
LETTER
doi:10.1038/nature10262

Neural network computation with DNA strand
displacement cascades
Lulu Qian1, Erik Winfree1,2,3 & Jehoshua Bruck3,4

The impressive capabilities of the mammalian brain—ranging from
perception, pattern recognition and memory formation to decision
making and motor activity control—have inspired their re-creation
in a wide range of artificial intelligence systems for applications such
as face recognition, anomaly detection, medical diagnosis and
robotic vehicle control1. Yet before neuron-based brains evolved,
complex biomolecular circuits provided individual cells with the
‘intelligent’ behaviour required for survival2. However, the study of
how molecules can ‘think’ has not produced an equal variety of com-
putational models and applications of artificial chemical systems.
Although biomolecular systems have been hypothesized to carry
out neural-network-like computations in vivo3,2,4 and the synthesis
of artificial chemical analogues has been proposed theoretically5–9,
experimental work10–13 has so far fallen short of fully implementing
even a single neuron. Here, building on the richness of DNA com-
puting14 and strand displacement circuitry15, we show how molecular
systems can exhibit autonomous brain-like behaviours. Using a
simple DNA gate architecture16 that allows experimental scale-up
of multilayer digital circuits17, we systematically transform arbitrary
linear threshold circuits18 (an artificial neural network model) into
DNA strand displacement cascades that function as small neural
networks. Our approach even allows us to implement a Hopfield
associative memory19 with four fully connected artificial neurons
that, after training in silico, remembers four single-stranded DNA
patterns and recalls the most similar one when presented with an
incomplete pattern. Our results suggest that DNA strand displace-
ment cascades could be used to endow autonomous chemical systems
with the capability of recognizing patterns of molecular events, mak-
ing decisions and responding to the environment.

The human brain is composed of ,1011 neurons, and each has a few
thousand synapses. Each synapse can receive signals from other neu-
rons, raising or lowering the electrical potential inside the neuron.
When the potential reaches its threshold, the neuron will fire and a
pulse will be sent through the axon to other neurons. Among the
simplest mathematical models of neurons is the perceptron, also
known as the linear threshold gate1,18,20. A linear threshold gate has a
number of inputs, x1, x2, � � � , xn[ 0,1f g, which can be interpreted as
arriving at synapses that each have an analogue weight, w1, w2, � � � , wn.
The linear threshold gate turns ‘on’ only when the weighted sum of all
inputs exceeds a threshold, th. The output

y~
1 if

Pn
i~1

wixi§th

0 otherwise

8<
:

can be interpreted as the firing activity on the axon. Linear threshold
gates may be used to construct multilayer circuits that are complete for
Boolean functions and, more importantly, are exponentially more
compact than AND–OR–NOT circuits for a wide class of func-
tions18,21,22. Recurrent linear threshold circuits have even provided
insights into brain-like computations, such as content-addressable
associative memories19. A remarkable feature of brains, which is also

desirable for molecular circuits, is that complex computations can be
carried out by networks with just a few layers and even with unreliable
components—a feature that linear threshold circuits share23.

We first introduce the simple DNA gate architecture, based on what
we call the ‘seesaw’ gate motif, which we use for building arbitrary linear
threshold circuits. Because DNA hybridization depends primarily on
the logic of Watson–Crick base-pairing, many instances of the same
molecular motif can be created by assigning different sequence choices
for each logical domain. The abstract diagram for the seesaw gate motif
(Fig. 1a) provides a concise representation of a full DNA implementa-
tion and can be systematically translated first to the domain level, then
to the sequence level, and finally to the molecular level (Supplementary
Fig. 1). Each seesaw gate is a node with two sides, connected to one or
more wires on each side. Each wire represents a DNA ‘signal strand’
with two long ‘recognition’ domains flanking a central short ‘toehold’
domain (for example, ‘input’ and ‘fuel’ in Fig. 1a). Each node represents
a DNA gate ‘base strand’ with one central recognition domain flanked
by two toehold domains. The gate base strand is always bound to a
signal strand on one side or another, leaving one toehold uncovered (for
example, the ‘gate:output complex’ in Fig. 1a). A DNA ‘threshold com-
plex’ can also be associated with a node; it has a double-stranded recog-
nition domain with an extended toehold. To read the output signal, a
‘reporter’ gate is used (Fig. 1b). The reporter is implemented as a
threshold-like DNA complex with a fluorophore/quencher pair at the
end of the duplex.

