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Abstract

DNA nanotechnology is an emerging field which utilizes the unique structural properties of
nucleic acids in order to build nanoscale devices, such as logic gates, motors, walkers, and
algorithmic structures. These devices are built out of DNA strands whose sequences have
been carefully designed in order to control their secondary structure - the hydrogen bonding
state of the bases within the strand (called “base-pairing”). This base-pairing is used to
not only control the physical structure of the device, but also to enable specific interactions
between different components of the system, such as allowing a DNA walker to take steps
along a prefabricated track. Predicting the structure and interactions of a DNA device
requires good modeling of both the thermodynamics and the kinetics of the DNA strands
within the system. Thermodynamic models can be used to make equilibrium predictions
for these systems, allowing us to look at questions like “Is the walker-track interaction a
well-formed and stable molecular structure?”, while kinetics models allow us to predict the
non-equilibrium dynamics, such as “How quickly will the walker take a step?”. While the
thermodynamics of multiple interacting DNA strands is a well-studied model which allows
for both analysis and design of DNA devices, previous work on the kinetics models only
explored the kinetics of how a single strand folds on itself.

The kinetics of a set of DNA strands can be modeled as a continuous time Markov
process through the state space of all secondary structures. Due to the exponential size
of this state space it is computationally intractable to obtain an analytic solution for most
problem sizes of interest. Thus the primary means of exploring the kinetics of a DNA
system is by simulating trajectories through the state space and aggregating data over
many such trajectories. We developed the the Multistrand kinetics simulator, which
extends the previous work by including the multiple strand version of the thermodynamics
model (a core component for calculating parameters of the kinetics model), extending the

thermodynamics model to include terms accounting for the fixed volume simulations, and
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by adding new kinetic moves that allow interactions between distinct strands. Furthermore,
we prove that our modified thermodynamic and kinetic models are exactly equivalent to
the canonical thermodynamics model when the simulation is run for sufficiently long time
to reach equilibrium.

The kinetic simulator was implemented in C++ for time critical components and in
Python for input and output routines as well as post-processing of trajectory data. A key
contribution of this work was the development of data structures and algorithms that take
advantage of local properties of secondary structures. These algorithms enable the efficient
reuse of the basic objects that form the system, such that only a very small part of the state’s
neighborhood information needs to be recalculated with every step. Another key addition
was the implementation of algorithms to handle the new kinetic steps that occur between
different DNA strands, without increasing the time complexity of the overall simulation.
These improvements led to a reduction in worst case time complexity of a single step being
just quadratic in the input size (the number of bases in the simulated system), rather than
cubic, and also led to additional improvements in the average case time complexity.

What data does the simulation produce? At the very simplest, the simulation produces
a full kinetic trajectory through the state space - the exact states it passed through, and
the time at which it reached them. A small system might produce trajectories that pass
through hundreds of thousands of states, and that number increases rapidly as the system
gets larger! Going back to our original question, the type of information a researcher hopes
to get out of the data could be very simple: “How quickly does the walker take a step?”, with
the implied question of whether it’s worth it to actually order the particular DNA strands
composing the walker, or go back to the drawing board and redesign the device. One way
to acquire that type of information is to look at the first time in the trajectory where we
reached the “walker took a step” state, and record that information for a large number of
simulated trajectories in order to obtain a useful answer. We designed and implemented
new simulation modes that allow the full trajectory data to be condensed as it’s generated
into only the pieces the user cares about for their particular question. This analysis tool
also required the development of flexible ways to talk about states that occur in trajectory
data; if someone wants data on when the walker took a step, we have to be able to express

that in terms of the Markov process states which meet that condition.
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Chapter 1

Introduction

DNA nanotechnology is an emerging field which utilizes the unique structural properties
of nucleic acids in order to build nanoscale devices, such as logic gates [18], motors [4, 1],
walkers [19, 1, 20], and algorithmic structures [14, 23]. These devices are built out of DNA
strands whose sequences have been carefully designed in order to control their secondary
structure - the hydrogen bonding state of the bases within the strand (called “base-pairing”).
This base-pairing is used to not only control the physical structure of the device, but also
to enable specific interactions between different components of the system, such as allowing
a DNA walker to take steps along a prefabricated track. Predicting the structure and
interactions of a DNA device requires good modeling of both the thermodynamics and the
kinetics of the DNA strands within the system. Thermodynamic models can be used to
make equilibrium predictions for these systems, allowing us to look at questions like “Is
the walker-track interaction a well-formed and stable molecular structure?”, while kinetics
models allow us to predict the non-equilibrium dynamics, such as “How quickly will the
walker take a step?”. While the thermodynamics of multiple interacting DNA strands is
a well-studied model [5] which allows for both analysis and design of DNA devices [24, 6],
previous work on secondary structure kinetics models only explored the kinetics of how a
single strand folds on itself [7].

The kinetics of a set of DNA strands can be modeled as a continuous time Markov pro-
cess through the state space of all secondary structures. Due to the exponential size of this
state space it is computationally intractable to obtain an analytic solution for most problem
sizes of interest. Thus the primary means of exploring the kinetics of a DNA system is by
simulating trajectories through the state space and aggregating data over many such tra-

jectories. We present here the Multistrand kinetics simulator, which extends the previous
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work [7] by using the multiple strand thermodynamics model [5] (a core component for cal-
culating transition rates in the kinetics model), adding new terms to the thermodynamics
model to account for stochastic modeling considerations, and by adding new kinetic moves
that allow bimolecular interactions between strands. Furthermore, we prove that this new
kinetics and thermodynamics model is consistent with the prior work on multiple strand
thermodynamics models [5].

The Multistrand simulator is based on the Gillespie algorithm [8] for generating sta-
tistically correct trajectories of a stochastic Markov process. We developed data structures
and algorithms that take advantage of local properties of secondary structures. These algo-
rithms enable the efficient reuse of the basic objects that form the system, such that only a
very small part of the state’s neighborhood information needs to be recalculated with every
step. A key addition was the implementation of algorithms to handle the new kinetic steps
that occur between different DNA strands, without increasing the time complexity of the
overall simulation. These improvements lead to a reduction in worst case time complexity
of a single step and also led to additional improvements in the average case time complexity.

What data does the simulation produce? At the very simplest, the simulation produces
a full kinetic trajectory through the state space - the exact states it passed through, and
the time at which it reached them. A small system might produce trajectories that pass
through hundreds of thousands of states, and that number increases rapidly as the system
gets larger. Going back to our original question, the type of information a researcher hopes
to get out of the data could be very simple: “How quickly does the walker take a step?”,
with the implied question of whether it’s worth it to actually purchase the particular DNA
strands composing the walker to perform an experiment, or go back to the drawing board
and redesign the device. One way to acquire that type of information is to look at the first
time in the trajectory where we reached the “walker took a step” state, and record that
information for a large number of simulated trajectories in order to obtain a useful answer.
We designed and implemented new simulation modes that allow the full trajectory data to
be condensed as it’s generated into only the pieces the user cares about for their particular
question. This analysis tool also required the development of flexible ways to talk about
states that occur in trajectory data; if someone wants data on when the walker took a step,
we have to be able to express that in terms of the Markov process states which meet that

condition.



Chapter 2

System

We are interested in simulating nucleic acid molecules (DNA or RNA) in a stochastic regime;
that is to say that we have a discrete number of molecules in a fixed volume. This regime is
found in experimental systems that have a small volume with a fixed count of each molecule
present, such as the interior of a cell. We can also apply this to experimental systems with
a larger volume (such as a test tube) when the system is well mixed, as we can pick a fixed
(small) volume and deal with the expected counts of each molecule within it, rather than
the whole test tube.

To discuss the modeling and simulation of the system, we need to be very careful to
define the components of the system, and what comprises a state of the system within the

simulation.

2.1 Strands

Each DNA molecule to be simulated is represented by a strand. Our system then contains
a set of strands U*, where each strand s € ¥* is defined by s = (id, label, sequence). A
strand’s ¢d uniquely identifies the strand within the system, while the sequence is the ordered
list of nucleotides that compose the strand.

Two strands could be considered identical if they have the same sequence. However, in
some cases it is convenient to make a distinction between strands with identical sequences.
For example, if one strand were to be labelled with a fluorophore, it would no longer be
physically identical to another with the same sequence but no fluorophore. Thus, the label
is used to designate whether two strands are identical. We define two strands as being

identical if they have the same labels and sequences. In most cases this distinction between
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the label and the sequence is not used, so it will be explicitly noted when it is important.

2.2 Complex Microstate

A complex is a set of strands connected by base pairing (secondary structure). We define the
state of a complex by ¢ = (ST, 7*, BP), called the “complex microstate”. The components
are a nonempty set of strands ST" C W* an ordering 7* on the strands ST, and a list of
base pairings BP = {(i; - k;) | base i on strand j is paired to base k on strand [, and j <,
with 7 < k if j = [}, where we note that “strand [” refers to the strand occuring in position
I in the ordering 7*. Note that we require a complex to be “connected”: there is no proper
subset of strands in the complex for which the base pairings involving those strands do not
involve at least one base outside that subset. Given a complex microstate ¢, we will use
ST(c), 7*(c), BP(c) to refer to the individual components.

While this definition defines the full space of complex microstates, it is common to disal-
low some secondary structures due to physical or computational constraints. For example,
we disallow the pairing of a base with any other within three bases on the same strand, as
this would correspond to an impossible physical configuration. Another class of disallowed
structures are called the pseudoknotted secondary structures, which require computationally
difficult energy model calculations, and are fully defined and discussed further in Section

D.

2.3 System Microstate

A system microstate represents the configuration of the strands in the volume we are sim-
ulating (the “box”). Since we allow complexes to be formed of one or more strands, every
unique strand in the system must be present in a single complex and thus we can represent

the system microstate by a set of those complexes.

We define a system microstate i as a set of complex microstates, such that each strand
in the system is in exactly one complex within the system. This is formally stated in the

following equation:



U ST(c) = V" and Ve, € i with ¢ # ¢/, ST(c) N ST() =0 (2.1)
ceEi
This definition leads to the natural use of |i| to indicate the number of complexes present
in system microstate ¢, and i \ j to indicate the complex microstates present in system

microstate ¢ that are not in j.



Chapter 3

Energy

The conformation of a nucleic acid strand at equilibrium can be predicted by a well studied
model, called the nearest neighbor energy model [16, 15, 17]. Recent work has extended

this model to cover systems with multiple interacting nucleic acid strands [5].

The distribution of system microstates at equilibrium is a Boltzmann distribution, where

the probability of observing a microstate i is given by

Pr(i) = 22 x ¢~ ACrox (0)/RT (3.1)

where AGpy; (i) is the free energy of the system microstate i, and is the key quantity
determined by these energy models. Q =), e AGuox()/ET ig the partition function of the

system, R is the gas constant, and T is the temperature of the system.

3.1 Energy of a System Microstate

We now consider the energy of the system microstate ¢, and break it down into components.
The system consists of many complex microstates ¢, each with their own energy. We also
must account for the entropy of the system (the number of configurations of the complexes

spatially within the “box”) in the energy, and thus must define these two terms.

Let us first consider the entropy term. We consider the “zero” energy system microstate
to be the one in which all strands are in separate complexes, thus our entropy term is in

terms of the reduction of available states caused by having strands join together. We assume
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that the number of complexes in the system, N, is much smaller than the number of solvent
molecules within our box, M,. We can then approximate the standard statistical entropy
of the system as N x RT log M. Letting K be the total number of strands in the system,
our zero state is then K % RT log M. Defining AGoiume = RT log My, the contribution

to the energy of the system microstate ¢ from the entropy of the box is then:

(K - N) * AGvolume

And thus in terms of N, K, AGyoiume and AG(c) (the energy of complex microstate c,
defined in the next section), we define AGyp,(7), the energy of the system microstate i, as

follows:

AGhoy (i) = (K = N) % AGuotume + Y AG(c)
cci
Before we turn our attention to the energy of a complex microstate, let us examine a
situation where we are modeling a fixed volume of a larger solution, and how that relates to
the quantity M. If we assume that the volume studied is V' (units of liters), we can easily
compute the number of solvent molecules in this volume using the density d of water (the
solvent, in g/L) , the molar mass M of water (in grams per mol), and Avogadro’s number,

as follows: M, = ‘?&d * N4. In practice, we may wish to choose a simulation volume V

based on other physical quantities, such as the concentration of a single molecule within
the volume!.

The energy formulas derived here, suitable for our stochastic model, differ from those in
[5] in two main ways: the lack of symmetry terms, and the addition of the AG,ojume term.
We compare this stochastic model to the mass action model in much more detail in Section

C.

!Calculating M, from a concentration u in mol/L of a single molecule in the volume is straightforward.
We assume that our concentration u implies the volume V' is chosen corresponding to exactly one molecule
being present in that volume, as follows: V = u*}VA and thus M, = Md*u = pHT2O where pm,0 is the molarity
of water (55.14 mol/L at 37°C) and the other quantities are as defined above.
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3.2 Energy of a Complex Microstate

We previously defined a complex microstate in terms of the list of base pairings present
within it. However, the well studied models are based upon nearest neighbor interactions
between the nucleic acid bases. These interactions divide the secondary structure of the

system into local components which we refer to as loops, shown in figure 3.1.

V.Exterior

Figure 3.1: Secondary structure divided into loops.

These loops can be broken down into different categories, and parameter tables for each
category have been determined from experimental data [17]. Each loop [ has an energy,
AG(1) which can be retrieved from the appropriate parameter table for its category, which
is discussed in more detail in section B.3. Each complex also has an energy contribution
associated with the entropic initiation cost [3] (e.g. rotational) of bringing two strands
together, AGuss0c, and the total contribution is proportional to the number of strands L

within the complex, as follows 2: (L — 1) * AGussoc-

2The free energy AG® for a reaction A + B = ( is usually expressed in terms of the equilib-
rium constant K., and the concentrations [A], [B],[C] (in mol/L) of the molecules involved, as follows:
eAGC/RT  _ Keg = [A][B]

= o1 We can also express the free energy AG’ in terms of the dimensionless

mole fractions za,zp,zc, where z; = [i]/pr,0 (for dilute solutions), and pm,o is the molarity of wa-
ter. In this case, we have e2¢ /8T — K, = %, and relating it to the previous equation, we see that
AG'/RT _ (Al/pHy0)*([Bl/pHy0) _ [A]lB] 1 _ _AG°/RT
€ = = =e
[Cl*pHY0 [C] PH50
which was for concentration units and we wish to use mole fraction units, we must adjust it by —RT log pm,0
to obtain the correct quantity. In general, if we have a complex of N molecules, the conversion to mole frac-
tions will require an adjustment of —(N — 1) * RT log pr,0. To be consistent with [5], we wish to always
use free energies which are based on the mole fraction units, and thus must include this factor since the
reference free energies are for concentration units. In [5], the factor is included in the AGassoc term, and
thus we include it in the same place, as follows: AGassoc = AGEY?,. — RT' log pr,0, where AGEY?, . is found
in [3]. Thus our AGassoc is the same as the AG***°° found in [5] (footnote 13).

% ¢~ 1°8PH20  Thus if we have an energy AG °




The energy of a complex microstate c is then the sum of these two types of contributions.
We can also divide any free energy AG into the enthalpic and entropic components, AH
and AS related by AG = AH + T x AS, where T is the temperature of the system.
For a complex microstate, each loop can have both enthalpic and entropic components,
but AGgssoc is usually assumed to be purely entropic [16]. This becomes important when
determining the kinetic rates, in section 4.

We use AG(c) to refer to the energy of a complex microstate to be consistent with the
nomenclature in [5], where AG/(c) refers to the energy of a complex when all strands within
it are consider unique (as is the case in our system), and AG(c) is the energy of the com-
plex, without assuming that all strands are unique (and thus it must account for rotational

symmetries). This is discussed more in Section C.

In summary, the standard free energy of a complex microstate ¢, containing L = |ST(c)]

strands:

AG(C) == Z AG(Z) + (L - 1)AGassoc

loop 1 ec
3.3 Computational Considerations

While the simulator could use the system microstate energy in the form given in the previous
sections, it is convenient for us to group terms such that the computation need only take
place per complex. Thus we wish to include the (K — N)AGyoume term in the energy
computation for the complex microstates. Recall that K is the number of strands in the
system, and N is the number of complexes in the system microstate. Assuming that we are

computing the energy AGp,, of system microstate ¢, we can rewrite K and N as follows:
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K = Y |ST(c)

ceE

cE

And thus arrive at:

AGop(i) = ) (AG(e) + (IST ()] = 1) * AGyolume)

cEl
We then define AG*(c) = AG(c) + (|ST(c)| — 1) * AGyotume, and L. = |ST(c)| and thus
have the following forms for the energy of a system microstate and the energy of a complex

microstate:

AGpoa(i) = Y AG*(0)

cE

AG*(c) = > AGW) | + (L — 1) # (AGassoe + AGuorume)

loop iec

Since we expect the probability of observing a particular complex microstate to remain
the same no matter what reference units we use for the free energy (see footnote 2), this
implies that if we wanted to express our AG*(c) for concentration units, we would use
AGassoe = AGPL.. and AGyporume = RT log pﬁf’—;o = RT 10g% = RT log %, where u is the
molar concentration of a single molecule in the box volume V', and Vj is the volume for 1

molecule at the standard concentration of 1 M.
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Chapter 4

Kinetics

4.1 Basics

Thermodynamic predictions have only limited use for some systems of interest, if the key
information to be gathered is the reaction rates and not the equilibrium states. Many
systems have well defined ending states that can be found by thermodynamic prediction,
but predicting whether it will reach the end state in a reasonable amount of time requires
modeling the kinetics. Kinetic analysis can also help uncover poor sequence designs, such
as those with alternate reactions leading to the same states, or kinetic traps which prevent

an intended reaction from occurring quickly.

The kinetics are modeled as a continuous time Markov process over secondary structure
space. System microstates i,j are considered adjacent if they differ by a single base pair
(Figure 4.1), and we choose the transition rates k;; (the transition from state i to state j)
and kj; such that they obey detailed balance:

kl_] _ AGboz(j)_AGboz(i)
RT

(4.1)

This property ensures that given sufficient time we will arrive at the same equilibrium
state distribution as the thermodynamic prediction, (i.e. the Boltzmann distribution on
system microstates, equation 3.1) but it does not fully define the kinetics as this only
constrains the ratio Z—Z We discuss how to choose these transition rates in the following
sections, but regardless of this choice, we can still determine how the next state is chosen

and the time at which that transition occurs.
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state i:

Figure 4.1: System microstates i, ¢ adjacent to current state j, with many others not shown.

Given that we are currently in state 7, the next state m in a simulated trajectory is

chosen randomly among the adjacent states j, weighted by the rate of transition to each.

kim

Pr(m) = S T
37

(4.2)

Similarly, the time taken to transition to the next state is chosen randomly from an
exponential distribution with rate parameter A\, where X is the total rate out of the current

state, ijij .

Pr(At) = Aexp(—AAt) (4.3)

We will now classify transitions into two exclusive types: those that change the number
of complexes present in the system, called bimolecular transitions, and those where changes

are within a single complex, called unimolecular transitions.
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4.2 Unimolecular Transitions

Because unimolecular transitions involve only a single complex, it is natural to define these
transitions in terms of the complex microstate which changed, rather than the full system
microstate. Like Figure 4.1 implies, we define a complex microstate d as being adjacent to
a complex microstate c if it differs by exactly one base pair. We call a transition from c
to d that adds a base pair a creation move, and a transition from c to d that removes a
base pair a deletion move. The exclusion of pseudoknotted structures is not inherent in this
definition of adjacent states, but rather arises from our disallowing pseudoknotted complex

microstates.

