types appear multiple times in the final structure.
Depending on the tile set, algorithmic self-assembly may
produce finite structures (which, unlike uniquely-addressed
self-assembly, may be much larger than the total number of
monomer species) or may produce structures of unbounded
size (which, unlike periodic self-assembly, may create patterns
of arrangement with no periodicity). The self-assembly of
complex virus capsids (such as T4 with its icosahedral head,
whiskers, tail, baseplate, and tail fibers19) could be considered
biological examples of algorithmic self-assembly, in the sense
that each distinct protein monomer species appears multiple
times in the final structure and some kind of logic during self-
assembly is required to determine whether a given monomer
will bind to one potential neighbor species or another. The
quintessential form of logic used in tile-based algorithmic self-
assembly is cooperative attachment, where a certain tile type
binds to a growing assembly only in locations where it can
make a particular pair of binding interactions. This is sufficient
for growth processes that embody Turing machine computa-
tions and other complex algorithmic growth behaviors.

Algorithmic self-assembly can be implemented physically using
DNA tiles, which have been used to create numerous structures of
increasing complexity,20 as illustrated in Fig. 1. DNA tiles, which
can have a variety of structures, attach to each other by short,
single-stranded regions of typically 5 to 10 nucleotides, commonly
referred to as ‘‘sticky ends.’’ The complementary binding of DNA
allows binding rules to be programmed by setting the sticky end
sequences of each tile type, resulting in programmable self-
assembly that can demonstrate many of the theoretically interest-
ing behaviors. The systems can be made to have considerable
complexity: even short sticky ends of 5 nucleotides (like those
found on double-crossover (DX) tiles21,22) can allow 30 to 60
unique sticky end sequences, and longer sticky ends (like those
found on single-stranded tiles (SSTs)23) can allow for considerably
more, according to plausible sequence design criteria.24 DNA tiles
have been used in a wide range of large periodic structures20 and
structures with uniquely-addressed tiles that have ranged up to a
thousand unique tiles in three dimensions.14,25

Experimental implementation of algorithmic self-assembly,
however, has posed several challenges. Of primary importance,
two types of assembly defects can occur that result in undesired
structures: growth errors where tiles attach in locations where
they have imperfect bond matches, and spurious nucleation
where tiles assemble without a seed.26–30 Considerable progress
has been made in overcoming these challenges, and increasingly
complex structures have been successfully built.30,31 This pro-
gress has benefited from refinements in experimental technique,
but derives more significantly from a better understanding of the
physics behind DNA tile assembly: simple models of growth have
motivated fundamental changes to tile system design and
experimental protocols.

In this review, we examine models of DNA tile growth, both
more abstract and more physically-motivated, and show how

Fig. 1 Examples of types of DNA tile self-assembly. (a) Shows the abstract representation, tile structure, lattice representation and atomic force
microscope (AFM) image of a periodic tile system of DAO-E tiles;13 different shades represent end/complement sticky end pairs. (b) Shows a lattice
representation and two AFM image of a uniquely-addressed tile system, where subsets of tiles that assemble into a square have been added in order to
assemble different shapes.14 (c) Shows a representation and AFM image of a large, algorithmic tile system implementing a binary counter ribbon.15 Figure
components adapted from ref. 13–15, with permission of authors.
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tile system behavior changes when moving from model to
model. We begin in Section 2 with the example of systems
designed to grow in a specific abstract model, the abstract
Tile Assembly Model (aTAM), which has been well-studied in
theoretical works and experimental implementations. In sub-
sequent sections, we then consider the phenomena that arise
when transitioning through a series of more physically accurate
models, and how the effects of these phenomena can be
mitigated through design and growth constraints in order to
implement experimental systems that behave in approximately
equivalent ways to their abstract counterparts.

In Sections 2 and 3, we show how the transition from the
aTAM to a kinetically-derived model, the kinetic Tile Assembly
Model (kTAM), allows errors in growth to arise, and how these
can be modelled through kinetic and thermodynamic methods
and ameliorated through tile system design methods referred
to as ‘‘proofreading.’’ In Section 4, we consider the nucleation
phenomena that must be addressed when transitioning from
models that start from pre-determined seeds to models that can
start from any tile–tile attachment event, and explain methods
that have been developed to control tile system nucleation.
In Section 5, we explain the challenges to preserving tile system
behavior when transitioning to a model that considers the
depletion of free tile monomers, and explain experimental
methods that have been used to avoid such depletion and
complexities.

We then examine more formally in Section 6 the relation-
ships between models by presenting a unified framework for
models of tile assembly. Choices of reactions and parameters in
this framework can result in models equivalent to or closely
related to several well-studied abstract models, like the aTAM
and the Two-Handed Assembly Model (2HAM), as well as more
physically accurate variations, like the kinetic Tile Assembly
Model (kTAM). Using this framework, we briefly discuss some

of the phenomena that arise when considering tile systems
in variants of the aTAM, 2HAM, and other models, and the
constraints these phenomena place on the tile systems’ physical
relevance.

2 Basic models

Two complementary models of tile assembly are widely studied,
providing a starting point for discussion.26 The abstract Tile
Assembly Model (aTAM) derives from the basic concept of
tile attachment via matching bonds; it provides insight into
the potential computational power of algorithmic assembly,
and allows for intuitive design and understanding of systems.
The kinetic Tile Assembly Model (kTAM) is instead based on
the kinetics and thermodynamics of tiles in solution binding by
reversible bonds; this model serves as the basis for most of
what we discuss in this review.

In the aTAM, tile systems consist of non-rotatable square
tiles with up to four sticky ends of typically integer strengths:
usually 1 (‘‘single-strength’’ or ‘‘weak’’) or 2 (‘‘double-strength’’
or ‘‘strong’’). Growth begins from a designated seed tile and
subsequent tiles then attach asynchronously, one at a time.
Among all possible tiles, attachment is possible only if the tile’s
sticky ends match those on adjacent tiles in the assembly with
strengths that sum to at least the system ‘‘threshold’’ t. t is
often described as ‘‘temperature’’ in theoretical papers, but is
related physically to the relative favorability of attachment and
detachment, which could depend on a number of parameters,
including temperature, salt concentrations, and tile concentra-
tions. Once attached, tiles never detach.

Fig. 2 illustrates this process for a tile system at t = 2 that
implements exclusive-or (XOR) logic. As the system grows from
an initial seed tile at the bottom left, tiles with double-strength

Fig. 2 A t = 2 XOR/Sierpinski pattern tile system in the abstract Tile Assembly Model (aTAM). (a) Shows the 7 tiles in the set: a yellow seed tile with
double-strength ends (denoted by two lines), two boundary tiles, and four rule tiles. These are called the exclusive-or (XOR) rule tiles because the output
bonds are red if and only if the input bonds are different types. Tiles are colored according to their output bonds. (b) Shows a possible series of
attachments, with gray tiles indicating potential attachment sites. (c) Shows the possible tiles that can attach to a small assembly, while (d) shows a larger
17 � 17 assembly that would continue to grow.
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bonds form a V-shaped edge at the left and bottom, while tiles
implementing the XOR logic in the center attach by two single-
strength bonds: one from the tile left of the site, and one from
the tile below. The result is a Sierpinski triangle pattern that
grows out infinitely to the top right—a non-periodic fractal
pattern that is a consequence of the XOR function, and that
could not be produced by simple periodic tiling.

This cooperative attachment of tiles by two weak bonds
to two different tiles, where each bond is individually too
weak to allow attachment, makes growth at t = 2 particularly
interesting. t = 2 tile systems in the aTAM are capable of Turing-
universal computation.26,32 Squares33,34 and arbitrary shapes35

can be efficiently assembled by relatively few tile types, and
numerous other properties have been shown.11,12 These results
rely on cooperative attachment: with t = 1, at least for certain
classes of tile systems, significant computation cannot be
performed or is much more difficult.36

The aTAM is useful for considering the theoretical potential
of tile assembly, but ignores important aspects of physical
implementations. The kTAM derives from a different approach,
starting from basic physical considerations. DNA tiles, in general,
are monomers with ends that form reversible bonds to matching
sticky ends on other tiles. As tile systems involve large numbers of
tiles in solution, tile assembly can therefore be considered from
the perspective of chemical kinetics and thermodynamics for tile
attachment and detachment.

Here we focus on the growth of a single crystal in solution,
although later we will discuss a mass-action version of the kTAM
and other variants. To simplify the analysis for now, this most
basic version of the kTAM has a few fundamental assumptions:

(1) Free tiles are assumed to be in solution, at equal and
constant concentrations never depleted by assembly,
and to remain well-mixed, so diffusion can be ignored.
Thus growth of individual crystals will be independent of
the growth of other crystals in the solution.

(2) We only (for now) consider growth initiating from spe-
cific seed tiles, as in the aTAM, and only consider single
free tiles (monomers) attaching to and detaching from a
well-formed crystal.

(3) Tiles attach based only on diffusion. Since we are con-
sidering the growth of an individual crystal in solution,
attachment of a tile to an individual lattice site will
depend only on the concentration of the tile. In a marked
departure from the aTAM, we assume that bonds make
no difference here: the attachment rate will be the same
whether the tile attaches by one bond or three, or has a
bond that does not match. Tiles that could not attach in
the aTAM have the same chance of attaching as any
other tile.

(4) Once attached, tile detachment is assumed to depend
only on the total change in free energy for all the correct
bonds holding it to the lattice. We will assume that the
standard free energies of correct bonds can simply be
added (i.e. cooperative attachment does not increase or
decrease the favorability of the individual attachments)
and that mismatched bonds do not hinder binding.13

We will consider bonds in comparison to a reference standard

free energy of some typical single bond, DG
�
se, with se referring to

‘‘sticky end’’, as the term is commonly used in experimental
literature to refer to a bond. A tile will thus be attached by some

free energy bDG
�
se, where b is the sum of the ‘‘strengths’’ of all

correct bonds compared to DG
�
se. In many theoretical analyses, all

bonds are assumed to be identical, with strength 1 (i.e., DG
�
se),

or bonds are assumed to have some integer multiple strength

(e.g., DG
�
se or 2DG

�
se), but the kTAM does not require this, and

there have been some investigations of systems with differing
or sequence-dependent bond strengths.24

These assumptions result in the following rates for attach-
ment and detachment of a single tile at a single lattice site:

rf ¼ kf ½c� rr;b ¼ kr;b ¼ kfu0e
bDG

�
se=RTþa (1)

where kf is a forward rate determined experimentally, [c] is the
tile concentration, b is the total strength of the correct bonds
between the tile and adjoining tiles, u0 is a standard concen-
tration (1 M), and a is a constant unitless free energy change
from other factors, such as the loss of rotational entropy during
binding. These rates, illustrated in Fig. 3, describe the events
occurring on a single crystal grown from a seed.