There are three basic reactions involved in a seesaw network
(Supplementary Fig. 4). They all use the principle of toehold-mediated
DNA strand displacement15, in which a single-stranded DNA binds to
a partially double-stranded complex by a single-stranded toehold
domain, allowing initiation of branch migration through a recognition
domain with identical sequence, and ultimately resulting in replace-
ment and release of the originally bound strand. The first reaction,
seesawing, occurs when a free signal on one side of a gate releases a
signal bound on the other side. A single step of seesawing results in
stoichiometric exchange of equal amounts of activity from a wire on
one side of a gate to a wire on the other side (for example, input releases
output). Two steps of seesawing completes a catalytic cycle in which a
wire on one side of a gate exchanges the activity between two wires on
the other side without itself being consumed (for example, input trans-
forms free fuel into free output, see Supplementary Fig. 5). Second,
thresholding occurs when a threshold complex absorbs an impinging
signal—this happens at a much faster rate than seesawing because of the
extended toehold15. Third, reporting occurs when a reporter complex
absorbs an impinging signal while generating a fluorescence signal.

A single linear threshold gate can be implemented using three types
of seesaw gates that implement the three essential subfunctions: mul-
tiplying (wixi), integrating (

P
wixi) and thresholding (

P
wixi $ th).

(1) Multiplying gates (for example, the first layer of seesaw gates in
Fig. 1c, e) have a fixed threshold of 0.2 and support multiple outputs
with arbitrary weights. Each output strand has a different recognition
domain on the right (59 end) to connect to different downstream gates.

1Bioengineering, California Institute of Technology, Pasadena, California 91125, USA. 2Computer Science, California Institute of Technology, Pasadena, California 91125, USA. 3Computation and Neural
Systems, California Institute of Technology, Pasadena, California 91125, USA. 4Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA.

3 6 8 | N A T U R E | V O L 4 7 5 | 2 1 J U L Y 2 0 1 1

Macmillan Publishers Limited. All rights reserved©2011

www.nature.com/doifinder/10.1038/nature10262


To clean up variations due to leaky reactions and signal decay, we
require all gates to work with a digital abstraction where ‘off’ signals
may be between 0 to 0.2, and ‘on’ signals may be between 0.8 to 1. If the
input is ‘off’, all outputs will remain 0. If the input is ‘on’, it will exceed
the threshold and catalyse the exchange of fuel and outputs. With an
irreversible downstream drain, each output will continue being
released until no gate:output complexes remain. Thus, each output
level is set by an analogue weight—the initial amount of gate:output
complex. (2) Integrating gates (for example, the second layer of seesaw
gates in Fig. 1c, e) have no threshold or fuel, but support multiple
inputs. All input strands have the same right recognition domain to
connect to this gate, but have different left recognition domains cor-
responding to different upstream gates. Without fuel, the gate exhibits
a stoichiometric behaviour with the output level eventually reaching
the sum of all inputs. (3) Thresholding gates (for example, the third
layer of seesaw gates in Fig. 1c, e) have an arbitrary threshold and an
output with a fixed weight of 1. If the input exceeds the threshold, the
output will turn ‘on’; otherwise it will stay ‘off’. To reduce circuit size in
cascades, multiplying gates and thresholding gates can be combined
and generalized as a fourth type, amplifying gates, that allow both an
arbitrary threshold and multiple outputs with arbitrary weights
(Supplementary Fig. 6). The full DNA strand displacement cascade
implementing a single neuron is shown in Supplementary Fig. 7.

To translate arbitrary linear threshold circuits into seesaw circuits,
we develop four transformation rules: complementation, expansion,
consolidation and reduction (see Supplementary Fig. 8 for details).
Complementation is used to convert a linear threshold circuit with
negative weights into an equivalent circuit with positive weights only

(for example, Fig. 2a). Expansion is used to transform each n-input
linear threshold gate with positive weights into an equivalent network
of n 1 2 seesaw gates (for example, Fig. 1c). Consolidation is used to
collect multiple occurrences of the same signal into one when con-
necting subcircuits together (for example, yielding nodes 3, 9 and 18 in
Fig. 1e). Reduction is used to combine an upstream threshold and a
directly downstream weight into a single operation after composition
(for example, yielding nodes 17 and 8 in Fig. 2b).

For our initial experimental demonstration, we chose a general
three-input four-output linear threshold gate (Fig. 1d). It is equivalent
to a linear threshold circuit with four parallel gates that each read the
same three inputs. The circuit calculates the analogue value of a three-
bit binary number, then compares it to 1, 3, 5 and 7. An equivalent
seesaw circuit (Fig. 1e) is generated using just two of the above trans-
formation rules: expansion and consolidation. The first layer of seesaw
gates fans out each input while multiplying by the corresponding
weight; the second layer calculates the sum of all weighted inputs;
the third layer implements the corresponding threshold for each out-
put; the final layer of reporters reads the output signals and provides
irreversible drains.

