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Abstract

Cairns-Smith has proposed that life began as structural patterns in clays that self-replicated during cycles of
crystal growth and fragmentation. Complex, evolved crystal forms could then have catalyzed the formation
of a more advanced genetic material. A crucial weakness of this theory is that it is unclear how complex
crystals might arise through Darwinian selection. Here we investigate whether complex crystal patterns
could evolve using a model system for crystal growth, DNA tile crystals, that is amenable to both theoretical
and experimental inquiry. It was previously shown that in principle, the evolution of crystals assembled
from a set of thousands of DNA tiles under very specific environmental conditions could produce arbitrarily
complex patterns. Here we show that evolution driven only by the dearth of one monomer type could produce
complex crystals from just 12 monomer types. The proposed mechanism of evolution is simple enough to
test experimentally and is sufficiently general that it may apply to other DNA tile crystals or even to natural
crystals, suggesting that complex crystals could evolve from simple starting materials because of relative
differences in concentrations of the materials needed for growth.

1 Introduction

A plausible hypothesis for the origin of life on Earth must explain both spontaneous self-replication, i.e.
how a self-replicating system first emerged, and open-ended evolution, i.e. how Darwinian evolution of this
system led to complex organisms. Spontaneous self-replication requires that the components of the genetic
material and the environment for replication existed on the early Earth, ideally in abundance, and that
the assembly of these components into a replicator could reasonably have occurred. Open-ended evolution
requires at minimum that complex genomes exist which would be fitter than all simpler genomes under
plausible environmental conditions. A major difficulty in origin of life research is that while many hypotheses
can explain the process by which either spontaneous self-replication or open-ended evolution might have
occurred, no one hypothesis yet gives a detailed picture of the sequence of events leading to both.

There are many simple systems capable of replication that may have existed on the early Earth, includ-
ing fire, autocatalytic reaction cycles [30] or lipid vesicles [31, 29] for which it is not clear how Darwinian
evolution might produce complexity. Similarly, there are complex systems, such as DNA combined with en-
zymes [20], ribozymes with specific oligonucleotide substrates [17], prions [16], DNA crystals [25], robots [15,
13] or computer programs [1] for which complex evolution seems feasible, but how they might have arisen
spontaneously is not clear.

Graham Cairns-Smith has proposed that polytypic clay crystals, which may have been common on the
early Earth, could have been the first replicators [5, 7]. If each layer within a clay crystal could contain
monomers in any of several distinct arrangements (called layer types), then the sequence of layer types in
a stack of layers would contain information. Crystal growth would propagate this information and crystals’
occasional breaking would produce new growth fronts for its propagation, thereby amplifying it (Figure 1).
Particular clay crystal sequences might promote catalytic functions that would be selected for, and eventu-
ally these crystal sequences would evolve into more complex sequences to promote more complex chemical
functions, until the chemistry induced by the crystal’s sequence became capable of self-replication on its
own. Cairns-Smith called this scenario a “genetic takeover” [6].



To date no one has demonstrated clay crystal information replication [4] and there is no direct experimen-
tal evidence that particular clay sequences have properties that might make them particularly efficient replica-
tors [8]. However, one reason for its continued discussion [21] is that both prebiotic replication of clay patterns
and the idea that some complex clay structures could have selective advantages seem reasonable. Since there
has been only limited investigation into either of these questions, it is worth investigating whether clay might

Fig. 1. Cairns-Smith’s theory of crystal

replication. Heterogeneous crystals propagate
information consisting of the arrangement of
monomers (shown as stripes) during growth. Crys-
tal fragmentation creates new growth fronts to
propagate the information. Monomers are replen-
ished, and nucleation occasionally produces new
crystals.

be capable of spontaneous self-replication and open-
ended evolution.

However, it is unclear more generally how any com-
plex crystal could arise through Darwinian selection.
Here we consider whether there are features of crystal
growth dynamics, rather than of chemistry particular to
clay crystals, that might result in the evolution of com-
plex crystals. We use DNA tile crystals, a model system
for investigating generic features of 2 dimensional crys-
tal growth [25]. DNA tile crystals can be readily studied
experimentally (e.g. [37]) and theoretically using quan-
titative models (e.g. [36]).