In more formal terms we now define the adjacent states to a system microstate, rather
than those adjacent to a complex microstate as in the simple definition above. Recall from
section 2.3 that |i| is the number of complexes present in system microstate i, and i \ j is

the set of complex microstates in ¢ that are not also in system microstate j.

Two system microstates i, j are adjacent by a unimolecular transition iff ¢ € i,d € j

such that:

il =[] and i\ j = {c} and j\ i = {d} (4.4)

and one of these two holds:

BP(c) € BP(d) and |BP(d)| = |BP(c)| + 1 (4.5)

BP(d) C BP(c) and |BP(c)| = |BP(d)| + 1 (4.6)

In other words, the only differences between ¢ and j are in ¢ and d, and they differ by
exactly one base pair. If equation 4.5 is true, we call the transition from ¢ to j a base pair
creation move, and if equation 4.6 is true, we call the transition from ¢ to j a base pair
deletion move. Note that if ¢ to j is a creation move, j to ¢ must be a deletion move, and
vice versa. Similarly, if there is no transition from ¢ to j, there cannot be a transition from

7 to i, which implies that every unimolecular move in this system is reversible.
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4.3 Bimolecular Transitions

A bimolecular transition from system microstate ¢ to system microstate j is one where the
single base pair difference between them leads to a differing number of complexes within
each system microstate. This differing number of complexes could be due to a base pair
joining two complexes in i to form a single complex in j, which we will call a join mowve.
Conversely, the removal of this base pair from ¢ could cause one complex in ¢ to break into
two complexes within j, which we will call a break move. Note that if ¢ to j is a join move,
then j to ¢ must be a break move, and vice versa. As we saw before, this also implies that

every bimolecular move is reversible.

Formally, a transition from system microstate ¢ to system microstate j is a join move if
li| =1j] + 1 and we can find complex microstates ¢, € i and d € j, with ¢ # ¢’ such that

the following equations hold:

i\{c,d} =7\ {d} (4.7)
Ju € BP(d) s.t. BP(d)\ {z} = BP(c) U BP(c) (4.8)

Similarly, a transition from system microstate ¢ to system microstate j is a break move
if || +1 = |j] and we can find complex microstates ¢ € i and d,d’ € j with d # d’ such that

the following equations hold:

i\{c} =j\{d.d} (4.9)
3z € BP(c) s.t. BP(c)\ {z} = BP(d) UBP(d) (4.10)

While arbitrary bimolecular transitions are not inherently prevented from forming pseu-
doknots in this model, we again implicitly prevent them by using only complex microstates

that are not pseudoknotted.
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4.4 Transition Rates

Now that we have defined all of the possible transitions between system microstates, we
must decide how to assign rates to each transition. We know that if there is a transition
from system microstate i to system microstate j with rate k;; there must be a transition

from j to ¢ with rate kj; which are related by:

k@j _AGboz<j)_AGboz (4)
RT

(4.11)

This condition is known as detailed balance, and does not completely define the rates
kij, kj;. Thus a key part of our model is the choice of rate method, the way we set the rates
of a pair of reactions so that they obey detailed balance.

While our simulator can use any arbitrary rate method we can describe, we would like
our choice to be physically realistic (i.e. accurate and predictive for experimental systems).
There are several rate methods found in the literature [10, 11, 26] which have been used for
kinetics models for single-stranded nucleic acids [7, 26] with various energy models. As a
start, we have implemented three of these simple rate methods which were previously used
in single base pair elementary step kinetics models for single stranded systems. In addition
we present a rate method for use in bimolecular transitions that is physically consistent
with both mass action and stochastic chemical kinetics. We verify that the kinetics model
(and thus our choice of rate method) have been correctly implemented by verifying that the
detailed balance condition holds (Section 6.1.2).

In order to maintain consistency with known thermodynamic models, each pair of k;; and
k;; must satisfy detailed balance and thus their ratio is determined by the thermodynamic
model, but in principle each pair could be independently scaled by some arbitrary prefactor,
perhaps chosen to optimize agreement with experimental results on nucleic acid kinetics.
However, since the number of microstates is exponential, this leads to far more model
parameters (the prefactors) than is warranted by available experimental data. For the time
being, we limit ourselves to using only two scaling factors: ky,; for use with unimolecular

transitions, and kp; for bimolecular transitions.
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4.5 Unimolecular Rate Models

The first rate model we will examine is the Kawasaki method [10]. This model has the
property that both “downhill” (energetically favorable) and uphill transitions scale directly

with the steepness of their slopes.

_AGhog (1) =AGpoy (4)
2RT

kij = kunixe (4.12)

2RT

kji = kum-*e (4.13)

The second rate model under consideration is the Metropolis method [11]. In this model,
all downhill moves occur at the same fixed rate, and only the uphill moves scale with the
slope. This means that the maximum rate for any move is bounded, and in fact all downhill
moves occur at this rate. This is in direct contrast to the Kawasaki method, where there is

no bound on the maximum rate.

if AGpoz(i) > AGpop(f) then  kijj = 1% kyp; (4.14)
ki = ki x e e (4.15)

otherwise, kjj = Fkyn; * e*w (4.16)

kji = 1% kg (4.17)

Finally, the entropy/enthalpy method [26] uses the division of free energies into entropic
and enthalpic components to assign the transition rates in an intuitive manner: base pair
creation moves must overcome the entropic energy barrier to bring the bases into contact,
and base pair deletion moves must overcome the enthalpic energy barrier in order to break

them apart.
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ASpog (1) = ASpog (4)
R

if i to j is a creation: kjj = Fkyni*xe (4.18)
ki = b w e st (4.19)

otherwise, kij = Kkuni* e_w (4.20)

kji = kuni * eASbOI(i)I_%ASbOZ(j) (4.21)

We note that the value of k,,; that best fits experimental data is likely to be different

for all three models.

4.6 Bimolecular Rate Model

When dealing with moves that join or break complexes, we must consider the choice of how
to assign rates for each transition in a new light. In the particular situation of the join
move, where two molecules in a stochastic regime collide and form a base pair, this rate is
expected to be modeled by stochastic chemical kinetics.

Stochastic chemical kinetics theory [8] tells us that there should be a rate constant k
such that the propensity of a particular bimolecular reaction between two species X and Y
should be kx #X x« #Y/V, where #X and #Y are the number of copies of X and Y in the
volume V. Since our simulation considers each strand to be unique, #X = #Y =1, and
thus we see the propensity should scale as 1/V. Recalling that AGyopume = RT log(V * y),
where y is a collection of constant terms (discussed in Section 3.1) and V' is the simulated
volume, we see that we can obtain the 1/V scaling by letting the join rate be proportional
to e~ AGuvotume/RT

Thus, we arrive at the following rate method, and note that the choice of k (above) or
our scalar term ky; can be found by comparison to experiments measuring the hybridization

rate of oligonucleotides [21].
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ep . .. .. =BG yolume
if i to j is a complex join move: k;j = kyxe BT (4.22)
_ AGhoz () =AGh (1)+AG g
k]Z — ka % 6 OX }%% volume (4‘23)
. _ AGboz Oj*AGboz (i>+AGUolume
otherwise, Fk;j = ky xe RT (4.24)
_ AG'uolu’me
k‘ji = kbi * € RT (4.25)

This formulation is convenient for simulation, as the join rates are then independent
of the resulting secondary structure. We could use the other choices for assigning rates
from 4.4, but they would require much more computation time. While the above model
is of course an approximation to the physical reality (albeit one which we believe at least
intuitively agrees with what we expect from stochastic chemical kinetics), if we later deter-
mine there is a better approximation we could use that instead, even if it cost us a bit in
computation time. One issue in the above model that we wish to revisit in the future is that
due to the rate being determined for every possible first base pair between two complexes,
the overall rate for two complexes to bind (by a single base pair) is proportional roughly
to the square of the number of exposed nucleotides, in addition to the % dependence noted

earlier.
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Chapter 5

The Simulator : Multistrand

Energy and kinetics models similar to these can been solved analytically; however, the
standard master equation methods [22] scale with the size of the system’s state space. For
our DNA secondary structure state space, the size gets exponentially large as the strand
length increases, so these methods become computationally prohibitive. One alternate
method we can use is stochastic simulation [8], which has previously been done for single-
stranded DNA and RNA folding (the Kinfold simulator [7]). Our stochastic simulation
refines these methods for our particular energetics and kinetics models, which extends the
simulator to handle systems with multiple strands and takes advantage of the localized

energy model for DNA and RNA.

5.1 Data Structures

There are two main pieces that go into this new stochastic simulator. The first piece is
the multiple data structures needed for the simulation: the loop graph which represents the
complex microstates contained within a system microstate (Section 5.1.2), the moves which
represent transitions in our kinetics model — the single base pair changes in our structure
that are the basic step in the Markov process, and the move tree the container for moves

that lets us efficiently store and organize them (Section 5.1.3).

5.1.1 Energy Model

Since the basic step for calculating the rate of a move involves the computation of a state’s
energy, we must be able to handle the energy model parameter set in a manner that simplifies

this computation. Previous kinetic simulations (Kinfold) rely on the energy model we have
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described, though without the extension to multiple strand systems. While the format of
the parameter set that is used remains the same, we must implement an interface to this
data which allows us to quickly compute the energy for particular loop structures (local
components of the secondary structure, described in 3.2). This allows us to do the energy
computations needed to compute the kinetic rates for individual components of the system
microstate, allowing us to use more efficient algorithms for recomputing the energy and
moves available to a state after each Markov step.

The energy model parameter set and calculations are implemented in a simple modular
data structure that allows for both the energy computations at a local scale as we have
previously mentioned, but also as a flexible subunit that can be extended to handle en-
ergy model parameter sets from different sources. In particular, we have implemented two
particular parameter set sources: the NUPACK parameter set [24] and the Vienna RNA
parameters [9] (which does not include multistranded parameters, so defaults for those are
used). Adding new parameter set sources (such as the mfold parameters [27]) is a simple
extension of the existing source code. Additionally, the energy model interface allows for
easy extension of existing models to handle new situations, e.g. adding a sequence depen-
dent term for long hairpins. We hope this energy model interface will be useful for future
research where authors may wish to simulate systems with a unique energy model and

kinetics model.

5.1.2 The Current State: Loop Structure

A system microstate can be stored in many different ways, as shown in figure 5.1. Each
of these has different advantages: the flat (“dot-paren”) representation (Figure 5.1C) can
be used for both the input and output of non-pseudoknotted structures, but the informa-
tion contained in the representation needs additional processing to be used in an energy
computation (we must break it into loops). Base pair list representation (Figure 5.1B)
allows the definition of secondary structures which include pseudoknots, but also requires
processing for energy computation. Loop representation (Figure 5.1D) allows the energy to
be computed and stored in local components, but requires processing to obtain the global
structure, used in input and output. While the loop graph cannot represent pseudoknotted
structures without introducing a loop type for pseudoknots (for which we may not know

how to calculate the energy), and making the loop graph cyclic, since this work is primar-
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ily concerned with non-pseudoknotted structures this is only a minor point. In the future
when we have excellent pseudoknot energy models, we will have to revisit this choice and
hopefully find a good representation that still allows us similar computational efficiency.
We use the loop graph representation for each complex within a system microstate,
and organize those with a simple list. This gives us the advantage that the energy can be
computed for each individual node in the graph, and since each move only affects a small
portion of the graph (Figure 5.3), we will only have to compute the energy for the affected
nodes. While providing useful output of the current state then requires processing of the

graph, it turns out to be a constant time operation if we store a flat representation which

A. B.

V. Exterior Strand # Strand #

C.
(<)) (a0 Ceeeennn ))))))))-) -

Figure 5.1: Example secondary structure, with different representations: (A) Original loop
diagram representation. (B) Base pair list representation. Each base pairing is represented
by the indices of the bases involved. (C) Dot-paren representation, also called the flat
representation. Each base is represented by either a period, representing an unpaired base,
or by a parenthesis, representing a pairing with the base that has the (balanced) matching
parenthesis. An underscore represents a break between multiple strands. (D) Loop graph
representation. Each loop in the secondary structure is a single node in the graph, which
contains the sequence information within the loop.
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gets updated incrementally as each move is performed by the simulator.

We contrast this approach with that in the original Kinfold, which uses a flat repre-
sentation augmented by the base pairing list computed from it. Since we use a loop graph
augmented by a flat representation, our space requirements are clearly greater, but only in
a linear fashion: for each base pair in the list, we have exactly two loop nodes which must

include the same information and the sequence data in that region.

5.1.3 Reachable States: Moves

When dealing with a flat representation or base pair list for a current state, we can simply
store an available move as the indices of the bases involved in the move, as well as the rate at
which the transition should occur. This approach is very straightforward to implement (as
was done in the original Kinfold), and we can store all of the moves for the current state in
a single global structure such as a list. However, when our current state is represented as a
loop graph this simple representation can work, but does not contain enough information to
efficiently identify the loops affected by the move. Thus we elect to add enough complexity
to how we store the moves so that we can quickly identify the affected nodes in our loop
graph, which allows us to quickly identify the loops for which we need to recalculate the
available moves.

We let each move contain a reference to the loop(s) it affects (Figure 5.2A), as well as
an index to the bases within the loop, such that we can uniquely identify the structural
change that should be performed if this move is chosen. This reference allows us to quickly
find the affected loop(s) once a move is chosen. We then collect all the moves which affect a
particular loop and store them in a container associated with the loop (Figure 5.2B). This
allows us to quickly access all the moves associated with a loop whose structure is being
modified by the current move. We should note that since deletion moves by nature affect
the two loops adjacent to the base pair being deletion, they must necessarily show up in the
available moves for either loop. This is handled by including a copy of the deletion move in
each loop’s moves, and halving the rate at which each occurs.

Finally, since this method of move storage is not a global structure, we add a final layer
of complexity on top, so that we can easily access all the moves available from the current
state without needing to traverse the loop graph. This is as simple as storing each loop’s

move container in a larger structure such as a list or a tree, which represents the entire
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complex’s available moves as shown in figure 5.2C.

A. C.

& BDE B

Figure 5.2: (A) Creation moves (blue line) and deletion moves (red highlight) are repre-
sented here by rectangles. Either type of move is associated with a particular loop, and has
indices to designate which bases within the loop are affected. (B) All possible moves which
affect the interior loop in the center of the structure. These are then arranged into a tree
(green area), which can be used to quickly choose a move. (C) Each loop in the loop graph
then has a tree of moves that affect it, and we can arrange these into another tree (black
boxes), each node of which is associated with a particular loop (dashed line) and thus a
tree of moves (blue line). This resulting tree then contains all the moves available in the
complex.

5.2 Algorithms

The second main piece of the simulator is the algorithms that control the individual steps of
the simulator. The algorithm implementing the Markov process simulation closely follows

the Gillespie algorithm[8] in structure:

1. Initialization: Generate the initial loop graph representing the input state, and com-

pute the possible transitions.

2. Stochastic Step: Generate random numbers to determine the next transition (5.2.1),

as well as the time interval elapsed before the transition occurs.
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3. Update: Change the current loop graph to reflect the chosen move (5.2.2). Recompute
the available transitions from the new state (5.2.3). Update the current time using

the time interval in the previous step.

4. Check Stopping Conditions: check if we are at some predetermined stopping condition
(such as a maximum amount of simulated time) and stop if it is met. Otherwise,
go back to step 2. These stopping conditions and other considerations relating to

providing output are discussed further in section 6.

The striking difference between this structure and the Gillespie algorithm is the neces-
sity of recomputing the possible transitions from the current state at every step, and the
complexity of that recalculation. Since we are dealing with an exponential state space we
have no hope of storing all possible transitions between any possible pair of states, and
instead must look at the transitions that occur only around the current state. Our exam-
ination of the key algorithms must include an analysis of their efficiency, so we define the

key terms here:

1. N, the total length of the input’s sequence(s).
2. T, the total amount of simulation time for each Monte Carlo trajectory.

3. J, the number of nodes in the loop graph of the current state. At worst case, this is

O(N), which occurs in highly structured configurations, like a full duplex.

4. K, the largest number of unpaired bases occuring in any loop in the current state. At

worst case, this is exactly NV, but on average it is typically much smaller.

5. L, the current number of complexes in the system. At worst this could be O(N), but

in practice the number of complexes is much fewer.

5.2.1 Move Selection

First let’s look at the unimolecular moves in the system. The tree-based data structure
containing the unimolecular moves leads to a simple choice algorithm that uses the generated
random number to make a decision at each level of the tree based on the relative rates of
the moves in each branch. We have two levels of tree to perform the choice on, the first

having J nodes (one for every loop graph node) which each hold the local move containers
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for a particular loop, and the second having at most O(K?) nodes (the worst case number of
moves possible within a single loop). Thus our selection algorithm for unimolecular moves
takes O(log(J) + log(K)) time to arrive at a final decision.

What about the moves that take place between two different complexes? With our
method of assigning rates for these moves, we know that regardless of the resulting structure,
all possible moves of this type must occur at the same rate. Thus the main problem is
knowing how many such moves exist and then efficiently selecting one.

How many such moves exist? This is a straightforward calculation: for each complex
microstate in the system, we count the number of A, G, C and T bases present in open
loops within the complex. For the sake of example, let’s call these quantities cy, ca, co, e
for a complex microstate c. Let’s also define the total number of each base in the system
as follows: Agotal = D .cs €A, etc, where s in the system microstate we are computing the
moves for. We can now compute how many moves there are where (for example) an A base
in complex ¢ becomes paired with a T base in any other complex: ca * (Tiotar — 1), that
is, the number of A bases within ¢ multiplied by the number of T bases present in all other
complexes in the system. So the number of moves between ¢ and any other complex in the
system is then cg * (Tiota — o) + G * (Chotat — cc) + o * (Giotal — ci) + e * (Atotar — c4) and
if we allow GT pairs, there are two additional terms with the same form. Summing over
this quantity for each ¢ € s we then get 2 times the total number of bimolecular moves (and
in fact we can eliminate the redundency by using the total open loop bases in complexes
“after” ¢ in our data structure, rather than the total open loop bases in all complexes other
than ¢). Since we do this in an algorithmic manner, it is straightforward to uniquely identify
any particular move we need by simply following this counting process in reverse.

What is the time complexity for this bimolecular move choice? It is straightforward
to see that calculating the total bimolecular move rate is O(L) (recall L is the number of
complexes within the system). Slightly more complex is choosing the bimolecular move,
which must also be O(L), as it takes 2 traversals through the list of complexes to determine
the pair of reacting complexes in the bimolecular step. We note that for typical L and
bimolecular reaction rates (e.g. typical strand concentrations which set our AGyoume) this
quantity is quite small relative to that for the unimolecular reactions.

Our move choice algorithm can now be summed up as follows: given our random choice,

decide whether the next move is bimolecular (using the total number of such moves as a
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first step) or unimolecular (thus one of the ones stored in the tree). If it’s bimolecular,
reverse the counting process using the random number to pick the unique combination of
open loops and bases involved in the bimolecular step. If it’s a unimolecular step, pick a

move out of the trees of moves for each complex in the system as discussed above.

