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Abstract

DNA nanotechnology is an emerging field which utilizes the unique structural properties of

nucleic acids in order to build nanoscale devices, such as logic gates, motors, walkers, and

algorithmic structures. Predicting the structure and interactions of a DNA device requires

good modeling of both the thermodynamics and the kinetics of the DNA strands within

the system. The kinetics of a set of DNA strands can be modeled as a continuous time

Markov process through the state space of all secondary structures. The primary means

of exploring the kinetics of a DNA system is by simulating trajectories through the state

space and aggregating data over many such trajectories.

We expand on previous work by extending the thermodynamics and kinetics models to

handle multiple strands in a fixed volume, and show that the new models are consistent

with previous models. We developed data structures and algorithms that allow us to take

advantage of local properties of secondary structure, improving the efficiency of the sim-

ulator so that we can handle larger systems. The new kinetic parameters in our model

were calibrated by analyzing simulator results on experimental systems that measure basic

kinetic rates of various processes. Finally, we apply the new simulator to explore a case

study on toehold-mediated four-way branch migration.
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Chapter 1

Introduction

DNA nanotechnology is an emerging field that utilizes the unique structural properties of nu-

cleic acids in order to build nanoscale devices, such as logic gates [23], motors [4, 1], walkers

[24, 1, 26], and algorithmic structures [18, 31]. These devices are built out of DNA strands

whose sequences have been carefully designed in order to control their secondary structure—

the hydrogen bonding state of the bases within the strand (called “base-pairing”). This

base-pairing is used to not only control the physical structure of the device, but also to en-

able specific interactions between different components of the system, such as allowing, for

example, a DNA walker to take steps along a prefabricated track. Predicting the structure

and interactions of a DNA device requires good modeling of both the thermodynamics and

the kinetics of the DNA strands within the system. Thermodynamic models can be used

to make equilibrium predictions for these systems, allowing us to look at questions like “Is

the walker-track interaction a well-formed and stable molecular structure?”, while kinetics

models allow us to predict the non-equilibrium dynamics, such as “How quickly will the

walker take a step?” While the thermodynamics of multiple interacting DNA strands is a

well-studied model [6], which allows for both analysis and design of DNA devices [34, 7],

previous work on secondary structure kinetics models only explored the kinetics of how a

single strand folds on itself [8].

The kinetics of a set of DNA strands can be modeled as a continuous time Markov pro-

cess through the state space of all secondary structures. Due to the exponential size of this

state space it is computationally intractable to obtain an analytic solution for most problem

sizes of interest. Thus the primary means of exploring the kinetics of a DNA system is by

simulating trajectories through the state space and aggregating data over many such tra-

jectories. We present here the Multistrand kinetics simulator, which extends the previous
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work [8] by using the multiple strand thermodynamics model [6] (a core component for cal-

culating transition rates in the kinetics model), adding new terms to the thermodynamics

model to account for stochastic modeling considerations, and by adding new kinetic moves

that allow bimolecular interactions between strands. Furthermore, we prove that this new

kinetics and thermodynamics model is consistent with the prior work on multiple strand

thermodynamics models [6].

The Multistrand simulator is based on the Gillespie algorithm [9] for generating sta-

tistically correct trajectories of a stochastic Markov process. We developed data structures

and algorithms that take advantage of local properties of secondary structures. These algo-

rithms enable the efficient reuse of the basic objects that form the system, such that only a

very small part of the state’s neighborhood information needs to be recalculated with every

step. A key addition was the implementation of algorithms to handle the new kinetic steps

that occur between different DNA strands, without increasing the time complexity of the

overall simulation. These improvements lead to a reduction in worst case time complexity

of a single step and also led to additional improvements in the average case time complexity.

What data does the simulation produce? At the very simplest, the simulation produces

a full kinetic trajectory through the state space—the exact states it passed through, and

the time at which it reached them. A small system might produce trajectories that pass

through hundreds of thousands of states, and that number increases rapidly as the system

gets larger. Going back to our original question, the type of information a researcher hopes

to get out of the data could be very simple: “How quickly does the walker take a step?”,

with the implied question of whether it’s worth it to actually purchase the particular DNA

strands composing the walker to perform an experiment, or go back to the drawing board

and redesign the device. One way to acquire that type of information is to look at the first

time in the trajectory where we reached the “walker took a step” state, and record that

information for a large number of simulated trajectories in order to obtain a useful answer.

We designed and implemented new simulation modes that allow the full trajectory data to

be condensed as it’s generated into only the pieces the user cares about for their particular

question. This analysis tool also required the development of flexible ways to talk about

states that occur in trajectory data; if someone wants data on when the walker took a step,

we have to be able to express that in terms of the Markov process states which meet that

condition.
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Chapters 1, 2, 3, 4, 6, 7, and Appendix A originally appeared in my Master’s thesis.

Chapter 5 is a completely new proof of equivalence between the thermodynamics model we

develop in Chapter 3 and the NUPACK model. Chapter 8 discusses how we calibrate the

kinetics parameters kuni and kbi which were introduced in Chapter 4. Chapter 9 is a case

study on using the simulator to explore a toehold-mediated four-way branch migration. The

experimental data kfit1 in Chapter 9 is from Dabby, et al. [5] on which I am a co-author.

I performed simulations using Multistrand for that work, which appear in that paper and

are presented in more detail here.

Found in the Master’s thesis but not here are two appendices which describe the software

design for the data structures and algorithms used in simulator, as well as a different proof

of equivalence between our thermodynamics model and the NUPACK model.
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Chapter 2

System

We are interested in simulating nucleic acid molecules (DNA or RNA) in a stochastic regime;

that is to say that we have a discrete number of molecules in a fixed volume. This regime is

found in experimental systems that have a small volume with a fixed count of each molecule

present, such as the interior of a cell. We can also apply this to experimental systems with

a larger volume (such as a test tube) when the system is well mixed, as we can pick a fixed

(small) volume and deal with the expected counts of each molecule within it, rather than

the whole test tube.

To discuss the modeling and simulation of the system, we need to be very careful to

define the components of the system, and what comprises a state of the system within the

simulation.

2.1 Strands

Each DNA molecule to be simulated is represented by a strand. Our system then contains

a set of strands Ψ∗, where each strand s ∈ Ψ∗ is defined by s = (id, label, sequence). A

strand’s id uniquely identifies the strand within the system, while the sequence is the ordered

list of nucleotides that compose the strand.

Two strands could be considered identical if they have the same sequence. However, in

some cases it is convenient to make a distinction between strands with identical sequences.

For example, if one strand were to be labeled with a fluorophore, it would no longer be

physically identical to another with the same sequence but no fluorophore. Thus, the label

is used to designate whether two strands are identical. We define two strands as being

identical if they have the same labels and sequences. In most cases this distinction between
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the label and the sequence is not used, so it will be explicitly noted when it is important.

2.2 Complex Microstate

A complex is a set of strands connected by base pairing (secondary structure). We define the

state of a complex by c = (ST, π∗, BP ), called the “complex microstate”. The components

are a nonempty set of strands ST ⊆ Ψ∗, an ordering π∗ on the strands ST , and a list of

base pairings BP = {(ij · kl) | base i on strand j is paired to base k on strand l, and j ≤ l,

with i < k if j = l}, where we note that “strand l” refers to the strand occurring in position

l in the ordering π∗. Note that we require a complex to be “connected”: there is no proper

subset of strands in the complex for which the base pairings involving those strands do not

involve at least one base outside that subset. Given a complex microstate c, we will use

ST (c), π∗(c), BP (c) to refer to the individual components.

While this definition defines the full space of complex microstates, it is common to disal-

low some secondary structures due to physical or computational constraints. For example,

we disallow the pairing of a base with any other within three bases on the same strand, as

this would correspond to an impossible physical configuration. Another class of disallowed

structures are called the pseudoknotted secondary structures, which require computationally

difficult energy model calculations, and are fully defined and discussed further in Appendix

A.

2.3 System Microstate

A system microstate represents the configuration of the strands in the volume we are sim-

ulating (the “box”). Since we allow complexes to be formed of one or more strands, every

unique strand in the system must be present in a single complex and thus we can represent

the system microstate by a set of those complexes.

We define a system microstate i as a set of complex microstates, such that each strand

in the system is in exactly one complex within the system. This is formally stated in the

following equation:
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⋃
c ∈ i

ST (c) = Ψ∗ and ∀c, c′ ∈ i with c 6= c′, ST (c) ∩ ST (c′) = ∅ (2.1)

This definition leads to the natural use of |i| to indicate the number of complexes present

in system microstate i, and i \ j to indicate the complex microstates present in system

microstate i that are not in j.
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Chapter 3

Energy

The conformation of a nucleic acid strand at equilibrium can be predicted by a well-studied

model, called the nearest neighbor energy model [20, 19, 21]. Recent work has extended

this model to cover systems with multiple interacting nucleic acid strands [6].

The distribution of system microstates at equilibrium is a Boltzmann distribution, where

the probability of observing a microstate i is given by

Pr(i) =
1

Qkin
∗ e−∆Gbox(i)/RT (3.1)

where ∆Gbox(i) is the free energy of the system microstate i, and is the key quantity

determined by these energy models. Qkin =
∑

i e
−∆Gbox(i)/RT is the partition function of

the system, R is the gas constant, and T is the temperature of the system.

3.1 Energy of a System Microstate

We now consider the energy of the system microstate i, and break it down into components.

The system consists of many complex microstates c, each with their own energy. We also

must account for the entropy of the system (the number of configurations of the complexes

spatially within the “box”) in the energy, and thus must define these two terms.

Let us first consider the entropy term. We consider the “zero” energy system microstate

to be the one in which all strands are in separate complexes, thus our entropy term is in

terms of the reduction of available states caused by having strands join together.
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We assume that the number of complexes in the system, C, is much smaller than the

number of states within our box, V
V0

, where V is the simulated volume, and V0 is our reference

volume1 chosen to be consistent with existing thermodynamic models (see Sections 3.4 and

5).

We can then approximate the standard statistical entropy of the system as C∗RT log V
V0

.

Letting Ltot be the total number of strands in the system, our zero state is then Ltot ∗

RT log V
V0

. Defining ∆Gvolume = RT log V
V0

, the contribution to the energy of the system

microstate i from the entropy of the box is then:

(Ltot − C) ∗∆Gvolume

And thus in terms of C,Ltot,∆Gvolume and ∆G(c) (the energy of complex microstate c,

defined in the next section), we define ∆Gbox(i), the energy of the system microstate i, as

follows:

∆Gbox(i) = (Ltot − C) ∗∆Gvolume +
∑
c ∈ i

∆G(c)

The energy formulas derived here, suitable for our stochastic model, differ from those in

[6] in two main ways: the lack of symmetry terms, and the addition of the ∆Gvolume term.

We compare this stochastic model to the mass action model in much more detail in Section 5.

3.2 Energy of a Complex Microstate

We previously defined a complex microstate in terms of the list of base pairings present

within it. However, the well-studied models are based upon nearest neighbor interactions

between the nucleic acid bases. These interactions divide the secondary structure of the

1We calculate V0 as the volume in which we would have exactly one molecule at a standard concentration
of 1 mol/L: V0 = 1/(Na ∗ 1 mol/L), where Na is Avogadro’s number, and thus V0 is in liters.

Similarly, we may wish to calculate V based on the concentration u in mol/L of a single strand such that
the volume V is chosen such that exactly one molecule is present in that volume. In this case we have
V = 1

u∗Na
and our number of states in the box is then V

V0
= Na

u∗Na
= 1

u
.
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system into local components which we refer to as loops, shown in Figure 3.1.

IV.
Multiloop

V. Exterior
Loop

I.
StackIII. Bulge

Loop

II. Interior
Loop

VI. Hairpin

Figure 3.1: Secondary structure divided into loops

These loops can be broken down into different categories, and parameter tables and

formulas for each category have been determined from experimental data [21]. Each loop

l has an energy, ∆G(l) which can be retrieved from the appropriate parameter table for

its category. Each complex also has an energy contribution associated with the entropic

initiation cost [3] (e.g., rotational) of bringing two strands together, ∆Gassoc, and the total

contribution is proportional to the number of strands L within the complex, as follows:

(L− 1) ∗∆Gassoc.

The energy of a complex microstate c is then the sum of these two types of contributions.

We can also divide any free energy ∆G into the enthalpic and entropic components, ∆H

and ∆S related by ∆G = ∆H + T ∗ ∆S, where T is the temperature of the system.

For a complex microstate, each loop can have both enthalpic and entropic components,

but ∆Gassoc is usually assumed to be purely entropic [20]. This becomes important when

determining the kinetic rates, in Section 4.

We use ∆G(c) to refer to the energy of a complex microstate to be consistent with the

nomenclature in [6], where ∆G(c) refers to the energy of a complex when all strands within

it are consider unique (as is the case in our system), and ∆G(c) is the energy of the com-

plex, without assuming that all strands are unique (and thus it must account for rotational

symmetries). This is discussed more in Section 5.
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In summary, the standard free energy of a complex microstate c, containing L = |ST (c)|

strands:

∆G(c) =

 ∑
loop l ∈c

∆G(l)

+ (L− 1)∆Gassoc

3.3 Computational Considerations

While the simulator could use the system microstate energy in the form given in the previous

sections, it is convenient for us to group terms such that the computation need only take

place per complex. Thus we wish to include the (Ltot − C)∆Gvolume term in the energy

computation for the complex microstates. Recall that Ltot is the number of strands in the

system, and C is the number of complexes in the system microstate. Assuming that we are

computing the energy ∆Gbox of system microstate i, we can rewrite Ltot and C as follows:

Ltot =
∑
c ∈ i
|ST (c)|

C =
∑
c ∈ i

1

And thus arrive at:

∆Gbox(i) =
∑
c∈i

(
∆G(c) + (|ST (c)| − 1) ∗∆Gvolume

)
We then define ∆G∗(c) = ∆G(c) + (|ST (c)| − 1) ∗ ∆Gvolume, and L(c) = |ST (c)| and

thus have the following forms for the energy of a system microstate and the energy of a

complex microstate:
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∆Gbox(i) =
∑
c∈i

∆G∗(c)

∆G∗(c) =

 ∑
loop l∈c

∆G(l)

+ (L(c)− 1) ∗ (∆Gassoc + ∆Gvolume)

3.4 Choice of Units

The free energy ∆G ◦ for a reaction A + B −⇀↽− C is usually expressed in terms of the

equilibrium constant Keq and the concentrations [A], [B], [C] (in mol/L) of the molecules

involved, as follows: e∆G ◦/RT = Keq = [A][B]
[C] . We can also express the free energy ∆G′

in terms of the dimensionless mole fractions xA, xB, xC , where xi = [i]/ρH2O (for dilute

solutions), and ρH2O is the molarity of water (55.14 mol/L at 37 ◦C). In this case, we have

e∆G′/RT = K ′eq = xA∗xB
xC

, and relating it to the previous equation, we see that e∆G′/RT =

([A]/ρH2O
)∗([B]/ρH2O

)

[C]∗ρH2O
= [A][B]

[C] ∗
1

ρH2O
= e∆G ◦/RT ∗e− log ρH2O . Thus if we have an energy ∆G ◦

which was for concentration units and we wish to use mole fraction units, we must adjust it

by −RT log ρH2O (−2.47 kcal/mol at 37 ◦C) to obtain the correct quantity. In general, if we

have a complex of N molecules, the conversion to mole fractions will require an adjustment

of −(N − 1) ∗RT log ρH2O.

In the reference [6], free energies are always in mole fraction units, and the −RT log ρH2O

term is included as part of the ∆Gassoc term (footnote 13 in [6]), as follows: ∆Gassoc =

∆Gpubassoc −RT log ρH2O, where ∆Gpubassoc is the reference value found in [3] (1.96 kcal/mol at

37 ◦C) and is the value we use for ∆Gassoc when using molar concentration units.

Since we expect the probability of observing a particular complex microstate to remain

the same no matter what reference units we use for the free energy, this implies that if

we wanted to express our ∆G∗(c) in mole fraction units, we would need to use ∆Gassoc =

∆Gpubassoc−RT log ρH2O and ∆Gvolume = RT log V
V0

+RT log ρH2O in order for the probability

of observing the state c to remain the same. We note that this ∆Gvolume simplifies to being

∆Gvolume = RT log(V ∗ ρH2O ∗ Na) = RT logMs, where Ms is the number of solvent

molecules found in the volume V .

We use the molar concentration units (∆Gvolume = RT log V
V0

= RT log 1
u , ∆Gassoc =

∆Gpubassoc) for the remainder of this thesis, except in Section 5 where we use mole fraction
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units (∆Gvolume = RT logMs, ∆Gassoc = ∆Gpubassoc−RT log ρH2O) to be consistent with the

units in [6].
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Chapter 4

Kinetics

4.1 Basics

Thermodynamic predictions have only limited use for some systems of interest, if the key

information to be gathered is the reaction rates and not the equilibrium states. Many

systems have well-defined ending states that can be found by thermodynamic prediction,

but predicting whether it will reach the end state in a reasonable amount of time requires

modeling the kinetics. Kinetic analysis can also help uncover poor sequence designs, such

as those with alternate reactions leading to the same states, or kinetic traps which prevent

an intended reaction from occurring quickly.

The kinetics are modeled as a continuous time Markov process over secondary structure

space. System microstates i, j are considered adjacent if they differ by a single base pair

(Figure 4.1), and we choose the transition rates kij (the transition from state i to state j)

and kji such that they obey detailed balance:

kij
kji

= e−
∆Gbox(j)−∆Gbox(i)

RT (4.1)

This property ensures that given sufficient time we will arrive at the same equilibrium

state distribution as the thermodynamic prediction, (i.e., the Boltzmann distribution on

system microstates, equation 3.1) but it does not fully define the kinetics as this only

constrains the ratio
kij
kji

. We discuss how to choose these transition rates in the following

sections, but regardless of this choice, we can still determine how the next state is chosen

and the time at which that transition occurs.
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state j: state i:

state q:

k
ji

kij

kqjkjq

Figure 4.1: System microstates i, q adjacent to current state j, with many others not shown

Given that we are currently in state i, the next state m in a simulated trajectory is

chosen randomly among the adjacent states j, weighted by the rate of transition to each.