In the kTAM literature, these rate equations are typically
used in an equivalent but more symmetric form. By defining

k̂f � u0kfe
a, Gse � �DG

�
se

�
RT , and Gmc such that [c] = u0e�Gmc+a,

we can construct the symmetric rate equations

rf = k̂f e�Gmc rr,b = k̂f e�bGse (2)

that are the core of the kTAM.26 In this form, k̂f is a reference
rate for tile dissociation in units of s�1. Gse and Gmc are two
unitless free energy analogues. Gse is the sign-reversed, dimen-
sionless reference free energy of a typical single sticky end (se)
bond, where higher numbers correspond to stronger binding
and thus longer times before detachment. Gmc is a logarithmic
term for the free monomer concentration (mc), where larger
numbers correspond to exponentially lower concentrations and
longer times between attachments. Arranged in this manner,
rate equilibrium can be easily understood as a comparison
between Gmc and Gse: if, for example, Gmc is larger than Gse but
less than double Gse, then the attachment rate for a strength 2,
or b = 2 interaction, will be higher than its detachment rate, but
the attachment rate for a b = 1 interaction will not.

For a given tile set, seed tile, and values for Gmc and Gse, the
standard kTAM is a continuous-time Markov chain (CTMC) that
satisfies detailed balance. The initial state is an assembly
consisting only of the seed tile, and every subsequent step
involves the reversible addition or removal of a non-seed tile.
(As we are identifying the crystal by the seed, removal of the
seed tile itself is not considered.) Thus, considering a tile
addition to an assembly A that results in an assembly A0:

rf

rr;b
¼ ebGse�Gmc ¼ e�DG (3)

where DG = G(A0) � G(A) with respect to the energy of an
assembly, G(A) = NGmc � BGse where N is the total number of
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tiles in the assembly and B is the summed strength of all
matching bonds in the assembly. Consequently, the equilibrium
probability of an assembly A, and the associated partition
function, conform to the Boltzmann distribution:

PðAÞ ¼ 1

Z
e�GðAÞ Z ¼

X
A

e�GðAÞ: (4)

While this formula is convenient and can be insightful, it must
be used with caution because in many cases of interest the
CTMC state space is infinite, the partition function does not
converge, and there is no reachable equilibrium.

The kTAM employs assumptions that are not valid in
general: for example, tiles may have flexible structures that
reconfigure upon attachment, binding strength may not simply
be a sum of individual bond strengths, or experiments might
incorporate growth on a surface. However, results from DX tile
ribbon and nanotube growth in solution largely fit predictions
and simulations in the kTAM,37,38 and many experimental
results qualitatively fit the model.28,29,39 Departures from kTAM
assumptions often have effects that can be incorporated into
renormalized parameter values, and in experimental measure-
ments, these effects are often built in to measured values,
particularly Gse and a. For example, while directly imaging
growth on a surface with an atomic force microscope (AFM)
involves surface binding terms and an overall force from the
AFM tip, as approximately constant terms, these will both be
incorporated into a significantly different a in measurements,
as seen in experiments.13 More generally, so long as binding is
at least dependent primarily upon the total bond strength b and
some constant free energy of a bound tile, then Gse and a can be
chosen to make any two values of b at which the kTAM
detachment rate will be a good approximation, regardless of
nonlinear or constant effects. As discussed later, in many cases,
tile system growth in the kTAM is most interesting when tiles
attached by b o 1 fall off very quickly, and tiles attached by
b 4 2 fall off very slowly, with b = 1 and b = 2 involving the most
relevant rates. In this regime, even if there are significant

departures from the kTAM’s assumptions, so long as para-
meters cause the b = 1 and b = 2 cases to be approximately
correct, the kTAM will still give reasonable results. It is thus
hoped that such an approximation will be suitable for SSTs,
even though, as single strands with no rigid structure, they
must significantly change configuration during attachment.

Growth on a surface, not the focus of the kTAM, could also
involve multiple diffusion modes, with some tiles in solution
attaching directly to crystals, and others binding to the surface
itself and sliding in two dimensions. These two diffusion
modes could, for example, result in attachment rates depen-
dent upon lattice site location, with sites on the edges of
crystals having more frequent attachments than those in the
interior of crystals, and would require a different model. In
direct tile-level atomic force microscope observation of DX tile
crystal growth near equilibrium on a surface, this was not
found to be a significant factor. Single-tile attachments and
detachments rates fit the kTAM within error, but had a and Gse

values incorporating surface attachment and AFM effects that
were significantly different from typical values in solution.13

With other growth conditions or tile types, surface diffusion
could be significant: for example, surface diffusion effects have
been modelled and seen experimentally when using larger tile
structures made from T-shaped junctions or DNA origami.40–42

However, for the purposes of this review, we consider only
growth in solution.

Additionally, lattice defects and assembly–assembly interactions
have been observed, motivating designs and conditions to avoid
them,13,30 and nucleation and free tile depletion are notable
deviations discussed later in this review. Slightly different tile
structures, such as those with hairpin labels, have also been
found to potentially have significantly different energetics,
making their use in systems difficult.30,37

The kTAM can be applied to 1, 2, and 3D lattices. Most
theoretical analyses and simulations to date have not considered
3D lattices, though there has been some theoretical work on 3D
error-correcting schemes.43 Uniquely-addressed 3D structures

Fig. 3 The Sierpinski system from Fig. 2 in the kinetic Tile Assembly Model (kTAM). (a) Shows one possible path of attachments and detachments,
disregarding the time between each change. (b) Shows attachment and detachment rates for various tiles and lattice sites. (c) Shows the a larger
assembly, as in Fig. 2. Errors are shown in bold: at the top, a growth error is show, with errors indicating potential subsequent attachments that could
‘‘trap’’ the error in place in the kinetic trapping model, while at the bottom, a single error causes a different pattern to arise, despite later tiles (dotted)
attaching by correct bonds.
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of SSTs have been grown experimentally,25 and while algorithmic
systems have primarily used 2D lattices, in some cases these
have incorporated tube topologies.23,28,29,44

To more accurately model particular situations, several
extensions to the kTAM have been studied. These have included
models that account for DNA hybridization energetics and
unequal concentrations,24,45 and mass-action and fixed-volume
stochastic models27,46 that allow analysis of nucleation and
crystal scission. However, other phenomena, such as lattice
defects and interactions between assemblies, have not yet been
well studied.

Simulations of the kTAM are most often discrete, Gillespie
algorithm simulations of the growth of single crystals. The two
most commonly-used simulators are Xgrow and ISU TAS, which
support both aTAM and kTAM simulations, and have some
support for kTAM extensions.45,47,48

3 Errors and proofreading
3.1 Connections between the aTAM and kTAM

The same tile systems can be examined in both the aTAM and
kTAM, and, as discussed later, in numerous other models. That
they will exhibit similar behaviors in the aTAM and kTAM is not,
however, immediately apparent. As theoretical investigation of the
computational power behind tile self-assembly and the intuitive
logical design of tile systems is much simpler in the aTAM, while
the kTAM more closely corresponds to physical implementations,
it is important to understand the situations and designs where tile
systems will behave similarly in both models.

Tiles in the kTAM attach with equal rates regardless of
the number of correct bonds, and always have some chance
of detaching. Thus, depending upon relative attachment and
detachment rates, crystals can grow or shrink, unlike in the
aTAM. For a given lattice site, a tile attaching by two bonds will
have equal attachment and detachment rates when Gmc = 2Gse.
Thus, if all tiles attach by two bonds, as is usual for a t = 2 aTAM
system, this Gmc corresponds to a system at its melting
temperature. To examine growth in the kTAM, we define e such
that Gmc = 2Gse � e. This corresponds to the supersaturation of
tiles in solution, and the extent to which tile attachment is
faster than tile detachment. When e is negative, crystals will
melt if the tiles are attached on average by strength 2 or less.

The kTAM’s connection to the aTAM can be seen intuitively
by considering a large Gmc and small positive e, corresponding
to low tile concentrations at slight supersaturation, with a
correspondingly large Gse. In this situation, tiles attach at an
extremely slow rate rf = k̂f e�Gmc. A tile attaching by b bonds will
fall off at a relative rate rr,b/rf = e(2�b)Gse�e. Tiles attaching by zero
or one bonds will fall off much faster than the time scale of tile
attachment, and can be ignored, while tiles attached by three or
more bonds will be firmly attached at that time scale. Tiles attached
by two bonds will detach at a relative rate rr,2/rf = e�e o 1,
resulting in a random walk that will be slightly biased forward.
As long as we consider tile systems that are deterministic in the
aTAM, so that there is always one correct tile that can attach in

a location, the random walk will be equivalent to growth in
the aTAM.26

This equivalence is only in the limit of slow growth, where
rf - 0. For faster growth, with smaller values of Gmc or larger
values of e, other behaviors can arise. A tile attaching by one or
no correct bonds will still tend to fall off faster than it attaches,
but will be attached for a non-negligible time. If another tile
attaches adjacent to it before it detaches, as in Fig. 3(c), then
the erroneous tile could end up attached by two or more bonds,
and growth could continue with the error still in place. While
less likely than correct tile attachment, this process causes
growth errors that could not have taken place in the aTAM. As
correct algorithmic self-assembly depends on prior growth, a
single error can cause growth to drastically change: in the
Sierpinski system, for example, a single error in a sea of zeros
can initiate an entire Sierpinski pattern, as seen in Fig. 3(c).

Growth errors present a significant obstacle for algorithmic
growth at practical speeds, and were found in simulations and
experimental results.28 Fortunately, growth errors in the kTAM
can be simply modeled, and through clever tile system design,
error rates can be drastically reduced.

As a first assessment, we note that at equilibrium, the ratio
of the probability of a correct assembly A to the probability of
an assembly A0 of the same size but with a single mismatched
bond, can be easily computed from the Boltzmann distribution
(eqn (4)). Specifically, P(A0)/P(A) = e�Gse provides a good approxi-
mation to the per-tile error rate. However, there is no a priori
guarantee that growth will approach equilibrium on reasonable
time scales; for example, setting e = 0 dramatically slows down
growth. Worse yet, for tile sets that permit unbounded growth
such as the Sierpinski system, any e 4 0 that biases growth
forward also ensures that the partition function is infinite and
equilibrium does not exist. Thus, a more nuanced approach is
needed in order to understand error rates at finite growth speeds.

We can construct the kinetic trapping model by formalizing
our intuitive reasoning about how growth errors occur.26

Consider a single, empty lattice site where a unique ‘‘correct’’
tile can attach by two bonds and m ‘‘almost-correct’’ tiles can
attach by only one bond (tiles attaching by no correct bonds will
detach very quickly and can be ignored to first order). The
attachment rate for each tile type will be the same, rf = k̂f e�Gmc,
but tiles will detach at different rates. If we consider the
possible states that the lattice site can be in—empty (E), or
filled with a correct tile (C) or an almost-correct (A) tile—we
obtain the transition rates shown in Fig. 4.