In fluorescence kinetics experiments (Fig. 1f), all four outputs (y1–
y4) achieved the correct ‘on’ or ‘off’ states with the complete eight sets
of inputs (x3, x2, x1, on right side of graphs, colour coded to match
traces), even though the inputs were intentionally ‘noisy’ (0.13 standard
concentration was used for ‘off’ inputs and 0.93 for ‘on’ inputs). In a
subcircuit roughly half the size, we tuned weights and thresholds to
show that the same set of DNA molecules can implement different
linear threshold functions (Supplementary Figs 9 and 10). Although

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

O
u
tp

u
t

a

c

2

1Σw –th–0.2 w2

wn

2w2

–0.2

2w1

w1

–0.2

2wn

…

x1

x2

xn
y =

y

1 if

n

i=1

xiwi ≥ th

x1
1

x2
2

x3
4

y1
y2
y3

y4

–1

–3

–5

–7

b

S5T

S2
input (w2,5)

S5 T

Sf
fuel (w5,f)

T*S5*T*

S5 T

S6

gate:output

(G5:5,6)

S5*T*s2*

S5

threshold 

(Th2,5:5)

f

…

x1

x2

xn

y–th

w1

w2

wn

f

12 –0.2

3

1

8

1
1

1

f

–0.2

18

f

–0.2

9

2

16

2
2

2

4

32

4
4

4

13

14

f

2 5

4 1

7 8

20 17

2

2

2

2

8

8

8

8

1

1

1

1

–0.7

–2.6

–4.4

–6.2

f

f

f

6

ROX
–1.5

23

FAM
–1.5

24

TYE563
–1.5

25

TYE665
–1.5

y1

y2

y3

y4

e

x1

x1

x2

x3

x2

x3

y1

1

–12

4

y2

1

–32

4

y3

1

–52

4

y4

1

–72

4

–0.7
1

2

1

5

2

6

f

6

ROX
–1.5

RQ
ROX

S6

T* S6*

reporter (Rep6)

d

0

y1=

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

O
u
tp

u
t

0 10 20 30
0

0.2

0.4

0.6

0.8

1

O
u
tp

u
t

0 20 40 60
0

0.2

0.4

0.6

0.8

1

Time (h)

O
u
tp

u
t

x3 x2 x1

1 x3 x2 x1≥1

0 x3 x2 x1<1

y2=
1 x3 x2 x1≥3

0 x3 x2 x1<3

y3=
1 x3 x2 x1≥5

0 x3 x2 x1<5

y4=
1 x3 x2 x1≥7

0 x3 x2 x1<7

x3 x2 x1

x3 x2 x1

x3 x2 x1

1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1
0 0 0

1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1
0 0 0

1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1
0 0 0

1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1
0 0 0otherwise

Figure 1 | The seesaw gate motif and the construction of linear threshold
gates. a, Abstract diagram of a seesaw gate motif and its DNA implementation.
Black numbers indicate the identity of each node (or the interface to that node
in a larger network). Positions and signs of red numbers indicate different DNA
species, while their absolute values indicate the initial relative concentrations
(for details, see Supplementary Information section 1). Each species has a
specific role (for example, input) within a gate and has a unique name (for
example, w2,5) within a network. Coloured lines represent DNA strands at the
domain level, with arrowheads marking their 39 ends and colours indicating
distinct DNA subsequences. S2, S5, S6 and Sf are long recognition domains. T is
a short toehold domain. T* is the Watson–Crick complement of T, and so on.
s2* is the first few nucleotides of S2* from the 39 end. b, Abstract diagram of a
reporter and its DNA implementation. Fluorophore ROX is quenched by
quencher RQ. c, A linear threshold gate and its equivalent seesaw construction.
d, A general three-input four-output linear threshold gate. e, Equivalent seesaw

circuit for the general linear threshold gate. Note that thresholds and weights in
the final construction are adjusted to obtain improved experimental
performance. Fluorophores ROX, FAM, TYE563 and TYE665 are used for four
reporters to monitor four outputs y1 to y4. f, Kinetics experiments of the general
linear threshold gate. A total of 60 DNA strands assembled to form 38 initial
DNA species (as indicated by the red numbers in e) were mixed in solution at
their respective concentrations. The standard concentration was
13 5 16.67 nM. Input strands x1 to x3 were then added with relative
concentrations of 0.13 (0, logic ‘off’) or 0.93 (1, logic ‘on’). Output signals y1 to
y4 were reported by four distinct fluorophores simultaneously (Supplementary
Fig. 2). Trajectories for corresponding inputs are shown with matching colours.
Domains and strand sequences are listed in Supplementary Tables 1–4, circuit 2.
Experiments were performed at 20 uC in Tris-acetate-EDTA buffer containing
12.5 mM Mg21. Output signals were inferred by fluorescence signals
normalized to the maximum completion level (Supplementary Fig. 3).