One might be skeptical that generic features of crys-
tal growth alone could be responsible for complex crystal
evolution: It is generally assumed that a complex se-
quence would evolve because the sequence imbues some
chemical functionality or otherwise alters the environ-
ment in a way that improves its reproductive fitness.
However, a complex crystal may be selected for sim-
ply because it uses more abundant raw materials in its
growth than simpler crystals. The preference for the ad-
dition of monomers that form multiple contacts with an
existing crystal can put complex constraints on the or-
der and frequency with which a crystal uses available
monomers. It has been argued that these constraints
could cause the selection of complex crystals [27], but so
far only for crystals containing thousands of monomer
types and under special physical conditions that are of
limited relevance to natural crystal growth.

We will show that similar constraints could produce
complex evolution in DNA tile crystals containing just
12 monomer types and over a wide set of physical con-
ditions. We use a cellular automaton model [34] to enu-
merate the set of crystal morphologies that could be pro-

duced by a given set of monomers (a tile set). We show that if the monomer compositions of the crystal
morphologies produced by a given tile set satisfy a simple property, then in a simplified model of growth we
would predict selection of complex crystals. Using a combinatorial search, we find tile sets that satisfy this
property. We then use a kinetic simulation to show that for at least one tile set, this evolution also occurs in
a more realistic crystal growth model. While our search focuses on crystals containing 12 monomer types, it
is reasonable to suppose that even smaller tile sets can exhibit similar phenomena.

2 DNA Tile Crystal Replication and Evolution

DNA tile crystals consist of tile monomers [12], rigid assemblies of oligonucleotides with short, single-stranded
DNA segments, sticky ends, by which they bind to other tile monomers. Tiles can assemble into rectangular
lattices to produce two-dimensional crystals [37] and ribbons [18, 26, 39]. The ease of working with DNA tiles
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make them a model system for crystal growth: DNA crystal monomers (tiles) are easily created by designing
the tiles’ oligonucleotide sequences, and the growth pathways of DNA crystals are relatively well-understood
at the monomer level [23, 9, 26].

An example set of DNA tile monomers, i.e. a tile set, is shown in Figure 2(a). The diagram describes the
possible interactions between the tile types, which determine the crystal growth dynamics. Edges with the
same color that fit together like jigsaw puzzle pieces represent sticky ends with complementary sequences.
The set consists of square rule tiles, and rectangular top and bottom edge tiles. These tiles can assemble
to form a variety of patterned ribbon structures (Figure 2(d)). Close to the crystal melting temperature,
the addition of a DNA tile to a crystal is energetically favorable only if it forms two or more bonds [35]
(Figure 2(b)).

Under these conditions, a single column of tiles terminated by top and bottom edge tiles uniquely defines
the preferred growth process and ribbon pattern for tiles in Figure 2(a) (Figure 2(c)). Growth produces
ribbons bearing repeating wallpaper patterns (Figure 2(d)). The wallpaper pattern particular to a crystal is
its information, which would be replicated by the process Cairns-Smith proposed.

We are interested in whether evolution in this system might produce complex crystal forms. Crystal
evolution occurs when (a) mistakes during crystal growth occur occasionally, producing mutations, and (b)
some crystals replicate faster than others, i.e. are fitter. The fitness of a crystal is the geometric mean of
crystal growth rate (in columns / time) and the per column rate of crystal fragmentation [27]. For a given
tile set and crystal growth environment, we use mathematical models and simulations to estimate the growth
and fragmentation rates of the crystals and thus their fitness.

A simplified version of the kTAM [24], a generalized crystal growth model applicable to DNA tile crystal
growth [37, 23, 2] can be used to estimate crystal growth rates. We consider a version of this model in which
(a) crystal growth proceeds exclusively by single tile addition (we ignore tile dissociation), (b) a tile may
be added to a site if labels on at least two edges match those presented by the crystal at that site, and
(c) monomer tiles arrive at potential binding sites with a frequency proportional to their concentration in
solution. We assume that occasional violations of rule (b) produce mutations that introduce new crystal
patterns into the population. Because we will show that growth rates can vary arbitrarily widely, we will
for simplicity ignore the dependence of crystal width on fragmentation frequency and assume that fitness is
proportional to crystal growth rate. However, under fluid shear, for example, breakage rates of crystals do
decrease with crystal width [14].

Both the tile set, which is the alphabet that determines the types of ribbons that form, and physical
conditions such as tile concentration determine the results of an evolutionary process. To ask whether crystal
evolution could produce non-trivial genomes, we will examine the complexity of DNA tile crystals that are
produced by an evolutionary process. For simplicity we measure complexity as a crystal’s width. In Section 3
we develop a formalism that describes a family of tile sets we will consider. In Section 4 we then describe an
environment, in terms of tile concentrations, where evolution of complex (wide) crystals could occur.