In a filled state, there is a possibility that a further tile can
attach in an adjacent site by two bonds, and growth will
continue from this point, ‘‘trapping’’ the initial attachment in
place regardless of correctness. This may not be possible—there
may be no tile type that can attach by the combination of bonds
present24—but in the worst case, such an attachment will be
possible in two neighboring sites regardless of whether the
correct or almost-correct tile attached originally. (This worst
case occurs everywhere in direct implementations of cellular
automata such as the XOR tile set, because there exists a rule tile
that can bind to any given input pair.)
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The rate at which this trapping will take place, r*, is
important to the derivation of error rates but is not easily
determinable directly. For example, for small e the growth front
behaves as a random walk and will wash back and forth over
any given site many times before never visiting it again. It is
reasonable, however, to consider it as proportional to the
overall growth rate of a crystal r in ‘‘layers per second’’, with
an adjustable parameter r* = br, as the time for a tile to become
strongly held by further growth is related to how quickly further
layers grow. The overall growth rate of the crystal will be
dependent upon the tile system, and particularly the shape of
the growth front. For a system with only single-strength bonds,
ignoring detachments of tiles held by more than two bonds and
attachments by less than two bonds, the growth rate in tiles
per second will be rgt = rf �(# of b = 2 growth sites) � rr,2�(# of
b = 2 detachment sites). Considering a length L growth front, if
sites exist at every empty adjacent lattice point, and every tile is
attached by b = 2, then the two numbers will be the same, and
equal to the length of the front, making r = rg t/L = rf � rr,2. If,
alternatively, the growth front consists of facets of length l
distributed as P(l ) = 2�l, each with one potential attachment
site and one potential detachment site, then the rate will
instead become r ¼ 1

2 rf � rr;2
� �

. For a system with a growth front
of exactly one attachment and one detachment site (as in the
zig-zag ribbon discussed later), then r ¼ 1

L
rf � rr;2
� �

, where L

is the length of the layer. Thus r = g(rf � rr,2), for some g:
for many systems g ¼ 1

2
is a reasonable choice. r* then becomes

r* = bg(rf � rr,2).
Taken together, the kinetic trapping model results in transi-

tion rates, with the addition of ‘‘trapped’’ states for a correct tile
(TC) or almost-correct tile (TA), such that

d

dt
PðtÞ¼

E

C

A

TC

TA

E C A TC TA

�ð1þmÞrf rr;2 rr;1 0 0

rf �rr;2�r� 0 0 0

mrf 0 �rr;1�r� 0 0

0 r� 0 0 0

0 0 r� 0 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

PðtÞ�M �PðtÞ

(5)

where P(t) is a probability vector of the site being in a state at
time t. The per-site error rate for growth, according to this
model, is the probability of reaching TA rather than TC when
starting at E. One way of solving for this hitting probability
is to consider a flow problem where probability is injected into
E and we examine the accumulation of probability in TA

and TC, in other words, considering
d

dt
PTC or

d

dt
PTA when

d

dt
P ¼ d

dt
0 0 0PTC PTA½ �T¼MPþ 1 0 0 0 0½ �T. Then

Perror ¼
d

dt
PTA ¼

1

1þ rr;1 þ r�

m rr;2 þ r�
� �

	
m rr;2 þ r�
� �
rr;1 þ r�

(6)

with the approximation on the right assuming that the error
rate is small and the system is near equilibrium.

This unwieldy result can be approximated further by assum-
ing that rr,1 is much larger than r*, substituting in Gmc and
Gse, and assuming growth where Gmc = 2Gse � e, resulting in
Perror = (bgee � bg + 1)e�Gse. It is apparent that b and g will have
no effect if e = 0: b and g change how much of an effect
increasing e has on error rates. When bg = 1,

Perror E me�Gse+e. (7)

The kinetic trapping model allows us to obtain a global view
of the growth process. The error rate will be dependent upon
both Gse and, through e, Gmc, and both of these parameters will
affect the growth rate r* of the system. If eo 0, then r* o 0, and
no growth will occur. If Gmc o Gse, such that even a single bond
is favorable, e c 0 and the error rate will be extremely high,
leading to unordered growth. Algorithmic growth will take place
only in the region where Gse o Gmc o 2Gse, with the error rate
changing throughout the region. The phase diagram for these
parameters is shown in Fig. 5.

While the kinetic trapping model is derived from kinetic
considerations, the e = 0 case fits a thermodynamic equilibrium
perspective well. Per the partition function in eqn (4), the
equilibrium probability of an assembly missing one correct
Gse bond as compared to an assembly with that bond will be
Pincorrect = e�GsePcorrect. If there are m such possible assemblies,
then the combined probability of an incorrect assembly versus a
correct one will be Pincorrect = me�GsePcorrect, which matches the
e = 0 case of the kinetic trapping model. Intuitively, for a system
at the e = 0 thermodynamic equilibrium, the prevalence of
errors is directly related to the energetic penalty those errors
incur, though for an infinite system, this thermodynamic
equilibrium will be unreachable. When systems are instead
grown away from equilibrium, and thus faster, with e 4 0, the
probability of erroneous assemblies correspondingly increases
from the equilibrium probability.

The error rates of several tile systems have been examined in
discrete Gillespie simulations, and have matched well with the
kinetic trapping model.26

The limit of infinitely slow growth in this model is the limit,
for fixed e, as Gse - N: the limit of low concentrations and
high bond strengths. In this limit, the error rate goes to zero: by

Fig. 4 Transition rates in the kinetic trapping model, as described in the
text.
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slowing down growth, growth errors can be reduced arbitrarily.
However, the error rate does not decrease quickly with slower
growth rate. The crystal growth rate is r = ge�2Gse(ee � 1), so for
small e, r B P 2

error. Thus, close to equilibrium, growth rate and
error rate are fundamentally linked: a 10-fold improvement in
error would require a 100-fold slowdown of growth. To build
an N � N crystal with high probability would require N 2 tiles
with an error rate of BN�2, necessitating a growth rate BN�4.
Assuming all N layers grew in parallel, the time to assemble the
crystal would scale as N 5, implying a substantial slowdown for
large crystals.49,50

The above analysis assumes, as per the basic kTAM, that
mismatched bonds don’t have an energy penalty or contribu-
tion, and can simply be ignored. In practice, the finite sequence
space of DNA means that some partial matching is likely to be
possible between mismatched sticky ends, and so mismatched
bonds may add to the total bond strength of an incorrect tile.24

If this contribution is interpreted as a fraction s of the correct
Gse, and the same kinetic trapping analysis is used, the result-
ing error rate is

Perror E me�(1�s)Gse+e. (8)

While this contribution is dependent on sequence design and
is different for each pair of sticky end sequences in a system,
a value s E 0.5 is reasonable as a rough approximation.24

The experimental system of Fujibayashi et al. offers an
opportunity to compare error rates.30 The average error rate
in early growth for their XOR system was 1.4% 
 1.1% per tile.

In a XOR system with two possible almost-correct attachments
at every site, m = 2. The XOR tiles were at a concentration of
50 nM, and the standard initiation energy for hybridization51

can provide a reasonable assumption of a = ln 20, resulting
in Gmc = a � ln(u0

�1[c]) C 19.8. If we assume growth near
equilibrium (e E 0), then, with no mismatch contribution, the
theoretical error rate is 0.01%, much lower than the experi-
mental result. However, with s = 0.5, the theoretical error rate
becomes 1.4%, showing the importance of contributions from
partially matching sequences, though the surprising closeness
of this simple theoretical result to the experiment is clearly
coincidental. From the reported protocol, we estimate that
the crystals grew over a period of approximately 1 hour during
annealing.

These experiments have shown that algorithmic assembly can
be implemented, and a 1.4% error rate is enough to demonstrate
algorithmic behavior in crystal growth. However, it is not enough
to execute more sophisticated algorithmic processes. In order
to build error-free, complex structures using algorithmic self-
assembly at high yields, extremely long assembly times would
be required: a crystal with a 0.01% error rate, for example,
would require growth over roughly a year. To allow for viable,
complex algorithmic self-assembly, some other way to reduce
error rates is necessary.

3.2 Proofreading

The design of fault-tolerant systems is a widely studied problem.
Tile systems could be designed where errors could be accommo-
dated as faults in assembly that would not affect the logic of
growth; similar designs have been studied for cellular automata.52

Alternatively, the structure of individual tiles could be changed to
depart from the ‘‘passive’’ behavior of tiles in the kTAM, incor-
porating ‘‘active’’ features through strand displacement, locking
and unlocking of ends, or passing signals upon attachment,
perhaps akin to a hybridization chain reaction system.53,54 The
behaviors and potential of several abstract designs have been
studied,55–58 but research into structures that can implement
them remains in its early stages, with one-dimensional signaling
tiles using strand displacement only recently being experimentally
implemented.59 These approaches lack the molecular simplicity
of passive self-assembly and present more substantial challenges
in the laboratory.

By carefully considering the kinetic trapping model, how-
ever, another solution can be found that is specific to the kTAM
and surprising in its simplicity. Errors arise in the kinetic
trapping model when erroneously attached tiles are trapped
in place by continued growth. This may not always be possible:
it requires the presence of a tile type that can attach by two
bonds in one of the sites adjacent to the erroneous tile. If no tile
can, continued growth would require a further erroneous
attachment to take place, while the initial erroneous tile would
have more time to detach.

The uniform proofreading construction of Winfree and
Bekbolatov60 therefore replaces each tile in a tile system with
a K � K block of unique tiles that attach to the lattice
individually. The ends on each external edge of the block

Fig. 5 Phase diagram for Gmc (‘‘monomer concentration’’) and Gse (‘‘sticky
end’’) in the kTAM with a t = 2 system. For Gmc 4 2Gse, detachment rates
are higher than attachment rates of tiles attached total strength 2, and there
is no growth. For Gmc o Gse, tiles can attach favorably by one single-
strength bond, and thus growth is unordered. Algorithmic growth by two
weak bonds or one strong bond lies in the region between these two, where
attachment by total strength 2 is favorable but attachments by a single weak
bond are unfavorable. Error rates and e are explained in the text.
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correspond to the ends on the original tile and their locations,
while the internal sticky ends are all unique to that block, as
illustrated in Fig. 6.

While a single tile in a block may attach by one correct and
one incorrect bond, the unique internal bonds, combined with
the additional bonds on the side of the block, necessitate
further incorrect attachments to fill the block. Although tiles
attach one by one, the K � K area will typically fill up with
a mutually consistent block: either a correct block with 0
mismatches, or an ‘‘almost-correct’’ block with K mismatches
along one side. Near thermodynamic equilibrium—if it is
reached—where the Boltzmann distribution gives a reasonable
approximation of error rates, the K tiles on one side of the K2

block will all be incorrect with a probability Be�KGse, resulting
in an error rate, for m almost-correct blocks, of

Perror E me�KGse. (9)

At this equilibrium level, proofreading thus significantly
reduces growth errors as compared to the equivalent non-
proofreading tile set, by a factor of e�(K�1)Gse. This exponential
decrease in error rate is gained at the cost of a K-fold increase in
the linear size of the assembled object, and thus, assuming the

same tile concentrations, a K-fold increase in the time required
for assembly.