LETTER RESEARCH

2 1 J U L Y 2 0 1 1 | V O L 4 7 5 | N A T U R E | 3 6 9

Macmillan Publishers Limited. All rights reserved©2011



thresholding, catalysis and integration have been demonstrated previ-
ously in seesaw digital logic circuits17, this is to our knowledge the first
demonstration of variable weights, variable thresholds and linear
integration composed together, performing the function of an artificial
neuron.

To show computation with negative weights and cascading, a linear
threshold circuit that computes the three-bit exclusive-or (XOR) func-
tion was demonstrated (Fig. 2a). With an efficient construction, the XOR
function with n variables can be realized with log2n linear threshold
gates21, whereas the optimal size of an AND–OR–NOT circuit22 is at
least 2n. All four transformation rules are used to generate an equi-
valent seesaw circuit (Fig. 2b). Complementation introduces dual-rail
logic24, where each input xi is replaced by a pair of inputs x0

i and x1
i ,

representing logic ‘off’ and logic ‘on’ separately; each linear threshold
gate is replaced by a pair of gates with only positive weights, producing a
pair of dual-rail outputs. Thus, a computed ‘off’ value can be distin-
guished from an output that has not yet been computed. This method
avoids the difficulty of directly implementing negative weights, at a cost
of doubling the size of the circuit. The top half of the seesaw circuit
corresponds to the cascade of two linear threshold gates that read inputs
x0

i and output y0; the bottom half corresponds to the other two, which
read inputs x1

i and output y1. The cross-connection between the two
halves appears where there is a negative weight in the original circuit.

In fluorescence kinetics experiments (Fig. 2c), the pair of dual-rail
outputs went to their correct ‘on’/‘off’ states, again even with noisy
inputs. When the inputs had an even number of 1s, the output y0 went
‘on’ and y1 went ‘off’, indicating y 5 0; when the inputs had an odd
number of 1s, the output y0 went ‘off’ and y1 went ‘on’, indicating y 5 1.
With inputs x1x2x3 5 000 and 111, the output responded sooner than
all the other cases, where the production of output must wait for the
upstream linear threshold gate to provide its input. Experimental
insights gained from the networks of Figs 1 and 2, comparison to a
simpler implementation of a three-bit XOR using deoxyribozymes25,
as well as comparison to other neural network implementations, are
discussed in Supplementary Information section 4.

To show a recurrent linear threshold circuit and the power of neural
network computation, a four-neuron Hopfield associative memory
was demonstrated. A Hopfield network19 has a number of artificial
neurons that are fully connected to each other. If properly trained,
which means the weights and threshold of each neuron are properly
chosen, the network is able to ‘remember’ a set of patterns; when
initialized with a partial or distorted pattern, the network will recover
the most similar remembered pattern. We used the perceptron learn-
ing algorithm1 in silico (see Supplementary Information section 5) to
train our four-neuron Hopfield network to remember four patterns:
0110, 1111, 0011 and 1000 (Fig. 3a).

To implement negative weights, we again use the dual-rail conven-
tion where each signal xi is replaced by a pair of signals x0

i and x1
i

(Supplementary Fig. 13). To run the network, there are three possible
initial states for each neuron: 0 (logic ‘off’) if x0

i ~1, 1 (logic ‘on’) if
x1

i ~1, or unknown if both x0
i and x1

i ~0. For each update of a linear
threshold gate, some x0

i or x1
i can flip from 0 to 1, but not back; the

corresponding neuron can change its state from unknown to 0 or to 1,
but not back. As the network runs, another possibility arises: a neu-
ron’s state is declared invalid if both x0

i and x1
i ~1. Like the original

network, this dual-rail Hopfield associative memory can associate an
incomplete pattern with a remembered pattern; unlike the original, it is
unable to recover a corrupted pattern because the neurons’ states
cannot flip from 0 to 1 or from 1 to 0; but thanks to the additional
states (unknown and invalid), it has the new feature of identifying
patterns that are compatible with no single remembered pattern (see
Supplementary Information section 5 and the bottom two panels of
Fig. 3e).

