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Summary. Molecular self-assembly appears to be a promising route to bottom-up
fabrication of complex objects. Two major obstacles are how to create structures
with more interesting organization than periodic or finite arrays, and how to reduce
the fraction of side products and erroneous assemblies. Algorithmic self-assembly
provides a theoretical model for investigating these questions: the growth of ar-
bitrarily complex objects can be programmed into a set of Wang tiles, and their
robustness to a variety of possible errors can be studied. The ability to program the
tiles presents an alternative to directly physical or chemical means for reducing er-
ror rates, since redundant information can be stored so that errors can be detected,
corrected, and/or prevented during the self-assembly process. Here we study the
ability of algorithmic self-assembly to heal damage to a self-assembled object. We
present block transforms that convert an original error-prone tile set into a new tile
set that performs the same construction task (at a slightly larger scale) and also is
able to heal damaged areas where many tiles have been removed from the assembly.

1 Algorithmic Crystal Growth

Biology provides the synthetic chemist with a tantalizing and frustrating chal-
lenge: to create complex objects, defined from the molecular scale up to me-
ters, that construct themselves from elementary components, and perhaps
even reproduce themselves. This is the challenge of bottom-up fabrication.
The most compelling answer to this challenge was formulated in the early
1980’s by Ned Seeman, who realized that the information carried by DNA
strands provides a means to program molecular self-assembly, with potential
applications including DNA scaffolds for crystallography [1] or for molecular
electronic circuits [2]. This insight opened the doors to engineering with the
rich set of phenomena available in nucleic acid chemistry [3].

This paper focuses on what might be considered the most elementary phe-
nomenon, the self-assembly of macromolecular crystals. As commonly prac-
ticed today, DNA self-assembly is a two-stage process. In the first stage, which
typically occurs at elevated temperatures, DNA oligonucleotides self-assemble
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into well-defined molecular complexes often known as DNA tiles (e.g. [4]). In
the second stage, which typically occurs at substantially lower temperatures,
the DNA tiles stick to each other and form crystalline arrays [5]. This self-
assembly is mediated by single-stranded “sticky ends” with complementary
sequences that allow tiles to stick to each other by forming a double-helical
domain. The situation becomes particularly interesting when there are mul-
tiple types of DNA tiles containing multiple types of sticky ends. Under such
circumstances, the ground state of the crystal might not be a periodic ar-
rangement of the molecular units [6], which motivates generalized concepts of
crystalline order [7]. Since in general a physical system may take exponentially
long to reach its ground state (meaning that large perfect structures will ef-
fectively never form), the use of DNA self-assembly for bottom-up fabrication
requires an understanding of the kinetics of crystal growth processes – and
the means to control them.

Inspired by Seeman’s work, Len Adleman’s work on DNA computing [8],
and Hao Wang’s work on the mathematical theory of tilings [9], algorithmic
self-assembly [10] provides a mechanism whereby crystal growth can do infor-
mation processing. A crystal of DNA tiles can store information in the spatial
arrangement of the different sticky-end types exposed on its surface or along
its perimeter. When a DNA tile binds to a particular sticky-end combination,
it covers them up and simultaneously exposes new sticky-ends – thus effec-
tively modifying the information presented by the crystal. A set of DNA tiles
with particular input and output sticky ends therefore corresponds to a pro-
gram that leaves the trace of its operations embedded in the crystal. As one
application, the program can direct the construction of a shape [11]; in fact,
in an “error-free” model, self-assembly is universal for the construction of ar-
bitrary shapes [12]. From this perspective, algorithmic self-assembly presents
us with an extremely simplified model of morphogenesis based on elementary
crystalline growth mechanisms. The most interesting case occurs when the in-
formation present in a small “seed assembly” directs the growth of a specific
shape or pattern much larger than the seed. Thus algorithmic self-assembly
may be compared to biological development, a process that operates robustly
over 24 orders of magnitude in volume from the information encoded in DNA
to the mature organism.

For algorithmic self-assembly to direct growth at such a large scale, error-
free assembly cannot be assumed and fault-tolerance becomes a central issue.
Previous work suggested that physically reversible self-assembly can perform
“proofreading” on redundantly-encoded information [13], that by preventing
undesired nucleation on growth facets exponentially low error rates can be
achieved [14], and that spontaneous nucleation of undesired assemblies unre-
lated to the seed can be made arbitrarily rare [15] – all with only a modest in-
crease in the complexity of the tile set. Considered together, this work appears
to solve (at least theoretically) the basic issues for fault-tolerant self-assembly
according to reversible, error-prone growth processes.
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Here, we consider a new model: repair of a self-assembled structure after
gross damage – be it destruction by cosmic rays, fragmentation by ripping, or
attack by an adversary. We call a tile set self-healing if, at any point dur-
ing error-free growth, when any n tiles (not including the seed) are removed,
subsequent error-free growth will perfectly repair the damage in average time
O(n). Although hints of self-healing were seen in prior work [13], large dam-
aged areas almost always healed imperfectly. In fact, no previously considered
tile sets for 2D algorithmic patterns are self-healing according to this formal
definition. Nonetheless, we present a construction that transforms a tile set of
interest into a self-healing tile set (containing 25 times more tile types) that
performs the same assembly task but at a 5-fold larger scale. This transfor-
mation works for a wide class of original tile sets, including all widely-studied
examples.

Since the self-assembled pattern was originally produced by algorithmic
growth in the forward direction, the information required for repairing the
hole is already present along the perimeter of the hole, and forward growth will
re-build the correct structure – unless backwards growth (which is generally
not guaranteed to be correct) gets there first. The key to our construction is
to prevent holes (caused by damage) from filling in backwards. This is done by
replacing each tile in the original tile set with a 5 × 5 block of tiles; however,
each block is designed such that it can grow in only one direction, “forward.”
To achieve this, we rely on the technique developed in [14], wherein a pattern
of strong bonds, weak bonds, and null bonds within each block controls the
order in which tiles can be attached. A simplified 3 × 3 transformation (not
general, but sufficient for transforming a tile set that constructs an infinite
Sierpinski triangle pattern) is also shown, as well as a 7 × 7 transformation
that has additional robustness to a type of spurious nucleation error.