Pr(m) =
kim

Σjkij
(4.2)

Similarly, the time taken to transition to the next state is chosen randomly from an

exponential distribution with rate parameter λ, where λ is the total rate out of the current

state, Σjkij .

Pr(∆t) = λ exp(−λ∆t) (4.3)

We will now classify transitions into two exclusive types: those that change the number

of complexes present in the system, called bimolecular transitions, and those where changes

are within a single complex, called unimolecular transitions.
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4.2 Unimolecular Transitions

Because unimolecular transitions involve only a single complex, it is natural to define these

transitions in terms of the complex microstate which changed, rather than the full system

microstate. Like Figure 4.1 implies, we define a complex microstate d as being adjacent to

a complex microstate c if it differs by exactly one base pair. We call a transition from c

to d that adds a base pair a creation move, and a transition from c to d that removes a

base pair a deletion move. The exclusion of pseudoknotted structures is not inherent in this

definition of adjacent states, but rather arises from our disallowing pseudoknotted complex

microstates.

In more formal terms we now define the adjacent states to a system microstate, rather

than those adjacent to a complex microstate as in the simple definition above. Recall from

Section 2.3 that |i| is the number of complexes present in system microstate i, and i \ j is

the set of complex microstates in i that are not also in system microstate j.

Two system microstates i, j are adjacent by a unimolecular transition iff ∃c ∈ i, d ∈ j

such that:

|i| = |j| and i \ j = {c} and j \ i = {d} (4.4)

and one of these two holds:

BP (c) ⊂ BP (d) and |BP (d)| = |BP (c)|+ 1 (4.5)

BP (d) ⊂ BP (c) and |BP (c)| = |BP (d)|+ 1 (4.6)

In other words, the only differences between i and j are in c and d, and they differ by

exactly one base pair. If equation 4.5 is true, we call the transition from i to j a base pair

creation move, and if equation 4.6 is true, we call the transition from i to j a base pair

deletion move. Note that if i to j is a creation move, j to i must be a deletion move, and

vice versa. Similarly, if there is no transition from i to j, there cannot be a transition from

j to i, which implies that every unimolecular move in this system is reversible.
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4.3 Bimolecular Transitions

A bimolecular transition from system microstate i to system microstate j is one where the

single base pair difference between them leads to a differing number of complexes within

each system microstate. This differing number of complexes could be due to a base pair

joining two complexes in i to form a single complex in j, which we will call a join move.

Conversely, the removal of this base pair from i could cause one complex in i to break into

two complexes within j, which we will call a break move. Note that if i to j is a join move,

then j to i must be a break move, and vice versa. As we saw before, this also implies that

every bimolecular move is reversible.

Formally, a transition from system microstate i to system microstate j is a join move if

|i| = |j|+ 1 and we can find complex microstates c, c′ ∈ i and d ∈ j, with c 6= c′ such that

the following equations hold:

i \ {c, c′} = j \ {d} (4.7)

∃x ∈ BP (d) s.t. BP (d) \ {x} = BP (c) ∪BP (c′) (4.8)

Similarly, a transition from system microstate i to system microstate j is a break move

if |i|+ 1 = |j| and we can find complex microstates c ∈ i and d, d′ ∈ j with d 6= d′ such that

the following equations hold:

i \ {c} = j \ {d, d′} (4.9)

∃x ∈ BP (c) s.t. BP (c) \ {x} = BP (d) ∪BP (d′) (4.10)

While arbitrary bimolecular transitions are not inherently prevented from forming pseu-

doknots in this model, we again implicitly prevent them by using only complex microstates

that are not pseudoknotted.
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4.4 Transition Rates

Now that we have defined all of the possible transitions between system microstates, we

must decide how to assign rates to each transition. We know that if there is a transition

from system microstate i to system microstate j with rate kij there must be a transition

from j to i with rate kji which are related by:

kij
kji

= e−
∆Gbox(j)−∆Gbox(i)

RT (4.11)

This condition is known as detailed balance, and does not completely define the rates

kij , kji. Thus a key part of our model is the choice of rate method, the way we set the rates

of a pair of reactions so that they obey detailed balance.

While our simulator can use any arbitrary rate method we can describe, we would like

our choice to be physically realistic (i.e., accurate and predictive for experimental systems).

There are several rate methods found in the literature [11, 12, 36] which have been used for

kinetics models for single-stranded nucleic acids [8, 36] with various energy models. As a

start, we have implemented three of these simple rate methods which were previously used

in single base pair elementary step kinetics models for single stranded systems. In addition

we present a rate method for use in bimolecular transitions that is physically consistent

with both mass action and stochastic chemical kinetics. We verify that the kinetics model

(and thus our choice of rate method) have been correctly implemented by verifying that the

detailed balance condition holds (Section 7.1.2).

In order to maintain consistency with known thermodynamic models, each pair of kij and

kji must satisfy detailed balance and thus their ratio is determined by the thermodynamic

model, but in principle each pair could be independently scaled by some arbitrary prefactor,

perhaps chosen to optimize agreement with experimental results on nucleic acid kinetics.

However, since the number of microstates is exponential, this leads to far more model

parameters (the prefactors) than is warranted by available experimental data. For the time

being, we limit ourselves to using only two scaling factors: kuni for use with unimolecular

transitions, and kbi for bimolecular transitions.
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4.5 Unimolecular Rate Models

The first rate model we will examine is the Kawasaki method [11]. This model has the

property that both “downhill” (energetically favorable) and uphill transitions scale directly

with the steepness of their slopes.

kij = kuni ∗ e−
∆Gbox(j)−∆Gbox(i)

2RT (4.12)

kji = kuni ∗ e−
∆Gbox(i)−∆Gbox(j)

2RT (4.13)

The second rate model under consideration is the Metropolis method [12]. In this model,

all downhill moves occur at the same fixed rate, and only the uphill moves scale with the

slope. This means that the maximum rate for any move is bounded, and in fact all downhill

moves occur at this rate. This is in direct contrast to the Kawasaki method, where there is

no bound on the maximum rate.

if ∆Gbox(i) > ∆Gbox(j) then kij = 1 ∗ kuni (4.14)

kji = kuni ∗ e−
∆Gbox(i)−∆Gbox(j)

RT (4.15)

otherwise, kij = kuni ∗ e−
∆Gbox(j)−∆Gbox(i)

RT (4.16)

kji = 1 ∗ kuni (4.17)

Finally, the entropy/enthalpy method [36] uses the division of free energies into entropic

and enthalpic components to assign the transition rates in an intuitive manner: base pair

creation moves must overcome the entropic energy barrier to bring the bases into contact,

and base pair deletion moves must overcome the enthalpic energy barrier in order to break

them apart.
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if i to j is a creation: kij = kuni ∗ e
∆Sbox(j)−∆Sbox(i)

R (4.18)

kji = kuni ∗ e−
∆Hbox(i)−∆Hbox(j)

RT (4.19)

otherwise, kij = kuni ∗ e−
∆Hbox(j)−∆Hbox(i)

RT (4.20)

kji = kuni ∗ e
∆Sbox(i)−∆Sbox(j)

R (4.21)

We note that the value of kuni that best fits experimental data is likely to be different

for all three models (see Section 8). Additionally, due to equations 4.5 and 4.6, the energies

of system microstates i and j, ∆Gbox(i) and ∆Gbox(j) differ in exactly one pair of complex

microstates c ∈ i, d ∈ j, and by exactly three loop terms in those complex microstates.

4.6 Bimolecular Rate Model

When dealing with moves that join or break complexes, we must consider the choice of how

to assign rates for each transition in a new light. In the particular situation of the join

move, where two molecules in a stochastic regime collide and form a base pair, this rate is

expected to be modeled by stochastic chemical kinetics.

Stochastic chemical kinetics theory [9] tells us that there should be a rate constant k such

that the propensity of a particular bimolecular reaction between two species X and Y should

be k ∗#X ∗#Y/V , where #X and #Y are the number of copies of X and Y in the volume

V . Since our simulation considers each strand to be unique, #X = #Y = 1, and thus we

see the propensity should scale as 1/V . Recalling that ∆Gvolume = RT log V
V0

= RT log 1
u ,

we see that we can obtain the 1/V scaling by letting the join rate be proportional to

e−∆Gvolume/RT .

Thus, we arrive at the following rate method, and note that the choice of k (above) or

our scalar term kbi can be found by comparison to experiments measuring the hybridization

rate of oligonucleotides [28] (see Section 8).
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if i to j is a complex join move: kij = kbi ∗ e
−∆Gvolume

RT = kbi ∗
V0

V
= kbi ∗ u (4.22)

kji = kbi ∗ e−
∆Gbox(i)−∆Gbox(j)+∆Gvolume

RT (4.23)

otherwise, kij = kbi ∗ e−
∆Gbox(j)−∆Gbox(i)+∆Gvolume

RT (4.24)

kji = kbi ∗ e−
∆Gvolume

RT (4.25)

We note that like the bimolecular case, equations 4.7–4.10 imply that the system mi-

crostates i and j differ by exactly three loop terms in their complex microstates. However,

they also differ in the total number of complexes within each system microstate, such that

if i to j is a join move, ∆Gbox(i)−∆Gbox(j) = ∆Gloops(i, j)−∆Gvolume −∆Gassoc, where

∆Gloops(i, j) represents the energy differences between i and j due to the three differing

loop terms in the complex microstates.

This formulation is convenient for simulation, as the join rates are then independent

of the resulting secondary structure. We could use the other choices for assigning rates

from 4.4, but they would require much more computation time. While the above model

is of course an approximation to the physical reality (albeit one which we believe at least

intuitively agrees with what we expect from stochastic chemical kinetics), if we later deter-

mine there is a better approximation we could use that instead, even if it cost us a bit in

computation time. One issue in the above model that we wish to revisit in the future is that

due to the rate being determined for every possible first base pair between two complexes,

the overall rate for two complexes to bind (by a single base pair) is proportional roughly to

the square of the number of exposed nucleotides (although possibly only a linear subset is

likely to zipper up reliably), in addition to the 1
V dependence noted earlier.
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Chapter 5

Thermodynamic Equivalence
Between the Multistrand and
NUPACK Models

5.1 Introduction

We now wish to compare the Multistrand thermodynamics model and that of NUPACK

[34], which is described in [6]. These two models are over very similar state spaces; in the

Multistrand model we look at system microstates of a fixed volume where all strands are

uniquely labeled, and in the NUPACK model the system has states in a fixed volume, but

the strands in the system are not necessarily unique. So a natural way to begin comparing

the two models is to look at the probability of “events” in the system, such as the probability

of observing a particular state in the NUPACK model and the equivalent system microstates

in the Multistrand model after the system has been run long enough to reach equilibrium.

In order to calculate these probabilities, the quantity of interest is the partition function

for these models.

Let us consider the partition function for our system:

Qkin =
∑
s∈χ

e−∆G(s)/RT

where χ is the set of all possible unpseudoknotted system microstates for our fixed set

of unique strands in a box of volume V containing Ms solvent molecules. We would like

to show how this partition function Qkin relates to the partition function Qbox used in

NUPACK for the thermodynamics of multiple strand systems [6]. The partition function
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Qbox is for a system where strands are considered identical if they have the same sequences

and thus have symmetry factors when computing the energy of a complex. Additionally,

Qbox accounts for the energetics of the “box” (the volume in which the strands are present)

as part of the partition function itself, rather than in the energy of system states as is done

in our kinetic system.

In the Multistrand thermodynamics model, strands in the system are defined by three

pieces of information: a unique identifier, a label, and a sequence. In all of our previous

analysis, strands are always considered unique. However, in order to compare our system

with that of Dirks, et al. [6], we allow for the possibility of strands being considered

indistinguishable if they share the same label and sequence. This will allow us to establish

an equivalence between microstates in our model and those found in the thermodynamics

work. We call the combination of label and sequence a strand type, thus if two strands are

the same type, they are considered indistinguishable.

The thermodynamic partition function Qbox is expressed (at the lowest level) in terms

of partition functions Qj , which is the partition function over a single complex with type j

independent of volume. A complex type is a fixed set of strand types and counts of each

strand type, and represents a connected complex containing those strands (regardless of

their unique id), for example, a complex type might be {3 ∗ A, 2 ∗ B}, where A and B are

strand types. Thus the partition function over this complex type is the partition function

over all possible states of a single connected complex containing three A strands and two B

strands in any order. We now wish to break down our partition function Qkin into smaller

components in a similar way.

One way to approach the division of Qkin into smaller components is to look at the

complex partition functions for a particular set of strands ids. For example, in a system

with three strands (regardless of their types), one way to write the partition function is as

follows:

Qkin = Q{1} ∗Q{2} ∗Q{3} +Q{1,2} ∗Q{3} +Q{1,3} ∗Q{2} +Q{2,3} ∗Q{1} +Q{1,2,3}
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where Qr is the partition function over all complex microstates which involve the set r of

unique strands. Continuing this example, we let our three strands {1, 2, 3} (where numbers

indicate their unique ids) have types {A,A,B}, respectively. Now let Qkinj be the partition

function over complex microstates of a complex type j which used a fixed set of unique

identifiers—e.g., Qkin{A} is the partition function over all complex microstates which involve

a single strand of type A, with a fixed identifier. Note that we distinguish this with the

superscript kin due to the canonical Qj being over complex states where strands may be

considered indistinguishable, as opposed to our complex microstates where all strands are

unique. So now Q{1} = Q{2} = Qkin{A}, and so on, so we can simplify our original breakdown

of the partition function as follows:

Qkin =
(
Qkin{A}

)2
∗Qkin{B} +Qkin{2∗A} ∗Q

kin
{B} + 2 ∗Qkin{A,B} ∗Q

kin
{A} +Qkin{2∗A,B}

We now observe that two of the original terms in the expression for Qkin have been

collected into the single term 2 ∗Qkin{A,B} ∗Q
kin
{A}. We could calculate the coefficient in front

of the Qkin{A,B} ∗Q
kin
{A} term by determining how many distinct ways we could assign unique

strand identifiers to the A and B strands that would lead to complexes consistent with

those complex types. In this case there are only two ways: the only strand of type B (with

unique id 3) could be paired with either one of the two strands of type A (with unique ids

1, 2) to form the {A,B} complex, and then the other strand is in the single {A} complex.

In this proof, we will show how to relate the Qkinj to the canonical Qj , as well as how to

calculate the coefficient present in our Qkin summation for each term when using the Qkinj

form, which amounts to counting the number of ways we could assign the unique strand ids

in such a way as to match the complex types present in each term.

5.2 Definitions

We previously introduced the set of (uniquely labeled) strands Ψ∗, let us now introduce the

equivalent for the set of strand types. Ψ0 is the set of strand types (also known as species)

in our system, e.g., for our example system above, Ψ0 = {A,B}. We also have the set of

possible complex types in our system, Ψ, where each complex type (as mentioned above) is
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a set of strand types and the number of each present in the connected complex. We note

that since our set of strands is finite, the set of complex types is also finite though it can

be quite large.

To keep track of which complex types are present in a system microstate, we introduce

the population vector m ∈ N|Ψ|, where we note N = Z≥0. The population vector indicates

the number of complexes of that type present in the system microstate. The initial popula-

tion vector m0 ∈ N|Ψ0| indicates how many of each type of strand are present in the system.

We relate the two by the strand matrix A ∈ N|Ψ0|×|Ψ|, whose entries Aij correspond to the

number of strands of strand type i in complex type j. By our previous definition of strand

complex, the columns of A are distinct because each column specifies the number of strands

of each type present in the complex type j for that column. Thus, if we have a system

which starts with m0 of each strand species, Λ = {m |Am = m0} is the set of all population

vectors consistent with conservation of strand counts.

Since [6] uses mole fraction units for all energies (see discussion in Section 3.4), we use

the same units for ∆Gvolume and ∆Gassoc, thus we have:

∆Gvolume = RT logMs

∆Gassoc = ∆Gpubassoc −RT log ρH2O = ∆Gassoc

where ∆Gassoc is the equivalent term used in [6].

5.3 Proof

5.3.1 Qkin
j and Qj

We know from [6] that Qj is defined as:

Qj =
∑
π∈Πj

Qj(π)
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where Πj is the set of distinguishable orderings on the strand types present in complex type

j. E.g., if j is a complex type with {3 ∗A, 2 ∗B}, Πj is {(A,A,A,B,B) , (A,A,B,A,B)} as

every other ordering is equivalent to one of these two via a cyclic permutation (a permutation

on objects such that the ordering would remain the same when laid out on a circle). Qj(π)

is then the partition function over all states Ωj(π) which have a particular indistinguishable

ordering π, as follows:

Qj(π) =
∑

c∈Ωj(π)

exp(−∆G(c)/RT )

In this summation, we use the free energy of a complex state with (possibly) indistin-

guishable strands, and thus there is an extra energy term relating to the rotational symmetry

R(c), as described in [6] as the factor R (we distinguish here due to different units leading to

the prefactor being RT rather than kT ). This is related to our ∆G(c) described in Section

3.2 as follows:

∆G(c) = RT logR(c) + ∆G(c) (5.1)

We now wish to examine Qkinj and see how it relates to Qj .

Qkinj =
∑
π∈Πj

∑
c∈Ωj(π)

exp(−∆G∗(c)/RT ) (5.2)

where Πj is the set of circular orderings on the strand identifiers present in complex type j,

Ωj(π) is the set of all complex microstates which have ordering π, the complex microstate

energy ∆G∗(c) = ∆G(c) + (L(c) − 1) ∗ ∆Gvolume, and where L(c) is the total number of

strands in c.