Unlike the kinetic trapping model for systems without
proofreading, however, this model of error rates in proofread-
ing assumes that the tile system approaches thermodynamic
equilibrium within the time scale considered. The conditions
where this is the case are dependent upon the tile system, and
are not necessarily well understood. In simulations, Winfree
and Bekbolatov found that 2 � 2 proofreading at reasonable
growth rates (e.g., 10�2 layers of tiles per second) largely
followed this equilibrium model, but at higher growth rates
(e.g., 1 layer of tiles per second), where kinetic traps became
more important, error rates became significantly higher.60

Their simulations of 3 � 3 and 4 � 4 proofreading, however,
did not show the same improvement as would be suggested by
this thermodynamic model, and did not scale with increasing
Gse as strongly as predicted. Thus in these cases, the simula-
tions did not approach thermodynamic equilibrium, instead
tending to fall into kinetic traps for the duration of the time
scales considered. It may be that, in these cases of larger
proofreading, the time scales of relevant kinetic traps increase
much faster, perhaps exponentially, with increasing proofreading
scale. Thus, for the infinite tile systems often considered, evidence
suggests that the equilibrium probability distribution will never
be approached, even as e - 0. This is a surprising and poorly
understood result.

One possible explanation for this behavior in 3� 3 and 4� 4
proofreading is the existence of a second type of error that
can arise, creating a second type of kinetic trap, called facet
nucleation errors.49 These occur when a tile attaches where no
tile can correctly attach, and a new layer of tiles extends from it.
In a lattice site where there is only one adjacent tile with a
strength-one bond, for example, along the facet seen in Fig. 7,
no tile can attach in the aTAM. However, in the kTAM, a tile
attaching here by one bond could allow further attachments
along this new, extended facet that would be a violation of the
normal growth order of the system.

As there are no correct tiles that can attach in sites allowing
facet nucleation, the error rate will depend on how common those

Fig. 6 The uniform proofreading construction of Winfree and Bekbolatov.60

(a) Shows the transformation of a single tile into a 2 � 2 block of tiles, with
unique internal bonds that for simplicity are not distinguished here; bonds
along each edge are also not distinguished. (b) Shows the attachment of a
correct vs. incorrect tile in a block; for the incorrect block to form, two
erroneous attachments must take place.

Fig. 7 Facet nucleation and the snaked proofreading construction of Chen and Goel.49 (a) Shows a facet, along with one possible facet nucleation that
can then allow for further growth. (b) Shows the construction of a snaked proofreading block (null-strength bonds are denoted by the absence of a
colored triangle), while (c) shows the attachment of a correctly-placed tile (left) vs. a tile that attaches along a facet.
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sites are, and how long they remain available. Whenever a site is
available, the facet nucleation rate over time will be the rate for a
tile to attach times the probability that an additional attachment
occurs to lock the first tile in place before it detaches. Under t = 2
conditions, where Gmc = 2Gse � e for small e, facet nucleation
will occur only by a single weak bond, so the resulting rate is

rfacet 	 kf ½c�Plocked in 	 kf ½c�
kf ½c�

rr;1 þ kf ½c�
	 k̂f e

�3Gseþ2e. In the worst

case, where every potential growth site could allow facet nuclea-
tion, the probability of a facet nucleation error at a site would
become Perror E rfacet/r* B e�Gse. This worst-case error prob-
ability is the same as the growth error probability without
proofreading, limiting the effectiveness of strategies that only
prevent growth errors. In practice, facet errors may not be
worst-case, but are still of considerable relevance. For example,
simulations of cellular automata tile sets show that facet-
limited errors only come into play for tilesets with 3 � 3 or
larger proofreading,60 suggesting that Perror o e�2Gse. In other
words, facet errors may indeed arise at a rate rfacet, but all but
less than e�Gse of them are cleaned up by the reversible growth
near equilibrium.

To address both error types, Chen and Goel designed a
‘‘snaked’’ proofreading construction with differing internal bond
strengths inside proofreading blocks, forcing the block to be
assembled in a certain order;49 in contrast, the ‘‘uniform’’ proof-
reading of Winfree and Bekbolatov uses all strength-one bonds.
Double-strength and null-strength bonds are arranged such that
an edge of a block cannot be completed favorably after a single title
attaches by only one weak bond unless a further facet nucleation
error takes place, reducing facet nucleation error rates by a factor
of e�Gse with 2 � 2 blocks in one ‘‘hard’’ orientation, while
reducing it further, in both orientations, for larger blocks.39,49 In
contrast to uniform proofreading, for which no rigorous treatment
of error rates has been developed, Chen and Goel provided a proof
of snaked proofreading’s error rate reduction at arbitrary scale. In
later research, Soloveichik, Cook, and Winfree provided an alter-
native proof method and applied it to a novel construction that
also exhibits self-healing behavior.61

While the frequency of potential facet nucleation sites will be
tile system dependent, for simulations of a Sierpinski system,
Chen and Goel found 4 � 4 snaked proofreading was able to
perform significantly better than 4 � 4 uniform proofreading to
the extent that no errors occurred with snaked proofreading,
whereas uniform proofreading resulted in a 25% probability of
an imperfect 20 � 20 block assembly.49

Another way of considering the benefit of proofreading is
considering how quickly an error-free assembly can be grown.
Without proofreading, it was seen that for slightly supersatu-
rated systems, the growth rate necessary to obtain a certain error
rate as r B Perror

2, such that a 10-fold reduction in error rate
would require a 100-fold reduction in growth rate. By making
Perror B e�2Gse, while only causing a two-fold decrease in growth
rate of a scaled-up assembly, 2 � 2 proofreading will instead
result in r B Perror. As a consequence, the time needed to
assemble an N � N square now scales as only N3, in contrast
to the N5 scaling required without proofreading. This is because a

low enough error rate can now be achieved at higher concentrations.
Further, Chen and Goel were able to prove that with K � K snaked
proofreading, for even K, an N� N square can be assembled in time
N1+8/K. This result is not likely to be tight; it seems likely that near-
equilibrium error rates are achieved by snaked proofreading,
in which case Perror B e�KGse and r B e�2Gse and thus r B P 2/K

error.
Consequently an N � N square is assembled in time N1+4/K, which
matches the results for non-proofreading and 2 � 2 proofreading
wherein K = 1 and K = 2 respectively. The remarkable implication is
that this design, in principle, allows error rates to be decreased
arbitrarily without significantly slowing down growth.

The basic mechanism of snaked proofreading has been tested
experimentally, showing a reduction in facet nucleation rates along
a long seed structure,39 but has not yet been used in other tile
systems. Some experiments have implemented partial 2 � 2
uniform proofreading, resulting in 10 to 50-fold reductions in
error rates for bit-copying and binary counting systems,29,31 and
more recent works have reduced error rates even further.15,62 In
particular, Schulman et al.62 demonstrated a bit-copying system
with 2� 1 proofreading that had an error rate of 0.017%
 0.013%
with tiles at 25 nM. This proofreading variant is expected to have
error rates similar to 2 � 2 proofreading, but with additional facet
errors due to the zig-zag growth path in the DNA ribbons. With
K = 2, m = 1 since there is only a single competing tile type, and
assuming a partial matching fraction s = 0.5 in a generalization of
eqn (9), Perror E me�K(1�s)Gse E 0.0035%, which is lower than but
within the range of the experimental findings.

Schulman et al. later built similar bit-copying systems with 1, 2,
3, and 4 � 1 proofreading, and grew them in consistent experi-
mental conditions:46 a slow anneal with 50 nM tile concentration.
While each increase in proofreading level decreased error rates,
the error rates decreased by only around a factor of 5 from 1� 1 to
2 � 1, and 2.5 from 2� 1 to 3 � 1 and 3 � 1 to 4 � 1. Even with a
partial matching fraction s = 0.5, these decreases would be
expected to be around a factor of 140 for each change.
However, these systems also had a zig-zag growth path, and
were annealed, which introduces additional complexity and
errors. In particular, the authors attributed this discrepancy
to poor control over nucleation and to interference from
unintended hierarchical self-assembly, both of which are
discussed later in this review.

Neither uniform nor snaked proofreading have been fully imple-
mented in a tile system, nor have the larger proofreading blocks that
may be possible with SSTs been tried. Other proofreading methods
are also an area with the potential for further research. Compact
proofreading methods exist that avoid the scaling up of patterns
at the cost of more tile types, but these have not been experi-
mentally tested,50,63 while proofreading in three dimensions may
have the potential to be simpler and more effective.43

4 Nucleation

We have so far only considered individual crystals, nucleated
from a chosen tile designated as a ‘‘seed tile.’’ Growth in
solution, however, takes place via the interaction of many tiles
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and assemblies at once. Any free tile may attach to an assembly,
or may attach to another free tile and form a new assembly.
Assemblies may grow, or may melt away into only free tiles.
Unlike the aTAM, where growth proceeds only by t bonds and
only from a seed tile, interactions between any two tiles in
solution that are initially unfavorable may form an undesired
seed crystal that can allow further growth. ‘‘Spurious’’ nucleation
of this form poses a problem for controlling how crystals are
nucleated. For algorithmic assembly, where growth may depend
heavily on the seed, this spurious nucleation is particularly
problematic. Rothemund et al.,28 for example, saw unseeded
assemblies with little resemblance to Sierpinski patterns, and
Fujibayashi et al.30 found numerous thin ribbon structures.

In some ways, this spurious nucleation is similar to homo-
geneous nucleation in single-monomer crystal nucleation,64,65

but where homogeneous nucleation through monomer–monomer
interactions is distinguished from heterogeneous nucleation at a
surface interface, spurious nucleation refers only to monomer–
monomer nucleation that does not start from the desired seed
monomer: in one sense, all nucleation in DNA tile assembly is
homogeneous. An important distinction when considering nuclea-
tion of DNA tile systems is the algorithmic nature of many of the
systems: while most crystals, even when multi-component, are
modelled in classical nucleation theory as having chemical poten-
tials for each monomer being added to the nucleus from solution
that don’t depend on the specific nucleus,66 with DNA tile systems,
the monomers that can be added to a nucleus can completely
change depending upon the exact assembly and lattice sites
involved, making bulk models of limited relevance, and requiring
an analysis of individual attachments and detachments.