Following the same transformation rules described above, a seesaw
circuit equivalent to the dual-rail Hopfield network is shown in Fig. 3b,
containing 24 feedback loops. Initial experiments confirmed that in a
circuit with feedback connections between catalytic seesaw gates, leak
reactions that occur in DNA strand displacement circuitry are amplified
after they exceed the threshold (Supplementary Fig. 14). Therefore, in
front of each reporter we add an extra signal restoration step consisting

0

0.2

0.4

0.6

0.8

1

y = 1

0

0.2

0.4

0.6

0.8

1

y = 0

0

0.2

0.4

0.6

0.8

1

y = 0

0

0.2

0.4

0.6

0.8

1

O
u
tp

u
t

x1x2x3=000             x1x2x3=001             

x1x2x3=010             x1x2x3=011             

x1x2x3=100             x1x2x3=101             

x1x2x3=110             x1x2x3=111             

y = 0

0

0.2

0.4

0.6

0.8

1

O
u
tp

u
t

y = 1

0

0.2

0.4

0.6

0.8

1

O
u
tp

u
t

y = 1

0 5 10 15 2020
0

0.2

0.4

0.6

0.8

1

Time (h)

O
u
tp

u
t

y = 0

0 5 10 150

0.2

0.4

0.6

0.8

1

Time (h)

0 5 10 15 2020 0 5 10 15

0 5 10 15 2020 0 5 10 15

0 5 10 15 2020 0 5 10 15

y = 1

ba y = XOR(x1, x2, x3)

1

–21

1

1
–3

1
1

2

1

–21

1

1
–3

1
1

2

c
x1
x2
x3

x1
x2
x3

x1
0

x2
0

x3
0

x1
0

x2
0

x3
0

x3
1

x2
1

x1
1 x3

1

x2
1

x1
1

y

y0

y0

y1

y1y0

y1

1

–21

1

1
–1

1
1

–2

f

13 –0.2

9

1
1

4

f

20

2 5

4 1

17

7 8

4

3 2–1.6

f

4

3 2–1.6

f

12 –0.2

3

1
1

4

f

14 –0.2

18

1
1

4

f

19 –0.2

10

1
1

4

f

21 –0.2

11

1
1

4

f

22 –0.2

15

1
1

4

f

2

1–2.7

6

ROX
–1.55

2

1–2.7

f

23

FAM
–1.55

Figure 2 | A linear threshold circuit that computes the three-bit XOR
function. This function is given by XOR(x1, x2, x3) 5 (x1 1 x2 1 x3) mod 2.
a, A three-bit XOR circuit and its equivalent dual-rail circuit. b, An equivalent
seesaw circuit. c, Kinetics experiments. A total of 68 DNA strands assembled to
form 42 initial DNA species (as indicated by the red numbers in b) were mixed
in solution at their respective concentrations. The standard concentration was

13 5 50 nM. Six dual-rail input strands were then added with relative
concentrations of 0.93 x0

i and 0.13 x1
i (for xi 5 0, logic ‘off’), or 0.13 x0

i and
0.93 x1

i (for xi 5 1, logic ‘on’). Dotted and solid lines indicate dual-rail output
being logic ‘off’ and logic ‘on’, respectively. Domains and strand sequences are
listed in Supplementary Tables 1–4, circuit 3. Experiments were performed at
25 uC.

RESEARCH LETTER

3 7 0 | N A T U R E | V O L 4 7 5 | 2 1 J U L Y 2 0 1 1

Macmillan Publishers Limited. All rights reserved©2011



of an integrating gate and an amplifying gate, in order to suppress leak
(Fig. 3c). The values of weights and thresholds determined by in silico
training were used to determine the concentrations of the 72 DNA
species that comprise the memory (Fig. 3b, c). In principle, the same
set of DNA molecules could be retrained to remember any of 500
distinct sets of patterns by adjusting weight and threshold concentra-
tions (Supplementary Information section 5).

In the tradition of using game-playing automata as a benchmark for
new computing technologies, we demonstrated the Hopfield network
in the context of a game called ‘read your mind’, which is played
between a human and the DNA associative memory in a cuvette
(Fig. 3d). The game consists of three steps. First, the human thinks
of a scientist, choosing from the listed four options (each scientist
corresponds to one of the four patterns; for example, Franklin is
0110) or someone else. Second, the human ‘tells’ the DNA associative
memory some of the answers to questions Q1 to Q4 (Fig. 3d) by adding
corresponding DNA strands to the cuvette. Finally, after 8 h of ‘think-
ing’, the DNA associative memory will guess who is in the human’s
mind and ‘tell’ the human the rest of the answers by fluorescence
signals. In doing so, the four-neuron DNA associative memory exhi-
bits a brain-like behaviour: associative recall of memories based on
incomplete information.