For example, if our complex type j is {3 ∗A, 2 ∗B} like before, and we are given the ids

{1, 2, 3} as strand type A, and {4, 5} as strand type B, then we have:

Πj = {{1, 2, 3, 4, 5}, {1, 2, 3, 5, 4}, {1, 2, 5, 3, 4}, {1, 2, 5, 4, 3},
{1, 2, 4, 3, 5}, {1, 2, 4, 5, 3}, {1, 5, 2, 3, 4}, {1, 5, 2, 4, 3},
{1, 5, 3, 2, 4}, {1, 5, 3, 4, 2}, {1, 5, 4, 2, 3}, {1, 5, 4, 3, 2}}

First, let us examine the energy terms present in Qkinj . Since any complex microstate

c chosen for a complex type j will always have the same number of total strands Lj =
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i∈Ψ0 Aij (which is equivalent to L(c)), we should be able to extract the ∆Gvolume term

out of the exponential. Here we use the reference ∆Gvolume = RT logMs, where Ms is the

number of solvent molecules in the fixed volume (see Section 3.1). Expanding ∆G∗(c) in

equation 5.2, we get:

exp(−∆G∗(c)/RT ) = exp(−∆G(c)/RT + (1− L(c)) ∗ logMs)

=
Ms

M
L(c)
s

∗ exp(−∆G(c)/RT ) (5.3)

Now, our summation for Qkinj is over complex microstates and thus where we consider

all strands to be unique. In order to make the summation over the states Ωj(π), we must

see how many complex microstates there are that represent each state in Ωj(π). A complex

microstate c which has a indistinguishable ordering π(c) (the circular ordering on the strand

types) will correspond to exactly a single state c′ ∈ Ωj(π(c)). So the question is how many

such complex microstates c′′ correspond to the same c′?

For a complex microstate c′′ to correspond to the same c′, we know that π(c′′) = π(c)

and that there must exist a one-to-one mapping ξ between the strand ids of c and the strand

ids of c′′ such that for every base pair (ij · kl) in c, there is a base pair (iξ(j) · kξ(l)) in c′′,

and for every base pair (iξ(j) · kξ(l)) in c′′ there is a base pair (ij · kl) in c. Finally this

mapping must only map strand ids onto strand ids which share the same strand type. In

other words, the mapping on strand ids induces a one-to-one mapping between the base

pairs of each complex such that strands are always mapped to the same type of strands.

How many such mappings ξ are there for a given complex microstate c? If the state

c′ has no rotational symmetry, any permutation on the strand ids that maps strands to

strands of the same type must be valid. Thus if c′ has no rotational symmetry, there are

exactly
(∏

i∈Ψ0 Aij !
)

complex microstates c′′ which correspond to a given c′ ∈ Ωj(π(c)).

What about when c′ has rotational symmetry R(c′)? If this is the case, we know that

there are R(c′) cyclic permutations on the indistinguishable ordering π(c′) which lead to

the exact same structure (e.g., the same base pairings when we consider the strands to be

indistinguishable). Thus if there is this symmetry present, we know that there must be

1/R(c′) times as many complex microstates c′′ which correspond to c′ than if there were no

rotational symmetry.



27

Thus, we can rewrite Qkinj using the above factors and equations 5.1 and 5.3:

Qkinj =
∑
π∈Πj

∑
c∈Ωj(π)

exp(−∆G∗(c)/RT )

=
∑
π∈Πj

∑
c∈Ωj(π)

∏
i∈Ψ0

Aij !

 ∗ 1

R(c)
∗ exp(−∆G∗(c)/RT )

=

∏
i∈Ψ0

Aij !

 ∑
π∈Πj

∑
c∈Ωj(π)

Ms

M
Lj
s

∗ 1

R(c)
∗ exp(−∆G(c)/RT )

=
Ms

M
Lj
s

∗

∏
i∈Ψ0

Aij !

 ∑
π∈Πj

∑
c∈Ωj(π)

∗ exp(−∆G(c)/RT − logR(c))

=
Ms

M
Lj
s

∗

∏
i∈Ψ0

Aij !

 ∑
π∈Πj

∑
c∈Ωj(π)

∗ exp(−(∆G(c)−RT logR(c))/RT )

=
Ms

M
Lj
s

∗

∏
i∈Ψ0

Aij !

 ∑
π∈Πj

∑
c∈Ωj(π)

∗ exp(−∆G(c)/RT )

=
Ms

M
Lj
s

∗

∏
i∈Ψ0

Aij !

Qj (5.4)

And we have now shown that Qkinj is directly related to Qj with a scaling factor of Ms

M
Lj
s

due to complex microstates having a ∆Gvolume term in their energy, and a scaling factor

of
(∏

i∈Ψ0 Aij !
)

due to the number of complex microstates which correspond to the same

complex state when we consider strands of the same type to be indistinguishable.

5.3.2 Composing Qkin from Qkin
j

We begin by breaking down Qkin into pieces based on the population vectors m ∈ Λ:

Qkin =
∑
m∈Λ

qkin(m) (5.5)

where qkin(m) is the partition function over all system microstates s which have the pop-

ulation vector m. We now wish to show how to break those up in terms of the partition

functions Qkinj which are for an arbitrary set of unique identifiers for a complex type j. So

if our population vector contains multiple complex types that use the same strand type i,
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we then must determine the number of ways to distribute the respective identifiers with

that strand type to the complex types. And once we know which strand ids are being used

for each strand type in a complex type j, we would have to distribute those among each

complex of that type j which was present in the population vector.

For each strand type i, the number of ways to distribute the unique ids for that strand

type to the multiset of complex types j in a population vector m is
m0

i !∏
j∈Ψ(Aij∗mj)! . This is

just the number of ways to distribute the m0
i distinct unique ids for that strand type into

many piles, which have sizes {Aij ∗mj‖j ∈ Ψ}. We note that Aij ∗mj is Aij , the number

of strand ids of type i in each complex of type j, multiplied by the mj complexes of that

type present in our population vector.

Thus over all strand types, the number of ways to distribute the unique ids among

strands in the system to all complex types j in a population vector m is:

∏
i∈Ψ0

m0
i !∏

j∈Ψ(Aij ∗mj)!
(5.6)

Now that we have a fixed set of strand ids for a given complex type j, we need to

determine the number of ways to distribute those strand ids to the mj complexes which

have that type.

For each strand type i the number of ways to distribute the Aij ∗mj unique ids we have

been given for our complex type j among the mj complexes is
(Aij∗mj)!

(Aij !)mj , if we have considered

each complex to be uniquely labeled. Note that each complex is actually identical (and thus

not uniquely labeled) when we have yet to assign any strand ids to it; however once we have

assigned some (non-zero) strands of type i to the mj different complexes, they will then be

uniquely labeled based on which unique labels for strand type i have been assigned. Thus

the first time we assign strand ids to a complex type j we must have 1
mj ! fewer ways of

doing the assignment. We note that
(Aij∗mj)!

(Aij !)mj is the number of ways to distribute Aij ∗mj

objects among mj uniquely labeled containers of size Aij each.

Thus over all strand types, the number of ways to distribute the unique ids assigned to

a complex type j to the mj complexes which have that type is:

1

mj !
∗
∏
i∈Ψ0

(Aij ∗mj)!

(Aij !)mj
(5.7)
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Finally, using these two equations (5.6 and 5.7) to count how many ways we could

assign the strand ids among the different complex types in a population vector, we can

finally write out qkin(m). qkin(m) is broken down into three terms: The number of ways

we can distribute the strand ids to each complex type j (equation 5.6), multiplied by the

product over, for each complex type j in Ψ, the partition function for that complex type j,(
Qkinj

)mj

, multiplied by the number of ways we can assign the strand ids for that complex

type to the mj copies of that type (equation 5.7). This leads us to the following:

qkin(m) =

∏
i∈Ψ0

m0
i !∏

j∈Ψ(Aij ∗mj)!

 ∗
∏
j∈Ψ

(
Qkinj

)mj

∗ 1

mj !
∗
∏
i∈Ψ0

(Aij ∗mj)!

(Aij !)mj


=

∏
i∈Ψ0

m0
i !

 ∗
∏
j∈Ψ

(
Qkinj

)mj

∗ 1

mj !
∗
∏
i∈Ψ0

(
1

(Aij ∗mj)!

)
∗ (Aij ∗mj)!

(Aij !)mj


=

∏
i∈Ψ0

m0
i !

 ∗
∏
j∈Ψ

(
Qkinj

)mj

∗ 1

mj !
∗
∏
i∈Ψ0

1

(Aij !)mj


=

∏
i∈Ψ0

m0
i !

 ∗
∏
j∈Ψ

Qj ∗ Ms

M
Lj
s

∗

∏
i∈Ψ0

Aij !

mj

∗ 1

mj !
∗
∏
i∈Ψ0

1

(Aij !)mj


=

∏
i∈Ψ0

m0
i !

 ∗
∏
j∈Ψ

Q
mj

j ∗
M

mj
s

M
Lj∗mj
s

∗

∏
i∈Ψ0

(Aij !)
mj

 ∗ 1

mj !
∗
∏
i∈Ψ0

1

(Aij !)
mj


=

∏
i∈Ψ0

m0
i !

 ∗
∏
j∈Ψ

Q
mj

j ∗
M

mj
s

M
Lj∗mj
s

∗ 1

mj !


=

∏
i∈Ψ0

m0
i !

M
m0

i
j

 ∗
∏
j∈Ψ

M
mj
s

mj !
∗Qmj

j

 (5.8)

For the final step above, note that
∑

i∈Ψ0 m0
i is the total number of strands present in

the system as a whole, and Lj ∗mj is the total number of strands in all complexes of type

j, so
∑

j∈Ψ Lj ∗mj must also be the total number of strands present in the system, thus∏
i∈Ψ0

1

M
m0

i
j

=
∏
j∈Ψ

1

M
Lj∗mj
s

.
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5.4 Conclusion

We now wish to compare against the thermodynamicQbox from Dirks, et al. [6], which, when

we assume Ms �
∑

i∈Ψ0 m0
i (which is also assumed in our model when we let ∆Gvolume =

RT logMs), is:

Qbox = Qref ∗
∑
m∈Λ

q(m)

where

q(m) ≡
∏
j∈Ψ

M
mj
s

mj !
∗Qmj

j

For the standard reference state where the ∆Gbox is 0 when all strands are contained in

the box and there are no base pairs, we have:

Qref ≡
∏
i∈Ψ0

m0
i !

M
m0

i
j

Thus we can rewrite our Qkin from equation 5.5 and equation 5.8, to get:

Qkin =
∑
m∈Λ

qkin(m)

=
∑
m∈Λ

∏
i∈Ψ0

m0
i !

M
m0

i
j

 ∗
∏
j∈Ψ

M
mj
s

mj !
∗Qmj

j


=

∑
m∈Λ

Qref ∗ q(m)

= Qref ∗
∑
m∈Λ

q(m)

= Qbox

Thus we conclude that our partition function Qkin over all system microstates is exactly

equivalent to the thermodynamic partition function of the box, Qbox.

Additionally, we know that in the thermodynamic system (Dirks, et al. [6], equation

3.4), the probability of observing a population vector m at equilibrium is:
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p(m) = Q−1
box ∗Qref ∗ q(m)

In any Markov process that satisfies detailed balance given enough time we will reach

the thermodynamic equilibrium at which the probability of observing a system microstate

s will obey the Boltzmann distribution pkin(s) = e−∆Gbox(s)/RT /Qkin, where ∆Gbox(s) =∑
c∈s ∆G∗(c). (In reference [6], we note that ∆Gbox appears with no arguments and has

a different meaning, in which case ∆Gbox = −RT logQbox). So if we wish to find the

probability of observing a particular population vector m, pkin(m), we take the sum over

the probability of every system microstate s consistent with m (let us call this set S(m)).

Thus we have pkin(m) = (1/Qkin) ∗
∑

s∈S(m) e
−∆Gbox(s)/RT . The summation is exactly

qkin(m) and so we have:

pkin(m) =
qkin(m)

Qkin

=
Qref ∗ q(m)

Qkin

=
Qref ∗ q(m)

Qbox

= p(m)

And thus we also compute the correct probability for observing a population vector m

when using our model.
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Chapter 6

The Simulator: Multistrand

Energy and kinetics models similar to these can been solved analytically; however, the

standard master equation methods [30] scale with the size of the system’s state space. For

our DNA secondary structure state space, the size gets exponentially large as the strand

length increases, so these methods become computationally prohibitive. One alternate

method we can use is stochastic simulation [9], which has previously been done for single-

stranded DNA and RNA folding (the Kinfold simulator [8]). Our stochastic simulation

refines these methods for our particular energetics and kinetics models, which extends the

simulator to handle systems with multiple strands and takes advantage of the localized

energy model for DNA and RNA.

6.1 Data Structures

There are two main pieces that go into this new stochastic simulator. The first piece is

the multiple data structures needed for the simulation: the loop graph which represents the

complex microstates contained within a system microstate (Section 6.1.2), the moves which

represent transitions in our kinetics model – the single base pair changes in our structure

that are the basic step in the Markov process, and the move tree the container for moves

that lets us efficiently store and organize them (Section 6.1.3).

6.1.1 Energy Model

Since the basic step for calculating the rate of a move involves the computation of a state’s

energy, we must be able to handle the energy model parameter set in a manner that simplifies

this computation. Previous kinetic simulations (Kinfold) rely on the energy model we have
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described, though without the extension to multiple strand systems. While the format of

the parameter set that is used remains the same, we must implement an interface to this

data which allows us to quickly compute the energy for particular loop structures (local

components of the secondary structure, described in 3.2). This allows us to do the energy

computations needed to compute the kinetic rates for individual components of the system

microstate, allowing us to use more efficient algorithms for recomputing the energy and

moves available to a state after each Markov step.

The energy model parameter set and calculations are implemented in a simple modular

data structure that allows for both the energy computations at a local scale as we have

previously mentioned, but also as a flexible subunit that can be extended to handle en-

ergy model parameter sets from different sources. In particular, we have implemented two

particular parameter set sources: the NUPACK parameter set [34] and the Vienna RNA

parameters [10] (which does not include multistranded parameters, so defaults for those are

used). Adding new parameter set sources (such as the mfold parameters [37]) is a simple

extension of the existing source code. Additionally, the energy model interface allows for

easy extension of existing models to handle new situations, e.g., adding a sequence depen-

dent term for long hairpins. We hope this energy model interface will be useful for future

research where authors may wish to simulate systems with a unique energy model and

kinetics model.

6.1.2 The Current State: Loop Structure

A system microstate can be stored in many different ways, as shown in Figure 6.1. Each

of these has different advantages: the flat (“dot-paren”) representation (Figure 6.1C) can

be used for both the input and output of non-pseudoknotted structures, but the informa-

tion contained in the representation needs additional processing to be used in an energy

computation (we must break it into loops). Base pair list representation (Figure 6.1B)

allows the definition of secondary structures which include pseudoknots, but also requires

processing for energy computation. Loop representation (Figure 6.1D) allows the energy to

be computed and stored in local components, but requires processing to obtain the global

structure, used in input and output. While the loop graph cannot represent pseudoknotted

structures without introducing a loop type for pseudoknots (for which we may not know

how to calculate the energy), and making the loop graph cyclic, since this work is primar-
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ily concerned with non-pseudoknotted structures this is only a minor point. In the future

when we have excellent pseudoknot energy models, we will have to revisit this choice and

hopefully find a good representation that still allows us similar computational efficiency.

We use the loop graph representation for each complex within a system microstate,

and organize those with a simple list. This gives us the advantage that the energy can be

computed for each individual node in the graph, and since each move only affects a small

portion of the graph (Figure 6.3), we will only have to compute the energy for the affected

nodes. While providing useful output of the current state then requires processing of the

graph, it turns out to be a constant time operation if we store a flat representation which

IV.
Multiloop

V. Exterior
Loop

I.
StackIII. Bulge

Loop

II. Interior
Loop

VI. Hairpin

A. B.

C.

D.

Strand #Strand #
Base # Base #

(1,1)
(1,3)
(1,4)
(2,4)
(2,5)
(2,7)
(2,8)
(2,10)
(2,11)
(2,12)
(2,13)

(2,31)
(2,2)
(2,1)
(2,29)
(2,28)
(2,26)
(2,25)
(2,24)
(2,23)
(2,22)
(2,21)

-
-
-
-
-
-
-
-
-
-
-

(.((_)).((.((.((((.......)))))).)).).

Figure 6.1: Example secondary structure, with different representations: (A) Original loop
diagram representation. (B) Base pair list representation. Each base pairing is represented
by the indices of the bases involved. (C) Dot-paren representation, also called the flat
representation. Each base is represented by either a period, representing an unpaired base,
or by a parenthesis, representing a pairing with the base that has the (balanced) matching
parenthesis. An underscore represents a break between multiple strands. (D) Loop graph
representation. Each loop in the secondary structure is a single node in the graph, which
contains the sequence information within the loop.
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gets updated incrementally as each move is performed by the simulator.

We contrast this approach with that in the original Kinfold, which uses a flat repre-

sentation augmented by the base pairing list computed from it. Since we use a loop graph

augmented by a flat representation, our space requirements are clearly greater, but only in

a linear fashion: for each base pair in the list, we have exactly two loop nodes which must

include the same information and the sequence data in that region.

6.1.3 Reachable States: Moves

When dealing with a flat representation or base pair list for a current state, we can simply

store an available move as the indices of the bases involved in the move, as well as the rate at

which the transition should occur. This approach is very straightforward to implement (as

was done in the original Kinfold), and we can store all of the moves for the current state in

a single global structure such as a list. However, when our current state is represented as a

loop graph this simple representation can work, but does not contain enough information to

efficiently identify the loops affected by the move. Thus we elect to add enough complexity

to how we store the moves so that we can quickly identify the affected nodes in our loop

graph, which allows us to quickly identify the loops for which we need to recalculate the

available moves.

We let each move contain a reference to the loop(s) it affects (Figure 6.2A), as well as

an index to the bases within the loop, such that we can uniquely identify the structural

change that should be performed if this move is chosen. This reference allows us to quickly

find the affected loop(s) once a move is chosen. We then collect all the moves which affect a

particular loop and store them in a container associated with the loop (Figure 6.2B). This

allows us to quickly access all the moves associated with a loop whose structure is being

modified by the current move. We should note that since deletion moves by nature affect

the two loops adjacent to the base pair being deletion, they must necessarily show up in the

available moves for either loop. This is handled by including a copy of the deletion move in

each loop’s moves, and halving the rate at which each occurs.