3 Binary Zig-Zag CA Tile Sets

To clearly enumerate the members of the family of tile sets we wish to consider as possible substrates for
open-ended evolution, we define a cellular automaton variant, the zig-zag cellular automaton (or zig-zag
CA). Computation on a zig-zag CA takes place on a lattice of defined width w and infinite length. The
computation tape is a vertical column of width w, and the horizontal (lengthwise) axis of the lattice contains
the computation history. Cell updates proceed alternately from the top edge to the bottom edge (downward),
then from the bottom edge to the top edge (upward). The input to each cell consists of two values from a
fixed alphabet A : a right value and either a top or bottom value. During updates proceeding downward,
the output right value is a function f1 ({A,A} → A) of the cell’s input “right” value and of the cell above’s
input “bottom” value. The output bottom value is given by f2 ({A,A} → A), which takes the same inputs.
Correspondingly, during upward updates, two functions f3 and f4 that operate on the cell’s input “right”
value and the cell below’s input “top” value determine the new right and top values respectively.

3



(a) (b)

(c)

Repeating pattern

Repeating pattern
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Fig. 2. An example zig-zag CA tile set. (a) The 12 tiles. Notches and colors represent the single-stranded sticky
ends of each tile; interlocking edges of matching color have complementary sequences. Tiles cannot be rotated. (b)
Close to the melting temperature tiles tend to attach to a crystal only where they match at least two edges. (c) Zig-zag
crystal growth. At each step, a new tile may be added at the location designated by the small arrow. A simultaneous
growth process also occurs on the crystal’s left end. (d) Example assemblies of widths 2, 3 and 5 formed by the tiles
in (a). The pattern repeated in each crystal is bracketed.

When a downward updating process reaches the bottom edge, the last bottom value is used to determine
the edge top value that the bottom-most cell will use on the first upward update. A fifth function, f5

(A → A) determines the new top value given the edge bottom value of the previous row. Likewise, f6

(A → A), determines the new bottom value from the edge top value at the end of an upward series of
updates. Figure 3(a) shows how to construct a zig-zag CA tile set from the functions f1...f6. For |A| = 2,
the set of tiles encodes a binary zig-zag CA.

Because computation takes place on a finite-width lattice, there are only a finite number of tape states
that are possible—2w−1 on a tape of width w (w − 2 cells have a right value and there is one top or bottom
value). The tape’s states, therefore, must repeat. If computation is logically irreversible, some states may be
transient, i.e. on the path to a repeating cycle, but never themselves repeated. (Details about the dynamics of
finite cellular automata and illustrations of their state spaces, including cycles and transient states, are given
in [38].) These repeating cycles are the wallpaper patterns in the zig-zag ribbon examples in Figure 2(d).

We will study the family of tile sets that implement binary zig-zag CA computation. Each tile set in the
family contains 4 rule tiles (to encode the four possible binary inputs and their respective outputs in each
of the up and down directions) and 4 edge tiles (two top tiles with the inputs 0 and 1 and their respective
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Fig. 3. Abstract representation of zig-zag CA tiles. (a) Tiles with each set of inputs x and y compute as
growth proceeds up the ribbon (left) and an analogous group of tiles compute as growth proceeds down (second to
left). As denoted by the dots and stars, the input and output alphabets are not interchangeable between upward and
downward computing tiles. The two top and two bottom tiles each have one input and one output. In this paper
we consider the case where f1...f6 have Boolean inputs and outputs. In other figures, green and red represent 0 and
1. (b) The table used to generate a unique numerical identifier for a binary zig-zag CA tile set. The values of each
output of the functions is written in the order shown give the identifier as a binary number, from most significant bit
(left) to least (right).

outputs and two bottom tiles with 0 and 1 inputs and their respective outputs), for a total of 12 tiles. Since
a binary zig-zag CA tile set is defined by 4 two-input Boolean functions and 2 one-input Boolean functions
(Figure 3(b)) and there are 16 two-input Boolean functions and 4 one-input Boolean functions, there are
164 × 42 = 1048576 binary zig-zag CA tile sets.