We played the game 27 times with the DNA associative memory, out
of 81 possible ways of answering questions Q1 to Q4. Six examples are

shown in Fig. 3e; the rest are shown in Supplementary Figs 15–18. The
top left data in Fig. 3e can be interpreted as following: when the human
‘said’ that the scientist was born in the twentieth century (input x3 5 1)
but was not a mathematician (input x4 5 0), the DNA associative
memory ‘guessed’ that the scientist did not study neural networks (out-
put x1 was updated to 0) but was British (output x2 was updated to 1),
which indicated that the scientist was Rosalind Franklin (pattern 0110).
Similarly, the DNA associative memory was able to work out the other
three scientists correctly—in the best case, only one answer was given by
the human (the middle right data). The bottom left data shows that when
the information provided by the human matched multiple patterns (that
is, input x4 5 1 indicates that the scientist was a mathematician, which is
true for both Alan Turing and Claude Shannon), the DNA associative
memory was able to identify that they were both born in the twentieth
century (output x3 was updated to 1), while the other outputs remained
unknown. The bottom right data show that the DNA associative
memory was also able to recognize information that was incompatible
with all memorized patterns by producing invalid output.

All experiments reported here were semiquantitatively reproduced
by mass action simulations using the exact model developed previously
for seesaw digital logic circuits17 with no changes to any rate constants
(see Supplementary Information section 7 and Supplementary Figs 19–
24 for comparisons to experiments, and Supplementary Figs 25–27 for
simulation predictions for the remaining 54 games).

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Time (h)

O
u
tp

u
t

0

0.2

0.4

0.6

0.8

1

O
u
tp

u
t

0

0.2

0.4

0.6

0.8

1

O
u
tp

u
t

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

ba

c

x1

x2

x3

x4

1

0.5–2

1

1

–1.52

–1

–1

0.51

1

1

–1.5–1

2

5

f

1

8

1
1

1

53

5

1834

5

110

5

2740

5

1326

5

2841

5

820

5

2942

5

f
8

1
1
1

1
–2.2

f

1

8

1
1

1
–2.3

f

1

8

1
1

1
–1.5

f
14

1
2
2

2
–0.7

f
14

1
2
2

2
–2.2

f
8

1
1
1

1
–2.3

f

1

8

1
1

1
–1.5

–1.5

0 2 4 6 8

Time (h)

? 1 0 ? x x x x

Wrong

information

? ? ? 1 ? ? 1 1

Not enough

information

? ? 0 ? 1 0 0 0

Ramon y Cajal

d

36

1

39

1

43

1

44

f

21

2

1–0.4

f

22

2

1–0.4

f

30

2

1–0.4

f

31

2

1–0.4

6

ROX
–1.5

23

FAM
–1.5

24

TYE563
–1.5

25

TYE665
–1.51

0 ? ? 1 0 0 1 1

Shannon

Answers: Yes (1), No (0), or I don’t know (?)

Q1: Did the scientist study neural networks?

Q2: Was the scientist British?

Q3: Was the scientist born in the 20th century?

Q4: Was the scientist a mathematician?

? ? 1 0 0 1 1 0

Franklin

? 1 ? 1 1 1 1 1

Turing

0 1 1 0 Rosalind Franklin

1 1 1 1 Alan Turing

0 0 1 1 Claude Shannon

1 0 0 0 Santiago Ramon y Cajal

e

x1
0

x1
0

x1
0

x2
0

x2
0

x2
0

x3
0

x3
0

x3
0

x3
1

x3
1

x3
1

x4
0

x4
0

x4
0

x4
1

x4
1

x4
1

x2
1

x2
1

x2
1

x1
1

x1
1

x1
1

Figure 3 | A four-neuron Hopfield associative memory. a, The recurrent
linear threshold circuit. b, The resulting seesaw circuit using the dual-rail
implementation. Dashed lines indicate the connections to reporters. c, Four sets
of reporters with signal restoration that are connected to either x0

i or x1
i at any

given time. d, A ‘read your mind’ game between a human and the four-neuron
DNA associative memory that ‘remembers’ four scientists according to the
answers of four questions. e, Kinetics experiments of the ‘read your mind’ game.
A total of 112 DNA strands assembled to form 72 initial DNA species (as
indicated by the red numbers in b, c) were mixed in solution at their respective
concentrations. The standard concentration was 13 5 25 nM. Selected inputs
corresponding to the human’s answers were then added with relative

concentrations of 53 (to set the initial states, inputs triggering the update of
multiple neurons are used, for example, w53,5 for x1