Finally, since this method of move storage is not a global structure, we add a final layer

of complexity on top, so that we can easily access all the moves available from the current

state without needing to traverse the loop graph. This is as simple as storing each loop’s

move container in a larger structure such as a list or a tree, which represents the entire
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complex’s available moves as shown in Figure 6.2C.

A.

B.

1, 1

1,1

1,2

1,3

2,1

2,2

2,3

3,1

3,2

3,3

1 2

1,1

1,2

1,3 2,1 2,2

2,3 3,1 3,2

3,3

2

1

C.

1,1

1,2

1,3 2,1 2,2

2,3 3,1 3,2

3,3

2

1

Figure 6.2: (A) Creation moves (blue line) and deletion moves (red highlight) are repre-
sented here by rectangles. Either type of move is associated with a particular loop, and has
indices to designate which bases within the loop are affected. (B) All possible moves which
affect the interior loop in the center of the structure. These are then arranged into a tree
(green area), which can be used to quickly choose a move. (C) Each loop in the loop graph
then has a tree of moves that affect it, and we can arrange these into another tree (black
boxes), each node of which is associated with a particular loop (dashed line) and thus a
tree of moves (blue line). This resulting tree then contains all the moves available in the
complex.

6.2 Algorithms

The second main piece of the simulator is the algorithms that control the individual steps of

the simulator. The algorithm implementing the Markov process simulation closely follows

the Gillespie algorithm[9] in structure:

1. Initialization: Generate the initial loop graph representing the input state, and com-

pute the possible transitions.

2. Stochastic Step: Generate random numbers to determine the next transition (6.2.1),

as well as the time interval elapsed before the transition occurs.
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3. Update: Change the current loop graph to reflect the chosen move (6.2.2). Recompute

the available transitions from the new state (6.2.3). Update the current time using

the time interval in the previous step.

4. Check Stopping Conditions: check if we are at some predetermined stopping condition

(such as a maximum amount of simulated time) and stop if it is met. Otherwise,

go back to step 2. These stopping conditions and other considerations relating to

providing output are discussed further in Section 7.

The striking difference between this structure and the Gillespie algorithm is the neces-

sity of recomputing the possible transitions from the current state at every step, and the

complexity of that recalculation. Since we are dealing with an exponential state space we

have no hope of storing all possible transitions between any possible pair of states, and

instead must look at the transitions that occur only around the current state. Our exam-

ination of the key algorithms must include an analysis of their efficiency, so we define the

key terms here:

1. N , the total length of the input’s sequence(s).

2. X, the total amount of simulation time for each Monte Carlo trajectory.

3. J , the number of nodes in the loop graph of the current state. At worst case, this is

O(N), which occurs in highly structured configurations, like a full duplex.

4. K, the largest number of unpaired bases occurring in any loop in the current state.

At worst case, this is exactly N , but on average it is typically much smaller.

5. C, the current number of complexes in the system. At worst this could be O(N), but

in practice the number of complexes is much fewer.

6.2.1 Move Selection

First let’s look at the unimolecular moves in the system. The tree-based data structure

containing the unimolecular moves leads to a simple choice algorithm that uses the generated

random number to make a decision at each level of the tree based on the relative rates of

the moves in each branch. We have two levels of tree to perform the choice on, the first

having J nodes (one for every loop graph node) which each hold the local move containers
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for a particular loop, and the second having at most O(K2) nodes (the worst case number of

moves possible within a single loop). Thus our selection algorithm for unimolecular moves

takes O(log(J) + log(K)) time to arrive at a final decision.

What about the moves that take place between two different complexes? With our

method of assigning rates for these moves, we know that regardless of the resulting structure,

all possible moves of this type must occur at the same rate. Thus the main problem is

knowing how many such moves exist and then efficiently selecting one.

How many such moves exist? This is a straightforward calculation: for each complex

microstate in the system, we count the number of A, G, C and T bases present in open

loops within the complex. For the sake of example, let’s call these quantities cA, cG, cC , cT

for a complex microstate c. Let’s also define the total number of each base in the system

as follows: Atotal =
∑

c∈s cA, etc., where s is the system microstate we are computing the

moves for. We can now compute how many moves there are where (for example) an A base

in complex c becomes paired with a T base in any other complex: cA ∗ (Ttotal − cT ), that

is, the number of A bases within c multiplied by the number of T bases present in all other

complexes in the system. So the number of moves between c and any other complex in the

system is then cA ∗ (Ttotal − cT ) + cG ∗ (Ctotal − cC) + cC ∗ (Gtotal − cG) + cT ∗ (Atotal − cA)

and if we allow GT pairs, there are two additional terms with the same form. While GT (or

GU if using a RNA substrate) pairs are not allowed by default, there is an option that can

be set to allow them. Summing over this quantity for each c ∈ s we then get 2 times the

total number of bimolecular moves (and in fact we can eliminate the redundancy by using

the total open loop bases in complexes “after” c in our data structure, rather than the total

open loop bases in all complexes other than c). Since we do this in an algorithmic manner,

it is straightforward to uniquely identify any particular move we need by simply following

this counting process in reverse.

What is the time complexity for this bimolecular move choice? It is straightforward

to see that calculating the total bimolecular move rate is O(C) (recall C is the number of

complexes within the system). Slightly more complex is choosing the bimolecular move,

which must also be O(C), as it takes 2 traversals through the list of complexes to determine

the pair of reacting complexes in the bimolecular step. We note that for typical C and

bimolecular reaction rates (e.g., typical strand concentrations which set our ∆Gvolume) this

quantity is quite small relative to that for the unimolecular reactions.
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Our move choice algorithm can now be summed up as follows: given our random choice,

decide whether the next move is bimolecular (using the total number of such moves as a

first step) or unimolecular (thus one of the ones stored in the tree). If it’s bimolecular,

reverse the counting process using the random number to pick the unique combination of

open loops and bases involved in the bimolecular step. If it’s a unimolecular step, pick a

move out of the trees of moves for each complex in the system as discussed above.

6.2.2 Move Update

A.
State i State j

B.
State i State j’

Figure 6.3: Moves of varying types which take current state i to state j. The changed region
is highlighted in cyan. Loops that are in j but not i are highlighted in red (in the loop graph)
and must be created and have their moves generated. Loops shown highlighted in blue have
had an adjacent loop change, and thus must have their deletion moves recalculated. (A) A
creation move. (B) A deletion move

Once a move has been chosen, we must update the loop graph to reflect the new state.

This is a straightforward substitution: for a creation move, which affects a single loop, we

must create the resulting pair of loops which replace the affected loop and update the graph

connections appropriately (Figure 6.3A). Similarly, for a deletion move, which affects two
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loops, we must create the single loop that results from joining the two affected loops, and

update the graph connections appropriately (Figure 6.3B).

The computationally intensive part for this algorithm lies in the updating of the tree

structure containing all the moves. We must remove the moves that involved the affected

loops from the container, a process that takes O(log(J)) time (assuming we implement tree

deletions efficiently), generate the moves that correspond to the new loops (Section 6.2.3),

and add these moves into the global move structure, which also takes O(log(J)) time.

6.2.3 Move Generation

The creation and deletion moves must be generated for each new loop created by the move

update algorithm, and we must update the deletion moves for each loop adjacent to an

affected loop in the move update algorithm. The number of deletion moves which must be

recalculated is fixed, though at worst case is linear in N , and so we will concern ourselves

with the (typically) greater quantity of creation moves that need to be generated for the

new loops.

For all types of loops, we can generate the creation moves by testing all possible combi-

nations of two unpaired bases within the loop, tossing out those combinations which are too

close together (and thus could not form even a hairpin, which requires at least three bases

within the hairpin), and those for which the bases could not actually pair (for example, a

T–T pairing). An example of this is shown for a simple interior loop, in Figure 6.4. The

remaining combinations are all valid, and we must compute the energy of the loops which

would result if the base pair were formed, in order to compute the rate using one of the

kinetic rate methods (Section 4.5). This means we need to check O(C2) possible moves

and do two loop energy computations for each. At worst case, that is O(N2) energy com-

putations in this step, and so the efficiency of performing an energy computation becomes

vitally important.

Once we have generated these moves we must collect them into a tree which represents

the new loop’s available moves. This can be handled in a linear fashion in the number of

moves with a simple tree creation algorithm, and thus it is in the same order as the number

of energy computations.
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Figure 6.4: A interior loop, with all theoretically possible creation moves for the first two
bases on the top strand shown as cyan lines, and all possible deletion moves shown as red
boxes. Note that for each creation move shown here, we must check whether the bases could
actually pair, and only then continue with the energy computations to determine the rate
of the move.

6.2.4 Energy Computation

It is in the energy computation that our loop graph representation of the complex microstate

shines, as the basic operation required for each possible move in the move generation step

is computing the difference of energies between the affected loop(s) that would be present

after the move and those present beforehand.

For all loop types except open loops and multiloops, computing the loop energy is as

simple as looking up the sequence information (base pairs and adjacent bases) and loop

sizes in a table [20, 37], and is a constant-time lookup. For open loops and multiloops, this

computation is linear in the number of adjacent helices (e.g., adjacent nodes in the loop

graph) if we are using an optional configuration of the energy model which adds energies

that come from bases adjacent to the base pairs within the loop (called the “dangles”

option). Theoretically we could have an open loop or multiloop that is adjacent to O(N)

other nodes in the loop graph, but this is an extraordinarily unlikely situation and present

only with particular energy model options, so we will consider the energy computation step

to be O(1).
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6.3 Time Complexity

Now that we have examined each algorithm needed to perform a single step of the stochas-

tic simulation, we can derive the worst-case time. First, recall that J is the number

of nodes in the loop graph, K is the largest number of unpaired bases in a loop, C is

the number of complexes in the system and N is the total length of strands in the sys-

tem. The move selection algorithm is O(log(J) + log(K) + C) = O(N), move update is

O(log(J)) = O(log(N)), and move generation is O(N2 ∗ O(1)), where energy computation

is the O(1) term. These algorithms are done in sequence and thus their times are additive:

O(N) +O(log(N)) +O(N2) = O(N2). Thus our worst case time for a single Markov step

is quadratic in the number of bases in our structure.

However, one step does not a kinetic trajectory make. We are attempting to simulate

for a fixed amount of time X, as mentioned before, and so we must compute the expected

number of steps needed to reach this time. Since the distribution on the time interval ∆t

between steps is an exponential distribution with rate parameter λ, which is the total rate

of all moves in the current state, we know that the expected ∆t = 1/λ. However, this still

leaves us needing to approximate λ in order to compute the needed amount of time for an

entire trajectory. To make a worst case estimate, we must use the largest λ that occurs

in any given trajectory, as this provides the lower bound on the mean of the smallest time

step ∆t in that trajectory. However, the relative rates of favorable moves tends to be highly

dependent on the rate method used: the Kawasaki method can have very large rates for

a single move, while the Metropolis method has a maximum rate for any move, and the

entropy/enthalpy method is also bounded in this manner as all moves have to overcome an

energy barrier.

We thus make an average case estimate for the total rate λ, based on the number of

“favorable” moves that typically have the largest rates. While a “favorable” move is merely

one where the ∆G is negative (thus it results in an energetically more favorable state) or

one which uses the maximum rate (for non-Kawasaki methods), the actual rate for these

moves depends on the model chosen. The key question is whether we can come up with

an average situation where there are O(N2) favorable moves or if O(N) is more likely.

What types of secondary structures give rise to quadratic numbers of moves? They are all

situations where there are long unpaired sequences, whether in an interior loop, multiloop
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N = L
L ∈ [2,4,...,100,105,...200]

AAA

GTTC GGGC

TCAC

CCTT

Domain r

r

r’

r’

N = 22 + 3L
L ∈ [0,99]

AAAAAA GGGCGTTC GTTCGGGC

Domain r

Figure 6.5: Comparison of real time used per simulated time unit between Multistrand and
Kinfold 1.0, for four different single stranded systems with varying total length. All plots
are log/log except for the inset, which is a linear/linear plot of the same data is in the
uniform random sequence plot. Each individual point is a single randomly chosen sequence
with the given length, and there are at most 100 such random sequences for each length.
The density of these random sequences is shown using overlaid regions of varying intensity.
From lightest to darkest, these correspond to 80%, 40%, and 10% of the random sequences
being within the region.

or open loop. These creation moves are generally unfavorable, except for the small number

that lead to new stack loops. Thus we do not expect there to be a quadratic number of

favorable moves. A linear number is much more likely: a long duplex region could reach a
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linear number (if say, N4 bases were unpaired but could be formed easily into stacks). Thus,

we make the (weak) argument that a good average case is that the average rate is at worst

O(N).

From this estimate for the average rate, we conclude that each step would have an

expected (lower bound) ∆t = 1/N , and thus to simulate for time X we would need

X/(1/N) = X ∗ N steps, and thus O(X ∗ N3) time to simulate a single trajectory. Since

this is the worst case behavior, it is fairly difficult to show this with actual simulation data,

so instead we present a comprehensive comparison with the original Kinfold for a variety

of test systems (Figure 6.5), noting that the resulting slopes on the log/log plots lie easily

within the O(N3) bound for the time taken to simulate 1 time unit. In this plot we can

also distinguish the behavior on systems where we are close to the worst-case estimates

(when most of the bases are in large single stranded regions), as we expect for the “uniform

random sequences” case, and those where we are far from the worst-case (most bases are

in highly structured regions), such as in the “four-way branch migration” case.
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Chapter 7

Multistrand: Output and Analysis

We have now presented the models and algorithms that form the continuous time Markov

process simulator. Now we move on to discuss the most important part of the simulator

from a user’s perspective: the huge volume of data produced by the simulation, and methods

for processing that data into useful information for analyzing the simulated system.

How much data are we talking about here? Following the discussion in the previous

chapter, we expect an average of O(N) moves per time unit simulated. This doesn’t tell

us much about the actual amount of data, only that we expect it to not change drastically

for different size input systems. In practice this amount can be quite large, even for simple

systems: for a simple 25 base hairpin sequence (similar to Figure 6.5D), it takes 4,000,000

Markov steps to simulate 1s of real time. For an even larger system, such as a four-way

branch migration system (Figure 6.5C) with 108 total bases, simulating 1s of real time takes

14,000,000 Markov steps.

What can we do with all the data produced by the simulator? In the following sections

we discuss several different processing methods.

7.1 Trajectory Mode

This full trajectory information can be useful to the user in several ways: finding kinetic

traps in the system, visualizing a kinetic pathway, or as raw data to be passed to another

analysis tool.

Trajectory mode is Multistrand’s simplest output mode. The data produced by this

mode is a trajectory through the secondary structure state space. While many trajectories

could be produced for a given system, for most analysis purposes discussed in this section
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we are only concerned with a single trajectory. Similarly, these trajectories are potentially

infinite but unfortunately our computers have only a finite amount of storage so we must

cut the trajectory off at some point.

Time: 603 ns

( 0 , 7 ) - ( 0 , 1 2 )....((((....))))....

Time: 550 ns

( 0 , 4 ) - ( 0 , 1 5 )....(((......)))....

Time: 548 ns

( 0 , 5 ) - ( 0 , 1 4 ).....((......)).....

Time: 523 ns

( 0 , 6 ) - ( 0 , 1 3 )......(......)......

Time: 99.4 ns
.................... ( 0 , 0 ) - ( 0 , 1 4 ).................... ( 0 , 0 ) - ( 0 , 1 4 )

( 0 , 0 ) - ( 0 , 1 4 )

Time: 79.7 ns

(.............).....

GTTCGGGCAAAAGCCCGAAC
....................

Starting State Time: 0.0s

Structure / MoveVisualization

G T T C G G G C A A A A G C C C G A A C

Figure 7.1: Trajectory data

A trajectory is represented by a finite ordered list of (s, t) pairs, where s is a system
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microstate, and t is the time in the simulation at which that state is reached. We call this

time the simulation time, as opposed to the wall clock time, the real world time it has taken

to simulate the trajectory up to that point. There are many different ways to represent a

trajectory, as shown in Figure 7.1.

For practical reasons, we set up conditions to stop the simulation so that our trajectories

are finite. There are two basic stop conditions that can be used, and the system stops when

any condition is met:

1. Maximum simulation time. We set a maximum simulation time t′ for a trajectory,

and stop when the current simulation state (s, t) has t > t′. Note that the state (s, t)

which caused the stopping condition to be met is not included in the trajectory, as it

is different from the state at time t′.

2. Stop state. Given a system microstate s′, we stop the trajectory when the current

simulation state (s, t) has s = s′. This type of stopping condition can be specified

multiple times, with a new system microstate s′ each time; the simulation will stop

when any of the provided microstates is reached.

We will now use an example to show how trajectory mode can be used to compare two

different sequence designs for a particular system. The system is a straightforward three-

way branch migration with three strands, with a six base toehold region and twenty base

branch migration region, shown below (Figure 7.2).

. . .
Start State Branch Migration Disassociation

Figure 7.2: Three-way branch migration system. The toehold region is in green, and the
branch migration region is black. A few intermediate states along a sample trajectory are
shown, with transition arrows indicating not a single base-pair step but a pair of steps that
break one base-pair then form another. Many possible side reactions also exist, such as
breathing of duplex regions and sequence-dependent hairpin formation within the single-
stranded region.
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The simulation is started in the shown Start State using a toehold sequence of GTGGGT

and a differing branch migration region for which we use the designs in Table 7.1. We then

start trajectory mode for each design, with a stop condition of 0.05 s of simulation time,

and save the resulting trajectories.

Branch Migration Region
Design A ACCGCACGTCCACGGTGTCG

Design B ACCGCACCACGTGGGTGTCG

Table 7.1: Two different branch migration sequences

Rather than spam the interested reader with several thousand pages of trajectory print-

outs, since there are 5∗106 states in a 0.05 s trajectory for this system, we instead highlight

one revealing section in each design’s trajectory. Let us look at the state the trajectory is

in after 0.01 s of simulation time, shown below in Figure 7.3 using a visual representation.

Design A Design B
Figure 7.3: Structure after 0.01 s simulation time for two different sequence designs

What happened? It appears that sequence design A has a structure that can form before

the branch migration process initiates, that contains a hairpin in the single stranded branch

migration region. Does this structure prevent the branch migration from completing? In

the long run it shouldn’t, as the equilibrium structure remains unchanged, but if we look

at the final state in each trajectory (Figure 7.4), we see that design B has completed the

process in 0.05 s of simulation time and indeed was complete at 0.01 s, where A is still stuck

in that offending structure after the same amount of time. So for these specific trajectories,

it’s certainly slowing down the branch migration process.