5.2.2 Move Update

State /i

State i Statej’

Cm‘%%m)—/ﬁ

Figure 5.3: Moves of varying types which take current state ¢ to state j. The changed region
is highlighted in cyan. Loops that are in j but not i are highlighted in red (in the loop graph)
and must be created and have their moves generated. Loops shown highlighted in blue have
had an adjacent loop change, and thus must have their deletion moves recalculated. (A) A
creation move. (B) A deletion move.

Once a move has been chosen, we must update the loop graph to reflect the new state.
This is a straightforward substitution: for a creation move, which affects a single loop, we
must create the resulting pair of loops which replace the affected loop and update the graph
connections appropriately (Figure 5.3A). Similarly, for a deletion move, which affects two
loops, we must create the single loop that results from joining the two affected loops, and

update the graph connections appropriately (Figure 5.3B).
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The computationally intensive part for this algorithm lies in the updating of the tree
structure containing all the moves. We must remove the moves which involved the affected
loops from the container, a process that takes O(log(J)) time (assuming we implement tree
deletions efficiently), generate the moves which correspond to the new loops (Section 5.2.3),

and add these moves into the global move structure, which also takes O(log(J)) time.

5.2.3 Move Generation

The creation and deletion moves must be generated for each new loop created by the move
update algorithm, and we must update the deletion moves for each loop adjacent to an
affected loop in the move update algorithm. The number of deletion moves which must be
recalculated is fixed, though at worst case is linear in N, and so we will concern ourselves
with the (typically) greater quantity of creation moves which need to be generated for the
new loops.

For all types of loops, we can generate the creation moves by testing all possible combi-
nations of two unpaired bases within the loop, tossing out those combinations which are too
close together (and thus could not form even a hairpin, which requires at least three bases
within the hairpin), and those for which the bases could not actually pair (for example, a
T-T pairing). An example of this is shown for a simple interior loop, in figure 5.4. The
remaining combinations are all valid, and we must compute the energy of the loops which
would result if the base pair were formed, in order to compute the rate using one of the
kinetic rate methods (Section 4.5). This means we need to check O(L?) possible moves
and do two loop energy computations for each. At worst case, that is O(N?) energy com-
putations in this step, and so the efficiency of performing an energy computation becomes

vitally important.

Once we have generated these moves we must collect them into a tree which represents
the new loop’s available moves. This can be handled in a linear fashion in the number of
moves with a simple tree creation algorithm, and thus it is in the same order as the number

of energy computations.
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Figure 5.4: A interior loop, with all theoretically possible creation moves for the first two
bases on the top strand shown as cyan lines, and all possible deletion moves shown as red
boxes. Note that for each creation move shown here, we must check whether the bases could
actually pair, and only then continue with the energy computations to determine the rate
of the move.

5.2.4 Energy Computation

It is in the energy computation that our loop graph representation of the complex microstate
shines, as the basic operation required for each possible move in the move generation step
is computing the difference of energies between the affected loop(s) that would be present
after the move and those present beforehand.

For all loop types except open loops and multiloops, computing the loop energy is as
simple as looking up the sequence information (base pairs and adjacent bases) and loop
sizes in a table [16, 27], and is a constant-time lookup. For open loops and multiloops, this
computation is linear in the number of adjacent helices (e.g. adjacent nodes in the loop
graph) if we are using an optional configuration of the energy model which adds energies
that come from bases adjacent to the base pairs within the loop (called the “dangles”
option). Theoretically we could have an open loop or multiloop that is adjacent to O(N)
other nodes in the loop graph, but this is an extraordinarily unlikely situation and present
only with particular energy model options, so we will consider the energy computation step

to be O(1).
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5.3 Analysis

Now that we have examined each algorithm needed to perform a single step of the stochas-
tic simulation, we can derive the worst-case time. First, recall that J is the number
of nodes in the loop graph, K is the largest number of unpaired bases in a loop, L is
the number of complexes in the system and N is the total length of strands in the sys-
tem. The move selection algorithm is O(log(J) + log(K) + L) = O(N), move update is
O(log(J)) = O(log(N)), and move generation is O(N? x O(1)), where energy computation
is the O(1) term. These algorithms are done in sequence and thus their times are additive:
O(N) + O(log(N)) + O(N?) = O(N?). Thus our worst case time for a single Markov step
is quadratic in the number of bases in our structure.

However, one step does not a kinetic trajectory make. We are attempting to simulate
for a fixed amount of time 7', as mentioned before, and so we must compute the expected
number of steps needed to reach this time. Since the distribution on the time interval At
between steps is an exponential distribution with rate parameter R, which is the total rate
of all moves in the current state, we know that the expected At = 1/R. However, this still
leaves us needing to approximate R in order to compute the needed amount of time for an
entire trajectory. To make a worst case estimate, we must use the largest R that occurs
in any given trajectory, as this provides the lower bound on the mean of the smallest time
step At in that trajectory. However, the relative rates of favorable moves tends to be highly
dependent on the rate method used: the Kawasaki method can have very large rates for
a single move, while the Metropolis method has a maximum rate for any move, and the
Entropy/Enthalpy method is also bounded in this manner as all moves have to overcome
an energy barrier.

We thus make an average case estimate for the the total rate R, based on the number
of “favorable” moves that typically have the largest rates. While a “favorable” move is
merely one where the AG is negative (thus it results in an energetically more favorable
state) or one which uses the maximum rate (for non-Kawasaki methods), the actual rate
for these moves depends on the model chosen. The key question is whether we can come up
with an average situation where there are O(N?) favorable moves or if O(N) is more likely.
What types of secondary structures give rise to quadratic numbers of moves? They are all

situations where there are long unpaired sequences, whether in an interior loop, multiloop
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Figure 5.5: Comparison of real time used per simulated time unit between Multistrand and
Kinfold 1.0, for four different single stranded systems with varying total length. All plots
are log/log except for the inset, which is a linear/linear plot of the same data is in the
uniform random sequence plot. The density of test cases is shown using overlaid regions of
varying intensity. From lightest to darkest, these correspond to 80%, 40% and 10% of the
test cases being within the region.

or open loop. These creation moves are generally unfavorable, except for the small number
that lead to new stack loops. Thus we do not expect there to be a quadratic number of
favorable moves. A linear number is much more likely: a long duplex region could reach a

linear number (if say, % bases were unpaired but could be formed easily into stacks). Thus,
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we make the (weak) argument that a good average case is that the average rate is at worst
O(N).

From this estimate for the average rate, we conclude that each step would have an
expected (lower bound) At = 1/N, and thus to simulate for time T we would need
T/(1/N) = T % N steps, and thus O(T * N3) time to simulate a single trajectory. Since
this is the worst case behavior, it is fairly difficult to show this with actual simulation data,
so instead we present a comprehensive comparison with the original Kinfold for a variety
of test systems (Figure 5.5), noting that the resulting slopes on the log/log plots lie easily

within the O(N?3) bound for the time taken to simulate 1 time unit.
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Chapter 6

Multistrand : Output and Analysis

We have now presented the models and algorithms that form the continuous time Markov
process simulator. Now we move on to discuss the most important part of the simulator
from a user’s perspective: the huge volume of data produced by the simulation, and methods
for processing that data into useful information for analyzing the simulated system.

How much data are we talking about here? Following the discussion in the previous
chapter, we expect an average of O(N) moves per time unit simulated. This doesn’t tell
us much about the actual amount of data, only that we expect it to not change drastically
for different size input systems. In practice this amount can be quite large, even for simple
systems: for a simple 25 base hairpin sequence (similar to Fig 5.5D), it takes 4,000,000
Markov steps to simulate 1s of real time. For an even larger system, such as a 4-way
branch migration system (Fig 5.5C) with 108 total bases, simulating 1s of real time takes
14,000,000 Markov steps.

What can we do with all the data produced by the simulator? In the following sections

we discuss several different processing methods.

6.1 Trajectory Mode

This full trajectory information can be useful to the user in several ways: finding kinetic
traps in the system, visualizing a kinetic pathway, or as raw data to be passed to another
analysis tool.

Trajectory mode is Multistrand’s simplest output mode. The data produced by this
mode is a trajectory through the secondary structure state space. While many trajectories

could be produced for a given system, for most analysis purposes discussed in this section
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we are only concerned with a single trajectory. Similarly, these trajectories are infinite
but unfortunately our computers have only a finite amount of storage so we must cut the

trajectory off at some point.

Starting State Time: 0.0s

GTTCGGGCAAAAGCCCGAAC GTTCGGGCAAAAGCCCGAAC

rrrrrrrrrrrrrrrrnrnriri
Visualization

(0,0)-(0,14)

Time: 79.7 ns
(0,0)-(0,14)

Time: 99.4 ns

...... (P I (0,6)-(0,13)

Time: 523 ns

<r:/::::: ..... (Covnnn. )) oo (0,5)-(0,14)
Time: 548 ns

N ))) ... (0,4)-(0,15)

Time: 550 ns

RN S (T DB ) I (0,7)-(0,12)
Time: 603 ns

Figure 6.1: Trajectory Data

A trajectory is represented by a finite ordered list of (s,¢) pairs, where s is a system
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microstate, and t is the time in the simulation at which that state is reached. We call this
time the simulation time, as opposed to the wall clock time, the real world time it has taken
to simulate the trajectory up to that point. There are many different ways to represent a
trajectory, as shown in Figure 6.1.
For practical reasons, we set up conditions to stop the simulation so that our trajectories
are finite. There are two basic stop conditions that can be used, and the system stops when

any condition is met:

1. Maximum simulation time. We set a maximum simulation time ¢’ for a trajectory,
and stop when the current simulation state (s,t) has ¢ > ¢’. Note that the state (s,t)
which caused the stopping condition to be met is not included in the trajectory, as it

is different from the state at time ¢'.

2. Stop state. Given a system microstate s’, we stop the trajectory when the current
simulation state (s,t) has s = s’. This type of stopping condition can be specified
multiple times, with a new system microstate s’ each time; the simulation will stop

when any of the provided microstates is reached.

We will now use an example to show how trajectory mode can be used to compare two
different sequence designs for a particular system. The system is a straightforward three-
way branch migration with three strands, with a six base toehold region and twenty base

branch migration region, shown below (Fig 6.2).

[N\ :

Start State Branch Migration Disassociation
Figure 6.2: Three way branch migration system. The toehold region is in , and the

branch migration region is black. A few intermediate states along a sample trajectory are
shown, with transition arrows indicating not a single base-pair step but a pair of steps
that break one base-pair then form another. Many possible side reactions also exist, such
as breathing of duplex regions and sequence depedent hairpin formation within the single-
stranded region.
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The simulation is started in the shown Start State using a toehold sequence of GTGGGT
and a differing branch migration region for which we use the designs in Table 6.1. We then
start trajectory mode for each design, with a stop condition of 0.05 s of simulation time,

and save the resulting trajectories.

Branch Migration Region
Design A | ACCGCACGTCCACGGTGTCG
Design B | ACCGCACCACGTGGGTGTCG

Table 6.1: Two different branch migration sequences

Rather than spam the interested reader with several thousand pages of trajectory print-
outs, since there are 5% 10° states in a 0.05 s trajectory for this system, we instead highlight
one revealing section in each design’s trajectory. Let us look at the state the trajectory is

in after 0.01 s of simulation time, shown below in Figure 6.3 using a visual representation.

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Design A Design B

Figure 6.3: Structure after 0.01 s simulation time for two different sequence designs.

What happened? It appears that sequence design A has a structure that can form before
the branch migration process initiates, that contains a hairpin in the single stranded branch
migration region. Does this structure prevent the branch migration from completing? In
the long run it shouldn’t, as the equilibrium structure remains unchanged, but if we look
at the final state in each trajectory (Figure 6.4), we see that design B has completed the
process in 0.05 s of simulation time and indeed was complete at 0.01 s, where A is still stuck
in that offending structure after the same amount of time. So for these specific trajectories,
it’s certainly slowing down the branch migration process.

Did this structure only appear because we were unlucky in the trajectory for design A?
We could try running several more trajectories and seeing whether it appears in all or most
of them, but a more complete answer is better handled using a different simulation mode,
such as the first passage time mode discussed in Section 6.4.

A better type of question for trajectory mode is “How did this kinetic trap form?”. In

this example, we can examine the trajectory for design A and find the sequence of system



36

llllllllllllllllllllllllllllllllllllllllllllllllll

Design A Design B
Figure 6.4: Final structure (0.05 s simulation time) for the two different sequence designs
from Table 6.1. Branch migration regions: Design A: ACCGCACGTCCACGGTGTCG, Design B:
ACCGCACCACGTGGGTGTCG.

microstates that lead to the first time the hairpin structure forms. This example has a
straightforward answer: the competing structure forms before the branch migration starts,
and is therefore in direct competition with the correct kinetic pathway.

We expect that the most common usage for trajectory mode is in providing the raw
trajectory data for a separate tool to perform processing on. For example, taking the raw
trajectory data and producing a movie of the structure’s conformational changes can be
very helpful in visualizing a system, and also is quite helpful for examining kinetic traps.
A quick movie of the 3-way branch migration system could identify how the kinetic trap

forms, rather than our examination of thousands of states by hand to locate that point.

6.1.1 Testing: Energy Model

We have also used the trajectory mode to aid in verifying that the kinetics model and energy
model was implemented correctly. For the energy model, we can use an augmented output
that includes the Multistrand-calculated energy for a given state, and compare that to the
energy predicted by NUPACK [24] (or whichever tool / source we are using for our energy
parameter dataset). This can be done using trajectory mode, with a cutoff time of 0 s, so
the initial state is the only one in each trajectory. Multistrand’s energy model was verified
to be consistent with NUPACK for every sequence and structure in a comprehensive test
set of secondary structures (part of the NUPACK package) that covers all possible loop

configurations.

6.1.2 Testing: Kinetics Model

Testing the kinetics model can be done by testing that the detailed balance condition in

fact holds: We know that at equilibrium, if our kinetics model obeys detailed balance,
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the distribution of states seen by our simulator (after sufficient time to reach equilibrium)
should agree with the Boltzmann distribution on each system microstate’s energy. There
are several ways we could extract this information from trajectory mode, such as recording
all microstates seen in the trajectory (perhaps after some minimum time) and the amount
of time spent in each one.

For our testing of the detailed balance condition we use a different method that is simpler
to implement: we run many trajectories with a fixed maximum simulation time ¢ and record
only the final state in the trajectory (note that this is the state at time ¢ in the trajectory,
not the state which caused the stopping condition to be met). Assuming that the time
t is large enough for us to reach equilibrium, we can compare the probability distribution
over the final states seen by the simulation to that predicted using the NUPACK partition
function and energy calculation utilities. In particular, for each final state observed in
a trajectory we count the number of times it occured as a final state in our simulation,
and use that to compute the simulation probability for that state. We then calculate the
thermodynamic probability of observing that state using the NUPACK tools. Finally, we
take the absolute value of the difference between the thermodynamic probability and the
simulation probability for each final state observed and sum those quantities to obtain the
total probability difference between our simulator and the thermodynamic predictions.

For our test cases we found this probability difference to be less than 1% when running a
sufficient number of trajectories (approximately 10). This measure steadily decreases with
increased trajectory count, and does not change when the simulation time is exponentially
increased, indicating that our chosen ¢ was enough to reach an equilibrium state and the
probability difference is due to the stochastic nature of the simulation. The states which we
observed accounted for 99.95% of the partition function, and that percentage also increases

with increased number of trajectories.

6.2 Macrostates

In section 2.3 we defined a system microstate, which represents the configuration (primary
and secondary structure) of the strands in the simulation volume. In this section, we will
define a macrostate of the system and show how these objects can help us analyze a system

by providing better stop states, as well as allowing new avenues of analysis, as discussed in
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section 6.3. To make things simpler in this section, when we refer to a microstate we always
mean a system microstate unless stated otherwise.

Formally, we define a macrostate m as a non-empty set of microstates: m = {s1, s2, ...., S },
where each s; is a microstate of the system. Now we wish to derive the free energy of a
macrostate, AG(m) in such a way that the probability of observing the macrostate m at

equilibrium is consistent with probability of observing any of the contained microstates.

Pr(m) = Pr(s1) + Pr(s2) + ...+ Pr(sp)

= Z Pr(s;)

1<i<n

_ 3 1 o~ AGuou(si)/RT
Q

1<i<n

_ é* Z e—AGboz(Si)/RT (61)

1<i<n

Now, letting Qum = > <j<p e~ AGhoa(si)/RT the partition function of the macrostate m,

we have Pr(m) = %” Similarly, in terms of the energy of the macrostate, we can express

Pr(m) as é s« e~ AGM)/ET and plugging into (6.1) and solving for AG(m), we get:
L _AG(m)/RT 1
— xe = = *Qm
Q Q
o~ AG(m)/RT _ O,
—AG(m)/RT = log Qm,
AG(m) = —RT xlog Qp, (6.2)

Now that we have the formal definition out of the way, let’s look at an example
macrostate using the same three-way branch migration system as in the previous section,

figure 6.2.
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|
xample Macrostate

=

Figure 6.5:

What does this macrostate represent? It’s a set of microstates that has exactly one
basepair formed in the toehold region, but it’s not every such microstate — every microstate
shown has the entire branch migration region fully formed. Thus the following microstate
isn’t included in the macrostate, but it does have exactly one basepair formed in the toehold

region:

..........................

Why are these general macrostates interesting? Previously, we defined stop states as
being microstates of the system, and we can use any number of them as part of the simu-
lator’s stop conditions. From that, it’s easy to see that any given macrostate m could be
used as a stop state of the system by simply expanding it out into the list of microstates
contained within and using those as individual stop states.

Of particular interest to us are several classes of macrostates which can be described in
very simple terms and also checked efficiently by the simulator without having to individually
check for each microstate within those macrostates. The ability to check for a macrostate
efficiently is very important: if we allowed the branch migration region in the previous

222

example to have any structure, the macrostate would contain over microstates, and
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even if we allowed only a limited number of bases in the branch migration region to be
breathing (such as 3 base pairs, e.g. 6 bases) this is still 1140 microstates.

One useful tool in defining these classes of macrostates is a distance metric for comparing
two complex microstates c;,c;. The distance d(c;, ¢j) is defined as oo if ¢; and ¢; do not
have the same set of strands and strand ordering, and otherwise as the number of bases
which are paired differently between the two structures: e.g. if base x is paired with base
y in ¢;, but base z isn’t paired with y in ¢;, or if base z is unpaired in ¢;, but base x is
paired in ¢;. This distance metric has been used in other work, using a slightly different
but equivalent formulation for example [5, 12] and references therein. Some examples are

shown below, in table 6.2.

G Structure Distance
co | oo CCCOI) .t

cr | CCCCCCCCNINI) | d(eg,c1) =8
co | .. (CCD) o)) | d(eo,e2) =6
C3 | «oeenn ((,)) ...... d(Co,Cg) = 4
eq | e CCCED)) oot ) | d(eoyeq) =3
Cy ()(,) ....... d(Co,C5):7

Table 6.2: Distance metric examples, for complex microstates on the two strand complex
with sequences AGCTAGCT,AGCTAGCT. Bases that differ from the structure ¢y are shown
in red.

Now that we have a distance metric, we define several common macrostates that can be

used in the simulator as stopping conditions.