To examine nucleation of DNA tile assemblies, we can use
the rates of the kTAM as the basis for a mass-action growth
model considered earlier by Schulman and Winfree.27 Doing so
will provide a basis for analyzing spurious nucleation rates in
different tile systems, and motivate system designs that allow
for strong nucleation control.

For simplicity, we preserve the kTAM assumption that growth
takes place via single-tile attachments and detachments,
ignoring attachment between and breakage of multi-tile assem-
blies. While the latter type of interactions have been seen
experimentally,30 they are unlikely in conditions where free tiles
are at significantly higher concentrations than assemblies, and
assemblies do not have large numbers of ends available for
binding away from a growth front. Single-tile attachments and
detachments can be seen as a series of chemical reactions, where
an assembly A (which might be a single tile) and tile t reversibly
react to form an assembly At: A + t " At. In a mass-action model,
this results in equilibrium concentrations [At] = [A][t](kf/kr,b),
where kf and kr,b are the forward and reverse rates for the
reaction, specified in eqn (1), and b is the total bond strength
between the tile and the assembly.

½At� ¼ ½A�½t�u0�1e�bDG
�
se=RT�a (10)

If we assume all tiles are at equal concentrations, and
consider the concentrations of smaller assemblies recursively,

making the same substitutions made for eqn (2), it is easily
seen that the equilibrium concentration of an assembly A is

½A� ¼ ½t�Nu1�N0 e�BDG
�
se=RT�ðN�1Þa ¼ u0e

BGse�NGmcþa

� u0e
�GðAÞþa

(11)

where N is the total number of tiles in A, B is the total strength
of all the bonds between tiles in A, and G(A) � NGmc � BGse is
the total (unitless) free energy of A (with negative values being
more favorable).

For simplicity, we have assumed in eqn (11) that the tile
concentrations are not just equal initially, but that they remain
equal and constant regardless of use in assemblies, as though
free tile monomers are added and removed by some outside
regulatory process, keeping the supersaturation e constant. For
such an ‘‘open’’ or ‘‘powered’’ system, the free energy, and thus
concentration, of increasingly larger assemblies is unbounded.
In a usual, ‘‘closed’’ system, where tile concentrations decrease
as they are used in assemblies, assembly concentrations would
be limited by initial tile concentrations, and the resulting
equilibrium concentrations could be quite different. In practice,
however, when starting near equilibrium with sufficiently low
seed concentrations and high initial tile concentrations, the tile
concentrations can be made to remain approximately constant
over experimental time scales, as discussed later in this review.

Unseeded nucleation of crystals can be modeled using
the concept of critical nuclei,67 crystals where melting and
growth are equally favorable: smaller assemblies would tend
to melt, while further favorable attachments would result
in a crystal that would tend to grow. These critical nuclei thus
act as spurious seeds for further growth. Since it can be shown
in the mass-action kTAM that assembly concentrations are
bounded by equilibrium concentrations,27 spurious nucleation
rates are limited by the equilibrium concentrations of critical
nuclei.

A simple example is a homogeneous tile system with a single
tile type. The most favorable assemblies, with the highest
number of bonds per tile, are squares, which will have differing
number of tiles and bonds depending upon size, as shown
in Fig. 8. For e r 0, growing larger squares will always be
unfavorable; G(A) will always increase. For small e 4 0, small
squares will be unfavorable, but at a certain point, growing
larger will become favorable. Squares of this size are critical
nuclei for the growth of larger squares, and their concentra-
tions limit spurious nucleation. As e becomes smaller, the
critical nuclei of the system become larger, and have higher
G(A) and lower concentration, resulting in less spurious nuclea-
tion at the cost of slower growth. As long as e is small enough,
little nucleation should take place without some desired seed
structure to initiate it.

Quantitatively, with the values for N and B in Fig. 8, the
free energy G(A) � NGmc � BGse will be, in terms of Gse and
Gmc = 2Gse � e,

GðAÞ
Gse

¼ N 2Gse � eð Þ
Gse

� B ¼ 2k� k2e
Gse

: (12)
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where k ¼
ffiffiffiffi
N
p

, and N is the number of tiles in the system. This
free energy, seen in Fig. 8, will increase to a maximum dependent
upon e and Gse, creating a barrier to nucleation. As e decreases or
Gse increases, the height of the barrier, and the number of tile
attachments required to reach it, will increase, with the maximum
being reached at N = Gse

2/e2. At that point, the free energy will be
G(A) = Gse/e. From eqn (11), the concentration of the critical

nucleus will be [A]crit = u0e�Gsee
�1+a. The rate of formation of larger

assemblies will be limited by this critical nucleus concentration.
Thus, by decreasing supersaturation (reducing e) or increas-

ing bond strengths (increasing Gse), nucleation rates can be
significantly decreased for a homogeneous tile system. For the
Sierpinski system in Fig. 2, however, even just the edge tiles
with double bonds form critical nuclei for long 1D polymers,
for any positive e, since adding one tile by a double bond will
always be favorable. With such small, favorable critical nuclei at
free tile concentrations, the system would exhibit severe spur-
ious nucleation if implemented without modification, and such
behavior has been observed experimentally.68

One system that allows the formation of ribbons with low
spurious nucleation is the zig-zag ribbon system,27 illustrated in
Fig. 9. Ribbons grow in a zig-zag fashion, with alternating rows of
tiles unique to each column growing in different directions and
tiles with double bonds (or permanent ‘‘double tiles’’) reversing
the direction of growth and nucleating the next row. Without a
seed to initiate growth, continued favorable attachments by two
bonds can only take place once an entire row has been formed by
mostly unfavorable attachments; for small e, this means that the
formation of a critical nucleus will require k � 1 unfavorable
attachments for a ribbon of width k. The critical nucleus shown in
Fig. 9 will have 2k � 2 tiles and a total bond strength of 3k � 5,
resulting in G(crit. nuc.) = (k + 1)Gse � (2k � 2)e. Thus, by
designing zig-zag systems of increasing width, with larger
barriers to critical nucleus formation, spurious nucleation
can be reduced arbitrarily.27

In principle, growth can be seeded relatively simply by using
a structure of uniquely-addressed tiles to reliably form a large

seed structure, but this can introduce a range of other experi-
mental problems such as sticky end sequence space depletion
and the difficulty of double bond construction. As an alterna-
tive, substitute structures built using other methods, such as
DNA origami or assembly PCR, are often used along with
adapters that allow DNA tiles to attach; this method has been
used for one-dimensional seeds,28,29 as well as rectangular and
cylindrical seeds for ribbons and nanotubes.31,37

Schulman and Winfree examined spurious nucleation of DX tile
zig-zag ribbons at several different widths.38 Nucleation rates in the
absence of a seed were measured at 50 nM tile concentration and
24 hour growth periods at fixed temperatures between 25 and
41 1C. Width 3, 4, and 6 ribbons resulted in spurious nucleation
rates of 47 � 10�6, 1 � 10�6, and 3 � 10�7 nM s�1. Since each
additional tile width will change G(crit. nuc.) by Gse � 2e, for slight
supersaturation conditions e { Gse and a measured Gse = 7.86, a
significantly larger decrease per additional tile width, around
e7.86 C 2600-fold, would have been expected, though the effect
would be lessened by the extent of supersaturation. Nonetheless,
nucleation by origami seeds at width 4 was already found to be
significantly faster than unseeded growth. Seeded nanotubes with
a barrier to unseeded nucleation have recently been examined as
well, with low spurious nucleation, though energetic penalties of
binding to origami were noticed.37 These forms of nucleation
control have been incorporated into some experiments31,62 that
have qualitatively shown far fewer spuriously nucleated assemblies
than those seen in experiments with seeded growth but a smaller
barrier to unseeded nucleation.30

5 Tile concentrations

In the aTAM, tile concentrations are not usually considered;
apart from assembly speed, they would affect final structures

Fig. 8 Critical nuclei for uniform squares: the number of bonds and
number of tiles increase at different rates as square size increases, as
shown in (a). For smaller e, squares of increasing size must form before
the number of bonds vs. number of tiles added makes further growth
favorable, as shown in (b). For e = 0, growth is never favorable. The highest
G(A), lowest concentration squares here are critical nuclei that bound
nucleation of larger crystals.

Fig. 9 The zig-zag tile system.27 (a) Shows a width 4 tile set, which can be
expanded to arbitrary width by adding tiles in the center; all top and
bottom bonds are unique. Seeded growth (b) constructs a ribbon with
rows that grow in alternate directions and double tiles that nucleate each
subsequent row. Unseeded growth (c) has several pathways (examples are
shown along with the change in G(A) for the steps) but for small enough e
requires that a full row form via unfavorable (red) steps before growth can
continue with favorable (green) steps.
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only in nondeterministic systems. In the kTAM, tile concentra-
tions are usually assumed to be equal and constant, with Gmc as
a global, constant parameter. To have growth near equilibrium,
Gmc needs to remain slightly smaller than 2Gse, where error
rates and spurious nucleation will be minimized.

Experimentally, tile concentrations are neither equal nor
constant. Pipetting variation and strand synthesis can cause
unintended variations in initial tile concentrations. More
importantly, as crystals grow, the concentrations of free tiles
in solution will be depleted, increasing Gmc and moving the
system closer to the chemical equilibrium Gmc = 2Gse where no
forward growth occurs. In a system near equilibrium to begin
with, small increases in Gmc will be enough to make growth
unfavorable, and growth will never proceed very far: most tiles
will remain unbound.

A simple solution to this problem is to anneal the system,
gradually decreasing temperature over some period of time.
While free tiles are bound, and Gmc decreases, the decrease in
temperature will gradually raise Gse, and ensure that the system
eventually moves back to a slightly supersaturated state favor-
able for growth.22 As long as this temperature decrease is slow
enough, free tiles are depleted evenly, and Gses for each sticky
end changes evenly with temperature, the system will remain
near equilibrium, allowing for continued accurate growth.

This technique has been used in numerous experiments,
and is the standard method for both non-algorithmic and
algorithmic DNA tile systems.14,28,31,45 Annealing to a suffi-
ciently low temperature (most often room temperature) usually
uses all free tiles present, potentially allowing for high yields
compared to initial tile concentrations. As the system is slowly
cooled, precise knowledge of equilibrium growth conditions,
especially the temperature and concentration combinations
required for near-equilibrium growth, is not required.

There are problems, however, with annealing. This is parti-
cularly the case for algorithmic systems; while a periodic
structure, for example, will usually consist of set ratios of
different tile types, algorithmic structures may use tile types
at markedly differing rates, possibly at different times, and use
may vary depending upon the computation or initial seed. Even
if initially equal, different tile types will have their concentra-
tions decrease at different rates. Thus attachment of some tiles
may become unfavorable while attachment of others remains
favorable, a situation that can result in erroneous and unpre-
dictable growth. In another sense, in an algorithmic system
that is annealed, or has tile concentrations significantly
deplete, the supersaturation of each tile type will change
unpredictably over time based on the algorithmic behavior of
the individual assemblies as they grow.