Did this structure only appear because we were unlucky in the trajectory for design A?

We could try running several more trajectories and seeing whether it appears in all or most

of them, but a more complete answer is better handled using a different simulation mode,

such as the first passage time mode discussed in Section 7.4.

A better type of question for trajectory mode is “How did this kinetic trap form?” In

this example, we can examine the trajectory for design A and find the sequence of system



49

Design A Design B
Figure 7.4: Final structure (0.05 s simulation time) for the two different sequence designs
from Table 7.1. Branch migration regions: Design A: ACCGCACGTCCACGGTGTCG, Design B:
ACCGCACCACGTGGGTGTCG

microstates that lead to the first time the hairpin structure forms. This example has a

straightforward answer: the competing structure forms before the branch migration starts,

and is therefore in direct competition with the correct kinetic pathway.

We expect that the most common usage for trajectory mode is in providing the raw

trajectory data for a separate tool to perform processing on. For example, taking the raw

trajectory data and producing a movie of the structure’s conformational changes can be

very helpful in visualizing a system, and also is quite helpful for examining kinetic traps. A

quick movie of the three-way branch migration system could identify how the kinetic trap

forms, rather than our examination of thousands of states by hand to locate that point.

7.1.1 Testing: Energy Model

We have also used the trajectory mode to aid in verifying that the kinetics model and energy

model was implemented correctly. For the energy model, we can use an augmented output

that includes the Multistrand-calculated energy for a given state, and compare that to the

energy predicted by NUPACK [34] (or whichever tool / source we are using for our energy

parameter dataset). This can be done using trajectory mode, with a cutoff time of 0 s, so

the initial state is the only one in each trajectory. Multistrand’s energy model was verified

to be consistent with NUPACK for every sequence and structure in a comprehensive test

set of secondary structures (part of the NUPACK package) that covers all possible loop

configurations.

7.1.2 Testing: Kinetics Model

Testing the kinetics model can be done by testing that the detailed balance condition in

fact holds: We know that at equilibrium, if our kinetics model obeys detailed balance,
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the distribution of states seen by our simulator (after sufficient time to reach equilibrium)

should agree with the Boltzmann distribution on each system microstate’s energy. There

are several ways we could extract this information from trajectory mode, such as recording

all microstates seen in the trajectory (perhaps after some minimum time) and the amount

of time spent in each one.

For our testing of the detailed balance condition we use a different method that is simpler

to implement: we run many trajectories with a fixed maximum simulation time t and record

only the final state in the trajectory (note that this is the state at time t in the trajectory,

not the state which caused the stopping condition to be met). Assuming that the time

t is large enough for us to reach equilibrium, we can compare the probability distribution

over the final states seen by the simulation to that predicted using the NUPACK partition

function and energy calculation utilities. In particular, for each final state observed in a

trajectory we count the number of times it occurred as a final state in our simulation,

and use that to compute the simulation probability for that state. We then calculate the

thermodynamic probability of observing that state using the NUPACK tools. Finally, we

take the absolute value of the difference between the thermodynamic probability and the

simulation probability for each final state observed and sum those quantities to obtain the

total probability difference between our simulator and the thermodynamic predictions.

For our single-stranded test cases we found this probability difference to be less than 1%

when running a sufficient number of trajectories (approximately 105). This measure steadily

decreases with increased trajectory count, and does not change when the simulation time

is exponentially increased, indicating that our chosen t was enough to reach an equilibrium

state and the probability difference is due to the stochastic nature of the simulation. The

states which we observed accounted for 99.95% of the partition function, and that percentage

also increases with increased number of trajectories.

7.2 Macrostates

In Section 2.3 we defined a system microstate, which represents the configuration (primary

and secondary structure) of the strands in the simulation volume. In this section, we will

define a macrostate of the system and show how these objects can help us analyze a system

by providing better stop states, as well as allowing new avenues of analysis, as discussed
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in Section 7.3. To make things simpler in this section, when we refer to a microstate we

always mean a system microstate unless stated otherwise.

Formally, we define a macrostatem as a non-empty set of microstates: m = {s1, s2, ...., sn},

where each si is a microstate of the system. Now we wish to derive the free energy of a

macrostate, ∆G(m) in such a way that the probability of observing the macrostate m at

equilibrium is consistent with probability of observing any of the contained microstates.

Pr(m) = Pr(s1) + Pr(s2) + . . .+ Pr(sn)

=
∑

1≤i≤n
Pr(si)

=
∑

1≤i≤n

1

Qkin
∗ e−∆Gbox(si)/RT

=
1

Qkin
∗
∑

1≤i≤n
e−∆Gbox(si)/RT (7.1)

Now, letting Qm =
∑

1≤i≤n e
−∆Gbox(si)/RT , the partition function of the macrostate m,

we have Pr(m) = Qm

Qkin
. Similarly, in terms of the energy of the macrostate, we can express

Pr(m) as 1
Qkin

∗ e−∆G(m)/RT , and plugging into (7.1) and solving for ∆G(m), we get:

1

Qkin
∗ e−∆G(m)/RT =

1

Qkin
∗Qm

e−∆G(m)/RT = Qm

−∆G(m)/RT = logQm

∆G(m) = −RT ∗ logQm (7.2)

Now that we have the formal definition in place, let us look at an example macrostate

using the same three-way branch migration system as in the previous section, Figure 7.2.
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Figure 7.5: Example macrostate

What does this macrostate represent? It’s a set of microstates that has exactly one base

pair formed in the toehold region, but it’s not every such microstate – every microstate

shown has the entire branch migration region fully formed. Thus the following microstate

isn’t included in the macrostate, but it does have exactly one base pair formed in the toehold

region:

Why are these general macrostates interesting? Previously, we defined stop states as

being microstates of the system, and we can use any number of them as part of the simu-

lator’s stop conditions. From that, it’s easy to see that any given macrostate m could be

used as a stop state of the system by simply expanding it out into the list of microstates

contained within and using those as individual stop states.

Of particular interest to us are several classes of macrostates which can be described in

very simple terms and also checked efficiently by the simulator without having to individually

check for each microstate within those macrostates. The ability to check for a macrostate

efficiently is very important: if we allowed the branch migration region in the previous

example to have any structure, the macrostate would contain over 222 microstates, and
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even if we allowed only a limited number of bases in the branch migration region to be

breathing (such as 3 base pairs, e.g., 6 bases) this is still 1140 microstates.

One useful tool in defining these classes of macrostates is a distance metric for comparing

two complex microstates ci, cj . The distance d(ci, cj) is defined as ∞ if ci and cj do not

have the same set of strands and strand ordering, and otherwise as the number of bases

which are paired differently between the two structures: e.g., if base x is paired with base

y in ci, but base x isn’t paired with y in cj , or if base x is unpaired in ci, but base x is

paired in cj . This distance metric has been used in other work, using a slightly different

but equivalent formulation, for example, [6, 13] and references therein. Some examples are

shown below, in Table 7.2.

ci Structure Distance

c0 ....(((( ))))....

c1 (((((((( )))))))) d(c0, c1) = 8
c2 ....(((( ))....)) d(c0, c2) = 6
c3 ......(( ))...... d(c0, c3) = 4
c4 ....(((( )))....) d(c0, c4) = 3
c5 .(....)( )....... d(c0, c5) = 7

Table 7.2: Distance metric examples, for complex microstates on the two-strand complex
with sequences AGCTAGCT,AGCTAGCT. Bases that differ from the structure c0 are shown
in red.

Now that we have a distance metric, we define several common macrostates that can be

used in the simulator as stopping conditions.

7.2.1 Common Macrostates

Disassoc: Given a set of strands ST and an ordering π∗ on those strands, we define the

Disassoc macrostate m as the set of all system microstates s which contain a complex

microstate c with exactly the strands ST and ordering π∗. Recall that a complex

microstate (Section 2.2) is defined by three quantities, the strands contained in the

connected complex, the ordering on those strands, and the base pairs present; thus

this definition implies no particular set of base pairs are present, though it does require

that the complex be connected. Note that this macrostate can only be reached by

either an association or a disassociation step, allowing it to be efficiently checked as

we only need to do so when encountering a bimolecular move. It’s called Disassoc in
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light of its most common usage, but it could also be used to stop after an association

event.

Bound: Given a single strand S, we define the Bound macrostate m as the set of all

system microstates s which contain a complex microstate c with set of strands ST

that has S ∈ ST and |ST | > 1.

Count: Given a complex microstate c and an integer count k, we define the Count

macrostate m as the set of all system microstates s which contain a complex mi-

crostate c′ for which d(c, c′) ≤ k. Note that c′ which meet this criteria must have the

same strands and strand ordering, as d(c, c′) = ∞ if they do not. For convenience,

instead of using the integer count k we allow passing a percentage p which represents

a percentage of the total number of bases N in the complex c. If this is done, we use

a cutoff k = dp ∗Ne.

Loose: Given a complex microstate c, a integer count k and a set of bases B that is a

subset of all the bases in c, we define the Loose macrostate m as the set of all system

microstates s which contain a complex microstate c′ for which dB(c, c′) ≤ k, where

we define dB as the distance metric d over only the set of bases B in c. Similar to the

Count macrostate, we allow a percentage p instead of k, for which we set k = dp∗|B|e.

This macrostate allows us to specify a specific region of interest in a microstate, such

as just a toehold region we wish to be bound without caring about other areas in the

complex microstate.

Note that each of these macrostates is based on the properties of a single complex

microstate occurring within a system microstate; thus if desired we could make a stopping

condition which uses several of these in conjunction. For example, we might make a stopping

conditions that has Disassoc for strand A and Disassoc for strand B, thus creating a

macrostate which can be described in words as “strand A is in a complex by itself, and strand

B is in a complex by itself, and we don’t care about any other parts of the system”. Similarly

we can implement disjunction simply by using multiple independent stopping conditions.

Though the NOT operation is not currently implemented for these stop conditions, it may

be added in the future, allowing us to have the full range of Boolean operations on these

common macrostates. As it is, we can easily implement the original example macrostate
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simply by using an OR of the six exact system microstates. Or we could use Loose

macrostates to implement the one we might have intended, where we didn’t care very much

about the branch migration region (and thus allowed it to have some breathing base pairs),

only that a single base of the toehold had been formed.

7.3 Transition Mode

What is transition mode? The basic idea is that instead of every system microstate being

an interesting piece of the trajectory, we provide (as part of the input) a list T of transition

states of the system, the states which we think are interesting, and the output is then the

times when we enter or leave any transition state in the list T . These transition states can

be exact states of the system (e.g., system microstates), or macrostates of the system (e.g.,

a combination of common macrostates such as Dissasoc or Loose macrostates), and we

note that they are not required to be technical “transition states” as in chemical reaction

theory—we are interested in how trajectories move (i.e., transition) from macrostate to

macrostate, no matter how those macrostates are defined. One way to look at this form of

output is as a trajectory across transition state membership vectors. We note that since

these transition states are defined in exactly the same way as stop states, we generally lump

them both together in the list of transition states that get reported (after all, you’d like to

know what state caused the simulation to finish, right?), with a special labeling for which

transition states are also stop states.

What is transition mode good for? The simplest answer is that it allows us to ask

questions about specific kinetic pathways. Here’s an example of this: Given a simple se-

quence that forms a hairpin, does it form starting from the bases closest to the 5’/3’ ends

(Figure 7.6B), or starting from the bases closest to the hairpin region (Figure 7.6C)?

D

C

A

B

Figure 7.6: Hairpin Folding Pathways. Blue boxes indicate regions of interest used in loose
structure definitions (Table 7.3). A) Starting State. B) Bases near the 5’/3’ ends form first.
C) Bases near the hairpin region form first. D) Final hairpin structure.
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How do we represent these pathways in terms of transition states? Here we take ad-

vantage of the common macrostate definitions (Section 7.2.1) to define the intermediate

structures B and C, using loose macrostates with a distance of 2, while A and D are defined

with exact microstates.

Transition State Label Sequence / Structure State Type

GCATGCAAAAGCATGC

A (start) ................ Exact
B (((**********))) Loose, d ≤ 2
C ***(((****)))*** Loose, d ≤ 2

D (stop) ((((((....)))))) Exact

Table 7.3: Transition states for hairpin pathway example. State type of Exact is exactly
the given structure as a system microstate, and Loose is a loose macrostate covering only
the bases in blue (or alternately, the bases not marked with “*”).

Why is using a loose macrostate for these transition states useful? First, we note that

we produce output any time the transition state membership changes, hence each step of

the pathway is the set of all transition states which match the system microstate. Let’s look

at a possible pathway to the stop state where the first bases that form are near the 5’ and

3’ ends and the base pairs are added sequentially without ever being broken. With exact

states this would result in the following transition pathway: {A} → ∅ → {B} → ∅ → {D}

and with the loose macrostates it would be this transition pathway: {A} → ∅ → {B} →

{B,C} → {B,C,D}. So far, so good. What about if we form two bases of B, then all of

C, then the last base of B? For loose states, this is the exact same transition pathway—

recall that we use a distance of 2, and two base pairs formed in B is exactly that distance

away from the given structure. But for exact states, this is now the (very boring) pathway

{A} → ∅ → {D}, which doesn’t answer our question about which part of the helix formed

first!

Two possible transition pathways, using either the loose structures for B and C, or

exact structures:
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Time Transition States

0.00 A
3.63 ∗ 10−7 ∅
1.03 ∗ 10−6 A
1.40 ∗ 10−6 ∅
1.78 ∗ 10−6 B
1.92 ∗ 10−6 B,C
2.15 ∗ 10−6 B,C,D

(a) Sample Transition Pathway (Loose)

Time Transition States

0.00 A
9.02 ∗ 10−7 ∅
1.31 ∗ 10−6 A
2.26 ∗ 10−6 ∅
2.72 ∗ 10−6 D

(b) Sample Transition Pathway (Exact)

Table 7.4: Two different transition pathways via transition mode simulation, using either the
given B and C states with the loose macrostate definitions from Table 7.3, or exact system
microstates using the states from the same table with all “*” replaced by “.” (unpaired)
and distance set to 0, effectively. Note that the times listed are the times of first entering
the given state.

Does this mean every simulated trajectory takes these transition pathways? Definitely

not! The stochastic nature of the simulator means we’re likely to see many different transi-

tion pathways if we run many trajectories. So, let’s now answer the original question: which

transition pathway is more likely? We do this by accumulating statistics over many kinetic

trajectories as follows: For each transition path trajectory (such as those in Table 7.4) we

break down the trajectory into pieces which have non-empty sets of transition states, sep-

arated only by zero or one empty set of transition states. So, for example, the path shown

in Table 7.4a breaks down into four separate reactions: {A} → ∅ → {A}, {A} → ∅ → {B},

{B} → {B,C}, and {B,C} → {B,C,D}. For our statistics, we’ll group reactions of the

form x → ∅ → y with those of the form x → y, and for every possible reaction, we record

the number of times it occurred and the average time it took to occur. So for the single

pathway in Table 7.4a we get the following statistics:

Reaction Average Time Number of Occurrences

A→ A 1.03 ∗ 10−6 1
A→ B 7.43 ∗ 10−7 1
B → B,C 1.47 ∗ 10−7 1

B,C → B,C,D 2.29 ∗ 10−7 1

Table 7.5: Statistics for the single transition pathway shown in Table 7.4a

Now that we’ve seen an example of these statistics for a single kinetic trajectory, let’s

look at the same statistics over a hundred kinetic trajectories, again using the system with

loose macrostates.
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Reaction Average Time Number of Occurrences

A→ A 2.48 ∗ 10−6 829
A→ B 2.17 ∗ 10−7 37
A→ C 2.53 ∗ 10−7 73
B → A 1.09 ∗ 10−6 5
B → B 1.46 ∗ 10−7 2
B → B,C 3.78 ∗ 10−7 33
C → A 5.63 ∗ 10−7 5
C → C 2.48 ∗ 10−7 7
C → B,C 5.84 ∗ 10−7 77
B,C → B 4.32 ∗ 10−7 1
B,C → C 1.21 ∗ 10−7 9

B,C → B,C,D 2.10 ∗ 10−7 100

Table 7.6: Statistics for 100 simulated trajectories using the transition states from Table 7.3

What can we conclude from these statistics? Both pathways do occur, but it is much

more likely that the first bases formed are those closest to the hairpin region. The average

times for each pathway are roughly within an order of magnitude of each other, and our

selection of transition states was good: we didn’t see any unexpected pathways, such as

{A} → {D}.

We could use these “reactions” to create a coarse-grained representation of the origi-

nal system as a chemical reaction network, using 1
avg time as the reaction rate constants.

Whether this will be an accurate representation or not depends on the choice of transition

states and the structure of the energy landscape. For example, if we were to try this us-

ing the average times for this system, we would end up with a formal CRN in which the

A → A reaction is taken far less frequently than shown in Table 7.6. Finding appropriate

coarse-grained representations is a deep and subtle topic [15].

7.4 First Passage Time Mode

First passage time mode is the most basic simulation mode in Multistrand. It produces

a single piece of data for each trajectory simulated: the first passage time for reaching

any stop state in the system, and which stop state was reached. This is a rather striking

difference from our previous simulation modes in the amount of data produced for each

individual trajectory, but it is still quite powerful!

This first passage time data could be produced via trajectory mode: we can just discard
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all the output until a stop state is reached. There is a distinct efficiency advantage to

making it a separate simulation mode: we don’t have to pay the overhead of reporting

every piece of trajectory data only for it to be discarded. Similarly, we could generate the

same data using transition mode by only using stop states in our list of transition states.

We implement this as a distinct simulation mode in order to better separate the reasons

for using each simulation mode: for transition mode, we are interested in the pathway our

system takes to reach a stop state, and for first passage time mode we are interested in how

quickly the system reaches the stop state(s).