1.1 Models for Algorithmic Self-Assembly

The abstract Tile Assembly Model (aTAM) provides a rigorous framework
for analyzing algorithmic self-assembly. In the formulation used here, tiles are
considered to be unit squares with each side labeled by a bond type. Tiles
cannot be rotated. Each bond type has an associated strength, which may
be 0, 1, or 2 (respectively called null, weak, and strong bonds). A tile set
is a finite set of tile types, which may be used with replacement during the
assembly process. Assembly begins with a specified seed tile. A tile may be
legally added to an assembly whenever it may be placed so as to match one
or more sides with a total bond strength greater than or equal to 2 (i.e.,
if it either forms at least two weak bonds or one strong bond). Mismatches
neither help nor hinder. Assemblies that can be created from the seed tile via
a sequence of legal tile additions are called the produced assemblies. (For a
more formal description, see Ref. [12].)

Figure 1 gives three examples of algorithmic self-assembly from prior
work [16, 17, 13]. The Sierpinski tile set, for example, consists of 7 tile types:
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and flipped versions, etc.

41 tile types (not shown)
for the 9 x 9 square
including the copy and
the binary counter tiles
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Fig. 1. Three tile sets demonstrating algorithmic growth. Bond types are indicated
by letters or digits. Double lines indicate a strong bond, dotted lines indicates a
null bond, all other bonds (single lines) are weak. s indicates the seed tile. Top left:
The Sierpinski tile set. Top right: The binary counter tile set. Bottom: A tile set for
constructing a 9 × 9 square.

four rule tiles (each with four weak bonds), two boundary tiles (each with
two strong bonds, a weak bond, and a null bond), and one seed tile (with
two strong bonds and two null bonds). Each tile type is given a distinct color.
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Growth is unbounded. In the limit, the pattern formed by the pink and yellow
tiles give the positions of 0’s in a discrete Sierpinski fractal; the other tiles
represent 1’s. The red arrows, which are not part of the tiles per se, describe
the forward growth process by which the assemblies were formed: diagonal
arrows point away from two weak input sides (i.e., sides by which the tile at-
taches to the crystal), while horizontal and vertical arrows point away from a
strong input side. At each forward growth site, there is a unique tile type that
matches sufficiently many sides to be legally added according to the aTAM;
in fact, the rule tiles implement the logic of XOR. The binary counter tile set
is similar but uses different logic. Here, tile type colors are chosen to create a
derivative pattern. The positions of black tiles in the nth row above the blue
tiles correspond to 1’s in the binary expansion of the integer n. In general,
by endowing each tile type with a color, the assembled tiling may produce a
pattern with less complexity than the tiling itself, since the information pro-
cessing required to construct the pattern is hidden. In some cases, in fact, a
single color is used and one is interested only in the shape of the assembled
structure. This is the case for the third tile set, which forms a finite square.
(Tile types are colored just to aid understanding of the growth logic.) Here,
two orthogonally-oriented binary counters count down from an initial number
encoded in the green tiles; when they reach zero, the growth is terminated.
The 41 tile types (not all shown) may be inferred as the set of distinct tile
types that appear in the assembly. This technique can be used to construct
an N × N square by replacing just the green tiles with O(log N) new tiles
encoding the size of the square to be constructed.

Tile additions in the aTAM are non-deterministic, in the sense that at
any given moment there are typically several locations where a tile may be
legally added; for some tile sets there may also be locations at which more
than one tile type may be legally added. Therefore, many tile sets will produce
different assemblies dependent upon the order in which tiles are added. The
three examples of Figure 1, however, uniquely produce the assemblies shown.
How do we know this? Thankfully, there is a simple yet powerful technique
for establishing that this is so for a tile set of interest. Consider an assembly
sequence of legal tile additions in a particular order. For each tile, we define
the input sides to be the sides that created weak or strong bonds when the tile
was added; the propagation sides to be those that serve as the input sides for
subsequent tile additions; and the remaining sides (if any) are called terminal
sides. An assembly sequence is locally deterministic if (1) every tile addition
makes exactly either two weak bonds or one strong bond (i.e., a strength-
2 addition), and (2) if the tile at location (i, j) and all tiles abutting its
propagation sides are removed from the final assembly, then there is exactly
one tile type that can be legally added at (i, j). This is easy to check, tile by
tile. Furthermore, if a tile set has a locally deterministic assembly sequence,
then the same final assembly is produced regardless of the order in which tiles
are added legally. (For a more formal description and a proof, see Theorem
2.3 of Ref. [12]. Here, we also allow infinite assembly sequences, which poses
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no problems for the proof.) Locally deterministic tile sets include the majority
of examples considered in the literature1. Furthermore, the definitions of self-
healing tile sets and transformable tile sets introduced later in this paper use
ideas similar to local determinism.

The aTAM is considered an “error-free” model because perfect assembly
can be guaranteed, despite the asynchronous and non-deterministic order of
tile additions. This is the appropriate level of abstraction for reasoning about
how to program algorithmic self-assembly. However, considering how algo-
rithmic growth can occur in a physical system, such as DNA tiles in solution,
requires more realistic models that admit a variety of error modes expected to
be present in any real chemistry. For example, the kinetic Tile Assembly Model
(kTAM) describes physically reversible assembly as a continuous-time markov
process in which tiles may be added at a location at a rate proportional to
their concentration (kf = k[tile type] = ke−Gmc) regardless of how well they
match their neighbors, but tiles also fall off at a rate determined by the total
strength, b, of bonds holding them to their neighbors (kr,b = ke−bGse). Thus,
tile additions that are illegal in the aTAM will sometimes occur in the kTAM
and may persist due to the addition of subsequent tiles that stabilize them –
resulting in assemblies containing errors. However, if Gmc ≈ 2Gse, then ex-
actly the legal tile additions have kf ≥ kr,b (favorable growth) while exactly
the illegal tile additions have kr,b ≥ kf (unfavorable growth). Thus, error rates
can be reduced to arbitrarily low values by simultaneously decreasing tile con-
centration and the temperature [16]. This improvement in fidelity comes at
the expense of speed: an m-fold reduction of errors requires m2-slower growth
conditions.