6.2.1 Common Macrostates

Disassoc: Given a set of strands ST and an ordering 7* on those strands, we define the
Disassoc macrostate m as the set of all system microstates s which contain a complex
microstate ¢ with exactly the strands ST and ordering 7*. Recall that a complex
microstate (Section 2.2) is defined by three quantities, the strands contained in the
connected complex, the ordering on those strands, and the base pairs present; thus
this definition implies no particular set of base pairs are present, though it does require
that the complex be connected. Note that this macrostate can only be reached by
either a association or disassociation step, allowing it to be efficiently checked as we

only need to do so when encountering a bimolecular move. It’s called Disassoc in



41

light of its most common usage, but it could also be used to stop after an association

event.

Bound: Given a single strand S, we define the Bound macrostate m as the set of all
system microstates s which contain a complex microstate ¢ with set of strands ST

that has S € ST and |ST| > 1.

Count: Given a complex microstate ¢ and an integer count k, we define the Count
macrostate m as the set of all system microstates s which contain a complex mi-
crostate ¢ for which d(c,¢’) < k. Note that ¢ which meet this criteria must have the
same strands and strand ordering, as d(c,c’) = oo if they do not. For convenience,
instead of using the integer count k& we allow passing a percentage p which represents
a percentage of the total number of bases IV in the complex c. If this is done, we use

a cutoff k = [px NJ.

Loose: Given a complex microstate ¢, a integer count k and a set of bases B that is a
subset of all the bases in ¢, we define the Loose macrostate m as the set of all system
microstates s which contain a complex microstate ¢ for which dg(c, ') < k, where
we define dp as the distance metric d over only the set of bases B in ¢. Similar to the
Count macrostate, we allow a percentage p instead of k, for which we set k = [px|B|].
This macrostate allows us to specify a specific region of interest in a microstate, such
as just a toehold region we wish to be bound without caring about other areas in the

complex microstate.

Note that each of these macrostates is based on the properties of a single complex
microstate occuring within a system microstate; thus if desired we could make a stopping
condition which uses several of these in conjunction. For example, we might make a stopping
conditions that has Disassoc for strand A and Disassoc for strand B, thus creating a
macrostate which can be described in words as “strand A is in a complex by itself, and strand
B is in a complex by itself, and we don’t care about any other parts of the system”. Similarly
we can implement disjunction simply by using multiple independent stopping conditions.
Though the NOT operation is not currently implemented for these stop conditions, it may
be added in the future, allowing us to have the full range of boolean operations on these

common macrostates. As it is, we can easily implement the original example macrostate
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simply by using an OR of the six exact system microstates. Or we could use Loose
macrostates to implement the one we might have intended, where we didn’t care very much
about the branch migration region (and thus allowed it to have some breathing base pairs),

only that a single base of the toehold had been formed.

6.3 Transition Mode

What is transition mode? The basic idea is that instead of every system microstate being
an interesting piece of the trajectory, we provide (as part of the input) a list T" of transition
states of the system, the states which we think are interesting, and the output is then the
times when we enter or leave any transition state in the list T'. These transition states can
be exact states of the system (e.g. system microstates), or macrostates of the system (e.g.
a combinition of common macrostates such as Dissasoc or Loose macrostates), and we
note that they are not required to be technical “transition states” as in chemical reaction
theory — we are interested in how trajectories move (i.e. transition) from macrostate to
macrostate, no matter how those macrostates are defined. One way to look at this form of
output is as a trajectory across transition state membership vectors. We note that since
these transition states are defined in exactly the same way as stop states, we generally lump
them both together in the list of transition states that get reported (after all, you’d like to
know what state caused the simulation to finish, right?), with a special labelling for which
transition states are also stop states.

What is transition mode good for? The simplest answer is that it allows us to ask
questions about specific kinetic pathways. Here’s an example of this: Given a simple se-
quence that forms a hairpin, does it form starting from the bases closest to the 5’/3” ends

(Fig 6.6B), or starting from the bases closest to the hairpin region (Fig 6.6C)?

B
A /Q\

/
\
i)

Figure 6.6: Hairpin Folding Pathways. Blue boxes indicate regions of interest used in loose
structure definitions (Table 6.3). A) Starting State. B) Bases near the 5’'/3’ ends form first.
C) Bases near the hairpin region form first. D) Final hairpin structure.
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How do we represent these pathways in terms of transition states? Here we take ad-
vantage of the common macrostate definitions (Section 6.2.1) to define the intermediate
structures B and C, using loose macrostates with a distance of 2, while A and D are defined

with exact microstates.

Transition State Label | Sequence / Structure | State Type
GCATGCAAAAGCATGC
A (start) | ..ol Exact
B ((Crkxkkrkxkk))) | Loose, d < 2
C sk (((kxxx)) ) kx| Loose, d < 2
D (stop) CCCCCC M) Exact

Table 6.3: Transition states for hairpin pathway example. State type of Exact is exactly
the given structure as a system microstate, and Loose is a loose macrostate covering only
the bases in blue (or alternately, the bases not marked with “*7).

Why is using a loose macrostate for these transition states useful? First, we note that
we produce output any time the transition state membership changes, hence each step of
the pathway is the set of all transition states which match the system microstate. Let’s look
at a possible pathway to the stop state where the first bases that form are near the 5’ and
3’ ends and the base pairs are added sequentially without ever being broken. With exact
states this would result in the following transition pathway: {A} — 0 — {B} — 0 — {D}
and with the loose macrostates it would be this transition pathway: {A} — 0 — {B} —
{B,C} — {B,C,D}. So far, so good. What about if we form two bases of B, then all of
C, then the last base of B? For loose states, this is the exact same transition pathway -
recall that we use a distance of 2, and two base pairs formed in B is exactly that distance
away from the given structure. But for exact states, this is now the (very boring) pathway
{A} = 0 — {D}, which doesn’t answer our question about which part of the helix formed
first!

Two possible transition pathways, using either the loose structures for B and C, or

exact structures:
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Time Transition States
0.00 A Time Transition States
3.63% 1077 0 0.00 A
1.03 % 1076 A 9.02 %1077 0
1.40 x 1076 0 1.31% 1076 A
1.78 %1076 B 2.26 % 1076 0
1.92 %1076 B,C 2.72% 1076 D
2.15% 1070 B,C,D (b) Sample Transition Pathway (Exact)

(a) Sample Transition Pathway (Loose)

Table 6.4: T'wo different transition pathways via transition mode simulation, using either the
given B and C' states with the loose macrostate definitions from Table 6.3, or exact system
microstates using the states from the same table with all “*” replaced by “.” (unpaired)
and distance set to 0, effectively. Note that the times listed are the times of first entering
the given state.

Does this mean every simulated trajectory takes these transition pathways? Definitely
not! The stochastic nature of the simulator means we’re likely to see many different transi-
tion pathways if we run many trajectories. So, let’s now answer the original question: which
transition pathway is more likely? We do this by accumulating statistics over many kinetic
trajectories as follows: For each transition path trajectory (such as those in Table 6.4) we
break down the trajectory into pieces which have non-empty sets of transition states, sep-
arated only by zero or one empty set of transition states. So for example, the path shown
in Table 6.4a breaks down into four separate reactions: {A} — 0 — {A}, {A} — 0 — {B},
{B} — {B,C}, and {B,C} — {B,C,D}. For our statistics, we’ll group reactions of the
form z — () — y with those of the form = — y, and for every possible reaction, we record
the number of times it occurred and the average time it took to occur. So for the single

pathway in Table 6.4a we get the following statistics:

Reaction Average Time | Number of Occurences
A— A 1.03%10°° 1
A— B 7.43 %1077 1
B — B,C 1.47 %1077 1
B,C - B,C,D| 229%1077 1

Table 6.5: Statistics for the single transition pathway shown in Table 6.4a.

Now that we’ve seen an example of these statistics for a single kinetic trajectory, let’s
look at the same statistics over a hundred kinetic trajectories, again using the system with

loose macrostates.
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Reaction Average Time | Number of Occurences
A— A 2.48 x 1076 829
A— B 2.17%10°7 37
A= C 2.53% 1077 73
B— A 1.09 %« 1076 5
B— B 1.46 % 1077 2

B — B,C 3.78 %1077 33
C— A 5.63 %1077 5
C—C 2.48 x 1077 7

C — B,C 5.84 %1077 7

B,C -+ B 4.32% 1077 1

B,C = C 1.21 %1077 9

B,C - B,C,D | 210%107" 100

Table 6.6: Statistics for 100 simulated trajectories using the transition states from Table 6.3.

What can we conclude from these statistics? Both pathways do occur, but it is much
more likely that the first bases formed are those closest to the hairpin region. The average
times for each pathway are roughly within an order of magnitude of each other, and our

selection of transition states was good: we didn’t see any unexpected pathways, such as

{4} = {D}.

4

We could use these “reactions” as to create a coarse-grained representation of the orig-

1

————— as the reaction rate constants.
avg time

inal system as a chemical reaction network, using
Whether this will be an accurate representation or not depends on the choice of transition
states and the structure of the energy landscape. For example, if we were to try this us-
ing the average times for this system, we would end up with a formal CRN in which the

A — A reaction is taken far less frequently than shown in Table 6.6. Finding appropriate

coarse-grained representations is a deep and subtle topic [13].

6.4 First Passage Time Mode

First passage time mode is the most basic simulation mode in Multistrand. It produces
a single piece of data for each trajectory simulated: the first passage time for reaching
any stop state in the system, and which stop state was reached. This is a rather striking
difference from our previous simulation modes in the amount of data produced for each
individual trajectory, but it is still quite powerful!

This first passage time data could be produced via trajectory mode: we can just discard
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all the output until a stop state is reached. There is a distinct efficiency advantage to
making it a separate simulation mode: we don’t have to pay the overhead of reporting
every piece of trajectory data only for it to be discarded. Similarly, we could generate the
same data using transition mode by only using stop states in our list of transition states.
We implement this as a distinct simulation mode in order to better separate the reasons
for using each simulation mode: for transition mode, we are interested in the pathway our
system takes to reach a stop state, and for first passage time mode we are interested in how
quickly the system reaches the stop state(s).

What does first passage time data look like? Let’s revisit our example system from

\, :

““““““““““ s T T s s T
e o o (RN ER RNy
\\\\\\\\\\\\\\\\\\\ ~ e S ~

Start State Branch Migration Disassociation

section 6.1 (Figure 6.2):

We start the system as shown, and use two different stop states: the complete stop
condition where the incumbent strand has disassociated (as shown in the figure), and the
failed stop condition where the invading strand has disassociated without completing the
branch migration. Both of these are done using Disassoc macrostates, which makes it very
efficient to check the stop states. Note that we include the invading strand disassociating as
a stop state so that if it occurs (which should be very rarely), we can find out easily without
waiting until the maximum simulation time or until the strands reassociate and complete
the branch migration.

The following table (Table 6.7) shows a five trajectories worth of data from first passage
time mode on the example system, using sequence design B (Table 6.1) for the branch
migration region.

Note that we have included a third piece of data for each trajectory, which is the
pseudorandom number generator seed used to simulate that trajectory. This allows us to
produce the exact same trajectory again using a different simulation mode, stop states or
other output conditions. For example, we might wish to run the fifth trajectory in the table

again using trajectory mode, to see why it took longer than the others, or run the first
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Random Number Seed | Completion Time | Stop Condition
0x790e400d 3.7%107° failed
0x38188213 3.8% 1073 complete
0x47607ebf 2.1%1073 complete
0x02efe7fa 2.8 %1073 complete
0x7c590233 6.7 % 1073 complete

Table 6.7: First passage time data for the example three way branch migration system. Stop
conditions are either “complete”, indicating the branch migration completed successfully,
or “failed”, indicating the strands fell apart before the branch migration could complete.

trajectory to see what kinetic pathway it took to reach the failed stop condition.

Let’s now look at a much larger data set for first passage time mode. Here we again use
the three way branch migration system with sequence design B for the branch migration
region and increase the toehold region to be ten bases, to minimize the number of trajectories
that reach the failed stop condition. We run 1000 trajectories, using a maximum simulation
time of 1 s, though no trajectory actually used that much as we shall shortly see.

Instead of listing all the trajectories in a table, we graph the first passage time data for
the complete stop condition in two different ways: first (Figure 6.7a) we make a histogram
of the distribution of first passage times for the data set, and second (Figure 6.7b) we graph
the percentage of trajectories in our sample that have reached the complete stop condition

as a function of the simulation time.
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(a) Histogram of first passage times (b) Percent completion by simulation time

Figure 6.7: First passage time data for the three way branch migration system, using
sequence design B (Table 6.1) and with a ten base toehold sequence. 1000 trajectories were
simulated and all of them ended with the complete stop condition.
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While there are many ways to analyze these figures, we note two particular observa-
tions. Firstly, the histogram of the first passage time distribution looks suspiciously like an
exponential distribution, possibly with a short delay. This is not always typical (as we shall
shortly see), but the shape of this histogram can be very helpful in inferring how we might
wish to model our system based on the simulation data; e.g. for this system, we might de-
cide that the three way branch migration process is roughly exponential (with some fitted
rate parameter) and so we could model it as a one step unimolecular process.

The second observation is that while the percentage completion graph looks very similar
to an experimental fluourescence microscopy curve, they should NOT be assumed to be
directly comparable. The main pitfall to watch out for is when comparing fluourescence
curves from systems where the reactions are bimolecular: in these the concentration of the
relevant molecules are changing over time, but in our stochastic simulation the bimolecular
steps are at a fixed volume/concentration (reflected in the AGyopume energy term) and data

is aggregated over many trajectories.

6.4.1 Comparing Sequence Designs

A common usage of first step mode is in the comparison of sequence designs, as we previously
brought up in Section 6.1. We now run another 1000 trajectories on the same three way
branch migration system as in the previous section, including the increased toehold length,
but using the sequence design A (Table 6.1) for the branch migration region. Note the

change in x-axis scale; this design is indeed much slower than design B!
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Figure 6.8: First passage time data for the three way branch migration system, comparing
sequence designs using histograms. For figure (b), we compare the two designs on the range
of times from 0 s to 0.02 s. The buckets for sequence design A have been reduced in visual
size to show overlapping regions, but overall bucket sizes are consistent between the two
designs (though they are slightly different from those in Figure 6.7a).

Let’s also look at the same data but using the percentage completion as a function of

simulated time graphs:
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(a) Design comparison, percent completion graph (b) Design comparison, zoomed

Figure 6.9: First passage time data for the three way branch migration system, comparing
sequence designs using percent completion graphs. Figure (b) is a zoom in on the range of
times from 0 s to 0.1 s from Figure (a).

We can now clearly see just how different these two sequence designs are! Our results
from the trajectory mode section were clearly not unusual: the majority of sequence design

B’s trajectories finish in under 0.01 s, whereas the same amount for sequence design A
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is over ten times longer. This is highlighted in the combined graph (Figure 6.8b), which
shows how vastly different the timescales are for each process. Looking at the percentage
completion graphs, we note that sequence design A did not actually reach 100% — it actually
had 8 trajectories reach the failed stop condition!

While both types of graphs are presenting the same information, they are frequently
useful in different cases: the first passage time histograms are helpful for gaining an intuition
into the actual distribution of times for the process we are simulating, while the percent
completion graphs are better for looking at the relative rates of different designs, especially

when working with more than two sequence designs.

6.4.2 Systems with Multiple Stop Conditions

What about our original three way branch migration system, which had toeholds of length
six? Let’s now look at this situation, where we have a system that has more than one
competing stop state. We again run the system with 1000 trajectories and a 1 s maximum
simulation time (though it’s never reached). Instead of plotting only the first passage times
for the complete stop condition, we overlay those with the first passage times for the failed

stop condition.

80 ‘ ‘ ‘ ‘ ‘ 100%

HEl complete — complete
Il failed | — failed

80%[

60%[

40%|

# of Trajectories

% of Trajectories Complete

20%[

0 0% ‘ ‘ ‘ ‘ ‘ ‘ ‘
0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016
First Passage Time (s) Simulation Time (s)

(a) Histogram of first passage times (b) Percent completion by simulation time

Figure 6.10: First passage time data for the three way branch migration system with 6 base
toeholds, comparing sequence designs.

Competing stop conditions certainly make the data more interesting! We can pick out
pieces of the kinetic pathways a lot easier using these graphs. For example, the competing

pathway leading to the failed stop condition frequently occurs faster than the complete
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stop condition pathway; this should be unsurprising, as one pathway involves a long random

walk while the other is very unlikely to include one.

6.5 Fitting Chemical Reaction Equations

We are frequently interested in DNA systems which can be represented (with some choice
of the appropriate internal parameters/sequences) by chemical reaction equations of the

following form:

A+B™Lcyp (6.3)

These systems usually involve an intermediate step, so typically the concentration is low
enough for the above equation to actually be a good fit. Experimental observation of these
systems tend to be in the range of concentrations where the above equation is an accurate

characterization of the system.

Let us now associate the species in the equation above with actual DNA complexes
(ordered collections of connected strands). We designate strands by unique letters, and
indicate complementary strands with an asterisk. For the toehold-mediated 3-way branch

migration example, the chemical equation then becomes:

ke
oy 4+ L pat 4y (6.4)

Let us examine one possible DNA configuration for the state of the entire system that
could follow this equation’s implied dynamics. The left hand side could be the configuration
given in figure 6.11, and the right hand side could be the configuration given in figure 6.12.
Note that while we show particular exact secondary structures for each of these figures,
there are actually many such secondary structures that represent the appropriate parts of
the equation, which might be specified using Loose macrostates.

Finally, what would the equations look like if we did not expect them to fit equation

6.37 One possibility is as follows (as in Zhang, Winfree 2009 [25]):
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Figure 6.11: Starting Complexes and Strand labels

X y
g+
X*
Complex C Complex D

Figure 6.12: Final Complexes and Strand labels

k‘f kbm ! kr
A+B T AB k: AB" —~ C+D (6.5)
T bm

Though this model is used in several experimental papers, it is difficult for us to define
simulation macrostates in order to determine the various rates present in the equation. In-
stead, we look at a model where it is easy to separate out the steps into discrete components
which can be individually simulated. Specifically, we look at a system where the molecules
A and B can collide and form either a reactive molecule which will go to C and D, or a
nonreactive molecule which will fall apart after some time'. We call this the first step

model, and it is described by the equations below:

A+BaB 204D (6.6)
k,/

A+B = AB (6.7)
K,

We will use this model extensively to analyze the results of the first step mode simu-

!Thanks to Niles Pierce and Victor Beck for suggesting this approach.



53
lations discussed in section 6.6. Note that for low concentrations, the controlling step will
be the bimolecular reactions and thus we should be able to also fit to a k.;¢ type model in
those cases.
We discuss fitting first passage time data to the simple k.fy model (Equation 6.3, as
well as using first step mode to generate data which can easily be fit to the first step

model.

6.5.1 Fitting Full Simulation Data to the k.;; model

For this simulation mode, we start the simulation in the exact state shown in figure 6.11,
and measure the first passage time to reach any state with the same complexes (but not
exact secondary structure, i.e. we use a Disassoc stop state) as that shown in figure 6.12.
This gives us a data set of first passage times At;, where 1 < ¢ < n, and n is the total
number of trajectories simulated. The simulation is done at a particular concentration z.
Note that this simulation will require time inversely proportional to the simulation con-
centration, since we are simulating elementary steps. Thus we would prefer to simulate at
higher concentrations and step downwards in concentration until we are in the region where

the bimolecular reaction dominates, and equation 6.3 holds.