As annealing can only act as a global control of growth rates,
affecting all tile types equally, it is ineffective in handling tiles
with diverging concentrations. One theoretical alternative is to
use tile concentrations that are set depending upon the tile
system and initial seed to result in optimal growth as tiles are
depleted, but doing so in a general, experimentally-robust way
remains elusive. Even without depletion, optimal choice of
concentrations remains an open problem: there has been some

theoretical work24,69 and concentration choices based on
simulations,15 but concentrations used in experiments, which
have often not been equal,31 have not had any strong theore-
tical basis. Alternatively, if algorithmic tile systems could be
designed such that all tiles in the system are consumed equally
as structures grow, tile concentrations could be made to
decrease at equal rates. Whether this is possible is an open
and intriguing question.

Another solution, however, is simply to avoid depleting tiles
significantly altogether, thus keeping the system in a nearly-
constant-concentration regime approximating the standard
kTAM,62 and keeping supersaturation approximately constant,
which has significantly simplifying effects even when consider-
ing simple single-component crystals.70 With strong control
of nucleation, non-seed tiles can be added at much higher
concentrations than required for the desired structures, while
seeds can be added at very low concentrations. Thus, the
concentration of free tiles will not be significantly depleted,
and Gmc will remain effectively homogeneous and constant.
This is particularly achievable if systems have terminal assem-
blies, and won’t continue consuming tiles indefinitely. Using
this technique, structures can also be grown at constant
temperature: as Gmc will not change significantly, there is no
need to change Gse. Essentially, by ensuring that only very few
structures are nucleated compared to the number of free tiles,
growth can be made to behave in a manner largely similar
to the kTAM. Experiments using this method have achieved
considerably better results than earlier work using ordinary
annealing. For example, error rates for bit-copying ribbons were
reduced from 0.26%31 to 0.034%62 per 2 � 2 block, and similar
improvements have been shown with binary counters.15

Structures grown at constant temperature do have the dis-
advantage that they must remain near their growth tempera-
ture to remain near equilibrium, especially since free tiles will
remain in solution. However, many techniques and applica-
tions, especially for crystal imaging, require crystals that are
stable without precise temperature control at room tempera-
tures, significantly below typical growth temperatures. As
cooling crystals would result in significant undesired growth
from remaining free tiles, constant-temperature growth can be
combined with ‘‘guard strands,’’ strands that are complemen-
tary to specific tiles or portions of tiles and sticky ends.62 When
added to a system (after growth has completed) in significant
excess of tile concentrations, guard strands prevent further
growth by binding much more favorably than normal tile
attachment, and thus deactivating free tiles. Temperatures
can then be arbitrarily lowered without changing the structures
that have already grown; deactivated free tiles can either be
removed through purification, or be ignored, if imaging in
conditions where only larger structures can bind to a surface.

The excess free tiles, however, mean that while the yield of
correct structures compared to all grown structures may be
high, the yield of structures compared to the concentrations of
tiles used is very low. That tile concentrations are not signifi-
cantly depleted, an advantage for error rates, also means
that most tiles are wasted by remaining unused in solution.
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Techniques or system designs that would allow most tiles in
solution to be incorporated into high-accuracy structures
remain an open challenge.

6 A unified model of tile assembly
6.1 Model formulation

In previous sections, we considered several related models to
examine how systems designed in the t = 2 aTAM behave in
other models or physical implementation, and what designs
and growth methods need to be incorporated into such systems
in order to allow experimental behavior that approximates
ideal, abstract growth. The t = 2 aTAM and kTAM, however,
are not the only models of tile assembly, and the same
considerations can be made in a more general fashion by
delineating more formally the relationships between more
physical and more approximate or abstract models. Here, we
construct a framework for understanding a number of tile
assembly models as choices within a larger, unified model.

In general, all passive tile assembly can be viewed as a series
of chemical reactions involving tiles and assemblies. The
choice of which reactions to consider, and how the reactions
should be modelled, generates many widely-studied tile assem-
bly models that in some sense are all approximations of reality.

From a physical perspective, tile assembly taking place in
solution involves tiles and assemblies that bind and unbind via
weak sticky-end bonds. To construct a tractable model, we will
assume assembly takes place slowly enough that the tiles remain
well-mixed, so diffusion does not result in localized concen-
tration gradients, and that lattices are rigid enough to prevent
lattice defects from occurring. Violations of these assumptions
can lead to other distinct phenomena, such as diffusion-limited
aggregation71 or lattice dislocations.72 Both assumptions can be
approximated experimentally by sufficiently slow growth and
sufficiently rigid tile structures, though some tile systems, such
as those with long, thin regions of assemblies, may violate them.
Similarly, we will assume that only non-overlapping, lattice-
preserving assembly–assembly interactions will take place, such
that attachments will not cause lattice defects. This assumption
is not true in general for all tile systems, but can be approximated
via tile system design and is usually a desired property of abstract
designs. With these simplifications, the following types of reac-
tions will be possible, where capital letters denote ‘‘assemblies’’
of two or more bound tiles, and ti are different tile types:

(1) Monomer–assembly interactions, where assembly B
consists of a tile ti attached to an assembly A by some
number of bonds:

(a) Attachment: ti + A - B.
(b) Detachment: B - ti + A.

(2) Assembly–assembly (hierarchical) interactions, where
assembly C consists of an assembly A bound to an
assembly B in some non-overlapping fashion by some
number of bonds:

(a) Attachment: A + B - C.
(b) Detachment: C - A + B.

(3) Monomer–monomer interactions, where assembly A
consists only of tiles ti and tj bound to each other:

(a) Attachment: ti + tj - A.
(b) Detachment: A - ti + tj.

As in the kTAM, we will assume that all bimolecular attach-
ment reactions, unless specified otherwise, have the same
bimolecular rate constant, and the mass-action reaction rate
depends on both concentrations. Detachment will be assumed
to take place at a rate determined by the free energy change
of the bonds involved: for a bimolecular forward rate constant
of kf, the detachment rate for a bond free energy change of DG1
is rr = kfe

DG1/RT+a, as in the kTAM.
It should be recognized that this assumption is an over-

simplification: for example, diffusion may be a limiting
factor for attachment of larger assemblies, or the kinetics of
assembly–assembly interactions may depend on the specific
assemblies involved rather than being the same as monomer–
assembly attachment.73,74 However, it is a reasonable approximation
for monomer–assembly reactions. For assembly–assembly reac-
tions, using the same bimolecular rate constant for all cases
provides a useful upper bound on the rate of assembly, since in
reality larger assemblies would react more slowly. This upper
bound therefore makes it possible to formulate worst-case
upper bounds on error rates: error pathways involving spurious
assembly–assembly reactions will appear more likely in the
model than they would be in reality. Analogously, one can
obtain best-case results for hierarchical assembly speed, which
is particularly relevant in considering the limitations of com-
putation speed with hierarchical assembly.75

This full, ‘‘unified’’ tile assembly model is difficult to use or
design for, owing to the diverse range of reactions. It is instead
useful by virtue of encompassing many models of tile assembly,
both abstract and kinetic, and illustrating relationships between
them. These models can be seen as involving choices of subsets
of reactions from the unified model and the choice of how to
model the reactions themselves. The following choices of
account for several different models of assembly:

(1) Reversible or irreversible: models with reversible reac-
tions, often referred to as kinetic models, have both
attachment and detachment reactions. Models with
irreversible reactions contain only attachment reactions
that form bonds of total strength higher than a specified
threshold t, and detachment reactions that break bonds
of total bond strength less than t. The effects of concen-
tration and other parameters on the relative rates of
attachment and detachment reactions, and thus the
favorability of growth, are not considered: concentration
only affects the rate of reactions that proceed in a fixed
direction. Unless the threshold is changed, the set of
reactions in the system does not change over time. In
most cases, the detachment reactions in an irreversible
model never matter, as they only involve cases where
attachments will never occur in the first place, but they
may be relevant in certain cases, such as systems that
allow specific tiles to have destabilizing interactions with
other specific tiles.76,77
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(2) Hierarchical or monomer-addition: hierarchical models
allow assembly–assembly interactions (2a and 2b), while
monomer-addition models assume that only monomer–
assembly and monomer–monomer reactions take place.

(3) Unpowered (closed) or powered (open): unpowered
models behave as typical systems of chemical reactions,
with concentrations of monomers and assemblies chan-
ging as reactions take place. Powered models instead
assume that monomer concentrations remain constant
throughout assembly, whether because they are not
significantly depleted or because the concentrations
are controlled by some outside process.

(4) Unseeded or seeded: unseeded models allow any two
monomers to attach to each other and form an assembly
(3a). Seeded models do not allow these reactions, and thus
only allow growth from preexisting assemblies. However,
seeded models introduce the notion of ‘‘seed tiles’’: these
are special tile types that are treated as assemblies rather
than as tiles for the purposes of reaction types (1a) through
(3b), and whose concentration is not preserved when using
a powered model. Note that seed tiles might not be used,
for example if a large assembly is part of the initial
conditions (which could be considered a ‘‘seed assembly’’
but which is given no special treatment).

(5) Discrete or continuous concentrations: the reactions of any
model can be considered using discrete stochastic chemical
kinetics (as simulated by Gillespie’s algorithm78) which is
appropriate for finite volumes with finite counts, or with
continuous deterministic chemical kinetics.79

Choices 1–4 represent choices between more complex
models more closely matching physical understanding of
assembly (reversible, hierarchical, unpowered, unseeded), and
simplifications that assume some aspect of potential physical
behavior can be ignored. Within this framework, we can define
the aTAM as irreversible, monomer-addition, powered, seeded,
and discrete: essentially, every ‘‘simpler’’ choice is made. This
‘‘unified aTAM,’’ in order to fit within the unified model,
contains concepts such as tile concentrations, attachment
rates, and time, that were not originally included in the defini-
tion of the aTAM, but the simplifications involved make these
concepts irrelevant, at least for questions of reachability and
growth, except when non-deterministic growth is involved. The
unified kTAM differs from the unified aTAM only in being
reversible, allowing tiles to detach as well as attach, while
the unified 2HAM differs from the unified aTAM in being
hierarchical and unseeded.

Full tile system specifications in the unified model consist of
a set of tiles, a set of initial tile concentrations (or Gmcs),
(optionally) a set of initial assemblies and their concentrations,
and the set of model choices and their associated parameters.
Specifically, (1) all models require the rate constant k̂f for the
dimensionless rate equations; (2) irreversible models require t;
(3) reversible models require Gses for each pair (possibly
mismatched24) sticky ends; (4) seeded models require specify-
ing which tile types are to be considered seed tiles; and
(5) discrete concentration models require the reaction volume V.