Errors can be reduced dramatically without significant slow-down using
the technique of block transforms of tile sets that increase their robustness [13].
The transformed tile set contains more tile types but produces the same pat-
tern as the original tile set, although at a larger scale2. The basic principle is to
make assembly steps cooperative, so that multiple mistakes must occur before
erroneous information can be used in subsequent steps; in physically reversible
assembly, this gives the erroneous tiles ample opportunity to dissociate before
becoming embedded in the crystal – a simple form of “proofreading”. Specif-
ically, robustness is achieved by using redundant or distributed information
encoded in the bond types and by controlling the growth path by clever place-
ment of strong bonds and null bonds [14]. These techniques can produce tile
sets that are robust to several distinct types of errors that can occur in the
kTAM: growth errors in which a weakly-binding tile attaches at a location
where another tile could and should have been added; facet nucleation errors
in which a weakly-binding tile attaches at a location where no tile should yet

1 Not all tile sets that uniquely produce an assembly are locally deterministic; it is
a sufficient but not necessary condition.

2 Transformations that don’t increase the scale also exist, but they come at the
cost of a dramatic increase in the number of tile types for most patterns [18, 19].
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be added; and spontaneous nucleation errors in which a large assembly grows
in the absence of a seed tile. By replacing each tile in the original tile set
by a k × k block of new tiles, growth and facet nucleation errors [14] can be
reduced exponentially (in k) with only moderate slow-down. A similar expo-
nential reduction can be achieved for nucleation errors in a mass-action variant
of the kTAM [15]. Each of these works addresses only certain error types and
provides a construction that works for a limited class of tile sets. Therefore,
the outstanding issue for fault-tolerant algorithmic self-assembly according
to reversible, error-prone growth processes is whether these methods can be
combined into a single transformation that works for a wide class of tile sets
and simultaneously solves all three types of errors. Although we do not yet
have a definitive answer to this question, it appears that the basic principles
have been identified and the foundation has been laid for a complete solution.

1.2 The challenge of self-healing crystals

Here we consider a qualitatively new type of error: gross damage to an assem-
bly, such as a puncture, that removes a region containing many tiles. Such
events are so rare in the kTAM as to be effectively non-existent, yet it is easy
to imagine physical circumstances that would result in gross damage, such
as fragmentation and ripping induced by fluid flow or interaction with other
objects in solution. The question is whether an algorithmic crystal subject
to such misfortune will be capable of healing the damage correctly. This self-
healing behavior was observed to occur frequently, but not always, in kTAM
simulations of proofreading tile sets [13]. Can self-healing behavior be guaran-
teed for some tile sets? We formulate this question with respect to the aTAM,
so as to focus on the information-propagation aspects of the problem rather
than on the probabilistic aspects.

Definition 1. We call a tile system self-healing (in the aTAM) if the fol-
lowing property holds for any produced assembly: If any number of tiles are
removed such that all remaining tiles are still connected to the seed tile, then
subsequent growth is guaranteed to eventual restore every removed tile without
error.

Several questions come to mind. First, why the restriction that remaining
tile are still connected to the seed? If gross damage breaks an assembly into
several pieces, we might wish that all fragments regrow properly. But some
fragments could be very small – just a few tiles – and it is unreasonable to
expect correct regrowth in all such cases. On the other hand, since we know
that growth from the seed tile is capable of constructing the entire assembly, it
is also capable of re-constructing it, at least if tile additions occur in the right
order. Rather than attempt to discern exactly which fragments can support
regrowth, we will be satisfied with just the seed fragment3. So, are our favorite

3 Salamanders can regrow their tails, but their tails can’t regrow the salamander.
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Fig. 2. Erroneous re-growth of a Sierpinski assembly after damage that removed
n = 19 tiles. Numbers at empty sites indicate the number of distinct tile types that
could be legally added at a site according to aTAM growth; where more than one
tile may be added at a location, correct regrowth is no longer guaranteed. Note that
the positions where incorrect regrowth can occur are dependent upon the tile set;
the binary counter tiles, for example, exhibit non-deterministic regrowth in different
growth directions (regrowth from north and west inputs is sometimes ambiguous,
as is regrowth from east and west inputs) than the Sierpinski tiles (regrowth from
north and west inputs is always ambiguous).

tile sets self-healing? This can be quickly answered, in the negative, for the
three tile sets shown in Figure 1. Several types of erroneous regrowth are
shown for the Sierpinski tile set in Figure 2; similar errors occur in the other
tile sets. Then do any self-healing tile sets exist? Yes; the simplest example is
a periodic crystal in which every bond type is unique to the two tile types it
joins, and all bonds are strong. Uniquely-addressed finite assemblies can also
be self-healing. This is, however, an extremely limited class of self-assembled
patterns. Can algorithmic self-assembly be self-healing? It is far from obvious.

A first hope might be that robustness-enhancing tile set transformations,
such as the original [13] and snaked [14] proofreading schemes, already provide
self-healing properties. While kTAM simulations do show improved ability to
regrow into punctures, it is not perfect, and in the aTAM errors are even more
frequent. Examination of those block transformations suggests that typically
both proofreading approaches will result in new tile sets that suffer the same
regrowth problems as the original tile sets.
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The remainder of this paper shows that self-healing is possible for algo-
rithmic self-assembly. We first present a 3 × 3 block transformation that can
be applied to tile sets, like the Sierpinski and binary counter tile sets, that
grow within a quarter-plane from a L-shaped boundary. A proof technique
is developed for showing that the resulting tile sets are indeed self-healing.
The simplicity of these techniques makes it straightforward, then, to design
and test block transformations that work for a wider class of tile sets. We
present a 5 × 5 scheme that works for many (though not all) locally deter-
ministic tile sets, including all three examples from Figure 1. Finally, we ask
how these results are affected if regrowth occurs not one tile at a time (as
in the aTAM), but by the addition of strongly-connected chunks of tiles that
may have formed on their own without the seed (which we call the polyomino
aTAM). Under these more challenging conditions, self-healing is still possible,
but our construction uses 7×7 blocks. We conclude with a discussion of open
questions.