If we assume equation 6.3 holds and determines our distribution of first reaction times,
we can fit our data to an exponential distribution in order to determine k.¢s: Recall that (via
Gillespie [8]) in a formal chemical reaction network, a state with total outgoing propensity
ap will have a passage time (7) distribution according to the probability density function
P(7) = ag *x exp(—apT). Since the propensity ay for a bimolecular reaction is the reaction
rate times the concentration, we solve for ks as follows, where expfit is the function that
takes a data set of first passage times (At;) and returns the parameter ag of the exponential

distribution given by those At;, and z is the simulated concentration:

kers = expfit(At;) x 1/ (6.8)

If we are in the regime where equation 6.3 holds, we expect this to give us a consistent

value for k.rr. If we are outside of that regime (and thus the unimolecular reactions from
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equation 6.5 or equation 6.6 dominates), this will err by exactly the factor of 1/z, thus the

graph of k. versus concentration z should appear linear in this regime.

6.6 First Step Mode

This simulation mode makes a simple assumption: we always start the Markov simulation
by making a “join” step, that is, one where a pair of molecules A and B come together
and form a single base pair. The choice of secondary structure states for the molecules A
and B before collision can be done either by using particular exact complex microstates, or
by Boltzmann sampling the secondary structure space of the molecules. This sampling is
valid when the bimolecular reaction rates are slow enough that the initial complexes reach
equilibrium. In either case, we have a valid system microstate once we know the structure
for the A and B molecules, and then choose a “join” step from those present in the system
microstate and use the resulting system microstate (after making the join) as our start state
for a trajectory. Since this mode runs many trajectories, we must make many such random
choices for the join step and for the Boltzmann sampling of the initial molecules (if we are
using the sampling rather than exact states).

The simulation then starts from this configuration, and we track two distinct end states:
the molecules falling apart back into one of the A + B configurations, or the molecules
reacting into one of the C' + D configurations. Our data then consists of first passage
times where we can separate each trajectory into one that reacted or one that failed. The
advantage to this mode of simulation is that we no longer are directly simulating the “join”
bimolecular steps, whose rates are proportional to the simulated concentration and thus are
going to be very slow relative to the normal unimolecular steps. This allows us to use the
simulator to concentrate on the trajectories where we have a collision, rather than spending
(at low concentrations) most of the time simulating unimolecular reactions while waiting

for the very rare bimolecular reaction.

6.6.1 Fitting the First Step Model

Our first step mode simulation produces the following pieces of data: Atl,,., the first
passage times for reactive trajectories, At’]} . the first passage times for trajectories did not

react, the number of trajectories that reacted Ny.cqcr and failed Ny,;, and the rate constant
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keour, the simulation’s estimate of the rate of collision (in /M/s) of the A and B molecules.
This k.o is calculated based on all the join moves possible from the initial configuration of
the A and B molecules, and thus is very likely to include many such moves which do not
lead to very stable structures and thus disassociate quickly.

We then fit to the model given in equations 6.6 and 6.7, as follows:

Nreact
ki = ————xk 6.9
! Nreact + Nfail  eoll ( )
N tuil
W= —% 6.10
! Nreact + Nfail colt ( )
ko = expfit( At ,.) (6.11)
K = expfit(At,;) (6.12)

Thus we can directly find each of the model parameters from the collected simulation
data, in a natural way. We then use this model to predict the k.f; parameter we would

observe if we assume that the simple chemical reaction model (eqn 6.3) is valid.

6.6.2 Analysis of First Step Model Parameters

We first show a natural (but inexact) way to calculate k.;s from the first step model
parameters, using the assumption that the time used in “failed” collisions is negligible
compared to that needed for a successful reaction. In this situation, we can estimate ks
for a particular concentration z by calculating the expected average time for a reaction. We
use the fact that the expected value of an exponential distribution with rate parameter A

will be % in order to derive k.y:

1 1
R i

. (6.13)
]{31*2 + k‘ig

Again, this makes the assumption that equation 6.3 holds and thus that the reaction
dominated by the bimolecular step. The observation from the full simulation mode still
holds: if we are not in this regime, we will err by a factor of % and thus the graph should

be linear. Note that since this simulation does not require a set concentration, we can run
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one simulation (with a large number of trajectories) and use the extracted data to produce
the same type of graph as the full simulation mode.

We now would like to remove the assumption that the “failed” collision time is negligible:
though that assumption makes k. straightforward to calculate, many systems of interest
will not satisfy that condition.

We now need to calculate the expected time for a “successful” reaction to occur based
on both the “failed” and “reactive” collision parameters. We do this by summing over all
possible paths through the reactions in equations 6.6 and 6.7, weighted by the probability
of those reactions. Let At. = m (the expected time for any collision to occur),
At i = Ateoy + é (the expected time needed for a failed collision to return to the initial
state), Atreaet = Ateoy + 1?12 (the expected time for a reactive collision to reach the final
state), p(path) is the probability of a particular path occuring, and Atpe, = nlAtse +
Atreqer 1 the expected time for a path which has n failed collisions and then a successful
collision. Finally, the quantity which we want to solve for is Atcorrect, the expected time it

takes for a successful reaction to occur.

A'tcorrect = Z Atpath * p(path) (614)
path
> k4 k1
= AN At?“eac 1 " 1
Z(TL fail + t) * (kl + ki) * kl + k/l (6 5)

n=0

klkﬁ’ and recall that for 5 > 0,
1

Yoy B = ﬁ and > > qn* " = B ﬁ, and we get:

To simplify the next step, let a = kk'71/ and o =
1+k]

1
5 % @+ Alreget ¥ ——— * @ (6.16)

(6%
Atcorrect‘) = Atfail * m 1—a«

0]

Now we note that 1= =1, and lf‘—/a, = %, and simplify:

/

k
Atcorrect) = Atfail * kﬁ + Atreact (617)
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And thus we arrive at the (full) form for k.-

1 1
* — (6.18)

koff = ——
eff Atcow"ect z

This requires only a single assumption: that the reaction is dominated by the bimolecular
step, and thus can be described by equation 6.3. We note that this derivation can be

generalized for multiple possible stop states [2].
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Appendix A

Data Structures

A.1 Overview

The simulator is composed of many objects, which have very strong dependencies and are
one of the key components in allowing us to use efficient algorithms for recomputing the
set of adjacent moves. Our data structures contain a lot more information than those in
previous works, but this is what allows us to use the more efficient algorithms for move
selection, update and energy computation.

The following is a list of the primary objects which we will elaborate on in this section:

/ SimulationSystem

StrandComplex

(initialization only)

HairpinLoop | OpenLoop

StrandOrdering

EnergyModel &

Legend BulgelLoop

. Ereatgs MultiLoop StackLoop
) CONtains
3 |nteracts With InteriorLoop

Figure A.1: Relationships between data structure components
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Object Name Basic Function

SimulationSystem | Controls the simulation, handles trajectory parameters
and simulation setup.

StrandComplex Summarizes the information for a particular complex,
including the ordering, intra complex moves, and loop structure.
SComplexList Stores all the complexes in the system and handles
inter-complex moves.
Loop Base class for all types of local loop objects.

Contains information about the energy, adjacent loops, and has all
the generic loop accessors which are implemented by derived classes.

Move Contains information about a single move, including the affected
loops, type of move and rate at which it should occur.

MoveTree Container type for organizing the Move and MoveTree nodes for a
particular unit: a loop, a complex or the system.

EnergyModel Base class for all types of energy models.

Defines all the accessors for finding the energy of particular
loop structures. Derived classes implement these, and contain
all the necessary parameter data.

StrandOrdering Auxiliary class used by a Complex to handle strand ordering
information and functions for checking stop states,

handling output of the complex and other related tasks.
Options Auxiliary class which contains all the simulation options.

This is the object which contains all the model and simulation
parameters necessary for the simulator, as well as the input
DNA system. It is also used to handle the results coming from
the simulator (e.g. the output). This is the only Python object
included in this section.

A.2 SimulationSystem

Purpose: This object handles the main control loop of the program in addition to per-

forming the setup and initialization duties.

Functionality:

1. Initializes the EnergyModel object based on parameters from the Options object.
2. Initializes the system state for each trajectory.
3. Handles random number generation for each step of the markov process.

4. Performs the main loop of the simulator, performing a move, updating the time and

handling output duties.

Data Members:
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1. EnergyModel: contains a reference to the energy model being used for the system.
This data is also used to initialize a static member of the Loop class, so that all loops
have a direct reference to the correct energy model, but we need to store it here so

that it can be properly freed later.

2. SComplexList: the current secondary structure state of the system is stored in this

object, which needs to be reinitialized to the starting state for each trajectory.

Discussion: The system object, while containing the main control loop for the program,
is very limited in the scope of what it does, handling only the main initialization duties
and the random number generation component of each step of the markov process. This
lets us focus on handling all of the different simulation modes (and thus output options) at
this point without having to know about any of the secondary structure information in the
system.

This is one of two C++ objects that are closely connected to the Python side of the
simulator, as we need to both access the parameters and inputs for a particular simulation

system as well as provide output back across that interface.

A.3 StrandComplex

Purpose: Represents a single connected complex of strands. Things that take place at
that level are handled here if they don’t involve the specific ordering of the strands. This
includes the initial generation of the loop objects representing the complex as well as han-

dling joining moves between two complexes.

Functionality:

1. Contains code that generates the entire Loop-based structure from the sequence and

dot-paren structure input. Only used when the trajectory is initialized.

2. Performing base pair creation moves between two complexes is handled here, joining

the appropriate data together.

3. Performing base pair deletion moves which cause a complex to break into two con-

nected structures is done here.
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Data Members:

1. StrandOrdering: contains information about the strands/sequences used in the com-
plex, the cyclic permutation corresponding to the current structure and links to the

actual structure.

2. MoveTree: tree structure collecting all the moves corresponding to loops within the

complex.

Discussion: Originally this object also contained all the information about the current
sequence and dot paren representation of the structure, but it made more sense to split
those into a seperate object when it became apparent that all the functions which dealt
with those used a very similar linked list approach. Because of this, there are really only
three main functions here which don’t involve the ordering in some way: joining a complex,
breaking a complex, and initializing a complex.

The initialization of loop structure for a particular complex is easily the most compli-
cated algorithm here, and is discussed in Section B.2. Why not handle the loop creation in
another location? The simple answer is that at some point, there needs to be a function
which can translate from the sequence and structure for a complex into the loop structure,
and since those are only relevent at the complex level, it can’t be any lower. Loop structure
only knows very local bits of the sequence and has no concept of the dot-paren structure, and
while the strand ordering does involve both the sequence and structure, the main functions
contained there deal with modifications to that ordering and subsequent changes to the

output representation, and not really anything to do with the actual structures underneath.

A.4 SComplexList

Purpose: Contains all the complexes in the current state of the system. Handles compu-
tation of join move rates between complexes, and controls move choice selection between

join moves and moves internal to each complex.

Functionality:

1. Computes the total join rate between complexes, which requires information about the

external bases (unpaired bases appearing in an open loop) present in each complex.
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2. Handles control flow for picking which complex the next move takes place within, or

computing which join move took place.

3. Handles high level code for checking a stop state, specifically when a stop state involves
multiple complexes being present, we need to check for the simultaneous presence of

all of them, without overlapping.
Data Members:

1. StrandComplex: linked list of complexes, along with the current energy and total rate
for each complex, so that they do not have to be recomputed when a move doesn’t

involve that complex.

2. Join Rate: total flux for all join moves between complexes. If a move is performed
within a complex, this total only needs to be recalculated when that move involves

an OpenLoop.

Discussion: Exists mainly as a way of seperating the simulation system from the actual
strand complexes. This layer handles summarizing the rates from each complex, as well as
everything about the join moves. The join moves are calculated very simply by figuring
out the total number of combinatorial choices for pairing bases. While this is done under
the assumption that a single base pair is sufficient to join two complexes, it could easily be
extended to require two adjacent bases to pair, by changing the definitions of exterior bases
and the resulting combinatorial choice.

Note our bimolecular rate method’s effects are focussed mainly here: the join move rate
only involves the numble of possible pairs plus the energy model’s base join move rate. If we
changed the rate method this may have to be handled at a much lower level so that we can
include energy computations on the resulting open loops. Currently we don’t have to do
that, as the energy contributions due to those loops are in the reverse rate (when breaking
a complex apart), as at that point we will have detailed information about the secondary
structure. If we tried to use those energies in computing the join move rates, we would have
to have much more information about the secondary structure of each complex at this level,
which would be a lot more computationally intensive. However, for some types of energies,
it’s conceivable that a similar redefinition of the exterior bases would work, like what we

mentioned above for forming two bases at a time.
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The other key thing handled here is checking for the existence of a stop state. A
stop state can involve the secondary structure of multiple complexes, so we have to start
handling it at this level, and it’s important that we try to optimize the computation as much
as possible, as the simulator goes through a huge number of states, and only a small portion
of those are going to be stop states. At this level several shortcuts are implemented, such as
only checking for a stop state when the number of complexes currently present would allow
it, and halting the checking for a particular stop state when there aren’t enough unchecked

complexes in the current state to match the remaining ones in the stop state.

A.5 Loop

Purpose: Base class for one of the two (ad hoc) polymorphic types used in the simulator.
Secondary structure can be broken down into a tree consisting of connected loops. The
particular type of loop does not matter in this structure, but does matter for calculating
the energy and possible moves available to that loop. Thus this class defines all the methods
which can be used to interact with generic loops, and the specific implementations handle

the details.

This class, along with the six derived classes (StackLoop, HairpinLoop, BulgeLoop, In-
teriorLoop, MultiLoop and OpenLoop) composes the largest percentage of the code in the
program, currently around 40%. This is due to the need for each derived class needs to
handle move generation and energy calculation in a specific way, as well as delete moves

which need to be able to handle each of the possible combinations of two derived types.

Base Class Functionality:
1. Compute delete move rates for arbitrary pairs of derived loop types.
2. Perform delete moves for arbitrary pairs of derived loop types.

3. Perform deletion moves which cause a complex to split (OpenLoop-OpenLoop delete

moves).

Derived Class Functionality:
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1. Energy Computation: passes appropriate data members to the energy model for cal-

culation.

2. Move Generation: computes rates for all internal base pair creation moves, adds

generated moves to move tree data structure for that loop.

3. Move Evaluation: builds the resulting loop structure after performing a base pair

creation move.

4. (OpenLoop only) Exterior bases: computes the counts of each base type accessible in

that open loop for a complex join.

5. (OpenLoop only) Complex joins: create the resulting pair of connected open loops

from the pair of open loops involved in a complex join move.
Data Members (general for most derived classes):

1. Loop: list of adjacent loops, in a fixed 5 to 3’ ordering such that base pairs can be

associated with the correct adjacent loop.

2. sequence: base sequence for each strand participating in the loop. Usually just two,

but can be any number for Multi and Open loop types.
3. lengths: lengths of each base sequence present in the loop.
4. energy: stored value from calling the energy model functions, to avoid recomputation.

5. MoveContainer: container for all creation and deletion moves involving this loop.

Used to make deleting this set of moves from a larger structure a simple task.

Discussion: Algorithms: The per-step move generation algorithm (Section B.4) and the
move update algorithm (Section B.5) are implemented in a distributed manner in the de-
rived Loop objects. The advantage for these algorithms are in the local properties. We
only need to know for creation moves the information about the particular loop involved,
and for deletion moves the two loops adjacent to the base pair being deleted. This means
that creation moves can be handled within each loop type cleanly, using only the internal
data to that loop to generate the two new loops which are to replace it. Deletion moves are

handled in a similar way by creating a friend function of the base Loop class which handles



65

each case of a pair of loop types.

Output Reconstruction: Though each loop object only stores a very small portion
of the total sequence, it is straightforward (and indeed, must be possible) to use only those
pieces to reconstruct the actual strand sequences and dot paren structures. In practice, this
reconstruction, especially that of the dot paren structure for use in output, would need to
be done each time we wanted to output a state, which for full trajectory output would be
every step. Thus there are functions to perform this reconstruction within the class, but
instead of using those at each step, the information about which base(s) were affected in
a move are passed back by the relevant move update function so that the StrandOrdering
object can keep the output structure up to date for use both in trajectory mode and for

stop state checking.

Deletion Move Duplication: Note that a particular deletion move occurs twice, once
in each loop adjacent to the base pair involved. The resulting rates are then halved, such
that the total rate is correct, and the deletion move is performed identically no matter
which loop’s copy of the move is chosen. This means that each loop needs to be able to
reset its deletion moves independently of the creation moves within that loop, and handling
this cleanly is one difficulty with how we build the overall set of moves for the complex. The
alternative, however, would be to store a deletion move relative to only one of the two loops
adjacent, which would make the recomputation of deletion moves caused by performing
creation moves to be excessively complicated. Since the total number of deletion moves per
loop is small (usually two), calculating and storing the deletion moves twice is a small effect
on the complexity of move generation, and is much easier to implement and more efficient

for move update.

Complex Join/Break: The complex join and break moves are handled at the lowest
level within this object. Complex breaks are implemented in the base class, as they need to
rebuild the two open loops adjacent to the breaking base pair into disconnected open loops.
Joins are handled within the OpenLoop object, forming the resulting connected open loops.
While it would be convenient to handle these all within a particular object, they affect the

data structure at many different levels and so there is no convenient place to handle all the
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appropriate changes to the strand ordering, the underlying open loops, the new resulting

complex(es) and the moves available to each.

A.6 Move

Purpose: Represents a single creation or deletion move. Contains the necessary informa-

tion for the appropriate Loop to perform the move.

Functionality:

1. Directs control to the correct loop to handle the actual creation/deletion necessary to

perform the move.
Data Members:

1. affected loops: links to the loops affected by this move (i.e. the ones that created it).
2. move rate: rate at which the move should occur, for use by the move choice algorithm.

3. type information: used by the affected loops to perform this move

Discussion: This is the simplest data structure that’s important enough to actually men-
tion. It’s really just used as data storage by the loop’s move generation algorithms, so that
the move choice algorithms can traverse the moves directly without having to go through
the local loop structure, and once the move is chosen transfer control into the affected loop
to perform the choice.

This is the basic unit that’s being allocated and deallocated in large quantities at each
step, and so one possibility for improving speed is to keep a pool of pre-allocated Move
objects that are passed out rather than constructed from memory, and returned to the pool
instead of deallocated. The allocation/deallocation hasn’t appeared to be a major factor
at this point though, so it’s likely that other methods are a better choice for improving the

simulation speed.

A.7T MoveTree

Purpose: Holds all the Node objects for a particular logical unit, such as a Loop, Strand-

Complex, or SimulationSystem. Implements the addition of nodes and deletion of nodes in
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an efficient way. Can itself be used as a base type to be organized into higher level move

trees.

Note that this object is no longer fully implemented and has been deprecated in favor
of moving to C++ Standard Template Library containers for handling moves. Specifically,
we currently use an array data structure as our move container for each logical unit, with
a move selection algorithm that is linear in the number of moves; as discussed in section
B.7, move selection is not typically the rate limiting step in simulations, so the non optimal
data structure does not result in a significant performance drop.

We present the following information as a look into the original construction of these

data structures and algorithms.

Functionality:
1. Contains a tree structure of node objects (implemented as either Moves or MoveTrees).
2. Can singly add a node efficiently.
3. Can be constructed with serial addition of Move objects efficiently.
4. Can delete a single node efficiently while leaving the tree well balanced.

5. Performs the move choice algorithm, taking the random number and efficiently selects
a node. This node then is either the Move we wish to perform, or a nested MoveTree

from which we must continue the algorithm.
Data Members:
1. Tree root: pointer to the root node in the tree.
2. Tree total rate: total rate of all nodes in the contained tree.