While the unified model concerns itself with the nondimension-
alized parameters, one can easily convert to or from more
realistic values, where kf, a, DG1, and T are considered. Other
experimentally relevant situations, such as temperature-annealed
systems, would strictly speaking require a generalization of the
unified model as presented here.

The unified tile assembly model provides a natural frame-
work for considering how tile system behavior will change
when the choice of model is changed. Any given tile set can
be examined with respect to any set of other choices in the
unified model framework, resulting in distinct tile systems. In
many cases, tile system behavior will change completely when
model choices are changed. For example, a tile system designed
to assemble hierarchically will have limited growth in a
monomer-addition model. Similarly, a tile system designed to
grow from a single tile in an unseeded model will not grow at
all in a seeded model unless that tile is added as a seed tile.

We are more interested in understanding when tile systems
will continue to behave in approximately similar ways despite
changes to model choices. There are a number of abstract
models fitting within the unified model that have been studied
for their computational properties. However, if no non-trivial
tile system in one of those abstract models continues to exhibit
similar behavior in a model with more physically-accurate
choices, then the physical relevance of that more abstract model
may be limited. Likewise, if certain properties of systems, like
proofreading or nucleation control, can allow some class of
system in an abstract model to assemble in an approximately
similar way in a more physically relevant model, that can inform
tile system design for experimental implementation. It can also
suggest limitations on the situations where the more abstract
model should be considered a reasonable model for tile assem-
bly. On the other hand, designing computationally complex
algorithms directly in more physically relevant systems can be
challenging, and general questions of computation can become
intractable, so abstract models do not become irrelevant simply
because more physically accurate models can be formulated. The
unified model allows an understanding of how abstract and
physical models can be linked to bridge computational and
physical questions.

In the case of the aTAM at t = 2, the previous sections can be
interpreted as making individual changes in model choices,
and providing constrained subsets of tile systems that approxi-
mately preserve growth behavior:
� When moving from an irreversible to a reversible model,

the use of tile systems that implement proofreading, or that
grow at extremely slow rates, allows for behavior to remain
approximately the same by minimizing the growth and
facet nucleation errors that arise in the reversible model.
� When moving from a reversible, seeded model to a

reversible, unseeded model, tile systems that implement
some form of nucleation control constrain the rates of
spurious nucleation from tiles other than seed tiles acting
as seeds for growth.
� When moving from a reversible, seeded, powered model

to a reversible, seeded, unpowered model, behavior
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remains the same for all tile systems in the ‘‘initial
moments’’ of growth, before monomer concentrations
have been depleted enough to significantly change attach-
ment and detachment rates. By growing with a significant
excess of monomers, and a low concentration of seeds,
these ‘‘initial moments’’ can be extended indefinitely.
However, with unbounded assembly growth, tile concen-
trations will eventually be depleted.

These model changes are summarized in Fig. 10. With the
combination of these techniques and constraints, tile systems
can be designed in the aTAM at t = 2 that should behave
similarly in experiments, and have been seen to do so.15,31,62

The same transitions between model choices, however, may
not be possible with other models, and the constraints on tile
systems, designed for seeded tile systems that operate in the
aTAM at t = 2, may not be applicable to other tile systems. To
determine the physical viability of a design, the same analysis
needs to be performed, finding ways to approximate the desired
model while moving toward the choices of the more physical,
general tile assembly model. We will explore two examples
here: the aTAM at t = 1, which presents serious obstacles
to physical implementation, and the 2HAM, which presents
several challenges that may be surmountable with appropriate
designs. Both the t = 1 aTAM and the 2HAM have been
extensively researched within the field of theoretical computer
science as models that have significantly differing computa-
tional properties.12 Placing constraints on what systems within
these models will behave similarly in more physically relevant
models allows for a bridge between theoretical computer
science research on the computational power of self-assembly
and theoretical and experimental physical research on the
physics the same self-assembly processes.

6.2 Considerations for the aTAM at s = 1

As an irreversible, monomer-interaction, powered, seeded
model, the t = 1 aTAM requires consideration of the same
model changes that the t = 2 aTAM requires: a design must

behave similarly when the model is made reversible, hierarchical,
unpowered, and unseeded. The model has reactions analogous to
the t = 2 aTAM for assemblies A and B, tiles ti, and seed tiles si:

(1) Monomer–assembly attachment: ti + A - B if Db Z 1.
(2) Monomer–assembly detachment: B - ti + A if Db 4 �1.
(3) Seed–monomer attachment: si + tj - A if Db Z 1.
(4) Seed–monomer detachment: A - ti + tj if Db 4 �1.
(5) Constant monomer concentrations: [ti] = [ti]0, [si] = [si]0.
Moving to a reversible model actually imposes significantly

fewer constraints for the t = 1 case than the t = 2 case. At t = 1,
any single-strength bond is sufficient for correct attachment.
Growth errors and facet nucleation errors of the form consid-
ered in the t = 2 case are impossible: any tile attaching by one
bond in a reversible model would also attach in the irreversible
model. Only when lattice deformation or sticky end sequences
and spurious binding are considered can errors arise.24

In moving to an unseeded model, however, problems arise,
even when keeping the model irreversible. As tiles can attach to
each other by one bond, all correct attachments of two free tiles
are favorable. There is no method, with passive tiles, to approx-
imate seeded growth in an unseeded model: every tile that is
actually used in the system will immediately serve as a spurious
seed for growth, and growth will begin everywhere. The physical
relevance of the seeded t = 1 aTAM is thus limited. The same
problem also limits the relevance of the powered t = 1 aTAM, as
an inability to control nucleation means that the excess-tile
approach used to approximate powered growth in an unpowered
system in the t = 2 aTAM cannot be adapted for the t = 1 case.

Even when considering systems designed in the unseeded
t = 1 aTAM, problems arise when considering them in a
reversible, hierarchical model. Most t = 2 tile system systems
utilizing cooperative binding, where most attachments involve
a tile attaching to two tiles within the lattice by two strength-1
bonds, result in assemblies where most tiles are bound to most
of their adjacent tiles, as shown in Fig. 11(a). Thus, between any

Fig. 10 Model changes from the t = 2 aTAM to more physically-accurate
models. As systems are moved to each new model, problems arise that
cause behavior to differ (red), which result in techniques and design
constraints (blue) that allow certain classes of systems to maintain similar
behavior in the more physically-accurate model.

Fig. 11 Structure stability in the t = 1 and t = 2 aTAM with hierarchical
detachments. In the t = 2 model, systems with cooperative assembly by
strength-1 bonds naturally result in assemblies with many bonds between
different regions as growth proceeds. For such an assembly to break into
two smaller assemblies, many bonds would need to be broken: one
example is show in (a). In the t = 1 aTAM, when each tile attaches by a
single strength-1 bond, many assemblies can have only single bonds joining
two regions, such that only a single bond needs to be broken to form two
subassemblies: one of numerous possible examples is shown in (b).
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two regions of an assembly, there are usually numerous bonds,
and unintended hierarchical assembly–assembly detachments
are unlikely. In t = 1 systems, this is not necessarily the case, as
each tile attachment need only involve a tile attaching to a
single other tile within the lattice by a strength-1 bond. If
growth proceeds by a series of such attachments, regions of
earlier and later growth will be attached by only one bond, as
shown in Fig. 11(b). Near equilibrium in a reversible, hierarch-
ical model, detachment into two subassemblies would there-
fore be only slightly slower than the monomer attachment rate:
with assemblies at lower concentrations than monomers, this
detachment would actually be favorable, and assemblies would
constantly fall apart into smaller subassemblies while growing.
Thus, for t = 1 aTAM assemblies to grow, growth would either
need to take place far from equilibrium, or systems would need
to be designed with ‘‘extra’’ bonds to ensure that assembly
melting would be unfavorable.

Although the t = 1 aTAM is thus not physical for algorithmic
self-assembly with simple, passive tiles, it could still be a
meaningful model for physical implementations of more
complex ‘‘triggered’’ or ‘‘signaling’’ tile self-assembly, where
seeding and irreversibility could be enforced by the tile
interactions.54–59 It could similarly be useful for certain simple
systems, like simple periodic structures, where control of
nucleation location may not be important and crystals can be
grown far from equilibrium. In those cases, however, the
unseeded t = 1 aTAM would still be more physically relevant.

6.3 Considerations for the 2HAM

The 2HAM and its variations present an opportunity for this
form of analysis on a more complex system. While the 2HAM
has been defined in several different ways, it is essentially a
model that treats assemblies in the same way monomers
are treated in the aTAM, allowing hierarchical interaction.
Monomer–monomer and monomer–assembly interactions are
unchanged, but are unseeded, while assemblies, often referred
to as ‘‘supertiles’’, are able to interact, and form larger assem-
blies if they can bind by a total bond strength of at least t.12

This makes the 2HAM within the unified model irreversible,
hierarchical, powered, and unseeded. In this model, as with
other variations of the 2HAM, concentrations are largely irrele-
vant to questions of reachability and reaction favorability: the
combination of the hierarchical and irreversible choices means
that every reaction between monomers or assemblies will be
favorable and irreversible if the total binding strength is higher
than the threshold t, regardless of tile or assembly concen-
tration. One physical interpretation of this would be that with
equal diffusion rates, all tiles and all reachable assemblies are
at constant and equal concentrations.12 Otherwise, the motiva-
tion for the irreversible simplification—that reaction direction
is predetermined and constant in a system—would not apply.

Such an interpretation, while usable for theoretical questions
of abstract assembly reachability,12 is not a reasonable model of
physical growth. To have meaningful growth via self-assembly,
at least some assembly concentrations need to change, and at
least some assemblies should initially have zero concentration:

having all assemblies present and held at equal concentrations
would make the self-assembly process pointless. With our exact
definition of an irreversible system, where inclusion of reac-
tions is determined by the threshold t without consideration
of concentration, starting with zero assembly concentration,
will result in similar assemblies, but with changing assembly
concentrations. While moving away from the motivation for
irreversibility, this choice will allow us to move to a reversible
model to take into account concentration and reaction favor-
ability. Yet moving to a reversible model, either powered or
unpowered, with assembly concentrations starting at zero,
presents difficulties that illustrate limitations on the physical
relevance of the 2HAM.

In the unified 2HAM at t = 2, the tile system in Fig. 12(a) will
assemble into two dimers, which, as they have only a total bond
strength of 1 that could join them, will never assemble into a
square. Moving to a reversible, hierarchical, powered, contin-
uous model, however, the square assembly will have an initially
unfavorable reaction constructing it:

(1) t1 þ t2 Ð
k̂f

k̂f e
�2Gse

A12

(2) t3 þ t4 Ð
k̂f

k̂f e
�2Gse

A34

(3) t1 þ t3Ð
k̂f

k̂f e
�Gse

A13

(4) A12 þ A34Ð
k̂f

k̂f e
�Gse

A1234

(5) Other reactions that are either unfavorable, or involve
unfavorable, incomplete squares.