2 Self-healing transformations for quarter-plane patterns

What makes self-healing hard? The problem is that whereas the original tile
set may have been deterministic when growing in the expected directions,
with the expected input sides and propagation sides, regrowth may occur in
any direction and tile additions may no longer be deterministic. For example,
in the case of quarter-plane growth from a L-shaped boundary, the rule tiles
have four weak bonds, two of which serve as input and two as output; while
there must be a unique tile for any input pair, there may be multiple tiles that
have the same output pair. If such a tile is removed, the other (incorrect) tile
could be added during regrowth, binding by the two weak bonds on its output
sides. Incorrect regrowth could also occur if two tiles share some combination
of an output side and an input side (either adjacent or opposing). Between
the Sierpinski tile set and the binary counter tile set, all such situations occur.

Quarter-plane growth from a L-shaped boundary is a rich class of tile
sets, capable of creating a great variety of patterns. In fact, it is sufficient for
universal computation by simulation of blocked cellular automata or Turing
machines [10, 16]. In general we may wish to use rule tiles simulating a blocked
cellular automaton that outputs < f(x, y), g(x, y) > for input < x, y > where
x and y are from some possibly large finite alphabet and f(·, ·) and g(·, ·) are
arbitrary functions4. Input is provided by the boundary tiles that create the
L; locally deterministic growth allows each arm of the L to consist of a finite
initial sequence of boundary tiles followed by a finite repeating sequence. We

4 Reversible 1D cellular automata, for which the “inputs” < x, y > are also a func-
tion of the “outputs” < f, g >, are a widely-studied class that includes Turing-
universal computation [20]. Tile sets directly simulating these cellular automata
would be immune from ambiguity in the backward regrowth direction, but the
possibility for problems in other directions remains.
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need a block transformation that works for all such tile sets, which we call
L-BCA tile sets5.

There are two options: either to make sure that in the transformed tile
set sufficient information is present for any direction of regrowth, or else to
ensure that regrowth in the wrong direction is impossible. The former seeming
impossible, we take the second approach. The only way to prevent backward
and sideways regrowth is for the transformed tile set to contain null bonds
at key positions that control the growth path; the principle here is adapted
from the mechanism that prevents facet nucleation in the snaked proofread-
ing construction [14]. A 3 × 3 self-healing block transformation is shown in
Figure 3, wherein each original tile produces 9 new tiles with labels and bond
strengths according to a template that depends upon the original tile’s bond
strength pattern. (Rotated tiles use rotated templates.) For each tile type
t =< a, b, c, d > in the original tile set, nine tile types are included in the
new tile set. The new bond types are indexed variants of the original tile type
(e.g. t3) or bond type (e.g. a5). These are respectively called tile-type bonds
and bond-type bonds. New tiles that use at least one tile-type bond are given
the same color as the original tile and are called block tiles, whereas new tiles
that use exclusively bond-type bonds are left uncolored and are called bond
tiles. The same bond tile type may result from the transformation of distinct
original tiles. Examination of a damaged crystal grown from the transformed
Sierpinski tile set illustrates the inability to grow backwards or sideways where
there is any potential ambiguity. But how can we prove that this is always
the case? We use two simple lemmas, stated informally but hopefully unam-
biguously.

Lemma 1. If a tile can be added at a particular site in some assembly, then
it can be added at the same site (if it is open) in any larger assembly that
contains all the same tiles (and then some).

This follows immediately from the threshold condition for tile addition in the
aTAM: bond strengths are non-negative and mismatches do not interfere (i.e.,
they contribute strength zero). �

Lemma 2. Consider an assembly produced from a tile set according to the
aTAM. Remove any single tile (not the seed), as a test. The test succeeds if
there is a unique tile that can now be added at that site according to aTAM
growth. The tile set is self-healing if and only if this test succeeds for every
possible tile in every possible produced (i.e., correct) assembly.

First, the easy implication is immediate: if a test fails, then the tile set is not
self-healing. For the converse, now suppose that a tile set is not self-healing.
That means that there is some pattern of damage, and some sequence of
regrowth that leads to a first incorrect tile t. Prior to adding t, every tile that

5 These are quarter-plane tile sets discussed in Ref. [19], but augmented by a seed
tile and the boundary tiles.
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Fig. 3. Top: Templates for the 3×3 self-healing transformation for rule tiles, bound-
ary tiles, and the seed tile. Bottom: A damaged assembly grown using the trans-
formed Sierpinski tile set. Sites may allow no immediate regrowth (red crosses),
regrowth from incorrect input sides (black checks), or regrowth from correct input
sides (green arrows). Note that a series of legal tile additions allows the partial yel-
low blocks to regrow independent of other activity, but the upper left damaged block
(*) cannot regrow until both its input blocks have formed.
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was present was correct. Add to this assembly all the other tiles (other than
at t’s site) that had been removed in the damage. We now have a produced
(correct) assembly with a single tile removed. By Lemma 1, t can be added in
this assembly too. So can the correct tile, which is different from t. We have
thus identified a test that fails. �

We can now prove that the 3× 3 self-healing transformation works for all
L-BCA tile sets.

Theorem 1. The 3×3 block transformation shown in Figure 3 produces a self-
healing tile set when applied to any L-BCA tile set. Furthermore, the resulting
tile set will construct the same pattern as the original tile set, but at a 3-fold
larger scale; specifically, the majority color of each block will be identical to
the corresponding tile in the original pattern.