Discussion: While we could implement a container for the Move type objects in many
other ways, it is convenient to use a tree for efficiency reasons. While the worst case com-
plexity of our simulator doesn’t change, the average case can be affected be the choice of

data storage for these objects, as we will discuss further in section B.7.
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The ideal structure for us to use would actually be a Huffman encoding tree based on
the relative rates of each move/container stored in the tree. However, maintaining this en-
coding for a rapidly updating selection of moves is just as inefficient as using a list structure,
so while it would be ideal for our choice operations, we would have just moved the time

complexity into the update steps.

Finally, we have many different choices of methods to implement our trees in a balanced
fashion. Since we do not need a search operation as the elements are not sorted, and are
instead accessed by the move choice algorithm using their relative rate, we can implement
any simple balanced tree, as long as the insert and delete operations are logarithmic with
the total size of the tree. We do need a special algorithm for constructing a tree from a
loop’s set of moves, as performing these insertions on an empty tree would add an extra
logarithmic factor to the requirement. This is easy to implement by maintaining a static
list as the tree gets built, and make a single pass to connect the structure and sum the

totals once we have all the moves required.

A.8 EnergyModel

Purpose: Computes the energy of particular loop types. Computes rates for moves, based
on energy model parameters and rate options. This is a base class, used to implement

specific instances of energy models, such as the NUPACK energy model.

Functionality:

1. Calculates the energy for each of the six specific types of loop, based on the energy

model parameters used and other energy model options.

2. Calculates the move rate based on the starting and ending state’s energy, type of move

and other energy model options.
3. Reads in the energy model’s parameter set from a file.
4. Transforms the energy model parameter set for non-standard temperatures.

Data Members:
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1. Energy model parameters: stores all the parameters for the energy model. This in-

cludes dG and dH parameters so that we can calculate dG’s for different temperatures.

Discussion: Data Size: Though we list the energy model parameters as a single data
member, it should be noted that this is the largest object in terms of data size. There are a
huge number of parameters involved in calculating the loop energies, and extra data needs
to be stored in order to calculate the energy at different temperatures. Collecting these
parameters in a single place is the main reason why the energy is not calculated directly
within each loop type, as the storage and extra functionality are better placed in a single

external object which can be quickly called.

Scope: Note that this object is used to calculate the energy of specific loops in a sec-
ondary structure. Previous libraries for computing the energy only deal with (at the input
level) the energy of an entire structure, and as such were not suitable for use here, as the
computation of energy for a single loop is the basic operation which we use a large number

of times for every step of the simulator.

Different Energy Models: The EnergyModel object is actually a base class, providing
a standard interface for calculating the energy of a specific loop type. We implement
two different derived classes, ViennaEnergyModel and NupackEnergyModel, based on the
Vienna and Nupack parameter sets, respectively. These are particular implementations of
the general nearest neighbor energy model and use subtly different parameter files. Other
variations on the standard energy model can be used here as necessary, as long as they have

the same basic function of being able to calculate the energy of a loop component.

A.9 StrandOrdering

Purpose: Handles the functions within a complex that involve the ordering of the strands
within the complex. These include most output functions, reordering of strands that hap-
pens when a complex is joined to another, and returning the exterior bases in all the

OpenLoops in the structure.

Functionality:
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1. Maintains a linked list of the strands within the complex and the implied cyclic per-

mutation needed.

2. Performs circular permutations on the strand ordering, necessary when joining two

complexes.
3. Maintains the current sequence and dot-paren structures on demand for output use.

4. Performs stop structure checks to see if the strands in the ordering could match the

given set of strand ids and their ordering.

5. Assists SComplex in building the initial loop structure, and maintains links to all the

OpenLoops contained within the complex.
Data Members:
1. Strand List: doubly linked list of strands, each containing the following:

(a) Strand ID.

(b) Strand Sequence (output version - ASCII).

(¢) Strand Sequence (binary encoded version, used internally).
(d) Current Dot-paren structure.

(e) OpenLoop pointer associated with the strand.
2. Exterior base count (updated when open loops change).

Discussion: When we join two complexes together, we need to ensure that the permu-
tation of the strands used for output corresponds to the cyclic permutation which does
not contain any crossed chords (this is guaranteed by the Representation Theorem, Section
D.1). Maintaining the ordering such that this is guaranteed is very straightforward, we
just need to take the cyclic permutation of each set of strands such that the strands being
joined together are on an ’edge’. This type of operation happens often when dealing with

the structure output and multi-complex moves (joining or breaking).

This object also maintains links into the actual loop structure, used for retreiving the

exterior base counts. These get updated automatically when moves are used that affect
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OpenLoops. This is also used when we need to actually perform a join move, to help choose
which pair of bases is actually being joined, since we only compute the total rate of all join

moves combinatorially and don’t actually enumerate all the options until one is chosen.

A.10 Options

Purpose: Collects all the information about input, including simulation options, energy

model options, associated files and output information.

NOTE: this is a Python object and included here due to the relative dependence on
the data contained within at the highest simulation levels (SimulationSystem and Ener-
gyModel). Full documentation on the input and output routines is in the Multistrand

documentation, generated automatically for the Python side of the simulator.

Functionality:
1. Maintains simulation options and variables for use by SimulationSystem.
2. Returns energy model options for use by the EnergyModel.
3. Provides interface methods for reporting output to the user.

Discussion: Collects all the options used in the simulator in one data structure. Accessed
by EnergyModel and SimulationSystem to retreive the appropriate options when neeeded.

Contains the default settings for all options which are not required to be set in the input.
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Appendix B

Algorithms

In this section we will examine in greater detail the algorithms used to perform the simu-
lation, both those which take place in the main simulation loop and the initial generation

of the loop structure.

B.1 Main Simulation Loop

The main loop of the simulation involves several basic steps needed for most continuous
time markov processes as well as the updating of the current structure, from which we can

update the currently available moves.

Algorithm (Main Simulation Loop)

For each trajectory:
1. Initialize starting state of the system. (Section B.2)
2. Initialize current time ¢t = 0.
3. Calculate total rate of all moves in the current state, R.
4. Generate choice random variable r from the uniform distribution on [0, R).

5. Generate the At random variable using u, a random number from the unit interval

uniform distribution: At = log(1/u)/R.

6. Using r, choose the next move to take place, M. (Section B.6)
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7. Perform move M, updating the loop structure of the system. (Section B.5)

(a) Update the set of all possible moves, and thus also R. This is handled within

the above step, using the algorithm in Section B.4.
8. Update current time ¢’ =t + At
9. Perform output if needed for current trajectory options.

10. Check for stopping conditions (stop states, maximum simulation time), return to 4 if

no stop conditions are met, otherwise continue to the final step.

11. Perform final output and clean up memory for the current trajectory.

Efficiency

The primary loop of the algorithm consists of steps 4 through 10. Each of these steps,
except 7a occurs in a linear fashion and thus their time complexities are additive. Step
Ta, as discussed in section B.5, occurs at most a constant amount for each cycle. Thus the
overall algorithm efficiency is straightforward to compute. We do this in section B.7 after

going through each component’s complexity.

B.2 Initial Loop Generation

While the initial generation of our data structures is not a significant component of the
overall time complexity of this algorithm, it is helpful to understand this translation from
the dot-paren representation to the loop representation of the secondary structure. It is
the local nature of the loop representation which allows the algorithms of sections B.3, B.4,
and B.5 to operate efficiently. Note that we deal with the loop generation on a per complex
basis. The parsing of the starting structure into the sequences and dot paren structures for
each complex in the initial system is a trivial task and not something we wish expand upon

in this section.

Input

1. List L of strands, in the circular permutation corresponding to the non-pseudoknotted

structure.
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2. Sequence S corresponding to the strands L, with some seperator representing strand

breaks.

3. Dot-paren structure T corresponding to the initial secondary structure of the strands

L, with some seperator representing strand breaks.

Note that both S and T' are essentially character arrays: S being an array of base identifiers
and some strand break character, and T" being periods (unpaired base), parens (paired to
corresponding matching paren), and the strand break character. We also note that in the

algorithm below, the 0 index in these arrays is a strand break.

Algorithm Outline

The basic idea here is we convert a flat representation to the loop graph by sequentially
traversing the sequence of a single unexplored loop (starting with an open loop), adding the
adjacent base pairs to a list of base pairs which need exploration (and are connected to our
current loop). This list is then used to retreive another unexplored loop, and we continue
the process of sequence traversal to find new base pairs that need exploration. Note that
this algorithm requires the input structure to be non-pseudoknotted or it will not terminate
(as noted below). Since our input format is implicitly non-pseudoknotted due to being a

flat representation, this is not a practical worry.

Algorithm (Initial Loop Generation)
1. Initialize the current location [ to 0.
2. Initialize the queues g, ¢’ to be empty.
3. Initialize predecessor pointer p to NULL.

4. Starting at position [, let I’ = [ + 1, seqlen = 0 and repeat the following until I’ =
pair(l), or if { = 0, until I = size(L) + 1:
(a) If T(I') is unpaired, let seqlen = seqlen + 1.

(b) Otherwise, add the tuple (I, seqlen, NULL) to g, and let I' = pair(l’), seqlen =
0.
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(c) Let ' =10'"+1

5. Using the information in g about sequence lengths, build the current loop J, with
adjacent loop p. If J is an open loop, add it to our list of open loops for use in the

StrandOrdering.
6. Set p to have the loop J adjacent, across the corresponding base pair.
7. Update all items in g to have j as the predecessor (3rd entry).
8. Add all items in g to ¢/, empty g.
9. If ¢’ is empty, stop - the algorithm is finished.
10. Pop an item 7 in ¢, setting [ = i1, p = i3, and seqlen = 0.

11. Continue from step 4.

Note: Doesn’t include the details which connect the StrandOrdering to the correct open
loops at each point. This is essentially a single extra operation during step 5, when J is an

open loop.

Correctness

To show that this algorithm correctly generates our loop graph, we must argue that it
reaches each loop exactly once. We do this by proving that [ traverses every base in the
complex exactly once: Assume [ did not reach some base k. k must then be a part of a
loop which was never generated, and whose adjacent base pairs must never have been added
to ¢’. This then implies that this loop containing & must not be connected by any path
through a (correct) loop graph to our initial loop, and thus that the structure given was not
a completely connected complex. Similarly, if we assume that [ reached the base k more
than once, it would imply (by corresponding reasoning) that there was a closed cycle in the

loop graph, which would mean that the structure was pseudo-knotted.
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Discussion

Once each loop has been generated, we can then generate the adjacent moves by a simple
traversal through every loop in the structure, using the algorithm in B.4 to create the moves

for that loop and adding the resulting MoveContainer to the complex’s list of moves.

B.3 Energy Computation

Computing the energy of a particular loop is one of the key components to the overall
efficiency of the simulator. This is a straightforward computation with our data structure,

as all of the necessary components are directly stored in the Loop object.

Input
1. Type of Loop (Stack, Hairpin, Bulge, Interior, Open, Multi)

2. Sequences for each side of the loop.

Note that while the full sequence of each side of the loop is sufficient for computing the
energy, for many of the types we only need a much smaller set of information, usually the
bases directly adjacent to each basepair the loop involves, and the side lengths. The steps
in the algorithm below are specific to the energy models we implemented. Other forms of

energy model may require additional steps for some loop types, or fewer steps.

Algorithm

1. (StackLoop) Look up energy in parameter table.

2. (BulgeLoop) Look up bulge energy in parameter table. Add stacking energy from

parameter table if it applies, and terminal AT penalties if they apply.

3. (InteriorLoop) If both sides are < 2, look up the energy in the special case interior
loop parameter tables. Otherwise, get interior energy from parameter tables, and add

Ninio and mismatch terms via parameter table lookups.
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4. (HairpinLoop) Look up hairpin energy via hairpin length in parameter table. If hairpin
length is less than 5, add triloop or tetraloop penalties via lookup. Otherwise, add

hairpin mismatch energies via lookup table.

5. (MultiLoop) Compute multiloop energy via parameter tables based on number of
bases and basepairs in the loop. Add AT penalties for each base pair that applies. If
dangles option is set, add dangles energy (lookup for each base pair based on the pair

and adjacent bases).

6. (OpenLoop) Default energy is 0, add AT penalties for each base pair if they apply,
if dangles option is set, add dangles energy (lookup for each adjacent base pair as in

the Multiloop case).

Correctness

This is the energy model as discussed in references [9, 5, 27]. We validate the energy
model by comparing our computed energies for arbitrary structures with those of published

programs, discussed in Section 6.1.1.

Discussion

While this algorithm essentially amounts to being straight table lookup for each loop type,
we note that both Multi and Open loops can require slightly more than constant time, as
they may require lookups on the order of the number of base pairs in the loop. This can be
easily constrained to be less than the number of bases present and is typically a very small
number, but it is a possible concern for simulation efficiency when using dangles terms. In
any case, the key improvement here is that previous algorithms had to compute the energy
of the entire secondary structure (a O(NN) computation) for each generated move, where we

only need to compute the energy of one or two loops as our basic step.

B.4 Move Generation

Whenever we have performed a move we need to recalculate all the possible moves for all the
new and adjacent loops involved in that move, using this algorithm for each new loop, and

just the deletion loop components for the adjacent loops. Each new loop needs to calculate
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the set of base pair creation moves that take place within it, as well as the deletion moves

which involve that loop (one for each adjacent loop).

Algorithm Outline

Deletion moves are straightforward to generate: given the base pair to be deleted, compute
the energy of the loop that would result if it were deleted (generally a constant time com-
putation to form that loop and get its energy), and use that to compute the rate given the
energy of the two original loops.

For creation moves, the algorithm is based on finding all the possible internal bases that
could pair. This is a two step process: for each side of a loop (a single stranded region
adjacent to a base pair, or connecting two base pairs), consider every pair of bases which
are three bases away or further, a creation move is possible if they are complementary
bases. For each pair of sides of the loop, every pair of complementary bases with one chosen
from each side leads to a possible creation move. Each of these possible creation moves
needs to have the energy of the resulting pair of loops calculated, and setting up these
energy calls and computing the energy is generally a constant time operation. This is then
used to generate the move rate using the chosen rate method from the model, since the
only energy difference between the new structure and the old will be the difference between

the energy of the loop where the move occured, and the energy of the resulting pair of loops.

Note: we only indent the relevant looping constructs when necessary to indicate several
different looping constructs for the algorithm; if not indented, it implies we repeat the
remainder of the steps at that level while the loop condition holds.

Algorithm: StackLoop Creation Moves

StackLoops have no free internal bases, and thus can’t have creation moves.

Algorithm: HairpinLoop Creation Moves

1. For each base i in the hairpin:

2. For each base j > ¢ + 3 in the hairpin:
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3. If i,j are complementary, compute energy of the resulting loops and add this creation

move to the hairpin’s MoveContainer.

Algorithm: BulgeLoop Creation Moves
1. For each base ¢ on the bulge side:
2. For each base j > ¢ + 3 on the bulge side:
3. If 4,5 are complementary, compute energy of the resulting loops and add this creation

move to the bulge’s MoveContainer.

Algorithm: InteriorLoop Creation Moves

1. For each interior side i:

(a) For each base j on side i:
(b) For each base k > j + 3 on side i:

(¢) If j,k are complementary, compute energy of the resulting loops and add this

creation move to the interior loop’s MoveContainer.
2. For the pair of interior sides 7, I:
3. For each base j on side ¢ and each base k on side I:

4. If j,k are complementary, compute energy of the resulting loops and add this creation

move to the interior loop’s MoveContainer.

Algorithm: MultiLoop Creation Moves

Same as Interior, with each pair of sides ¢ # [ for the second part.

Algorithm: OpenLoop Creation Moves

Same as Interior, with each pair of sides ¢ # [ for the second part.
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Correctness

Creation moves can only occur within a loop, otherwise we would get a pseudoknotted
structure. Since we consider every possible pairing of bases within a loop, we cover all
possible creation moves. Deletion moves are covered in a similar manner: each deletion
move is added twice, once to each loop adjacent to that base pair, and the overall rate from
each is halved to account for this. Since we always add a deletion move for each loop’s

adjacent base pairs, we include all possible deletion moves.

Discussion

The complexity of any loop’s move generation is relatively straightforward: if that loop
contains N unpaired bases and k basepairs, we have O(N?) possible resulting creation
moves, and exactly k deletion moves. To see why O(N?) is the worst case for creation
moves, let us use the example of an open loop with [ sides, each having N/l unpaired bases.
If we assume these bases can always pair, there are then [ x (I — 1)/2 possible choices of
two sides, each combination having (IN/1)? possible pairings, for a total of O(N?) pairings.
(Single side creation moves in this case lead to a similar [ sides times N2 /12 possible moves,
for the same magnitude).

It is interesting to note that these large loops with high numbers of unpaired bases are
actually very rare for typical strand sequences and secondary structures. If we break down
the average number of possible moves, weighted by the boltzmann distribution for energy
of the loop, all loop types (except open loops) tend towards a very small number of moves

possible on average.

B.5 Move Update

After a move is chosen, we must actually perform that move and update the appropriate
parts of the data structure. Specifically, the loop graph will undergo the changes illustrated
previously in Figure 5.3, and those changed loops will need to have their moves calculated
(Section B.4) and the complex must have the total rate updated. This algorithm covers the
loop structure update as well as the updates to the appropriate move containers to remove

those moves associated with the deleted loops.
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Algorithm Outline

This algorithm is given a move that needs to be performed. Each move has an associated

loop (if it is a creation move) or pair of loops (if it is a deletion move). Performing the

move is then straightforward: using a similar algorithm to the move generation algorithm,

we can compute the resulting loop types from our move. These are created, and the loop

structure updated to include the new loops and remove the old ones.

Input

1. A Move object m, provided by the Move Selection algorithm (B.6), which contains:.

(a)
(b)

Pointers to the loops [ affected by the move (up to two).

Indices 7 which uniquely identify which move it is within the affected loop (up

to four).

Algorithm

1. If m affects two loops I, 2, we have a deletion move:

(a)

Using l1, lo, compute the loops I3, I4 which result from deleting the base pair
joining /; and ls (note that we get two resulting loops only if the loops involved
in the deletion are both open loops). The loop computation is equivalent to
the same component in the initial loop generation, and is linear in the sequence

length contained in the loops.

Rebuild connections between loops adjacent to [y, lo to now be adjacent to I3, l4

with the same base pair connections as before.

If /1 and Iy are both open loops, we will have a disconnected complex after the
deletion, so we seperate one of the connected regions into a new complex and

add it to the list of all complexes.
Delete 14, Io.

For each of the newly generated loops, generate the associated move set. For

each loop adjacent to the newly generated loops, recalculate the deletion moves.

2. Otherwise, we have a creation move within the single affected loop, (:



82

(a) Using the indices ¢ within I, compute the resulting pair of loops m,n.
(b) Reconnect the loops adjacent to [ with the equivalent base pairs of m,n.
(c) Delete I.

(d) For each of m,n, generate their move sets. For each loop adjacent to m or n,

recalculate the associated deletion moves.

Correctness

In order for this update to be correct, it must match the same conditions as those in the
initial loop generation: each unpaired base must occur in exactly one loop, and each paired
base only in two loops (that are adjacent).