1 and w34,18 for x0
1). Dotted

and solid lines indicate dual-rail outputs x0
i and x1

i , respectively. For each signal,
if both dotted and solid lines stay ‘off’ (less than 0.2), the logic value is unknown,
‘?’; if the dotted (solid) line goes ‘on’ (greater than 0.65) and the solid (dotted)
line stays ‘off’, the logic value is ‘0’ (‘1’); if both dotted and solid lines go ‘on’, the
logic value is invalid, ‘x’. Arrows connect initial states of the four neurons
(inputs) to the final states (outputs at 8 h). The eight trajectories in each plot
were from two separate experiments (connecting either x0

i or x1
i to the

reporters) because we only have four distinct fluorophores. Sequences of strands
are listed in Supplementary Tables 5–7. Experiments were performed at 25 uC.

LETTER RESEARCH

2 1 J U L Y 2 0 1 1 | V O L 4 7 5 | N A T U R E | 3 7 1

Macmillan Publishers Limited. All rights reserved©2011



It is interesting to consider the scale of our reactions. Stochastic
simulations suggest that the four-neuron DNA associative memory
would function reliably with even just 10 copies of each species at 13

concentrations (Supplementary Fig. 28), which at our concentrations
would entail a volume of roughly 1mm3, that is, small enough to fit
inside a bacterium. In the other direction, scaling up the DNA asso-
ciative memory to contain more neurons will exacerbate problems
with spurious reactions, and may require lower concentrations and
thus slower reactions. On the other hand, neural associative memories
are intrinsically fault-tolerant19 and can function well even with only
sparse connections26. Because of these opposing factors, it is difficult to
predict how large a network can be successfully implemented using the
approach described here.

To create smart and functional chemical systems, our current con-
structions will need to be improved and integrated with other chemistries.
For sustained autonomous behaviour, it will be important to go beyond
use-once architectures to dynamic units that can turn ‘on’ and ‘off’
repeatedly as their inputs change. Initial examples of such systems have
been demonstrated using enzymes13 and are theoretically possible in
DNA-only systems27. Of particular interest would be to implement the
dynamics for learning rules within the chemistry itself28, as hinted at by
recent demonstrations of trainable chemical circuits29. Nonetheless,
even simple linear threshold units could be quite useful in biomedical
diagnostics, such as classifying cancers with microRNA signals9,30.
Furthermore, when DNA strand displacement systems are provided
with interfaces for sensing non-nucleic-acid inputs and controlling
chemical reactions as output actions31, an ‘intelligent’ DNA system
could directly perceive and act on its chemical environment.

Received 31 December 2010; accepted 31 May 2011.

1. Rojas, R. Neural Networks: A Systematic Introduction (Springer, 1996).
2. Bray, D. Protein molecules as computational elements in living cells. Nature 376,

307–312 (1995).
3. Mjolsness, E., Sharp, D. H. & Reinitz, J. A connectionist model of development.

J. Theor. Biol. 152, 429–453 (1991).
4. Buchler, N. E., Gerland, U. & Hwa, T. On schemes of combinatorial transcription

logic. Proc. Natl Acad. Sci. USA 100, 5136–5141 (2003).
5. Hjelmfelt, A., Weinberger, E. D. & Ross, J. Chemical implementation of neural

networks and Turing machines. Proc. Natl Acad. Sci. USA 88, 10983–10987
(1991).

6. Baum, E. B. Building an associative memory vastly larger than the brain. Science
268, 583–585 (1995).

7. Mills, A. P., Yurke, B. & Platzman, P. M. Article for analog vector algebra
computation. Biosystems 52, 175–180 (1999).

8. Kim, J., Hopfield, J. J. & Winfree, E. in Advances in Neural Information Processing
Systems Vol. 17 (eds Saul, L. K., Weiss, Y. & Bottou, L.) 681–688 (MIT Press, 2004).

9. Zhang, D. Y. & Seelig, G. in DNA Computing and Molecular Programming (eds
Sakakibara, Y. & Mi, Y.) 176–186 (Lecture Notes in Computer Science, Vol. 6518,
Springer, 2011).

10. Laplante, J. P., Pemberton, M., Hjelmfelt, A. & Ross, J. Experiments on pattern
recognition by chemical kinetics. J. Phys. Chem. 99, 10063–10065 (1995).

11. Mills, A. P. Jr, Turberfield, M., Turberfield, A. J., Yurke, B. & Platzman, P. M.
Experimental aspects of DNA neural network computation. Soft Comput. 5, 10–18
(2001).

12. Lim, H. W. et al. In vitro molecular pattern classification via DNA-based weighted-
sum operation. Biosystems 100, 1–7 (2010).