To prove this, we need to show (1) that aTAM growth from the seed will pro-
duce the correct pattern (at a larger scale), and (2) that every test conceivable
by Lemma 2 is bound to succeed. For claim (1), all we need to do is iden-
tify a locally deterministic assembly sequence. This is easy, since all L-BCA
tile sets are locally deterministic, we can start with a locally deterministic
assembly sequence for the original tile set, and show that we can elaborate
it into an assembly sequence for the transformed tile set that remains locally
deterministic. For each tile added in the original sequence, we add a series
of 9 tiles for the corresponding block of the transformed tile set. Since we
know which sides are the input sides for the original L-BCA tile (south and
east for rule tiles, south or east for boundary tiles, and no inputs for the
seed tile), it is easy to find a canonical series of tile additions for each trans-
formed block, assuming the blocks for the corresponding inputs are already
completely present. Therefore, in the blocks each tile has a canonical growth
direction (as illustrated) and it can easily be verified that each tile addition is
locally deterministic (exactly strength-2, and growth from input and terminal
sides is unique). When at least one input side is within the block, uniqueness
is automatically guaranteed; when binding via a single strong bond as the
first tile in a boundary block, uniqueness follows from the uniqueness of tile
addition on the boundary in the original tile set; when binding via two weak
bonds as the first tile in a rule block, uniqueness follows again from unique-
ness of tiles with a given input pair in the original tile set. Thus, we have
constructed a locally deterministic assembly sequence for the transformed tile
set. This establishes part (1) of the result.

Part (2) can also be established by local examination of the transformed
blocks, using Lemma 2. For each tile within each block, we examine all possible
combinations of sides that contain total bond strength at least 2, and we ask
whether there is a unique tile that matches those sides. For rule blocks, eight
tiles need at least one side internal to the block, which therefore establishes
uniqueness; the exception is the tile in the lower right corner, which can grow
from input sides on the south and east – but for L-BCA tile sets, there is a
unique tile with this pair of inputs. So no test can fail within a rule block.
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For boundary blocks, there are three exceptions to the rule that at least one
side must be internal to the block; these are (a) the bond tile, whose sides are
unique to that bond type; (b) the lower right tile, which is unique because
boundary growth in the original tile set is unique; and (c) the lower left tile,
which is unique for the same reason. For the seed block, the only exceptions
are again the bond tiles (which are unique) and the upper left tile (which is
the only tile touching both a horizontal and a vertical boundary, and thus is
unique). This establishes the conditions for Lemma 2, and thus completes the
proof that the transformed tile set is indeed self-healing. �

This proof also helps us understand why it was necessary to include “bond
tiles”, which at first seem like an out-of-place hack: if both boundary blocks
and the seed block had block-specific tiles in the upper right corner, then
backward growth from a boundary block (with a damaged region underneath
it) would no longer be unique – sometimes the seed block corner tile would
attach in this position. In fact, we will see that bond tiles play an important
role in the more general self-healing transformations to come.

3 A general self-healing transformation

We now know that it is possible to have algorithmic growth that is self-
healing. Unfortunately, L-BCA tile sets, though computationally universal,
do not include most examples of algorithmically-generated morphology, such
as the square of Figure 1, which exhibit much greater variety in the growth
path. We would therefore like a self-healing transformation that will work
for any locally deterministic tile set, thus being applicable to essentially all
algorithmic self-assembly tile sets considered in the literature (e.g. [11, 21, 22,
12]). However, two situations are allowed in locally deterministic tile sets that
cause technical difficulties for the block transformations that are presented
below: first, the same tile type might appear with different input sides and
propagation sides at different locations within an assembly; and second, the
correct final assembly might contain weak bonds along the outer perimeter
or internal mismatches between tiles. Rather than attempt to handle these
possibilities, we choose to restrict our attention to tile sets in which neither
of these situations arises. Many tile sets in the literature are already of this
form, and others can be converted with a little thought. In any case, we are
lead to the following definition.

Definition 2. A transformable tile set is a locally deterministic tile set with
the additional properties that (1) each tile type always appears with the same
sides as input, propagation, and terminal sides, and (2) all non-null bonds are
either input sides or propagation sides.

This means that all final structures are “capped” by tiles with null bonds on
the outside, as is the case in the square assembly of Figure 1. It also means
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Fig. 4. A 5 × 5 self-healing transformation. Top: The four bond-strength patterns
for tile input sides. Non-input sides (indicated by ?’s) may have any strength. Bot-
tom: The corresponding block templates. Colored tiles are called block tiles; bonds
between block tiles are tile-type bonds. Uncolored tiles are bond tiles and have ex-
clusively bond-type bonds. Within each block template, each bond type appears
uniquely (in any given direction). Bond-type bonds in equivalent positions of dif-
ferent blocks are of the same type. If the original tile had a null bond, then the
corresponding bond tile in the template is replaced by a block tile with 3 tile-type
bonds and a null bond. Original tiles with rotated input bond patterns use rotated
templates.

that tile types can be labeled with arrows indicating their input sides, and
these labels are correct for all locally deterministic assembly sequences.

Rather than the three bond-strength patterns (rule tiles, boundary tiles,
seed tiles) of L-BCA tile sets, transformable tile sets may have a great variety
of bond-strength patterns. We can avoid having a separate block transform
for every bond-strength pattern by adopting a uniform convention for the
interface between blocks that is the same regardless of whether a strong bond
or a weak bond is being represented. By using the same block transform for
all tile types with the same input bond-strengths pattern (regardless of the
strengths on the non-input sides), we require only four block schemes to be
specified, as shown in Figure 4 for a 5×5 self-healing transformation. The four
cases are (a) diagonal rule blocks, in which two adjacent weak bonds serve as
the input; (b) convergent rule blocks, in which two weak bonds on opposite
sides of the tile serve as the input; (c) strong blocks, in which a single strong
bond serves as the input; and (d) seed blocks, which have no input. Note that
bond tiles now play a much more prominent role in the blocks. The growth
pattern within each block is designed so that output bond tiles receive their
input in a clockwise growth direction; this way, rotated blocks that define the
same bond tile will use it with a consistent growth direction.