We handle creation and deletion moves seperately:

Correctness - Deletion

Step (a) generates one or two resulting loops I3, 14 using all of the bases contained within
l1,lo. Each unpaired base from l1,ls occurs in exactly one of I3,ls. Similarly, each paired
base from I1,lo must either still be present in one of I3,14 if it was from a basepair to an
adjacent loop, or it is now an unpaired base (if it is from the basepair connecting 1 and [s.
Thus this step maintains the correct usage of each base.

Step (b) is necessary to maintain the overall structure, otherwise a loop m adjacent to [
will still be connected to I; rather than the correct new loop I3 or I4. Thus this step ensures
that no loop in the main structure is now connected to I; or I, and I3, l4 are now correctly
connected.

Step (c) maintains the requirement that each complex be connected, by adding a new
complex when a deletion move would result in two seperate connected components.

Step (d) is standard memory management, but doesn’t affect the overall structure now as
there are no further references to i1 or Iy due to step (b).

Step (e) rebuilds all the moves which are in I3, [4 and the deletion moves in the loops now

adjacent to them.
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Correctness - Creation

Step (a) generates two new loops m,n using all of the bases contained within /. The two
unpaired bases in [ which were joined in the creation move are now in each of m,n as
paired bases, and every other unpaired base from [ occurs in exactly one of m,n. Similarly,
each paired base from [ must either still be present in exactly one of m,n. Thus this step
maintains the correct usage of each base.

Step (b) is necessary to maintain the overall structure, otherwise a loop k adjacent to [ will
still be connected to [ rather than the correct new loop m or n. Thus this step ensures that
no loop in the main structure is now connected to [, and m, n are now correctly connected.
Step (c) is standard memory management, but doesn’t affect the overall structure as there
are no further references to [.

Step (d) rebuilds all the moves which are in m, n and those deletion moves in the loops

adjacent to [.

Discussion

This algorithm is straightforward to implement, as the hard part is the classification of
the new loops, and the stored indices from the move generation stage contain all of the
information needed to classify the loops, without an additional look at the structure. In
terms of complexity, all of the steps here are either constant time or linear in the sequence
length of the affected loops, and they are all additive, so this algorithm is not a large
component of the overall time. Note that the move generation algorithm B.4 is called here
implicitly, but the full algorithm is only called on either one or two loops, while the deletion

moves are recomputed for all adjacent loops (but are a constant time recomputation).

B.6 Move Choice

The process of choosing a move out of all of the options has the potential to be a significant
factor in the overall time complexity. Hence, the choice of selection algorithm and the

underlying data structures to support the algorithm is an important one.
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Algorithm Outline

We use a Gillespie-style approach to choosing the next move to take in the markov process,
with a few differences at the underlying structure level. The key difference is that the se-
lection of moves available to the markov process is constantly changing at every step, since
we cannot just enumerate all the moves available for any stage of process. For a single
complex, we arrange the moves into two layers of trees: The first layer’s nodes are always
the root of a second layer tree whose nodes are those of a single Loop’s available moves.
Thus when choosing which move to make from a complex, we have a logarithmic number of
steps to make using our single random number to arrive at a choice. Similarly, for multiple
complexes, we just add an extra layer whose nodes are the two-layer structures for a single

complex.

These details are handled mostly within the data structure implementation in a manner
than makes our algorithm straightforward: Each layer is a MoveTree, thus its nodes have
a data component that is either a MoveTree (if the layer represents the collection of a
complex’s moves, or the collection of multiple complexes’ moves), or a Move (if the layer
represents all the moves available to a single Loop). Thus our algorithm proceeds through
these tree structures as usual for a Gillespie-style markov choice step, except that on arriving
at a chosen node, it may itself be a MoveTree which requires additional traversal in the same
manner before finally arriving at a Move node which can then be performed. We note that
while the description given is for MoveTree containers, in general this could be for any type
of container holding the Move objects, such as the default array container currently being

used.

Input
1. A MoveTree M, which contains all the moves for all complexes in the system.

2. A random number r, chosen from the [0,7") uniform distribution, where 7" is the total

flux over all moves in all complexes.
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Algorithm

Recall that both the MoveTree and Move objects are usable as a node, and thus contain
pointers to a left child [, right child r, the total rate through each child node ¢(1),¢(r), and
the rate contained within the MoveTree or Move itself, R. Our input is then not part of any
tree itself (and so the Node fields are empty), but the MoveTree object contains a pointer

to the root Node IV, which we then operate on as follows:

1. Set current node C' to N.
2. If r < C.R:

(a) If C is of type Move, we return C' as our selection.

(b) Otherwise, C' is of type MoveTree and thus contains a root node N, so we set

our current node C to N and go to 2.
3. Let r=r—-C.R
4. If r < C.t(l) then let C = C.l and go to 2.

5. Otherwise, let r =r — C.t(l), C = C.r and go to 2.

Correctness

To show that this algorithm is correct, we need to prove that each Move is chosen according
to the stated distribution in the model (reference), that is to say, a Move with rate R is
chosen by this algorithm exactly R/T of the time, where T is the total rate of all moves in
the system’s current state.

This is indeed the case, as we can easily prove via induction:

Base case: Assume that we are choosing a Move from tree which consists of a single
Move node. The total rate in the tree is T, our random number r is in the range [0,7"), and
the rate of the single node is R = T, so we always pick the single move in the tree.

Inductive Step: Assume that our algorithm works for a tree with a fixed size, we need
to prove that it works for two cases: a tree with one extra layer of depth, and for a single
MoveTree node C' (which thus contains a tree N). The second case is straightforward, as

our r is then in the range [0, C.R) and can thus be used correctly to choose a node from
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the subtree N, which must have total rate C.R. The first case is similar: If our current
node is C', we choose the node’s underlying MoveTree or Move with rate C.R/T correctly.
The left child is chosen with rate C.¢(1)/T and r is then in the range [0,C.t(1)), and the
right child is chosen with rate C.t(r)/T and r is in the correct range [0, C.t(r)). (Recall
that T'= C.R + C.t(l) + C.t(r)) Thus with our inductive assumption, if we picked the left
child, the eventual move chosen M with rate M.R is picked M.R/C.t(l) of the time, and
thus overall is picked M.R/T of the time relative to this tree. The same holds true for the

right child, and thus the inductive assumption holds.

Discussion

The main complexity in this algorithm lies in the actual data structures used, and not the
algorithm itself, as it is straightforward, even with the multiple layers. Since we have at
most 3 layers of nested trees, and each could have in worst case N2 nodes, where N is the
total sequence length, we have a running time of approximately 3 x 2log N or O(log N) in

the worst case to perform a choice, and only a single random number is needed.

B.7 Efficiency

Summarizing from section B.1, we have the following steps within the simulation’s main

loop, which must be considered in order to determine the overall algorithm efficiency:

Main Loop Steps

1. Move Choice Algorithm (Section B.6)

2. Move Update Algorithm (Section B.5), which requires:
(a) Move Generation Algorithm (Section B.4).

3. Output Step.

4. Stop Condition Check.

Controlling Quantities

There are three main input quantities that control the algorithm complexity:
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1. The total sequence length N.
2. The maximum simulation time, T'.

3. The number of trajectories to simulation, V.

Analysis

Each of the first three steps have been analyzed in the corresponding section, so let us
examine the running time for the final two steps. The output step is only used in trajectory
mode and transition state mode (Sections 6.1 and 6.3) and is O(N). However, this does
require passing information back to the Python side (which might then require file I/O to

store the data), it can run much slower if the file system gets overloaded.

Stop structure checking is also worst-case linear in the sequence length, per stop struc-
ture in the input. Thus if we have S total stop structures in the input, this step is O(S* V).
In practice we have two mitigating factors, one is that S is typically much smaller than NV,
and the other is that there are several straightforward shortcuts which keep us from having
to check all the stop structures at every step. For example, if we check a particular state
against a stop structure s; and find that they differ by 10 basepairs, we do not have to

check against stop structure s; until we have made ten more elementary steps.

We summarize the additive components of the main loop’s complexity in the following

table:
Step Complexity
Move Choice O(log N)orO(N?)
Move Update O(N)
Move Generation O(N?)
Output O(N)
Stop Structures O(S*N)

From this table we can conclude that the worst case complexity for this algorithm, per
step of the main loop is O(N?). We now have to calculate how many of these basic steps
are necessary in order to simulate T seconds in our system. To do this we must make an
estimate of the average total rate per system state. We make a fairly poor estimate that

this is on the same order as the number of loops in the system, and thus O(N) at maximum.



88

Our average simulated time per step is then the inverse of this total flux, and so it must
take O(N) steps to simulate one second of simulation time. Thus for an entire trajectory
of time T, it takes O(T * N3), and to run V of these trajectories it is then O(V * T x N3).

To see why we might wish to use a logarithmic time complexity algorithm for the Move
Choice step (such as the one prevously presented in section B.6) rather than the current
implementation (which is linear in the number of moves, thus O(N?) in the worst case),
we look at a type of structure where the Move Choice algorithm becomes the limiting
step. Imagine a secondary structure that is mostly composed of stack loops, e.g. two
complementary strands that are fully hybridized. Here the number of moves is O(N), but
the move update and move generation steps are O(1) due to the simplicity of the resulting
structures. Thus if we are only considering the three move-based steps in the algorithm, the
rate limiting step will be the move choice step. Each individual loop will have a constant
number of moves (so using an array data structure isn’t really any worse than a tree),
but the top level move container will need to collect the O(N) loops. So the move choice
step is O(N) if we use an array data structure, and O(log(NN)) if we use a tree. In actual
performance testing for the simulator, we found that the move choice step does not take a

significant portion of the per-step time even when using array-based move containers.
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Appendix C

Equivalence between Multistrand’s

thermodynamics model and the
NUPACK thermodynamics model.

We now return to examine the thermodynamics model presented here (Section 3) and
compare it to the NUPACK thermodynamics model [5]. As we noted previously, our energy
model differs in exactly two ways: the lack of any symmetry terms in the energy of a
complex, and the addition of the AGyoume term. These, however, are merely natural
consequences of a much more basic difference: the Multistrand energy model deals with
systems of uniquely labelled strands in a stochastic regime, while the NUPACK energy
model allows populations of strand species and operates in a mass action regime.

In this section we will examine these two models in greater detail. We introduce a
particular class of macrostate which we call an “indistinguishability” macrostate, i.e. a way
of grouping Multistrand’s system microstates (which have all strands uniquely identified)
into macrostates that are equivalent to the states on which the NUPACK thermodynamics
model is defined. We then show that using these macrostates our models are mathematically
equivalent, that is to say, they predict the same partition function over these macrostates
as well as the same probability of observing each macrostate.

In order to build up to this proof of equivalence, we will need to introduce some extra
framework detailing the differences between the two models and discussing the main con-
cepts necessary (such as the “indistinguishability” macrostates). To make this discussion
easier, we note the following conventions: whenever we refer to a system microstate, we
always mean a Multistrand system microstate, defined in section 2.3. Once we have de-

fined indistinguishability macrostates, we will always refer to them as simply macrostates
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(or perhaps ind. macrostates), with the understanding that they are a specific class of

macrostates, rather than a general definition such as in section 6.2.

C.1 Population Vectors

We previously introduced the set of (uniquely labelled) strands U*, but since we are now
allowing duplicate strands we need a few more terms. Thus we have the set of strand
species WY, which we can think of as the set of all the types of strands: one entry for each
unique strand in the system, and we can then have multiple copies of that species in our
system. We also have the set of strand complexes ¥, where a strand complex is defined as
some number of each strand species in a connected secondary structure. This is just the
combinations of strand species we could have formed into a complex. Note that for a system
with a finite number of strands, the set of possible strand complexes is also finite, though
it can be quite large. Also, ¥ C W, and by convention two distinct species may not have

the same sequence or label.

We can now think of an abstract representation of the current system’s state: a popu-
lation vector m € NI¥I, where we note N = Z>p, which has an entry for each type of strand
complex, indicating the number of complexes of that type in the current system’s state.
The initial population vector m® € NIl indicates how many of each type of strand are
present in the system. We relate the two by the strand matrix A € N [VOI< 1] whose entries
A;; correspond to the number of strands of species ¢ in complex type j. By our previous
definition of strand complex, the rows of A are distinct. Thus, if we have a system which
starts with m® of each strand species, A = {m | Am = m°} is the set of all population

vectors consistent with conservation of strand counts.

C.2 Indistinguishability Macrostates

We now need to introduce a specific class of macrostate which we call indistinguishability
macrostates, or ind. macrostates for short. The idea behind these is that in Multistrand,

we assume every strand is uniquely labelled, but if we were given a set of strand species
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and a mapping from our unique labels to a species, we then could partition our existing
system microstates into groups representing those which would be indistinguishable when
considering the strand species.

First, recall that every complex microstate ¢ contained an ordering 7*(c) on the strand
ids. While this wasn’t used very much in our original discussion, we now need to define
this further: the ordering 7*(c) is a circular permutation on the strand ids of ¢ (which are
ST (c)). We note that circular permutations are the permutations of the objects which are
distinct when they are laid out on a fixed circle without a defined starting point. E.g. for
strands labelled 1,2,3 there are only two circular permutations on the strand ids: (1,2,3)
and (1,3,2). As it will be used later, a cyclic permutation is a permutation which does
NOT lead to a distinct ordering when laid out on a fixed circle — that is, they “rotate” the
strands without rearranging their relative order. E.g. for a strand ordering (1,2, 3), there
are three cyclic permutations of that strand ordering: (1,2,3),(2,3,1) and (3,1,2). For a
given set of n elements, there are (n — 1)! circular permutations and n cyclic permutations
of the elements.

So, every complex microstate ¢ contains an ordering 7*(c) that is a circular per-
mutation on the strand ids. We define the set of indistinguishable orderings of ¢ as
the circular permutations of c¢’s strand labels (labels represent the strand species).
For example, with a complex of 4 strands, where strand id’s 1 and 2 have label A,
and strand ids 3 and 4 have label B, the circular permutations on strand ids are
{(1,2,3,4),(1,2,4,3),(1,3,2,4),(1,3,4,2),(1,4,2,3),(1,4,3,2)}, and the indistinguishable
orderings are {(A, A, B, B), (A, B, A, B)}. Thus, we can think of a complex microstate as
having the ordering 7*(¢) from the circular permutations on the strand ids, but also having
an ordering m(c) from the circular permutations on the strand labels which represents
the indistinguishable ordering for the complex if strands with the same sequence are
considered indistinguishable. This m(c) tells us which complex ind. macrostate this

complex microstate is a member of.

We can now define the concept of two complex states being indistinguishable, and thus

approach a definition for a macrostate of the system.

Definition:
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The complex microstates ¢, ¢ are indistinguishable if the following properties hold:

1. The indistinguishable orderings 7(c), 7(c’) correspond to the same indistinguishable

ordering 7¢y. Note that this is the case iff 7(c) is a cyclic permutation of 7(c).

2. There exists a one-to-one mapping £ between the strand ids of ¢ and the strand
ids of ¢’ such that for every base pair (i; - k;) in ¢, there is a base pair (ig(;) - k() in ¢,
and for every base pair (ig(;) - k() in ¢’ there is a base pair (i; - k) in c. In other words,
the mapping on strand ids induces a one-to-one mapping between the base pairs of each
complex. Note that if £ exists, it is not necessarily a unique mapping, with the cases where

it is not corresponding to symmetric complexes, examined below. ]

From this definition it is easy to see when two system microstates are indistinguishable:
System microstates s, s’ are indistinguishable if there exists a one-to-one mapping between
the complex microstates of each system microstate, such that complex microstates map

onto indistinguishable complex microstates.

We now put these all together to define an indistinguishability macrostate of the system
(or, for want of a clunky name, a system ind. macrostate). A system ind. macrostate v is
a set of system microstates from S (the set of all system microstates), such that for every
pair of microstates s, s’ € v with s # ', s and s are indistinguishable, and for any system
microstate s” & v, s is distinguishable from any system microstate s € v. Note that in
many cases when talking about ind. macrostates, we will use an alternate form, in which
the ind. macrostate is given by a particular system microstate representatitive from the set.
This is convenient for energy functions in particular, as every system microstate in an ind.
macrostate has the same energy, and it is sometimes useful to know what a (microstate)
energy function would give for a macrostate’s energy. Note that this is different than the

ind. macrostate’s energy, as that is given by equation 6.2 from section 6.2.

We also have a notion of an ind. macrostate of a complex (a complex ind. macrostate,

as used previously). This is defined similarily - a complex ind. macrostate v" is a set of
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complex microstates from C' (the set of all complex microstates for a particular complex),
such that for every pair of complex states ¢, € v’ with ¢ # ¢/, ¢ and ¢ are indistiguishable,

/" is distinguishable from c. Finally, a complex

and for any microstates ¢’ € v',c € v/, ¢
ind. macrostate has an additional property which will be used in energy functions, which is
the symmetry factor. The symmetry factor of a complex ind. macrostate ¢ (where we now
use the representative complex microstate), R(c) is the number of cyclic permutations on
the strand ids which map the base pairs of a representative complex state onto themselves.

That is to say, it is the number of cyclic permutations £’ such that for every base pair (i;-k;)

in s, (i¢(j) - kerry) is also a base pair in s.

In the upcoming sections we will examine the size of complex ind. macrostates, as
well as energy functions which apply to complex microstates, system microstates, and ind.
macrostates of both types. Finally, when talking about a single complex type j € ¥, we
will occasionally refer to the set of all indistinguishable orderings of the strands, II;, as well
as the complex ind. macrostates in a given indistinguishable permutation 7 € II;, which is

Qj(ﬂ').

C.3 Macrostate Energy

Recall that we can calculate the probability of a specific system microstate s using the energy
AGj,,(s) and the partition function Qg = 3, €20 (/AT a5 Pr(s) = ﬁe*AGZox(s)/RT.
Macrostate probabilities can be calculated in the same manner, using the energy function for
an ind. macrostate and the appropriate ind. macrostate partition function (or by summing
the probabilities of the constituent microstates).

Recall that we previously gave the standard free energy of a complex microstate ¢, con-

taining L strands as:

AG(c) = | > AG(loop) | + (L = 1)AGassec

loop €c

And for our kinetic system, we use the following, which includes the volume-dependent
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term in the complex’s energy.

Energy of a complex microstate ¢, containing L strands:

AG*(e) = | D AG(loop) | + (L = 1) * (AGuassoc + AGotume)

loop €c

= AG(c) + (L — 1)AGyorume

And combined, the energy of a system microstate s is:

AGho(s) = > AG*(c)

complex microstate ¢ €s
The volume term AG,piume for the remainder of this discussion will be the quantity
RT log M;, where M; is the number of solvent molecules in the box. This will be a useful
comparison later, as the NUPACK partition function uses the same terms.
Lastly, the energy of a complex ind. macrostate ¢, containing L strands with a symme-

try factor R(c) as computed directly using the NUPACK energy model [5], is:

AG(c)= [ > AG(loop) | + (L = 1)AGassec + RT log R(c) (C.1)

loop €c
C.4 Partition Function

We now wish to compare the partition function over our system microstates with the par-
tition function Qpe, examined in [5], which is over (our) system ind. macrostates.

First it is important to know what system we are working with. The general system
is that of a box containing initial strands according to the labelled population vector m?,
thus we are considering a system with possibly indistinguishable strands. First, we define
a system microstate as being consistent with a population vector m (this is a population
vector over labelled complex types) if it contains the correct number of complexes of each
type in the population vector, if we consider strands indistinguishably (according to strand

species). Then, note that every individual system microstate must be consistent with some

population vector m which satisfies Am = m°. Let S be the set of all system microstates
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which are possible with initial strands m?, then we can use A = {m | Am = m°} and let
S(m) be the set of all microstates which have population vector m.