What does first passage time data look like? Let’s revisit our example system from

Section 7.1 (Figure 7.2):

. . .
Start State Branch Migration Disassociation

We start the system as shown, and use two different stop states: the complete stop

condition where the incumbent strand has disassociated (as shown in the figure), and the

failed stop condition where the invading strand has disassociated without completing the

branch migration. Both of these are done using Disassoc macrostates, which makes it very

efficient to check the stop states. Note that we include the invading strand disassociating as

a stop state so that if it occurs (which should be very rarely), we can find out easily without

waiting until the maximum simulation time or until the strands reassociate and complete

the branch migration.

The following table (Table 7.7) shows a five trajectories worth of data from first passage

time mode on the example system, using sequence design B (Table 7.1) for the branch

migration region.

Note that we have included a third piece of data for each trajectory, which is the

pseudorandom number generator seed used to simulate that trajectory. This allows us to

produce the exact same trajectory again using a different simulation mode, stop states or

other output conditions. For example, we might wish to run the fifth trajectory in the table

again using trajectory mode, to see why it took longer than the others, or run the first
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Random Number Seed Completion Time Stop Condition

0x790e400d 3.7 ∗ 10−3 failed
0x38188213 3.8 ∗ 10−3 complete
0x47607ebf 2.1 ∗ 10−3 complete
0x02efe7fa 2.8 ∗ 10−3 complete
0x7c590233 6.7 ∗ 10−3 complete

Table 7.7: First passage time data for the example three-way branch migration system. Stop
conditions are either “complete”, indicating the branch migration completed successfully,
or “failed”, indicating the strands fell apart before the branch migration could complete.

trajectory to see what kinetic pathway it took to reach the failed stop condition.

Let’s now look at a much larger data set for first passage time mode. Here we again use

the three-way branch migration system with sequence design B for the branch migration

region and increase the toehold region to be ten bases, to minimize the number of trajectories

that reach the failed stop condition. We run 1000 trajectories, using a maximum simulation

time of 1 s, though no trajectory actually used that much as we shall shortly see.

Instead of listing all the trajectories in a table, we graph the first passage time data for

the complete stop condition in two different ways: first (Figure 7.7a) we make a histogram

of the distribution of first passage times for the data set, and second (Figure 7.7b) we graph

the percentage of trajectories in our sample that have reached the complete stop condition

as a function of the simulation time.
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(b) Percent completion by simulation time

Figure 7.7: First passage time data for the three-way branch migration system, using se-
quence design B (Table 7.1) and with a ten base toehold sequence. 1000 trajectories were
simulated and all of them ended with the complete stop condition.
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While there are many ways to analyze these figures, we note two particular observa-

tions. Firstly, the histogram of the first passage time distribution looks suspiciously like an

exponential distribution, possibly with a short delay. This is not always typical (as we shall

shortly see), but the shape of this histogram can be very helpful in inferring how we might

wish to model our system based on the simulation data; e.g., for this system, we might de-

cide that the three-way branch migration process is roughly exponential (with some fitted

rate parameter) and so we could model it as a one-step unimolecular process.

The second observation is that while the percentage completion graph looks very similar

to an experimental fluorescence microscopy curve, they should NOT be assumed to be

directly comparable. The main pitfall to watch out for is when comparing fluorescence

curves from systems where the reactions are bimolecular: in these the concentration of the

relevant molecules are changing over time, but in our stochastic simulation the bimolecular

steps are at a fixed volume/concentration (reflected in the ∆Gvolume energy term) and data

is aggregated over many trajectories.

7.4.1 Comparing Sequence Designs

A common usage of first passage time mode is in the comparison of sequence designs, as

we previously brought up in Section 7.1. We now run another 1000 trajectories on the

same three-way branch migration system as in the previous section, including the increased

toehold length, but using the sequence design A (Table 7.1) for the branch migration region.

Note the change in x-axis scale; this design is indeed much slower than design B!
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(a) Histogram of first passage times, design A

0.000 0.005 0.010 0.015 0.020
First Passage Time (s)

0

20

40

60

80

100

#
 o

f 
T
ra

je
ct

o
ri

e
s

Design B
Design A

(b) Histogram of first passage times, both designs

Figure 7.8: First passage time data for the three-way branch migration system, comparing
sequence designs using histograms. For figure (b), we compare the two designs on the range
of times from 0 s to 0.02 s. The buckets for sequence design A have been reduced in visual
size to show overlapping regions, but overall bucket sizes are consistent between the two
designs (though they are slightly different from those in Figure 7.7a).

Let’s also look at the same data but using the percentage completion as a function of

simulated time graphs:
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(a) Design comparison, percent completion graph
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(b) Design comparison, zoomed

Figure 7.9: First passage time data for the three-way branch migration system, comparing
sequence designs using percent completion graphs. Figure (b) is a zoom-in on the range of
times from 0 s to 0.1 s from Figure (a).

We can now clearly see just how different these two sequence designs are! Our results

from the trajectory mode section were clearly not unusual: the majority of sequence design

B’s trajectories finish in under 0.01 s, whereas the same amount for sequence design A
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is over ten times longer. This is highlighted in the combined graph (Figure 7.8b), which

shows how vastly different the timescales are for each process. Looking at the percentage

completion graphs, we note that sequence design A did not actually reach 100% – it actually

had 8 trajectories reach the failed stop condition!

While both types of graphs are presenting the same information, they are frequently

useful in different cases: the first passage time histograms are helpful for gaining an intuition

into the actual distribution of times for the process we are simulating, while the percent

completion graphs are better for looking at the relative rates of different designs, especially

when working with more than two sequence designs.

7.4.2 Systems with Multiple Stop Conditions

What about our original three-way branch migration system, which had toeholds of length

six? Let’s now look at this situation, where we have a system that has more than one

competing stop state. We again run the system with 1000 trajectories and a 1 s maximum

simulation time (though it’s never reached). Instead of plotting only the first passage times

for the complete stop condition, we overlay those with the first passage times for the failed

stop condition.
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(b) Percent completion by simulation time

Figure 7.10: First passage time data for the three-way branch migration system with 6 base
toeholds, comparing sequence designs

Competing stop conditions certainly make the data more interesting! We can pick out

pieces of the kinetic pathways a lot easier using these graphs. For example, the competing

pathway leading to the failed stop condition frequently occurs faster than the complete
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stop condition pathway; this should be unsurprising, as one pathway involves a long random

walk while the other is very unlikely to include one.

7.5 Fitting Chemical Reaction Equations

We are frequently interested in DNA systems which can be represented (with some choice

of the appropriate internal parameters/sequences) by chemical reaction equations of the

following form:

A+B
keff−⇀ C +D (7.3)

These systems usually involve an intermediate step, so typically the concentration is low

enough for the above equation to actually be a good fit. Experimental observation of these

systems tend to be in the range of concentrations where the above equation is an accurate

characterization of the system.

Let us now associate the species in the equation above with actual DNA complexes

(ordered collections of connected strands). We designate strands by unique letters, and in-

dicate complementary strands with an asterisk. For the toehold-mediated three-way branch

migration example, the chemical equation then becomes:

x∗y + x
keff−⇀ xx∗ + y (7.4)

Let us examine one possible DNA configuration for the state of the entire system that

could follow this equation’s implied dynamics. The left hand side could be the configuration

given in Figure 7.11, and the right hand side could be the configuration given in Figure 7.12.

Note that while we show particular exact secondary structures for each of these figures,

there are actually many such secondary structures that represent the appropriate parts of

the equation, which might be specified using Loose macrostates.

Finally, what would the equations look like if we did not expect them to fit equation

7.3? One possibility is as follows (as in Zhang, Winfree 2009 [35]):
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Complex A Complex B

x
y

x*
+

Figure 7.11: Starting complexes and strand labels

Complex C Complex D

y
+

x

x*

Figure 7.12: Final complexes and strand labels

A+B
kf−⇀↽−
kr

AB
kbm−⇀↽−
kbm

AB′
kr−⇀ C +D (7.5)

Though this model is used in several experimental papers, it is difficult for us to define

simulation macrostates in order to determine the various rates present in the equation. In-

stead, we look at a model where it is easy to separate out the steps into discrete components

which can be individually simulated. Specifically, we look at a system where the molecules

A and B can collide and form either a reactive molecule which will go to C and D, or a

nonreactive molecule which will fall apart after some time1. We call this the first step

model, and it is described by the equations below:

A+B
k1−⇀ AB

k2−⇀ C +D (7.6)

A+B
k′1−⇀↽−
k′2

AB′ (7.7)

We will use this model extensively to analyze the results of the first step mode simu-

1Thanks to Niles Pierce and Victor Beck for suggesting this approach.
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lations discussed in Section 7.6. Note that for low concentrations, the controlling step will

be the bimolecular reactions and thus we should be able to also fit to a keff type model in

those cases.

We discuss fitting first passage time data to the simple keff model (Equation 7.3, as

well as using first step mode to generate data which can easily be fit to the first step

model.

7.5.1 Fitting Full Simulation Data to the keff Model

For this simulation mode, we start the simulation in the exact state shown in Figure 7.11,

and measure the first passage time to reach any state with the same complexes (but not

exact secondary structure, i.e., we use a Disassoc stop state) as that shown in Figure 7.12.

This gives us a data set of first passage times ∆ti, where 1 ≤ i ≤ n, and n is the total

number of trajectories simulated. The simulation is done at a particular concentration z.

Note that this simulation will require time inversely proportional to the simulation con-

centration, since we are simulating elementary steps. Thus we would prefer to simulate at

higher concentrations and step downwards in concentration until we are in the region where

the bimolecular reaction dominates, and equation 7.3 holds.

If we assume equation 7.3 holds and determines our distribution of first reaction times,

we can fit our data to an exponential distribution in order to determine keff : Recall that (via

Gillespie [9]) in a formal chemical reaction network, a state with total outgoing propensity

a0 will have a passage time (τ) distribution according to the probability density function

P (τ) = a0 ∗ exp(−a0τ). If we are given a set of first passage times ∆ti taken from this

distribution, we know that for an exponential distribution that a0 = 1/E[∆ti]. Since the

propensity a0 for a bimolecular reaction is the reaction rate times the concentration, we

solve for keff as follows, where z is the simulated concentration:

keff =
1

E[∆ti]
∗ 1/z (7.8)

If we are in the regime where equation 7.3 holds, we expect this to give us a consistent

value for keff . If we are outside of that regime (and thus the unimolecular reactions from
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equation 7.5 or equation 7.6 dominates), this will err by exactly the factor of 1/z, thus the

graph of keff versus concentration z should appear linear in this regime. For

7.6 First Step Mode

This simulation mode makes a simple assumption: we always start the Markov simulation

by making a “join” step, that is, one where a pair of molecules A and B come together

and form a single base pair. The choice of secondary structure states for the molecules A

and B before collision can be done either by using particular exact complex microstates, or

by Boltzmann sampling the secondary structure space of the molecules. This sampling is

valid when the bimolecular reaction rates are slow enough that the initial complexes reach

equilibrium. In either case, we have a valid system microstate once we know the structure

for the A and B molecules, and then choose a “join” step from those present in the system

microstate and use the resulting system microstate (after making the join) as our start state

for a trajectory. Since this mode runs many trajectories, we must make many such random

choices for the join step and for the Boltzmann sampling of the initial molecules (if we are

using the sampling rather than exact states).

The simulation then starts from this configuration, and we track two distinct end states:

the molecules falling apart back into one of the A + B configurations, or the molecules

reacting into one of the C + D configurations. Our data then consists of first passage

times where we can separate each trajectory into one that reacted or one that failed. The

advantage to this mode of simulation is that we no longer are directly simulating the “join”

bimolecular steps, whose rates are proportional to the simulated concentration and thus are

going to be very slow relative to the normal unimolecular steps. This allows us to use the

simulator to concentrate on the trajectories where we have a collision, rather than spending

(at low concentrations) most of the time simulating unimolecular reactions while waiting

for the very rare bimolecular reaction.

7.6.1 Fitting the First Step Model

Our first step mode simulation produces the following pieces of data: ∆tireact, the first

passage times for reactive trajectories, ∆tifail the first passage times for trajectories did not

react, the number of trajectories that reacted Nreact and failed Nfail, and the rate constant
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kcoll, the simulation’s estimate of the rate of collision (in /M/s) of the A and B molecules.

This kcoll is calculated based on all the join moves possible from the initial configuration of

the A and B molecules, and thus is very likely to include many such moves which do not

lead to very stable structures and thus disassociate quickly.

We then fit to the model given in equations 7.6 and 7.7, as follows:

k1 =
Nreact

Nreact +Nfail
∗ kcoll (7.9)

k′1 =
Nfail

Nreact +Nfail
∗ kcoll (7.10)

k2 =
1

E[∆tireact]
(7.11)

k′2 =
1

E[∆tifail]
(7.12)

Thus we can directly find each of the model parameters from the collected simulation

data, in a natural way. We then use this model to predict the keff parameter we would

observe if we assume that the simple chemical reaction model (equation 7.3) is valid.

7.6.2 Analysis of First Step Model Parameters

We first show a natural (but inexact) way to calculate keff from the first step model

parameters, using the assumption that the time used in “failed” collisions is negligible

compared to that needed for a successful reaction. In this situation, we can estimate keff

for a particular concentration z by calculating the expected average time for a reaction. We

use the fact that the expected value of an exponential distribution with rate parameter λ

will be 1
λ in order to derive keff :

keff =
1

z
∗ 1

1
k1∗z + 1

k2

(7.13)

Again, this makes the assumption that equation 7.3 holds and thus that the reaction

dominated by the bimolecular step. The observation from the full simulation mode still

holds: if we are not in this regime, we will err by a factor of 1
z and thus the graph should

be linear. Note that since this simulation does not require a set concentration, we can run
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one simulation (with a large number of trajectories) and use the extracted data to produce

the same type of graph as the full simulation mode.

We now would like to remove the assumption that the “failed” collision time is negligible:

though that assumption makes keff straightforward to calculate, many systems of interest

will not satisfy that condition.

We now need to calculate the expected time for a “successful” reaction to occur based

on both the “failed” and “reactive” collision parameters. We do this by summing over all

possible paths through the reactions in equations 7.6 and 7.7, weighted by the probability

of those reactions. Let ∆tcoll = 1
(k1+k′1)∗z (the expected time for any collision to occur),

∆tfail = ∆tcoll + 1
k′2

(the expected time needed for a failed collision to return to the initial

state), ∆treact = ∆tcoll + 1
k2

(the expected time for a reactive collision to reach the final

state), p(path) is the probability of a particular path occurring, and ∆tpath = n∆tfail +

∆treact is the expected time for a path which has n failed collisions and then a successful

collision. Finally, the quantity which we want to solve for is ∆tcorrect, the expected time it

takes for a successful reaction to occur.

∆tcorrect =
∑
path

∆tpath ∗ p(path) (7.14)

=
∞∑
n=0

(n∆tfail + ∆treact) ∗ (
k′1

k1 + k′1
)n ∗ k1

k1 + k′1
(7.15)

To simplify the next step, let α = k1
k1+k′1

and α′ =
k′1

k1+k′1
, and recall that for β > 0,∑∞

n=0 β
n = 1

1−β and
∑∞

n=0 n ∗ βn = β ∗ 1
(1−β)2 , and we get:

∆tcorrect = ∆tfail ∗
α′

(1− α′)2
∗ α+ ∆treact ∗

1

1− α′
∗ α (7.16)

Now we note that α
1−α′ = 1, and α′

1−α′ =
k′1
k1

, and simplify:

∆tcorrect = ∆tfail ∗
k′1
k1

+ ∆treact (7.17)
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And thus we arrive at the (full) form for keff :

keff =
1

∆tcorrect
∗ 1

z
(7.18)

This requires only a single assumption: that the reaction is dominated by the bimolecular

step, and thus can be described by equation 7.3. We note that this derivation can be

generalized for multiple possible stop states [2].
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Chapter 8

Calibration of Kinetic Parameters

8.1 kuni Calibration

We calibrate the kuni parameter using measurements of the zippering rate of DNA strands[29].

This rate is that of forming single base pairs at the end of a DNA helix, a process found very

commonly during DNA hybridization where two complementary strands co-locate, form a

nucleating base pair and then rapidly form base pairs (zippering) until the complementary

strands are fully hybridized.

The reference we use for the zippering rate [29] provides a measurement of the rate at

a temperature of 353 ◦K (approximately 80 ◦C), as well as the following equation (equation

40 in [29]) which we may use to obtain the zippering rate at other temperatures. We note

that

kzip = Azip ∗ exp(Ezip/RT )

Since we are interested in the zippering rate at the standard reference temperature of

37 ◦C, we solve this equation for Azip using their kzip = 3 ∗ 109 s−1 at 80 ◦C, and value

of Ezip of 7.5 kcal/mol, and arrive at Azip = 1.329 ∗ 1014 s−1. Thus we have a zippering

rate at 37 ◦C of kzip = 6.842 ∗ 108 s−1. We will also be interested in simulations of room

temperature reactions (25 ◦C), for which kzip = 4.191 ∗ 108 s−1.

How do we then use this zippering rate to inform our choice of kuni? Let us look at the

rates predicted by our kinetic model for the zippering step, shown in Figure 8.1. Regardless

of the rate method chosen, we know that our kinetics model for a step will predict a rate

k = kuni ∗ f(∆Gstep) where f is a function of the energy difference ∆Gstep between the two



72

states and is a different function for different rate methods (see equations 4.12 and 4.15).

For example, with Metropolis rules, f(∆Gstep) = 1 when ∆Gstep ≤ 0.0. In Wetmur and

Davidson [29], the authors calculate their zippering rate by looking at all possible sequences

with a weighting based on the base composition of the sequence. For the reference kzip the

GC content of the sequences was approximately 50%.

Figure 8.1: A single step of DNA zippering

We wish to calculate the average f(∆Gstep) for a single zippering step in our model,

using an equal weighting across all possible Watson-Crick base pairings. This was performed

by averaging across all 43 base pair combinations possible for the three base pairs shown

in Figure 8.1; we note that all three base pairs are necessary for the energy calculation for

some choices of energy model parameters, specifically the “dangles” parameter.