Theorem 2. The 5 × 5 block transformation shown in Figure 4 produces a
self-healing tile set when applied to any transformable tile set. Furthermore,
the resulting tile set will construct the same pattern as the original tile set,
but at a 5-fold larger scale; specifically, the majority color of each block will
be identical to the corresponding tile in the original pattern.
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The proof of this theorem follows exactly along the lines of the proof for the
3× 3 transformation, but with more cases to test for Lemma 2. Tests of block
tiles succeed because either at least one input is another block tile from the
same block, or else all inputs (from bond tiles) specify a unique tile due to
the original tile set being locally deterministic. Tests of bond tiles succeed
because all their bonds are unique to the particular bond tile type. �

This transformation is now sufficient for showing that the growth of arbi-
trary algorithmic shapes [12] can be self-healing. Incidentally, the transforma-
tion of a transformable tile set is also a transformable tile set, an interesting
closure property that could aid in combining different robustness transforma-
tions.

We can now revisit the question of why bond tiles were necessary. The es-
sential reason is that in the original tile set, strong bonds dictate a determinis-
tic tile choice in the forward growth direction, but may be non-deterministic in
the backward growth direction. This difficulty is compounded by our choice
(made for the convenience of being able to write the block transformation
concisely) to treat output sides uniformly for both weak and strong outputs.
Consequently, every output side has a strong bond, and non-deterministic
backward growth could be severe. Thankfully, by padding all sides of the
block with null bonds, we can prevent the backward growth from continuing
for more than a single tile – the bond tile. However, all those null bonds make
forward growth difficult for diagonal blocks and convergent blocks, because
the two pieces of information required to know the new block’s type are not
co-localized. The solution in this case is to project that information into the
center of the tile by a non-committal growth process (bond tiles); the actual
decision is then made in the center where the information can be combined.

4 Self-healing for polyomino tile sets

Tile sets produced by the 5×5 self-healing transformation have a lot of strong
bonds, even when the original tile set had quite few. This elicits some concern
from those familiar with physical self-assembly, because it brings into question
the assumption that growth occurs only from the seed tile, and that all sub-
sequent steps consist of the accretion of a single isolated tile at a time, rather
than by the aggregation of separately-nucleated fragments. In the absence of
the seed tile (for the seed block), one can consider aTAM growth from each
of the other tiles in the tile set. Ideally, such growth cannot proceed far, thus
supporting the accretion hypothesis in spirit if not in detail. However, we are
not so lucky with this 5× 5 transformation. The worst offenders here are the
strong blocks: starting with first tile in the block’s usual assembly sequence
as a “mock seed”, aTAM growth puts together the entire 25-tile block, and
possibly more. This is just asking for trouble.

We therefore consider whether it is possible to create self-healing tile sets
in which significant spurious nucleation does not occur, and for which aggre-
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Fig. 5. A 7×7 self-healing transformation that yields polyomino-safe tile sets. Top:
The four bond-strength patterns for tile input sides. Bottom: The corresponding
block templates. Note that each side of each block now exposes one strong bond and
two weak bonds.

gation of seeded assemblies with spuriously nucleated assemblies is too weak
to proceed, except when it results in correct assemblies. Previous work on
controlling spurious nucleation in a mass-action kTAM model made use of
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the principle that growth from a non-seed tile must take several unfavorable
steps (which would not be allowed in the aTAM) before unbounded favorable
growth (allowed in the aTAM) becomes possible [15]. Essentially, the solution
presented there corresponds to a block transformation in which strong bonds
are placed sufficiently far apart; in fact, instead of using tiles with strong
bonds, in that work such tiles were permanently stuck together and treated
as a single polyomino tile with each unit side containing a weak bond (or a null
bond). The polyomino formalism provides a suitable “worst-case” framework
for treating aggregation. (Our model is essentially the same as the “multiple
tile” model of Ref. [23].)

Given a tile set that uniquely produces a target assembly under aTAM
growth from the seed, we will define a corresponding set of polyominoes.
Begin with the given tile set excluding the seed tile – this is the first step in
the construction of all possible spuriously nucleated assemblies (here called
polyominoes). Now iterate: if it is possible to place two such assemblies next to
each other such that they can form bonds with a total strength at least 2, then
add the resulting assembly to the set of polyominoes. If this process does not
terminate or if any polyomino is not a subset of the target assembly, declare
failure; the given tile set is not polyomino-safe. Otherwise, we have a finite
set of polyominoes representing assemblies that have spuriously nucleated and
aggregated without the seed tile.

The polyomino aTAM begins with the seed tile and allows the addition of
any polyomino (in the set defined above) placed such that it can form bonds
with a total strength of at least 2. Under the polyomino aTAM, any assembly
that was produced by the aTAM can still be produced, since all individual
tiles are also in the polyomino set (except for the seed tile itself, which is
not used for growth in transformable tile sets). Possibly additional (and thus
incorrect) assemblies can also be formed when polyominoes are used. For our
purposes, uniqueness will follow from the polyomino-safe self-healing property
– if deviations from the correct tile placement is impossible during re-growth,
then it must also have been impossible during growth the first time around.

Definition 3. We say a tile set gives rise to polyomino-safe self-healing

if the following property holds for any produced assembly: If any number of
tiles are removed such that all remaining tiles are still connected to the seed
tile, then subsequent growth according to the polyomino aTAM with the corre-
sponding polyomino set is guaranteed to eventually restore every removed tile
without error.

To prove that a tile set has this property, we need polyomino variants of
the previous lemmas.

Lemma 3. If a polyomino can be added at a particular site in some assembly,
then it can be added at the same site (if it is open) in any larger assembly that
contains all the same tiles (and then some).
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Lemma 4. Consider an assembly produced from a tile set according to the
aTAM. Choose a polyomino from the corresponding polyomino set, and choose
a location where it overlaps existing tiles. (It necessarily does not overlap the
seed tile.) As a test, remove all overlapped tiles. The test succeeds if either
the polyomino makes no more than a single weak bond with the remaining
assembly, or if all tiles in the polyomino are identical with the removed tiles.
The tile set gives rise to polyomino-safe self-healing if and only if this test
succeeds for every possible case.