(6) Constant monomer concentrations [ti] = c0 = u0e�Gmc+a.
While not every reaction is enumerated here, with constant

monomer concentrations, we can obtain steady-state concen-
trations of assemblies in the same manner as for the kTAM on
the basis of the free energy changes involved: an assembly A will
have a steady-state concentration [A] = u0eBGse�NGmc+a � u0e�G(A)+a,

Fig. 12 Simple tile systems in the 2HAM. (a) Shows a tile system that will
assemble into two dimers at t = 2, but will not assemble into a complete
square, as only a bond strength of 1 can be made between the two dimers.
(b) Shows the same system with one additional bond, allowing it to
assemble hierarchically into a square. (c) Shows the steady-state concen-
trations for the system in (b) in an unpowered, reversible model, where [t] is
the concentration of each monomer, [D] is the concentration of each
favorable dimer, and [S] is the concentration of the square; unfavorable
assemblies remain at least a factor of 105 below c0 for the region in the
graph. For this graph, Gse = 8.
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where B is the total bond strength and N is the total number of
tiles in the assembly. If concentrations of monomers are set
such that Gmc = 2Gse � e, as would be done for the t = 2 kTAM,
then the dimers A12 and A34 will each have steady-state con-
centrations u0e2Gse�2Gmc+a = u0e�Gmc+aee = c0ee, higher than the
monomer concentration. While monomer–monomer reactions
that are initially unfavorable will remain unfavorable, the
dimer–dimer interactions that are initially unfavorable will
eventually become favorable as dimer concentrations increase.
The steady state concentration of the square, with B = 5 and
N = 4, is [A1234]ss = u0e5Gse�4Gmc+a = c0e3e�Gse. For a large enough e,
the square will assemble favorably, and eventually end up
higher than the monomer concentration as well. In this basic

system, eo
Gse

3
could be seen as an upper bound for e; for

systems with larger assemblies, however, this limit will become
smaller. In general, for an assembly constructed with no
hierarchical steps where each tile attaches by bond strength 2,
[A(n)]ss = c0e(n�1)e, where n is the number of tiles in the assembly.
Two of these assemblies attaching by bond strength 1 would
result in concentration c0e(2n�1)e�Gse. Thus, in the reversible,
hierarchical, powered, continuous model with parameters set
for t = 2, for any choice of e, there may exist two sufficiently large
assemblies with concentrations high enough that t = 1 growth
between them becomes favorable.

This problem of high steady-state concentrations of undesired
assemblies arises from the limits of the powered model as an
approximation of unpowered growth. The same points could also
be applied to assemblies with errors in the kTAM, but in the
kTAM powered models can remain physically relevant if assembly
concentrations are limited by some means, such as nucleation
control. There is no need for assembly concentrations to reach or
exceed tile concentrations during growth, and growth can be
studied as remaining in the ‘‘initial moments’’ of a powered
model, where assembly concentrations remain low. For hierarch-
ical systems to assemble hierarchically, however, assemblies need
to reach concentrations high enough to make assembly–assembly
attachment favorable. If monomer concentrations are initially set
to allow for slightly favorable monomer–monomer attachment,
then assemblies must reach concentrations similar to those of
tiles: no significant hierarchical assembly will take place in the
initial moments. A significant concentration of monomers must
be used to attain these assembly concentrations, thus limiting the
relevance of a powered hierarchical model as an approximation of
an unpowered model.

Two other choices exist. First, the powered model could be
seen as a model of an actual powered system, where monomers
are added to the system as they are used by some currently
undeveloped experimental technique. As an actual powered
system, however, the above problems of undesired assemblies
would actually be present, and thus the 2HAM would be
inappropriate for studying it.

Alternatively, unpowered hierarchical models can be con-
sidered directly. Adding an extra bond to the system in
Fig. 12(a) results, in Fig. 12(b), in a working system for 2 � 2
squares in the 2HAM. In the reversible, hierarchical, unpowered,

continuous model, the chemical reactions and rates for assem-
blies and monomers will remain the same as in the powered
model, but rather than monomer concentrations being held
constant, concentrations will be constrained by the series of
equations, for each tile ti, of

ti½ � þ
X

ti2Aj

Aj

nti ;Ak
Aj

� �
¼ c0; (13)

where Aj is any assembly that contains tile type ti, nti,Ak
is the

number of times tile type ti appears in assembly Aj (in this
example, 1), and c0 is the initial concentration of each monomer.
There are nine possible assemblies (4 dimers, 4 trimers, and a
square), of which 3 (2 dimers and a square) are energetically
favorable. Using symmetry to reduce monomer concentrations
to one degree of freedom, the equilibrium concentrations now
become the root of the fourth-order polynomial

[t] + (e�2Gse + e�Gse)[t]2 + 3e�3Gse[t]3 + e�6Gse[t]4 = c0. (14)

Setting c0 to u0e�Gmc+a = u0e�2Gse+e+a, an example of equili-
brium concentrations as a function of e is shown in Fig. 12(c).
Small e results in low concentrations of the completed square:
initial growth needs to be significantly forward-biased to com-
plete assembly, so that intermediate assembly concentrations
can reach a high enough level to allow favorable hierarchical
attachment. For larger, more complex hierarchical systems, this
problem worsens: larger assemblies would require initial con-
centrations to be even further from equilibrium. At some point,
in contrast to the powered model, the assembly of sufficiently
large assemblies at t = 2 would require initial monomer
attachments take place at t = 1. For kTAM systems, seeded
growth can reduce this issue of tile depletion, but for 2HAM
systems, as intermediate assembly concentrations must be able
to approach concentrations for favorable t = 2 growth, the same
approach is not possible. From a kinetic perspective, the
problem is even worse, as assembly–assembly interactions will
initially involve two very low concentration terms in a bimole-
cular reaction rather than one low concentration assembly and
one high concentration monomer, making assembly–assembly
interactions in the initial moments of growth extremely slow.

This particular system in the unpowered model is also
uniquely-addressed, rather than being actually algorithmic,
which minimizes the depletion of each monomer. For a system
that instead makes use of an individual tile ti n times in an
assembly A, it is easily seen that in an unpowered model, that
assembly must have a concentration [A] r [ti]/n so that total tile
concentrations are conserved. Two sufficiently large assemblies
of this kind, in a situation of near-equilibrium t = 2 growth for
monomers, would always remain at concentrations making
hierarchical attachment unfavorable, as they would be constrained
to significantly lower concentrations than the monomers.

These examples illustrate that 2HAM systems, as studied in
theoretical computer science, cannot easily be moved to more
physical models and retain similar behavior. The difficulty, in
both the powered and unpowered cases, is that the concept of a
globally-applicable threshold t for binding breaks down when
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applied not just to monomer–assembly interactions, but also to
assembly–assembly interactions in a hierarchical model.
Whether assembly–assembly binding is favorable cannot be
approximated by considering only bond strengths: the concentra-
tions of each assembly must be considered separately. This is part
of the approximation in irreversible models, but in monomer-
addition models, tile concentrations can be considered equal, at
least initially, while in a hierarchical model, assembly concentra-
tions cannot be considered in the same way while retaining
physical relevance. Assemblies could be considered as each having
distinct, time-varying ts, which would start at N, but could end up
higher or lower than the initial t for tiles.

Annealing could be one possibility to address concentrations
in hierarchical assembly, by gradually making bonds stronger
over time as temperature is decreased. However, since simple
annealing would have a uniform effect on a system over time, it
would not be enough to allow 2HAM systems in general to
assemble in a more physical model. Assemblies of significantly
different sizes, for example, could end up at very different
concentrations, and interact favorably at different temperatures,
or tiles could be depleted creating some smaller assemblies
before hierarchical assembly at lower temperatures created
new assemblies requiring those tiles for continued growth.

Whether there is a non-trivial subset of systems which assemble
hierarchically in both the 2HAM and more physically-relevant
models is an open question; the lack of a way to approximate a
globally-applicable t significantly limits the classes of 2HAM-
designed systems that can be clearly seen to behave similarly in
more physically-relevant models, and thus limits the model’s
physical relevance. Yet hierarchical self-assembly, in general, is a
worthwhile area of research. Theoretical work on the 2HAM has
shown several important differences in the computational power of
hierarchical assembly in comparison to monomer-addition
assembly.12 From another perspective, supramolecular chemists
have successfully designed hierarchically-assembling structures of
a few components,80,81 and fascinatingly complex hierarchical self-
assembly is seen throughout biology,19,82,83 often assembling with-
out annealing. A common element in many of these systems is the
presence of bonds of different types and strengths at different
levels of hierarchical assembly. Particularly in biological systems,
there is also often significant restructuring and chaperoning
involved, some bonds can become active only when subassemblies
are completed, and gene expression feedback can allow monomer
concentrations to be controlled by the assembly process. None of
these phenomena can be effectively accounted for in the 2HAM,
but they could provide possible routes to a more physically-relevant
abstract model of hierarchical tile self-assembly. Indeed, the funda-
mental importance of physical factors not accounted for in the
2HAM makes the design of physically-robust hierarchically assem-
bling algorithmic systems a fascinating and open problem.

7 Conclusions

Through the development of these models and techniques,
complex algorithmic self-assembly with DNA tiles has gradually

moved toward experimental practicality. Error rates have
fallen significantly with the use of proofreading tile systems
and constant-temperature growth, while seeded systems
with barriers to nucleation have allowed for strong control of
spurious nucleation rates. Experimental work is now close to a
point where some of algorithmic assembly’s theoretical
potential can be realized, with the construction of large tile
systems that are able to perform comparatively complex com-
putations in their growth.

From an experimental standpoint, systems of 1000 unique
SST tiles have been successfully used to build uniquely-
addressed structures.25 Meanwhile, systems of around 22 DX
tiles and 35 unique ends, have been used to construct algo-
rithmic structures of thousands of tiles with decreasing error
rates.15 Whether the formidable sequence space of SST tiles can
be used for complex algorithmic assembly or DX tile systems can
be scaled to allow for more complex computation remains to be
seen. The ability of tile systems to algorithmically construct
finite terminal assemblies that stop growing and remain stable
also presents a challenge that is currently being researched.15

At a larger scale, almost all of the advances in physical
understanding of tile assembly have been made through
models that consider aspects in isolation. Experimental con-
structions have made use of proofreading, zig-zag ribbons
for nucleation control, and constant-temperature growth with
varying tile concentrations all at once.31,62 The implications
of doing so, and the interactions between the methods, are
unclear: in the zig-zag tile systems of Barish et al.31 and later
work, for example, several proofreading blocks assemble par-
tially in one direction and are then completed in the other
direction of ribbon growth, rather than assembling individually
as considered in theoretical work on proofreading. Theoretical
work that unifies the numerous physical aspects of tile assem-
bly could not only provide insight into the interactions between
methods, but also potentially motivate novel techniques that
could solve several problems at once.
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