We can then write the system microstate partition function as:

Oin = Z GAG;,,(5)/RT

seS

And rewriting in terms of A as:

Ouin = Z Z GAG,,(5)/RT

meA seS(m)

= Z Akin (m)

meA

AGy

box

Where we define gip(m) as 3= c g € (s)/RT

Next we wish to examine the system ind. macrostate partition function Qp,:, which
considers the system ind. macrostates with initial population vector m®. We will explain

the components of Q. in detail, as presented in [5]:

Qbom ~ Qref Z Q(m)

meA
This is the basic equation®. Q.  is the reference state of the box, which includes terms
related to the volume and the reference state s for which AGp,.(s) = 0, as will be discussed

later.

Msmj Q;nj

|
m;:

(C.2)

gim) =[]

JEY

This is the partition function over the macrostates of a particular population vector

m, and it is the product of the partition functions of the individual complex types (Q;’s),

corrected for solvent (the Mg 7 term) and symmetry (the m;! term, as well as the particular
Q; used).

"We note that this approximation is due to an assumption that the number of solvent molecules in the
box is much greater than the number of strands.
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Q=Y Q(m

rell,

This is the partition function over all the macrostates (of a complex) for a particular
type of complex j. Since each type of complex could have many different orderings of the
strands, this is a sum over all the indistinguishable orderings for that complex type (II;), of

the partition function for that type of complex for a particular indistinguishable ordering

Qj(m).

Qj(m) = > exp(~AG(c)/RT)

ceQ;(m)
Finally, this is the partition function over all the macrostates of a complex of type j, in
indistinguishable ordering 7, and it is just the sum over the symmetry corrected energy for

each macrostate.

C.5 Proof of equivalence between Multistrand’s partition func-

tion and the NUPACK partition function

C.5.1 Proof Outline

Our goal now is to show the equivalence between the partition function over system mi-
crostates, Qrin and that for system ind. macrostates Qpo- While we would like to also
show that the probability of observing a given system ind. macrostate is equivalent between
the two models, it is beyond the scope of this already quite long proof. However, the same
general structure used for the partition function proof can be used to show the equivalence
of the probability between the two models. The two key insights for the probability proof
are to count the number of system microstates composing a particular ind. macrostate, and
to derive from [5] the probability of a specific ind. macrostate as in that work the smallest
component considered in the “box” partition function is the probability distribution for a

particular population vector m.
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It is helpful to understand what direction we take to prove the equivalence between these
two formulations of the partition function. We first examine entire systems where there is
only a single complex of a particular type and the complex is always connected throughout
time. This allows us to work out the microstate partition function for a very small case
where it is easy for us to count the number of microstates in each macrostate. This also
leads to examining the difference in energy functions used, and explains why we match
the symmetry corrections even though the microstate energy function doesn’t include any

Symmetry terms.

Once we have established the very small case, we can examine a larger system, where
we have any number of complexes of a single type, and that number doesn’t change. This
is a building block step towards being able to write out the microstate partition function
for any population vector m, at which point we can use the Qg;, equation above to handle
any system (recall that individual states in a macrostate must always be within the same

population vector).

The key here is to remember that in each of these three steps, the system we are deal-
ing with is a different one, whose microstates are those possible given a particular choice of

population vector m.

C.5.2 System with a single complex

Consider a kinetic system whose states are entirely in the population vector m : m; =
1,m; = 0 Vi # j. This corresponds to a system where there is a single complex, which is
never allowed to disassociate. Let S be the set of microstates of the system (which satisfy
population vector m). This is equivalently the S(m) discussed before, but we simplify the

notation here as we are always working with a single m. We then have:

Qrin(m) = Z oG, (s)/RT

seSs

Note that for this simple system, the microstates s are each a set containing a single
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corresponding complex state c. It is interested to note that for this system, since we have
restricted the complex to always be connected, the system is not necessarily connected by
kinetic moves in the state space S. Thus AGj, .(s) = AG*(c) for these microstates. Note
that they can still be from different indistinguishable permutations of the strands, so we
group them by the indistinguishable permutations II, letting S(7) be the set of microstates

which are consistent with the indistinguishable ordering :

nlm) = ¥ Y edTmr
mell seS(m)
s={c}

We now consider the macrostates of the complex j, s’ € Q;(m). We wish to know how
many microstates s € S(m) are contained in the macrostate s’ (or put differently, indistin-
guishable from the macrostate s, if we treat the macrostate as a representative of the set).
Let R(s’") be the symmetry factor of the macrostate. First, we note that for R(s') = 1,
any permutation on the indistinguishable strands will lead to a unique microstate that is
indistinguishable from s’. Thus there are [];cgo(Am);! microstates corresponding to each
non-symmetric macrostate s’. (Note that they must all have the same energy.) In symmet-
ric states, some of these permutations (the circular ones with the appropriate symmetry)
lead to equivalent microstates, and thus the total number of microstates corresponding to
a symmetric macrostate is lower, by the symmetry factor R. Thus for either case we have
the general formula of ﬁ [L;cpo(Am);! microstates for each macrostate s'.

We then rewrite qp;, in terms of the macrostates and L, the total number of single

strands used in the system (L(m) = >, go(Am);):
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nm) = 5 (s T Gt a0

mell s'eQ()
s'={c'}

= Z Z H (Am)z' e*E(c’)/RTf(L(m)fl)log(MS),log(R(C/))
well S/EQ(T(-) iewo
S={¢}

= 3 3 | [ am ]Lw(b;n)efAG(c’)/RT

m€ll s'eQ(m) \1eW0 M;
s'={c'}
M
= H (Am);! WQ;’
iewo M;

And so we have shown that the case of a single complex comes out to exactly the ind.
macrostate partition function g(m) (Equation C.2) of the complex, with an extra factor of

(Hiepo (Am)i!) W due to reference state and volume.

C.5.3 System with multiple copies of a single complex type

We now build on this result by using it as the base case for induction to cover a system
composed entirely of complexes of a single type. In particular, we are examining a system

where m : m; = n,m; = 0Vi # j, and our inductive hypothesis is:

MY QY
Grin(m) = (Am);! poar)
wm ZGH\I,O (2 Msl’ mj!

We have shown the base case (n = 1), so now we need to show the inductive step. Again,
we define S as the set of microstates consistent with m, and our normal definition of gg;,

is:

Qrin(m) =Y e~ Ao (/AT
SES
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To cover this case we need to look at an expanded set of states, where the difference is
that we add a “marking” to some part of the microstate (complexes).

We expand the system as follows:

S = U Mark(s)
s€S
Mark(s) = {(s,c)|c € s}

—AG.()/ET - Mark(s) expands every original state

Consider now gezp(m) =3 e €
into m; new states, all of which have the same energy for the system microstate component.
Thus we know that gy, (m) = m%,q@mp(m).

We now use the markings to group microstates from S’. Consider the following grouping

of microstates, based on a complex microstate ¢ (note that ¢ by definition includes a specific

set of strand ids used in the complex):

F(e) = {sl(s,c) € §'}

Thus F(c) is all system microstates in S’ that contain a complex microstate ¢ (with spe-

cific set of strand ids). Now consider the sum over all the microstates within one grouping:

Z ¢—AG},, (5)/RT _ ,~AG*()/RT Z o—AG*(s\e)/RT

SEF(c) s€F(c)
where we let s\c represent the microstate that would result if the marked complex microstate
c were removed from the system microstate s. Looking at the resulting summation, note
that it is over all the microstates for a system with one less complex of type j! To see why it
is exhaustive, note that if it were not, the original system would be missing valid microstates
consistent with m, similarily, it cannot overcount any states, as that would imply duplicated

states in the original S. Thus we can use our inductive hypothesis to express the result:

Z e AChoa (S RT — (=AGH(Q/RT ¢ (m])

SEF(c)
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Where m' : m = m; — 1,mj = m; = 0Vi # j is our smaller system. Note that the
choice of strand ids only matters for the complex in state ¢, not for the rest, as in general
we can use any set of strand ids corresponding to the correct numbers of strand types. Let
us expand on this idea to break down our base gesp in terms of F'(c¢) and combinations of
strand ids. We introduce a new set E’, which will be the set of all valid combinations of
strand id’s for a complex of type j (j is a labeled complex). It is helpful to note the size of
this set, which will be the number of ways for each strand species, to select the appropriate
number of strand ids of that species for a single complex of type j. This is, in two different
forms: |E'| = [];cqo (Zf) = [Licwo (((1?77;:’))1)

For example, if our complex of type j is two A strands, and we have 4 A strands with ids
{1,2,3,4}, then E' = {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}} are the valid sets of strand
ids. Finally, let U(FE) be the set of all microstates for a single complex of type j which
use only the set of strand id’s . We can then rewrite g..p in terms of these, noting again

that we are not overcounting any states in S’ nor leaving any out (for the same reasons as

before, if either were the case it would indicate a defect in the original S):

Geap(m) = D Y Y e ACnl/AT

EcE' ceU(FE) seF(c)

_ Z Z e~ AG@/RT (10

E€FE’ ceU(E)

Note that m' is defined as before: m’ : m’ = m; — 1,m] = m; Vi # j. Finally, note
that the sum over U(F) is just the sum over all microstates of a single complex, and is thus

equivalent to our base case!

szxp Z kan * Qk‘zn( /)

EcFE’
where m’ is as before, and m” : m} = 1,m} = 0Vi # j. Now we see that the gy, in the

sum don’t depend on E’, and thus we have:

qexp(m) = |E/’ * Qkin(m//) * ka(m,)
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where |E’| is the number of ways to choose strand ids for one complex out of the strand

ids for the whole system: [E'| = J];cqo (((fg,);z) = [cwo %. Putting it all
together:
_ (Am)l' " M ) ] /
Gecp(m) - = ,1;[0 (Am/);! x (Am/);! * AgO(Am )i WQJ * Qin (M)
(Am)z' MS /
= * 7 Q * len(m )
igﬂ (Am/);! MSL(m ) ©J
mai— mi—1
(Am)ll Ms / Ms ’ ! Qj !
igo (Am’) | * MSL(m//)QJ * (ijel;[()( m) )MsL(m) (m]. _ 1)!
mj;—1 mj—1
M, Mg Q7
= Am);! = ; ° J
m; mj
= | T camr) « 2 ©; ‘
ot ME™ (my — 1)t
1
Qk'm(m) = mij*Qezp(m)
MY QY
. — | S J
dan(m) .go(Am)“ 20 gl

And the inductive step holds. Note again that L(m) = > _;cgo(Am);, which is the total

number of strands in the system with population vector m.

C.5.4 Full System

We now have the components necessary to give a formula for gx;,(m) for a general m, which

we can prove via induction. We wish to show for a general m:

1 MM QY
arin(m) = | ] (Am)it | = —s s [T ——

iewo M jew J°

We proceed via induction on the number of non-zero entries in m, and have already

shown the base case for a single non-zero entry in m, above. In order to break down the
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general case into smaller components so that we can apply the inductive hypothesis, we wish
to follow a process similar to the previous marking, in which we separate out a particular
component of the system microstate. This component ¢ is the system microstate corre-
sponding to a system with population vector m’, which has m} = m; > 0,m} = 0Vi # j,
using a particular set of strand ids. Thus we can define a 'marked’ set of states S’ as before,
using T'(m') as the set of all system microstates corresponding to a system with population

vector m’ and an arbitrary choice of strand ids:

S"={(s,t)|]s € S,t € T(m'),s.t.Vc € t,if t C s then c € s}

Note that we must pick a j such that m; > 0, and that this is an arbitrary choice which
remains for the rest of this step (j never changes, we just use it to pick a complex type

which appears in m.) We can now group the system microstates as follows:

F(t) = {s € S|(s,t) € §"}

Again, if we sum over the states in each grouping, we get:

Z -AGy, (s)/RT  _ Z e —AGy,,.(t /RT AGgox(s\t)/RT
seF(t) SEF(t
AG;DZ )/RT Z e —AG}, (s\t)/RT
SEF(t

_ —AG;OZ( )/Rqum (m”)

—AGj

= box

IR g (m — m)

where m” : m/j = 0,m} = m; Vi # j. We proceed exactly as before, letting £ be the set of
all combinations of strand ids which could be used in the complexes of type j, and U(FE)
the set of all microstates T'(m’) which use the set of strand ids E. Note that the following
decomposition doesn’t involve a ge.p, because in this marking we didn’t expand our system

at all (each s € S corresponds to exactly one (s,t) € S’). It must also be exhaustive and

non-redudant for the same reasons as before, if it were otherwise it would imply either a
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missing system microstate in .S, or the duplication of some microstate in S. We then get:

Gin(m) = Y D, Y e ACmlIR

ECE' tcU(E) seF(t)

—AG} )/RT
= Qk‘zn Z Z e bo 1)/

E€E/ teU(E)

= Qkin( ) * ka Z 1

EeFE’
= Qk‘in(m”) * Qkin(m/) * |El|

where m' is as stated above: m’ : m} = m;,m; = 0Vi # j. Note that the second

step is possible because gg;,(m”) is dependent on the choice of j, but not E or ¢, and
similarily for the third step. These terms are again the base case for the induction (ggi,(m’)),
the inductive hypothesis (qxin(m”)) and the number of ways to pick the strand ids for

each component. We continue, substituting for [E’'| = [T;cq0 %. Putting it all

together:
(Am);!
i) = i) () + [T i P
1ewo ! !
. ms
(Am)i! / M;nJ Qj ! "
_ % (Am");! | % —— —L— % qrin(m”)
11_\1,[0 / . // 21;[0 ’ MsL(m) mj! m
m;
= *ka( ”>
L
16\1,0 Am” (m
. m] m N
= ", - TS Yk
_ Am” L(m m' * 'H (Am");! ) « ] o
16‘1/0 1€W0 s kew
= H (Am);! | = s(m) Pt Ll(m”) * H M
iewo Ms M= M kew My
1 Mkamk
— ! s %k
= ‘H (Am)it |+ —es o+ 1 .

M

S|
=)
=

s kew
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And the inductive step holds. We conclude that with Qcf = [[;cq0(Am);!* -+ (which

ME
is independent of m for m € A), we have:
MY QY
Qkin = Z Qk:'m(m) = Qref * Z H T'J = QT@f Z q(m) = Qboz
meA meA jev J° meA

Unsurprisingly, [5] uses the same reference state as the our model, where every strand is

*
box

a separate complex with no internal base pairings. (AGj, _(nobp) = 0), so it is unsurprising
that the ), is exactly the same for both, and thus we have shown agreement between Mul-
tistrand’s microstate partition function formulation and the NUPACK partition function

formulation.
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Appendix D

Strand Orderings for
Pseudoknot-Free Representations

Given a complex microstate ¢, we can draw a polymer graph representation (also called the
circle-chord representation) by laying out the strands on a circle, in the ordering 7*(c), and
representing the base pairs by chords connecting the appropriate locations (Figure D.1).
In the case of a complex microstate with a single strand, we call the secondary structure
pseudoknotted if there are crossing chords. However, the case where a complex microstate
contains multiple strands requires a slightly more complex definition. We note that in this
case, a strand ordering 7*(c) corresponds to one particular way of arranging the strands on
the circle; the circular permutations of 7*(c) are the (L — 1)! permutations of the strands
which are distinct when arranged on a circle, e.g. for three strands labeled A, B, C', there
are only two distinct circular permutations: (A, B,C) and (A, C, B). With that in mind,
we call an arbitrary secondary structure pseudoknotted if every circular permutation of the
strand ordering has a polymer graph representation that contains a crossed chord.

While our simulator is not constrained to using a strand ordering 7*(¢) whose polymer
graph representation does not contain a crossed chord, it is convenient for us to do so, as the
output representation is easier to generate in these cases. The following heuristics allow us
to maintain the property that our complex microstates always use a strand ordering 7*(c)
whose polymer graph does not contain a crossed chord:

The initial strand orderings we generate are based on a dot-paren structure, which
naturally translate to a polymer graph with no crossed chords. The only time strand
orderings can change is when performing a bimolecular move (either a break move or join

move). For a break move, the resulting pair of complexes maintain the same orderings
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/

A

2

(a) A hairpin with long stem (b) Short three-way branch migration system

Figure D.1: Two different secondary structures using polymer graph representation. Strands
are always arranged with 5’ — 3’ orientation being clockwise around the circle.

the strands originally had in the original complex — e.g. if we had a complex of 5 strands
(A through FE) with ordering (A, D, E, C, B) which broke apart into two complexes with
strands A, B,C and D, E, the resulting pair of orderings would be (A,C, B) and (D, FE)
(Figure D.2).

For a join move, we first note that a complex’s open loops correspond to sequential pairs
of strands in the circular strand ordering (this corresponds to the strands on either side of
the “nick” in the dot-paren representation), so that a complex with ordering (A, B, D,C')
has open loops corresponding to the pairs (A, B), (B, D), (D,C) and (C,A). When we
perform a join move, we take each complex’s strand ordering and find the cyclic permutation
(these are the permutations that are identical when arranged on a circle, e.g. (A, B,C),
(B,C,A) and (C, A, B) are cyclic permutations on the strand ordering (A, B,C')) which
places the affected open loops at the edge of the permutation. For example, if we are
joining (A, B, D,C) with (E,G, F) by the open loops around (B, D) and (E,G), we use
the cyclic permutations (D,C, A, B) and (G, F, E), ending up with the strand ordering
(D,C,A,B,G, F,E) for the resulting complex (Figure D.3). Why does this ordering have
no crossing chords (assuming the starting ones did not)? We note that this join move was
joining a base on either the 5" end of D or the 3’ end of B, with a base on either the 5’

end of G or the 3’ end of F - in all four of these cases, the resulting chord cannot cross
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Ty (D

B § C /

(a) (A,D,E,C,B) before break move (b) (A,C,B) and (D,E) after break move

Figure D.2: Polymer graph representation before and after a break move (base pair high-
lighted in red). Note that the ordering is consistent, but we now have two separate complexes
and thus two separate polymer graphs.

any existing chords if we use the given strand ordering. Note that in general, the bases
available for a join move are not necessarily from the 5 and 3’ edges near the nick but the
same argument applies. For example, if we used a join from the (G, F') open loop (from the
previous example), there is a single base on strand E that could be used to make the join,
but since it’s in the same open region as the 5’ end of G and 3’ end of F', it also could not
create a crossed chord.

So we have shown that the strand ordering 7*(¢) maintained by our simulator for a
complex microstate ¢ has a polymer graph with no crossed chords. This leads naturally
to the question of whether there is a different circular permutation of 7*(¢) which also has
no crossed chords. The (surprising) answer is no - every other circular permutation has at

least one crossed chord! This is stated in the following theorem:
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o

(a) (A,B,D,C) before join move (b) (E,G,F) before join move

E

c LB

D

(c¢) (D,C,A,B,G,F,E) after cyclic permutations and join

Figure D.3: Polymer graph representation before and after a join move. Open loop regions
are noted with a cyan circle marker. Four of the (many) possible join moves between open
loops (B, D) and (E,G) are shown in (c), using red, blue, magenta, and cyan.
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D.1 Representation Theorem

For every non-pseudoknotted complex microstate c, there is exactly one circular permutation
7*(¢) whose polymer graph has no crossed chords.

While the above heuristic can be expanded on to prove this theorem via induction on
the number of strands in a complex, a more thorough proof can be found in [5] and so we

will not reproduce it here.
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