The proofs are straightforward adaptations of the proofs of the previous
lemmas. �

It now becomes straightforward, although tedious, to verify the following:

Theorem 3. The 7 × 7 block transformation shown in Figure 5 produces a
polyomino-safe self-healing tile set when applied to any transformable tile set.
Furthermore, the resulting tile set will construct the same pattern as the orig-
inal tile set, but at a 7-fold larger scale; specifically, the majority color of each
block will be identical to the corresponding tile in the original pattern.

The corresponding polyomino set contains only small polyominoes (no
more than 4 tiles each) that consist of either entirely bond tiles or entirely
block tiles. Bond polyominoes can only replace identical bond tiles, since
their bond-type bonds are unique. Block polyominoes may have both tile-
type bonds and bond-type bonds. Most block polyominoes have no more than
one bond-type bond; therefore, to attach, the polyomino must make at least
one tile-type bond, which uniquely positions it within the correct block. The
only exceptions occur at the centers of diagonal and convergent rule blocks
and at the input to strong blocks. At these sites, a block polyomino may
bind by bond-type bonds with strength 2, but in these cases uniqueness is
guaranteed by the original tile set being locally deterministic. �

This tile set operates on the same principles as the 5×5 tile sets, with the
added precaution that in order for a strong block to grow, the central strong
bond tile must be supported by tiles presenting weak bonds on either side.
By distributing responsibility for propagating information through the sides
of the blocks, no single tile on its own is capable of nucleating the growth of
the entire block. Note that even if the original tile set was not polyomino-safe,
the transformed tile set will be.

5 Open questions

We now know that self-healing is possible in passive self-assembly. How good
can it get?
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Generality and optimality of the block transformations. The first question is
whether a wider class than the “transformable” tile sets can be made self-
healing. Tile sets that produce a language of shapes – rather than uniquely
producing a target assembly – are clearly not going to work, because self-
healing can’t be guaranteed at the first non-deterministic site. But might it
be possible to find a transformation that works for any locally deterministic
tile set?

Scale is an important issue for self-assembled objects [12, 18]. In previous
work on fault-tolerant self-assembly (in the kTAM), increased robustness was
achieved at the cost of increased scale [14, 15, 19]. In this work (in the aTAM),
a maximal level of robustness is achieved with a constant scale-up – seven-fold,
for polyomino-safe self-healing. It is intriguing to ask whether the strategies
of Refs. [18, 19] can be use to produce that self-healing tile sets that incur
no scale-up costs – although this will come at the cost of an increase in the
number of tile types. The technical challenge, in this case, concerns the bond
tiles, which will not necessarily carry the color of the block they appear in.

Can self-healing be achieved without the use of extra strong bonds and null
bonds, which presumably make a self-assembled molecular object more fragile?
In this case, most tiles will be rule tiles (i.e., they will have four weak bonds),
and therefore a puncture will be able to grow back in from any direction. The
self-healing property requires, in this case, that no two rule tiles may have any
pair of identically-labeled sides. This seems very restrictive. How restrictive?

We chose here to define “self-healing” with respect to the fragment of
a damaged assembly that contains the seed tile – we were not concerned
with what happens when the other fragments regrow. In fact, there are some
situations, such as when just a small region containing the seed is destroyed,
for which it would be very desirable if regrowth could repair the damage.
This seems in principle possible for some definition of “small”, for example by
having unique bonds in a region surrounding the seed. How can this robustness
be quantified, and can a general construction be found that achieves arbitrary
levels of robustness for a small cost?

Robustness to continual damage. So far, we have considered repairing an iso-
lated damage event, and we have shown that it is possible to do so. What if
there is repeated damage, with punctures of various sizes occurring at various
rates? If the damage events are sufficiently far apart in space and time, then
each puncture will be completely healed before any further damage occurs
nearby. The expected time to repair n-tile damage is O(n), since in the worst
case there is a linear chain of dependencies and the n sites must be filled in
that order. Thus, even if damage events have a weak power law distribution
(i.e., with a long tail), self-healing tile sets should be able to maintain the
correct pattern: we have a guarantee that any tile added to the assembly will
be correct, and the only question is whether tiles are being removed faster or
being replaced faster. Figure 6 shows simulations that confirm this intuition,
in a variant of the aTAM in which each tile type is tested to be added at each
site with forward rate f (as a continuous-time markov process) [21].
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Fig. 6. Growth under a barrage of damage events. Size k×k square puncture events
occur (centered at any given tile) at a rate 1000k4-fold less than the forward rate
f for tile addition. (I.e., an exactly 10 × 10 hole will be punctured somewhere in a
100 × 100 area in about the same time as it takes for 1000 tiles to visit a particular
site and attempt to bind. There being 61 tile types in the assembly on the right, this
corresponds to about once every 17 successful tile additions, i.e., 17 layers of tiles
regrown.) Left: The original Sierpinski tile set. The target Sierpinski pattern has not
yet been entirely erased and can still be discerned. Right: The 3×3 transformed tile
set. The scale is reduced by a factor of 3, so that each 3 × 3 block is the same size
as a single original tile on the left. The simulation was allowed to run four times as
long (in terms of events per tile). Except for holes that are in the process of healing,
the entire Sierpinski pattern is perfectly correct.

However, there is a catch. Two catches. The first is that for many natural
models of environmental damage, the distribution of event sizes has very long
tails. This is due to the connectivity constraint: damaging or removing a small
number of tiles from an assembly may result in a disconnected fragment, and
thus necessitate the formal removal of a large number of additional tiles. This
is particularly severe in long thin assemblies and near the corner of L-shaped
assemblies. The second catch is that there is a finite rate at which either the
seed tile itself will be destroyed, or barring that, a small region around the
seed tile will be disconnected from the rest of the assembly. This means that
every so often, the entire structure will have to regrow from the seed – a hard
reboot. Is it possible that algorithmic growth can be designed to repair itself
even when a region containing the seed tile is removed?