4 Predicting the Fitness of Zig-zag CA crystals

Growth of crystals is driven by diffusion of tiles into growth sites; the rate of tile attachment is thus pro-
portional to tile concentration [19]. We consider a simple model of attachment rates where the time it takes
a tile with concentration [z] to attach is 1

kf [z] , where kf is the forward rate constant of attachment [32],

independent of tile type.
To examine how concentrations affect crystal growth rates and therefore crystal fitness, we consider the

case where the rule tile concentrations are [r], the concentrations of three of the four edge tiles (referred to
as common edge tiles) are [e], and the concentration of the fourth edge tile (referred to as the rare edge tile)
is [q]. Let n be the number of rule tiles per column in the repeating pattern of a crystal, c the number of
common edge tiles used per cycle and u the number of rare edge tiles used per cycle. Since one edge tile is
added per column, the average number of common edge tiles used per column is c

c+u and the average number
of rare edge tiles used per column is u

c+u . The average time to add a column of tiles, 〈T 〉, is therefore:

〈T 〉 =
1

kf

(

c

(c + u)[e]
+

u

(c + u)[q]
+

n

[r]

)

. (1)

When the concentration of all edge tiles is the same, i.e. [q] = [e], 〈T 〉 grows monotonically with the
number of rule tiles in each column of the crystal. However, when [q] is very small, the middle term dominates.
A wider crystal with n1 rows of rule tiles, c1 common edge tiles, and u1 rare edge tiles could grow faster than
a thinner crystal with n2, c2, and u2 rule, common edge and rare edge tiles, respectively, if the following
equation is satisfied:

(n2 − n1)
1

[r]
>

(

c1

c1 + u1
−

c2

c2 + u2

)

1

[e]
+

(

u1

c1 + u1
−

u2

c2 + u2

)

1

[q]
. (2)
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Thus when 1
[q] ≫

1
[e] , a wider crystal can grow more quickly than thinner ones if it uses particularly few

rare edge tiles even though it must add more rule tiles per column. Further, for any case where u1

c1+u1

< u2

c2+u2

it is possible to find an environment (in terms of [r], [e], and [q]) where the wider crystal grows more quickly.

5 Evolution of Binary Zig-Zag CA Crystals

We sought to determine whether any binary zig-zag CA tile sets had the property that 〈T 〉, the average
time to add a crystal row, could decrease with width when one edge tile type was rare. For each tile set,
we enumerated the patterns formed of particular widths. We then tabulated the frequency with which each
pattern used top edge tiles with a “0” input vs top edge tiles with a “1” input, i.e. top edge zeros and top

edge ones. Likewise, we tabulated the frequency that each pattern used bottom edge zeros and bottom edge

ones.
As shown in Section 4, if the rare edge tile is present at a sufficiently low concentration, a pattern using

few rare edge tiles per column is selected for. If a pattern of width w uses no rare edge tiles, no matter
what the concentration of the rare edge tile, no pattern of width larger than w would be selected for simply
because [q] is low. In order to search for tile sets in which open-ended evolution might be feasible, therefore,
we specifically searched for tile sets where no pattern could ever eliminate the rare edge tile, but where
progressively wider patterns used the rare edge tile progressively less frequently than thinner patterns. We
call these evolvable tile sets.

We first surveyed the edge tile usage of patterns of widths 2 to 12 of 4 randomly chosen tile sets (Fig-
ure 4(a)). In the first example (tile set 962191), all patterns either use only top edge zeros or top edge ones.
Thus, if either tile type were rare, the thinnest type of crystal that used only the other top edge tile type
would be the fittest. The same is true for bottom edge ones and zeros. No concentrations of edge tiles would
be expected to induce the evolution of crystals wider than these crystals. The concentration of edge tiles
used by the crystals in the other 3 examples follow the same sort of pattern. Since we did not observe that
any of the 4 randomly chosen tile sets have the capacity for open-ended evolution as a result of a edge tile
concentration differences, it is unlikely that most binary zig-zag CA tile sets are evolvable.

To find evolvable binary zig-zag CA tile sets, we surveyed all tile sets and identified those for which
there was at least one edge tile that when rare, produced a fitter crystal with each increase in width from
2 through 7 tiles. This search produced 6144 putative evolvable tile sets. The edge tile usage of all patterns
up to width 12 produced by a selection of these tile sets is shown in Figures 4(b-c).