13. Kim, J. & Winfree, E. Synthetic in vitro transcriptional oscillators. Mol. Syst. Biol. 7,
465 (2011).

14. Adleman, L. M. Molecular computation of solutions to combinatorial problems.
Science 266, 1021–1024 (1994).

15. Zhang, D.Y.&Seelig,G.DynamicDNAnanotechnologyusingstrand-displacement
reactions. Nature Chem. 3, 103–113 (2011).

16. Qian, L. & Winfree, E. A simple DNA gate motif for synthesizing large-scale circuits.
J. R. Soc. Interface doi:10.1098/rsif.2010.0729 (published online 4 February
2011).

17. Qian, L. & Winfree, E. Scaling up digital circuit computation with DNA strand
displacement cascades. Science 332, 1196–1201 (2011).

18. Muroga, S. Threshold Logic and its Applications Vol. 18 (Wiley-Interscience, 1971).
19. Hopfield, J. J. Neural networks and physical systems with emergent collective

computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).
20. McCulloch, W. S. & Pitts, W. A logical calculus of the ideas immanent in nervous

activity. Bull. Math. Biol. 5, 115–133 (1943).
21. Kautz, W. H. The realization of symmetric switching functions with linear-input

logical elements. IRE Trans. Electron. Comput. EC-10, 371–378 (1961).
22. Wegener, I. The complexity of the parity function in unbounded fan-in, unbounded

depth circuits. Theor. Comput. Sci. 85, 155–170 (1991).
23. Hajnal, A., Maass, W., Pudlák, P., Szegedy, M. & Turan, G. Threshold circuits of

bounded depth. J. Comput. Syst. Sci. 46, 129–154 (1993).
24. Müller,D. E. inSymp. on the ApplicationofSwitching Theory (edsAiken, H.&Main,W.

F.) 289–297 (Stanford Univ. Press, 1963).
25. Lederman, H., Macdonald, J., Stefanovic, D. & Stojanovic, M. N. Deoxyribozyme-

based three-input logic gates and construction of a molecular full adder.
Biochemistry 45, 1194–1199 (2006).

26. Amari, S. I. Characteristics of sparsely encoded associative memory. Neural Netw.
2, 451–457 (1989).

27. Soloveichik, D., Seelig, G. & Winfree, E. DNA as a universal substrate for chemical
kinetics. Proc. Natl Acad. Sci. USA 107, 5393–5398 (2010).

28. Fernando, C. T. et al. Molecular circuits for associative learning in single-celled
organisms. J. R. Soc. Interface 6, 463–469 (2009).

29. Pei, R., Matamoros, E., Liu, M., Stefanovic, D. & Stojanovic, M. N. Training a
molecular automaton to play a game. Nature Nanotechnol. 5, 773–777 (2010).

30. Rosenfeld, N. et al. MicroRNAs accurately identify cancer tissue origin. Nature
Biotechnol. 26, 462–469 (2008).

31. Simmel, F. C. Towards biomedical applications for nucleic acid nanodevices.
Nanomedicine 2, 817–830 (2007).

Supplementary Information is linked to the online version of the paper at
www.nature.com/nature.

Acknowledgements We thank P. Rothemund, P. Yin, D. Woods, D. Soloveichik and
N. Dabby for comments on the manuscript. We also thank R. Murray for the use of
experimental facilities. This work was supported by the NSF (grant nos 0728703 and
0832824 (The Molecular Programming Project)) and by HFSP award no. RGY0074/
2006-C.

Author Contributions L.Q. designed the system, performed the experiments and
analysed the data; L.Q. and E.W. performed the in silico training and wrote the
manuscript; E.W. guided the project and discussed the design and the data; and J.B.
initiated and guided the project, and discussed the manuscript.

Author Information Reprints and permissions information is available at
www.nature.com/reprints. The authors declare no competing financial interests.
Readers are welcome to comment on the online version of this article at
www.nature.com/nature. Correspondence and requests for materials should be
addressed to E.W. (winfree@caltech.edu).

RESEARCH LETTER

3 7 2 | N A T U R E | V O L 4 7 5 | 2 1 J U L Y 2 0 1 1

Macmillan Publishers Limited. All rights reserved©2011

www.nature.com/nature
www.nature.com/reprints
www.nature.com/nature
mailto:winfree@caltech.edu

	Title
	Authors
	Abstract
	References
	Figure 1 The seesaw gate motif and the construction of linear threshold gates.
	Figure 2 A linear threshold circuit that computes the three-bit XOR function.
	Figure 3 A four-neuron Hopfield associative memory.