Performance in the kTAM. At the beginning of this paper, we mentioned
earlier work that addressed how to make a tile set more robust to growth
errors, facet nucleation errors, and spurious nucleation errors in physically
reversible models such as the kTAM. Here, we examined robustness to punc-
tures – which seems like an error mode orthogonal to the previously examined
ones – and analyzed how to achieve robustness in the aTAM, so as to focus
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on the new aspects of this problem. How well do our solutions work in the
kTAM? Preliminary tests with the 3 × 3 self-healing tile set show that al-
though it is a great improvement over the original 1 × 1 tile set, it does not
perform dramatically better than the simpler 3 × 3 proofreading tile set of
Ref. [13]. We can attribute this to two factors: first, the self-healing tile set
uses only two sides of each block to encode information – rather than all three
in the proofreading tile set – and therefore it suffers a higher rate of growth
errors. Secondly, even when proofreading tiles regrow incorrectly, the growth
usually does not proceed far before an inconsistency prevents further growth;
this tends to stall the regrowth and allows the incorrect tiles to fall off... often,
but not always. Can better performance be achieved by explicitly incorporat-
ing principles for all previously examined types of errors into the design of a
block transformation that yields tile sets robust to all error types?

Experimental practicality. The study of fault-tolerant tile sets is motivated in
large part by the promise of using algorithmic self-assembly for bottom-up
fabrication of complex molecular devices. Theory, however, naturally leads in
directions appreciated only by theorists. How practical are the self-healing tile
sets presented here? For comparison, there is already on-going experimental
work investigating 2 × 2 proofreading systems as well as 2 × 6 blocks for
controlling spurious nucleation. Therefore, 3 × 3 blocks could in principle be
investigated in the near future – but I would think it would be a challenging
experiment! For DNA tile self-assembly, having a polyomino-safe tile set may
be important to help prevent spurious nucleation, but 7 × 7 blocks (49-fold
more tiles!) don’t engender enthusiasm. Finding smaller self-healing tile sets
would be a considerable advance.

A completely different approach to self-healing would be to use more so-
phisticated molecular components. There have already been proposals for
DNA tiles that reduce self-assembly errors by means of mechanical devices
(implemented by DNA hybridization and branch migration) that determine
when a tile is ready to attach to other tiles or when it can be replaced by
other tiles [24, 25, 26]. Although intimidating to experimentally develop such
a complex tile, these approaches may ultimately have great pay-off as they
can in principle reduce all the types of errors discussed in this paper, and the
resulting complex tiles are likely to be much smaller than the e.g. 7×7 blocks
presented here.

Finally, there are more serious types of physical damage that could occur.
For example, within the damaged area, some tiles might be broken such that
they continue to stick to the crystal, but no further tiles can stick to them. It
seems that removing such tiles would require active processes.

6 Discussion

As Ned tells it, DNA nanotechnology began with a vision of an Escher print
and a scheme for creating DNA crystals using 6-armed junctions – which we
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now know won’t work. Nonetheless, this vision has lead to an incredible rich-
ness of experimentally-demonstrated DNA structures, devices, and systems,
which confirms the validity of the original insight. This gives the theorist
some hope that in this field, persistently pursuing a compelling idea can lead
to something real – even if the original formulation is tragically flawed. Most
importantly, Ned’s vision has inspired new fields of research that seem to have
taken on a life of their own.

Consider passive molecular self-assembly of the sort discussed in this pa-
per. It is a small corner of DNA nanotechnology, devoid of complicated DNA
structures, nanomechanical devices, catalysts and fuels, and other sophisti-
cated inventions. Even so, passive self-assembly has revealed itself to be more
interesting than I ever would have imagined! Rather than appearing more
and more like crystals (the lifeless stuff of geology), passive self-assembly now
seems a microcosmos for the fundamental principles of biology – at least, if
seen through a blurry and somewhat rose-colored lens. Specifically, passive
molecular self-assembly seems to encompass several of the main aspects for
how molecularly-encoded information can direct the organization of matter
and behavior:

Programming. How can one specify a molecular algorithm? Algorithmic self-
assembly – a natural generalization of crystal growth processes – is Turing-
universal [10]. The choice of a tile set is a program for self-assembly.
This shows that molecularly-encoded information can be very simple (just
the complementarity of binding domains) and yet capable of specifying
arbitrarily complex information processing tasks.

Complexity. What kinds of structures can be self-assembled, and at what
costs? In fact, any shape with a concise algorithmic description can be
constructed by a concise tile set – at some increase in scale [12]. There is
a single tile set that acts as a universal constructor; given a seed assem-
bly containing a program for what shape to grow (encoded as a pattern
of bond types presented on its perimeter), this tile set will follow the
instructions in a way vaguely reminiscent of a biological developmental
program.

Fault-tolerance. Can errors in self-assembly be reduced sufficiently to ap-
proach biological complexity? Biological organisms often grow by many
orders of magnitude from their seed or egg, and often the mature indi-
vidual consists of over 1024 macromolecules. All this despite the stochas-
tic, reversible, and messy biochemistry underlying all the molecular pro-
cesses. Reducing errors in algorithmic self-assembly to this level seems
quite challenging, but theoretical constructions for error-correcting tile
sets [13, 14, 15] appear to do the job – at least, on paper.

Self-healing. Can severe environmental damage be repaired? The purpose of
this paper has been to show that if the damage is simply the removal of
tiles in the damaged region, then it is possible to design algorithmic tile
sets that heal the damage perfectly.
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Self-reproduction and evolution. Can algorithmic crystals have a life cycle?
The copying of genetic information from layer to layer in a crystal is a
simple algorithmic task. If, when haphazardly fragmented, both pieces
of the original crystal contain copies of the same information, then one
can say the the information has been reproduced. If the information has
a selective advantage, for example serving as the program for some al-
gorithmic growth process, then Darwinian evolution can be expected to
occur [27].

Remarkably, what seems to be the most elementary physical mechanism –
crystallization – is already capable of exhibiting many of the phenomena com-
monly associated with life [28].
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