The resulting average f(∆Gstep) for zippering steps is summarized in Table 8.1 for a

temperature of 37 ◦C, using the NUPACK energy model with a DNA substrate, under all

three “dangles” parameters and for the Metropolis [12] and Kawasaki [11] rate methods.

Rate Method Dangles “None” Dangles “Some” Dangles “All”
Metropolis 1.00 .935 .935
Kawasaki 3.34 4.54 4.54

Table 8.1: Average f(∆Gstep) for forward zippering steps, using different dangles parameters
and rate methods, at 37 ◦C

We know that the average rates for the dangles “Some” and “All” are the same. This is

due to these dangles parameters predicting the exact same ∆Gstep for the given structures.

For the Metropolis rate method, all steps where ∆Gstep < 0 (e.g., favorable) have an
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energy difference factor of 1.0. Hence we might expect the Metropolis rate method to have

a consistent average forward zippering rate across all dangles parameters. However this is

not the case: for dangles “Some” and “All”, there are 8 of the 64 distinct zippering steps

which are unfavorable, and thus our average zippering rate is less than 1.0.

In Wetmur and Davidson [29], the authors state that there is an effect on zippering

due to the GC content, with a 1.84-fold rate change between 34% and 64% GC content at

80 ◦C. In our kinetics model, the Kawasaki rate method could lead to a significant difference

in zippering rate due to GC content, while the Metropolis rate method is very unlikely to

do so. In the Kawasaki rate method with a temperature of 37 ◦C, we can get a range for

f(∆Gstep) of 0.329 to 19.8 for dangles “Some” or “All”, or 1.6 to 6.16 for dangles “None”.

In the Metropolis rate method, all favorable zippering steps will always have f(∆Gstep)

of 1.0. For dangles “None”, this is every step and so we could not predict a difference in

zippering rate due to GC content. For dangles “Some” or “All”, this is 56 of the 64 different

zippering steps and so we would not expect a significant change in zippering rate due to

GC content.

We now calculate a calibrated kuni given the experimental kzip and our computed

f(∆Gstep), using the equation kuni = kzip/f(∆Gstep) from before. The resulting set of

calibrated kuni parameters, for temperatures of 25 ◦C and 37 ◦C and the same energy model

parameters as above, is summarized in table 8.2.

Rate Method, Dangles “None” Dangles “Some” and “All”
Temperature

Metropolis, 25 ◦C 4.2 ∗ 108 4.4 ∗ 108

Metropolis, 37 ◦C 6.8 ∗ 108 7.3 ∗ 108

Kawasaki, 25 ◦C 9.5 ∗ 107 6.1 ∗ 107

Kawasaki, 37 ◦C 2.1 ∗ 108 1.5 ∗ 108

Table 8.2: Calibrated kuni parameters in s−1

8.2 kbi Calibration

We calibrate the kbi parameter for DNA substrates using experimental data on DNA hy-

bridization rates [14] for specific 10 and 20 nucleotide DNA strands. These experiments

used fluorescence measurements of the hybridization reaction to determine the bimolecular
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hybridization rate khyb between complementary strands in terms of the activation energy

Ehyb and the natural log of the collision factor Ahyb, as related by the following equation:

ln khyb = lnAhyb − Ehyb/RT

Using their experimental values for lnAhyb and Ehyb, we compute the following table of

values for the bimolecular association rate khyb for two different temperatures (25 ◦C and

37 ◦C) and the two lengths used:

Length khyb at 25 ◦C khyb at 37 ◦C
10-mer 8.14 ∗ 106 1.56 ∗ 107

20-mer 5.97 ∗ 106 1.74 ∗ 107

Table 8.3: Bimolecular association rate khyb in units of /M/s for varying temperatures and
DNA strand lengths

In order for us to use this hybridization rate experiment to calibrate our kbi parameter,

we are going to need an estimate of the expected time for a hybridization reaction to

complete. Given that we are going to run simulations with a single copy of each molecule in

a fixed volume V , we must convert the bimolecular hybridization rate khyb into a stochastic

reaction parameter chyb which can be used to calculate the propensity of the reaction in

the stochastic regime. Since the reaction is bimolecular, we know khyb and chyb are related

by khyb = V ∗ Na ∗ chyb, where Na is Avogadro’s number [9]. The reaction propensity

for a bimolecular reaction with two differing species A and B is #A ∗ #B ∗ chyb, and in

our simulation we have exactly one copy of each molecule, so the reaction propensity is

1 ∗ 1 ∗ chyb. From this, we can calculate the expected time for such a reaction as texp = 1
chyb

since the times are exponentially distributed with the reaction propensity chyb.

We now run a set of simulations which measure the first passage times for the strands

to react and form a fully complementary duplex. In order to compare against hybridization

rates, we need the measured time to be dominated by the bimolecular step of the reaction.

Our simulation is run using kuni as calibrated in the previous section, ksimbi = 1.0∗103 /M/s,

and V = 1
Na

, which corresponds to a mass action concentration of 1M . Using these values

the bimolecular association rate is 5 orders of magnitude slower than the unimolecular rate,

and thus the simulation should be dominated by the bimolecular step. We verified that this

was the case via simulation.
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We can compute a calibrated kbi parameter using texp and our simulation result tsim,

the expected time for the simulation to reach a fully hybridized state. If we are in a regime

where the bimolecular association step is the rate-limiting step, we expect that scaling the

bimolecular rate up by a factor of tscale should lead to expected times being faster by the

same factor tscale. The scaling factor tscale is the simulated time divided by the expected

time. Under these assumptions, if we use kcalibratedbi = tscale ∗ ksimbi we would expect our

simulated times to approximate the expected texp. As we will see in Section 8.3.2, the

assumption here does not hold perfectly, and we will discuss what can be done about that.

The resulting calibrated values for kbi across the same range of energy parameters and

kinetic models as in the kuni calibration is summarized in Table 8.4. In each case, we used

the data from the 10 nucleotide hybridization system, using 1000 simulated trajectories

with a maximum simulation time of 200s (which was never reached in any trajectory).

Calculations were done at 37 ◦C and 25 ◦C, using the NUPACK energy model with a DNA

substrate.

Rate Method, Dangles “None” Dangles “Some” Dangles “All”
Temperature
Metropolis, 37 ◦C 8.18 ∗ 105 1.40 ∗ 106 1.41 ∗ 106

Kawasaki, 37 ◦C 8.07 ∗ 105 1.38 ∗ 106 1.38 ∗ 106

Metropolis, 25 ◦C 6.02 ∗ 105 1.26 ∗ 106 1.29 ∗ 106

Kawasaki, 25 ◦C 6.07 ∗ 105 1.29 ∗ 106 1.28 ∗ 106

Table 8.4: Calibrated values for kbi (/M/s) for varying energy model and kinetic model
parameters

Here we note that the two differing rate methods have almost no effect on the calibrated

kbi, which is to be expected as the different rate methods only change the kinetics of uni-

molecular steps, and these have already been calibrated to achieve the same zippering rate

to reach the full hybridization. However, there is a difference across the dangles parame-

ters; this is also to be expected, as the energy difference due to structure (e.g., not due to

∆Gvolume or ∆Gassoc) in the bimolecular step is entirely due to dangles, and is the primary

factor in the bimolecular disassociation. Thus there is competition between starting the hy-

bridization after an initiating nucleation event and immediately falling back apart. Indeed,

this effect results in a nonlinearity between kbi and khyb that will be discussed in Section

8.3.2.
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8.3 Discussion

8.3.1 Choice of Experimental Paper for Determining kuni

We chose to calibrate the unimolecular rates using the DNA zippering rate from Wetmur

and Davidson [29]. This was primarily due to the zippering rate being directly analogous to

the most basic steps in our kinetics model. However, we could also have chosen to calibrate

the unimolecular rates using a more complicated rate, such as that for three-way branch

migration in DNA [17] and indeed that is what was done in the Master’s thesis [22]. For all

simulations in that thesis, kuni = 1.6 ∗ 106 s−1 and kbi = 9.07 ∗ 103 s−1 were chosen so that

they approximately match a three-way branch migration step time of 10 µs at 37 ◦C, and a

bimolecular hybridization rate constant for a 10-mer of khyb = 1.0 ∗ 106 /M/s at 37 ◦C.

When we tried to calibrate the kuni parameter using the three-way branch migration rate

found in [17] (12 µs), we found that the resulting kuni was much slower than that presented

above for the calibration using zippering rate, and this led to problems calibrating the

kbi parameter against the much faster hybridization rate found in [14]. The linear scaling

assumption did not hold, namely we found that for these kuni values, a linear increase in

kbi as suggested by calibration experiments led to a sublinear increase in the simulated

bimolecular hybridization rate. We believe this is due to the kbi values needed being several

orders of magnitude greater than the kuni calibrated from the three-way branch migration

rate.

When kbi is the same order of magnitude as kuni, the bimolecular disassociation rate is on

the same time scale as the zippering rate. While increasing kbi at this stage increases the bi-

molecular association rate, it also decreases the probability that the duplex will hybridize be-

fore it falls apart. For discussion purposes, we could model this probability of hybridization

in a simple way, by assuming that once we make one zippering step we will proceed to fully

hybridization. We arrive at the probability of hybridization, P (hybridize) = kzip/(kzip +

kdisassociate), and thus our rate of hybridization is khyb = kassociate ∗ P (hybridize). Thus if

kdisassociate >> kzip, we get khyb = kzip ∗ kassociate/kdisassociate. So we will never be able

to get a hybridization rate that is greater than a factor of kassociate/kdisassociate larger than

our zippering rate (or approximately kuni). Furthermore, the ratio of kassociate/kdisassociate

is fixed by the thermodynamic energy model as e−(∆G(associate)−∆G(disassociate))/RT , where

the energies involved are of the newly associated or disassociated state, respectively. Thus
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since the three-way branch migration data led to a much lower kuni, we were not able to

use that data to match the experimental khyb found in Morrison and Stols [14] due to this

limit.

The important observation to take away here is that with only two adjustable kinetic

parameters, the thermodynamic energy landscape is not likely to account for all kinetic

phenomena of interest and indeed this is the case for zippering vs three-way branch migra-

tion. Additionally, we found that in our model the zippering rate is compatible with the

high hybridization rates that have been measured, while the three-way branch migration

rate is compatible only with significantly lower hybridization rates.

8.3.2 Nonlinearity of kbi Calibrations

Following the discussion in Section 8.2, we made the assumption that a direct scaling of

kbi would lead to a directly inverse scaling in the expected time tsim for the simulation.

This is true in the regime where a nucleation event is followed by rapid zippering to achieve

a fully hybridized duplex, as the rate controlling step should entirely be the bimolecular

association step.

We characterized how well our calibrated kbi values actually predicted the texp we were

calibrating against. As summarized in Table 8.5, we ended up with values for tsim that

ranged from 0.28 to 3.39 times larger than the texp which we desired. Looking at this ratio

of tsim/texp for the different datasets in further detail, we find that 10-mers at 37 ◦C average

a ratio of 1.50, 10-mers at 25 ◦C average a ratio of 2.41, 20-mers at 37 ◦C average a ratio of

0.78, and 20-mers at 25 ◦C average a ratio of 0.44.

This is not exactly what we predicted with our direct linear scaling argument. In

fact, with the values of kbi and kuni that we arrived at, this argument no longer holds

due to the bimolecular disassociation step being within an order of magnitude of the initial

zippering steps. In this regime, an additional controlling factor will by how many nucleation

events are necessary before the zippering begins (once it does begin, we expect it to go to

completion due to it being strongly thermodynamically favorable). Wetmur and Davidson

[29] also inferred that multiple nucleation attempts would be necessary prior to zippering

commencing, and thus that DNA hybridization is not diffusion-limited.

Thus our calibrated kbi parameters are no longer in the regime where the rate controlling

step is the bimolecular association and there must be a more complicated process involved,
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Length, Rate Method, tsim:“None” tsim:“Some” tsim:“All” texp
Temperature

10-mer, Kawasaki, 37 ◦C 9.50 ∗ 10−5 9.26 ∗ 10−5 8.38 ∗ 10−5 6.41 ∗ 10−5

10-mer, Metropolis, 37 ◦C 1.17 ∗ 10−4 9.76 ∗ 10−5 9.10 ∗ 10−5 6.41 ∗ 10−5

10-mer, Kawasaki, 25 ◦C 2.25 ∗ 10−4 4.16 ∗ 10−4 2.82 ∗ 10−4 1.23 ∗ 10−4

10-mer, Metropolis, 25 ◦C 2.56 ∗ 10−4 3.46 ∗ 10−4 2.49 ∗ 10−4 1.23 ∗ 10−4

20-mer, Kawasaki, 37 ◦C 5.54 ∗ 10−5 3.25 ∗ 10−5 3.06 ∗ 10−5 5.75 ∗ 10−5

20-mer, Metropolis, 37 ◦C 7.81 ∗ 10−5 3.91 ∗ 10−5 3.42 ∗ 10−5 5.75 ∗ 10−5

20-mer, Kawasaki, 25 ◦C 1.11 ∗ 10−4 4.77 ∗ 10−5 4.76 ∗ 10−5 1.68 ∗ 10−4

20-mer, Metropolis, 25 ◦C 1.33 ∗ 10−4 5.24 ∗ 10−5 4.62 ∗ 10−5 1.68 ∗ 10−4

Table 8.5: tsim values for 10- and 20-mer hybridization systems, with either the Kawasaki
or Metropolis rate method, dangles “None”, “Some” or “All”, at a temperature of either
25 ◦C or 37 ◦C and a concentration of 1 ∗ 10−3M. All units are in seconds.

such as the competition between bimolecular disassociation and zippering. While scaling

the kbi values up from our calibrated numbers gave us closer values for tsim to those desired,

the resulting changes were nonlinear in the scaling factor.

So while our calibrated numbers give us results to within an order of magnitude, further

work is necessary in order to better understand the relationship between kuni and kbi, espe-

cially when considering the bimolecular disassociation events and the competition between

those and initiation of zippering.

8.3.3 Other Substrates

While the references used were for DNA substrates, we note that similar numbers have been

estimated for RNA substrates for both hybridization and zippering, though many of the

relevant experiments are done with much larger strand lengths and thus are not suitable

for direct simulation for the bimolecular calibration. Thus for calibrating against a RNA

substrate we use the same experimental values as for DNA and just run the analysis (for

the average zippering rate) and simulation (for calibrating kbi) using the NUPACK RNA

energy model.
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Chapter 9

Case Study: Toehold-Mediated
Four-Way Branch Migration

Let us now look at an experimental system which will we study using the Multistrand

simulator. Our goal is to highlight how we can use the simulator to explore actual exper-

imental systems and acquire detailed simulation data which is then useful for comparison

or prediction of the experimental system.

9.1 Background

Toehold-mediated strand exchange is an important mechanism in the design and control

of DNA nanotechnology. Toehold-mediated three-way branch migration has been used to

implement many DNA devices, such as switches [25], circuits [23], motors [32], and many

other motifs. The kinetics and mechanism for toehold-mediated three-way branch migration

has been well characterized [35, 33] with reaction rates that can be controlled over six orders

of magnitude by varying the length and/or strength of the toehold.

While four-way branch migration kinetics have been well characterized [16, 27], anal-

ogous control over the process by the use of toeholds was only recently characterized by

Dabby, et al. [5]. In this section we will explore the use of Multistrand to simulate the

toehold-mediated four-way branch migration and compare with the experimental results.

9.2 Mechanism

The mechanism involved in toehold-mediated four-way branch migration is shown here in

Figure 9.1. The mechanism begins with the toehold binding, where the domains m and n
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bind to their respective complements m∗ and n∗. The formation of these toeholds stabilizes

the resulting complex, so that it remains bound together for a reasonable timescale. A

four-way branch migration can then occur. Four-way branch migration whereby the branch

migration regions (domains x and x∗ in the respective complexes) exchange via a random

walk, and allow the eventual disassociation into two fully paired DNA duplexes. While the

entire process is theoretically reversible, this final state is typically more stable than the

starting state due to the additional bonding energy from the toehold regions.

+

+

Toehold
Binding

Branch 
Migration

x

x

x*

x* mm*

n* n

Figure 9.1: Four-way branch migration mechanism

The primary means of controlling this mechanism in DNA nanotechnology is by changing

the lengths of the toehold domains. In the experiments conducted by [5], the toehold
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domains m and n vary in length from 0 to 6, while the complementary domains m∗ and

n∗ are fixed at a length of 6. This reduction in toehold length (truncated from the 5′

side of m and 3′ side of n) reduces the stability of the intermediates, thus increasing the

likelihood of disassociating back into the starting configuration instead of proceeding with

the branch migration to completion. For very short toehold domains (length less than 2),

the collision intermediate will not have a stabilized four-way branched multiloop. This leads

to additional slowdown in the overall process due to the instability of the complex during

the initial step(s) of the branch migration.

9.3 Simulation

There are two rates that are experimentally measured in this system [5], illustrated here

in Figure 9.2. These are k1(m,n), the bimolecular rate constant for successful reactions,

and k2(m,n), the unimolecular rate constant for a successful reaction. Both of these rate

constants are dependent on the choice of toehold regions m and n. Here, we are most inter-

ested in k1(m,n), as the bimolecular reaction will be the controlling step in the mechanism

for most experimental conditions.

x

x*
+ +

m*

n*

x

x*

m

n

k2(m,n)k1(m,n)

Figure 9.2: The experimentally measured rates: k1(m,n) is the bimolecular rate constant for
a successful reaction, and k2(m,n) the unimolecular rate constant for a successful reaction.
The intermediate state is shown as a black box, as these rate constants are for successful
reactions and thus there is no well-defined intermediate which is guaranteed to always lead
to a successful reaction.

To simulate this mechanism, we use first step mode (as described in Section 7.6). This

allows us to acquire data for k1(m,n) and k2(m,n) directly. These rate constants, re-

spectively, correspond to the bimolecular rate of successful reactions (k1) and unimolecular

rate of successful reactions (k2) found in the first step model (see equation 7.6 and related

discussion).
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We also wish to gather data for |m| = 0, |n| = 0, where there is no direct toehold

binding, but rather a possibility for the branch migration process to start spontaneously

if the ends of the helix are breathing and thus unpaired. In order to correctly model this

type of reaction, we require our starting state complexes to be Boltzmann sampled out of

the ensemble of all possible secondary structures found when the given strands have formed

a complex. Since the representative starting state complexes (shown in Figure 9.3B) are

highly stable, most Boltzmann sampled structures are going to be very similar but with

some base pair breathing.

This allows the possibility that there exists a bimolecular step from the starting state.

When the Boltzmann sampling gives us a starting state where there are no bimolecular

steps, the resulting trajectory is a failed collision with a 0.0 collision rate.

+
x

x

x*

x* mm*

n* n

Strand 1: x* m*
Strand 2: n* x
Strand 3: m x
Strand 4: x* n

Starting State Stop State (Success)Stop State (Fail)

Disassoc({2,4})Disassoc({1,2})

B

A

Figure 9.3: Start and stop states for the simulator. Group A shows the most energetically
favorable structures to occur in the start state (due to Boltzmann sampling) or the stop
state (due to the Disassoc macrostate). Group B shows a sampled structure from those
that could occur in valid starting or stopping states.

Our simulation was run using the following sequences (Table 9.1), the NUPACK DNA

parameter set with “dangles” set to “Some” (the default), and the Kawasaki rate method

at a temperature of 25 ◦C. The simulation time was set to a maximum of 50.0 simulated

seconds, and was never reached in any trajectory. These simulations used kbi = 9.07 ∗ 103
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and kuni = 1.6 ∗ 106, the calibrated values used in the Master’s thesis, rather than those

discussed in section 8.

Domain Sequence
m GTGGGT
m∗ ACCCAC
n GTTAGC
n∗ GCTAAC
x GCGACACCGTGGACGTGCGGT
x∗ ACCGCACGTCCACGGTGTCGC

Table 9.1: Sequences used for four-way branch migration domains, in 5′ to 3′ order. Domains
m and n are variable length; for toehold lengths under 6, m is truncated on the 5′ side and
n is truncated on the 3′ side.

The number of trajectories simulated varied with toehold length. These trajectories

were broken into a number of data sets in order to estimate the standard error of the mean

for k1. These choices are summarized in Table 9.2. For some of these choices we were not

able to get any successful trajectories. In these cases we can get an upper bound estimate

on k1 if we make the assumption that the next trajectory that would have been run would

be a success, thus modifying equation 7.9 to be the following:

k1 ≤
1

1 +Nfail
∗ kcoll (9.1)

We note that since this upper bound estimate still depends on the average collision

rate, kcoll, it may lead to different estimates even when the number of trajectories is the

same due to variance in the collision rate. For example, with |m| = 0, |n| = 0, if the

Boltzmann sampled starting state does not have a base pair breathing at an end of the

helix, the resulting collision rate for that sampled trajectory is 0.0, and so we would expect

the overall average collision rate kcoll to be much lower than that for |m| = 2, |n| = 0.

After simulation, the resulting trajectory data was loaded and used to calculate k1 and

k2 values as described in Section 7.6. These results are summarized in Table 9.2 and the k1

values are shown in Figure 9.4.
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|m| |n| k1(m,n) (/M/s) k2(m,n) (/s) Total Trajectories

0 0 < 1.97 ∗ 100 100× 1000
0 2 < 7.17 ∗ 100 100× 1000
0 4 < 1.02 ∗ 101 100× 1000
0 6 4.75 ∗ 102 ± 8.00 ∗ 101 1.90 ∗ 102 ± 3.53 ∗ 101 100× 1000

2 0 < 7.01 ∗ 100 100× 1000
2 2 < 1.22 ∗ 101 100× 1000
2 4 4.58 ∗ 101 ± 2.60 ∗ 101 1.54 ∗ 102 ± 5.78 ∗ 101 100× 1000
2 6 3.70 ∗ 103 ± 2.34 ∗ 103 3.36 ∗ 101 ± 6.65 ∗ 100 10× 1000

4 0 1.30 ∗ 101 ± 1.29 ∗ 101 4.51 ∗ 102 ± 0.00 ∗ 100 100× 1000
4 2 1.84 ∗ 103 ± 2.09 ∗ 102 1.33 ∗ 102 ± 1.27 ∗ 101 100× 1000
4 4 1.04 ∗ 105 ± 1.26 ∗ 104 1.24 ∗ 102 ± 2.89 ∗ 101 10× 1000
4 6 3.32 ∗ 106 ± 4.11 ∗ 105 9.10 ∗ 101 ± 2.92 ∗ 101 10× 20

6 0 1.46 ∗ 102 ± 4.95 ∗ 101 2.02 ∗ 102 ± 6.64 ∗ 101 100× 1000
6 2 5.17 ∗ 104 ± 1.28 ∗ 104 6.54 ∗ 101 ± 7.20 ∗ 100 10× 1000
6 4 3.18 ∗ 106 ± 3.85 ∗ 105 5.90 ∗ 101 ± 1.13 ∗ 101 10× 20
6 6 9.26 ∗ 106 ± 4.18 ∗ 105 3.55 ∗ 101 ± 5.20 ∗ 100 10× 10

Table 9.2: Simulation results for the rate constants k1 and k2 over varying toe-
hold lengths. Total trajectories used for each combination is given as # datasets ×
# trajectories per dataset.
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Figure 9.4: Bimolecular success rate constant k1 vs the total toehold length |m|+ |n|. Data
points with no successful trajectories are drawn with squares instead of circles and are upper
bounds on the k1.

9.4 Discussion

We now would like to compare our simulation results against the experimental results in

Dabby et al. [5]. We assume there must be a uniform scaling factor kscale applied to our
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k1(m,n) values in order to match the experimentally fit values kfit1 (m,n). We compute

this scaling factor by taking the geometric mean of kfit1 (m,n)/k1(m,n) over all m,n values

where we had at least one successful trajectory. This leads to a kscale = 1/20.0, and so we

then compute ksim1 (m,n) = kscale ∗ k1(m,n). We compare the resulting ksim1 (m,n) values

with kfit1 (m,n) in Figure 9.5.
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Figure 9.5: Scatter plot of ksim1 (m,n) vs kfit1 (m,n) on a log-log scale. Data points in red
had only upper bounds for ksim1 (m,n), and are shown with a line indicating the possible
range in ksim1 for those m,n values.

We note that the necessity of this scaling factor assumption in order to match the

experimental data is likely due to calibration factors. However, since it suggests that our

kbi (since that is the relevant kinetic parameter for the k1 values) needs to be slower by a

factor of 20.0, it is not explained by the nonlinearity in calibrating kbi for DNA hybridization

as discussed in Section 8.3.2.
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Appendix A

Strand Orderings for
Pseudoknot-Free Representations

Given a complex microstate c, we can draw a polymer graph representation (also called the

circle-chord representation) by laying out the strands on a circle, in the ordering π∗(c), and

representing the base pairs by chords connecting the appropriate locations (Figure A.1).

In the case of a complex microstate with a single strand, we call the secondary structure

pseudoknotted if there are crossing chords. However, the case where a complex microstate

contains multiple strands requires a slightly more complex definition. We note that in this

case, a strand ordering π∗(c) corresponds to one particular way of arranging the strands on

the circle; the circular permutations of π∗(c) are the (L − 1)! permutations of the strands

which are distinct when arranged on a circle, e.g., for three strands labeled A,B,C, there

are only two distinct circular permutations: (A,B,C) and (A,C,B). With that in mind,

we call an arbitrary secondary structure pseudoknotted if every circular permutation of the

strand ordering has a polymer graph representation that contains a crossed chord.

While our simulator is not constrained to using a strand ordering π∗(c) whose polymer

graph representation does not contain a crossed chord, it is convenient for us to do so, as the

output representation is easier to generate in these cases. The following heuristics allow us

to maintain the property that our complex microstates always use a strand ordering π∗(c)

whose polymer graph does not contain a crossed chord:

The initial strand orderings we generate are based on a dot-paren structure, which

naturally translate to a polymer graph with no crossed chords. The only time strand

orderings can change is when performing a bimolecular move (either a break move or join

move). For a break move, the resulting pair of complexes maintain the same orderings
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(a) A hairpin with long stem (b) Short three-way branch migration system

Figure A.1: Two different secondary structures using polymer graph representation. Strands
are always arranged with 5′ → 3′ orientation being clockwise around the circle.

the strands originally had in the original complex—-e.g., if we had a complex of 5 strands

(A through E) with ordering (A,D,E,C,B) which broke apart into two complexes with

strands A,B,C and D,E, the resulting pair of orderings would be (A,C,B) and (D,E)

(Figure A.2).

For a join move, we first note that a complex’s open loops correspond to sequential pairs

of strands in the circular strand ordering (this corresponds to the strands on either side of

the “nick” in the dot-paren representation), so that a complex with ordering (A,B,D,C)

has open loops corresponding to the pairs (A,B), (B,D), (D,C) and (C,A). When we

perform a join move, we take each complex’s strand ordering and find the cyclic permutation

(these are the permutations that are identical when arranged on a circle, e.g. (A,B,C),

(B,C,A) and (C,A,B) are cyclic permutations on the strand ordering (A,B,C)) which

places the affected open loops at the edge of the permutation. For example, if we are

joining (A,B,D,C) with (E,G, F ) by the open loops around (B,D) and (E,G), we use

the cyclic permutations (D,C,A,B) and (G,F,E), ending up with the strand ordering

(D,C,A,B,G, F,E) for the resulting complex (Figure A.3). Why does this ordering have

no crossing chords (assuming the starting ones did not)? We note that this join move was

joining a base on either the 5′ end of D or the 3′ end of B, with a base on either the 5′

end of G or the 3′ end of E—in all four of these cases, the resulting chord cannot cross
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A

D

E

CB

(a) (A,D,E,C,B) before break move

A

C

B

D

E

(b) (A,C,B) and (D,E) after break move

Figure A.2: Polymer graph representation before and after a break move (base pair high-
lighted in red). Note that the ordering is consistent, but we now have two separate complexes
and thus two separate polymer graphs.

any existing chords if we use the given strand ordering. Note that in general, the bases

available for a join move are not necessarily from the 5′ and 3′ edges near the nick but the

same argument applies. For example, if we used a join from the (G,F ) open loop (from the

previous example), there is a single base on strand E that could be used to make the join,

but since it’s in the same open region as the 5′ end of G and 3′ end of F , it also could not

create a crossed chord.

So we have shown that the strand ordering π∗(c) maintained by our simulator for a

complex microstate c has a polymer graph with no crossed chords. This leads naturally

to the question of whether there is a different circular permutation of π∗(c) which also has

no crossed chords. The (surprising) answer is no: Every other circular permutation has at

least one crossed chord! This is stated in the following theorem:
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A

B
D

C

B,D

C,A

A,B

D,C

(a) (A,B,D,C) before join move

E

G
F

G,F

E,G

F,E

(b) (E,G,F) before join move

D

C A

B

G

F

E

(c) (D,C,A,B,G,F,E) after cyclic permutations and join

Figure A.3: Polymer graph representation before and after a join move. Open loop regions
are noted with a cyan circle marker. Four of the (many) possible join moves between open
loops (B,D) and (E,G) are shown in (c), using red, blue, magenta, and cyan.
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A.1 Representation Theorem

For every non-pseudoknotted complex microstate c, there is exactly one circular permutation

π∗(c) whose polymer graph has no crossed chords.

While the above heuristic can be expanded on to prove this theorem via induction on

the number of strands in a complex, a more thorough proof can be found in [6] and so we

will not reproduce it here.



91

Bibliography

[1] Jonathan Bath, Simon J. Green, and Andrew J. Turberfield. A free-running DNA motor

powered by a nicking enzyme. Angewandte Chemie International Edition, 44(28):4358–

4361, 2005.

[2] Chris Berlind. California Institute of Technology, Computer Science Senior Thesis,

2011.

[3] Victor A. Bloomfield, Donald M. Crothers, and Ignacio Tinoco, Jr. Nucleic Acids:

Structures, Properties, and Functions. University Science Books, Sausalito, CA, 2000.

[4] Yi Chen, Mingsheng Wang, and Chengde Mao. An autonomous DNA nanomotor

powered by a DNA enzyme. Angewandte Chemie International Edition, 43(27):3554–

3557, 2004.

[5] Nadine L. Dabby, Ho-Lin Chen, Joseph M. Schaeffer, and Erik Winfree. The kinetics

of toehold-mediated four-way branch migration. Nucleic Acids Research (submitted),

2012.

[6] Robert M. Dirks, Justin S. Bois, Joseph M. Schaeffer, Erik Winfree, and Niles A.

Pierce. Thermodynamic analysis of interacting nucleic acid strands. SIAM Review,

49(1):65–88, 2007.

[7] Robert M. Dirks, Milo Lin, Erik Winfree, and Niles A. Pierce. Paradigms for compu-

tational nucleic acid design. Nucleic Acids Research, 32(4):1392–1403, 2004.

[8] Christoph Flamm, Walter Fontana, Ivo L. Hofacker, and Peter Schuster. RNA folding

at elementary step resolution. RNA, 6:325–338, 2000.

[9] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J Phys

Chem, 81(25):2340–2361, 1977.



92

[10] Ivo L. Hofacker. Vienna RNA secondary structure server. Nucleic Acids Research,

31(13):3429–3431, 2003.

[11] Kyozi Kawasaki. Diffusion constants near the critical point for time-dependent ising

models. Phys Rev, 145:224–230, 1966.

[12] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.

Teller, and Edward Teller. Equation of state calculations by fast computing machines.

J Chem Phys, 21:1087–1092, 1953.

[13] Steven R. Morgan and Paul G. Higgs. Barrier heights between ground states in a

model of RNA secondary structure. Journal of Physics A: Mathematical and General,

31(14):3153, 1998.

[14] Larry E. Morrison and Lucy M. Stols. Sensitive fluorescence-based thermodynamic and

kinetic measurements of dna hybridization in solution. Biochemistry, 32(12):3095–3104,

1993. PMID: 8457571.

[15] Jonathan A. Othmer. Algorithms for mapping nucleic acid free energy landscapes. PhD

thesis, California Institute of Technology, 2009.

[16] Igor G. Panyutin and Peggy Hsieh. The kinetics of spontaneous DNA branch migration.

Proceedings of the National Academy of Sciences, 91(6):2021–2025, 1994.

[17] Charles M. Radding, Kenneth L. Beattie, William K. Holloman, and Roger C. Wie-

gand. Uptake of homologous single-stranded fragments by superhelical dna: Iv. branch

migration. Journal of Molecular Biology, 116(4):825–839, 1977.

[18] Paul W. K Rothemund, Nick Papadakis, and Erik Winfree. Algorithmic self-assembly

of DNA sierpinski triangles. PLoS Biol, 2(12):e424, 12 2004.

[19] John SantaLucia. A unified view of polymer, dumbbell, and oligonucleotide DNA

nearest-neighbor thermodynamics. Proceedings of the National Academy of Sciences,

95(4):1460–1465, 1998.

[20] John SantaLucia, Hatim T. Allawi, and P. Ananda Seneviratne. Improved nearest-

neighbor parameters for predicting DNA duplex stability. Biochemistry, 35(11):3555–

3562, 1996.



93

[21] John SantaLucia and Donald Hicks. The thermodynamics of DNA structural motifs.

Annual Review of Biophysics and Biomolecular Structure, 33(1):415–440, 2004.

[22] Joseph M. Schaeffer. The multistrand simulator: Stochastic simulation of the kinetics of

multiple interacting DNA strands. Master’s thesis, California Institute of Technology,

2012.

[23] Georg Seelig, David Soloveichik, David Y. Zhang, and Erik Winfree. Enzyme-free

nucleic acid logic circuits. Science, 314(5805):1585–1588, 2006.

[24] Friedrich C. Simmel. Processive motion of bipedal DNA walkers. ChemPhysChem,

10(15):2593–2597, 2009.

[25] Friedrich C. Simmel and Bernard Yurke. A DNA-based molecular device switchable

between three distinct mechanical states. Applied Physics Letters, 80:883, February

2002.

[26] Friedrich C. Simmel and Wendy U. Dittmer. DNA nanodevices. Small, 1(3):284–299,

2005.

[27] Betty J. Thompson, Merrill N. Camien, and Robert C. Warner. Kinetics of branch

migration in double-stranded DNA. Proceedings of the National Academy of Sciences,

73(7):2299–2303, 1976.

[28] James G. Wetmur. Hybridization and renaturation kinetics of nucleic acids. Annual

Review of Biophysics and Bioengineering, 5(1):337–361, 1976.

[29] James G. Wetmur and Norman Davidson. Kinetics of renaturation of DNA. Journal

of Molecular Biology, 31:349–370, 1968.

[30] Darren J. Wilkinson. Stochastic Dynamical Systems, pages 359–375. John Wiley &

Sons, Ltd, 2011.

[31] Erik Winfree. Algorithmic self-assembly of DNA: Theoretical motivations and 2D

assembly experiments. Journal of Biomolecular Structure and Dynamics, 11(2):263–

270, 2000.

[32] Peng Yin, Harry M.T. Choi, Colby R. Calvert, and Niles A. Pierce. Programming

biomolecular self-assembly pathways. Nature, 451(7176):318–322, 2008.



94

[33] Bernard Yurke and Allen Mills. Using dna to power nanostructures. Genetic Program-

ming and Evolvable Machines, 4:111–122, 2003. 10.1023/A:1023928811651.

[34] Joseph N. Zadeh, Conrad D. Steenberg, Justin S. Bois, Brian R. Wolfe, Marshall B.

Pierce, Asif R. Khan, Robert M. Dirks, and Niles A. Pierce. NUPACK: Analysis and

design of nucleic acid systems. Journal of Computational Chemistry, 32(1):170–173,

2011.

[35] David Yu Zhang and Erik Winfree. Control of DNA strand displacement kinetics using

toehold exchange. Journal of the American Chemical Society, 131(47):17303–17314,

2009.

[36] Wenbing Zhang and Shi-Jie Chen. RNA hairpin-folding kinetics. Proceedings of the

National Academy of Sciences, 99(4):1931–1936, 2002.

[37] Michael Zuker. Mfold web server for nucleic acid folding and hybridization prediction.

Nucleic Acids Research, 31(13):3406–3415, 2003.