The rate at which rare tile type usage decreases with width determines the shape of the fitness landscape.
In most putatively evolvable tile sets that we examined, the fittest pattern of a given width has a per-row
usage of the rare edge tile of roughly either 1

w or 1
2w . In each case, it appears that one rare tile is used in each

repeat unit of the fit pattern, and the repeat units have lengths either linear or exponential in the width.
A second search of 100 random tile sets produced 7 tile sets for which fitter patterns appeared with some

increases in width but not others. Figure 4(d) shows the usage patterns produced by two such tile sets. When
the appropriate edge tile is rare, the first tile set produces a potentially fitter assembly type with assemblies
of 1, 3, 5, 7, and 9 rows of rule tiles, and the second produces such new patterns with assemblies of 1, 2, 4,
5, and 10 tiles. Figure 5(c) shows some patterns produced by a rule of this type.

6 Evolution of Logically Reversible Zig-Zag CA Crystals

In the analysis in Sections 4 and 5, we assumed that the crystal’s growth rate was the growth rate from its
right end. However, in practice growth can occur from both the left and right ends of the crystals and the
growth rate is the sum of the growth rates at each end.

Growth from the right end is equivalent to running the tile set’s zig-zag CA forward. By definition
there is exactly one tile that can attach at the growth site by two edges simultaneously (i.e. energetically
favorably) and the attachment of this tile creates a new growth site where exactly one tile can attach
favorably (Figure 2(c)). The rightward growth rate is therefore easy to approximate by computing the rates
of attachment of each tile in this series.
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(a) Randomly selected tile sets
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Fig. 4. Edge tile usage by zig-zag CA tile sets. The proportional usage of top and bottom zero and one tiles
for each possible assembly of widths 2 to 12 for 12 representative tile sets. Each dot is one assembly type, and color
indicates width, in rainbow order – red is width 2 and violet is width 12. The tile set number is computed as described
in Figure 3(b) (a) 4 randomly selected tile sets. (b-d) Tile sets for which per-row usage of either or both top and
bottom edge zero tiles decreases roughly as 1

w
(b), 1

2w (c), or irregularly (d) with width.

Growth from the left end is equivalent to running the tile set’s zig-zag CA backwards. Because a zig-zag
CA is not guaranteed to be reversible, there may be no, one or multiple tiles that can fit at a given growth site.
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Fig. 6. Edge tile usage by a

logically reversible zig-zag

CA tile set. Format as in Fig-
ure 4.

The dynamics of growth therefore can be more complex than in the right-
ward direction and we ignored these dynamics in Section 5. However, a
subset of zig-zag CAs are logically reversible, i.e. there is always exactly
one tile that can fit at the leftward growth site. A logically reversible zig-zag
CA’s left and right edges growth at the same speed. Our simple analysis of
fitness landscapes based on growth rates is particularly accurate for these
tile sets. Here we consider whether there are logically reversible zig-zag
CA tile sets where a low concentration of an edge tile could drive evolution
toward complex crystals, i.e. they are evolvable.

There are just 2304 types of logically reversible binary zig-zag cellular
automata (an example being the tile set in Figure 2(a)). An exhaustive
survey of these tile sets produced 16 for which each increase in width up
to at least 12 could produce a new, fitter crystal (Figure 6).

For each of the 16 tile sets, the longest pattern of width w is 2w columns
long, and with each increasing width the fittest pattern is the longest and
uses just one rare edge tile.
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(a)

(b) (c)

Fig. 5. Patterns of widths 2 to 5 of some representative evolvable tile sets. (a) Patterns from tile set
968599. (b) Patterns from tile set 132680. Note that the patterns produced by the tiles count in binary [10]. (c)
Patterns from tile set 694599.

Because the cellular automaton is logically reversible, there can be no transient states; every column
is included in a repeating pattern. All patterns are have a short repeat length, so the number of patterns
increases exponentially with width. As a result, crystal growth is susceptible to growth errors: most mistakes
will change the pattern being copied. This is in contrast to the evolvable logically irreversible tile sets, which
had only one pattern type for each width.

7 Kinetic Simulation of an Evolution Process

To determine whether the proposed selection pressure results in wider ribbons in a more realistic crystal
growth model, we simulated crystal growth and fragmentation using a full model of kinetic tile assembly
(kTAM [35]) with the software package xgrow [33]. We compared simulated evolutionary dynamics for two
tile sets. According to the simple analysis in Section 4, evolution of crystals assembled from the tile set we
simulated (shown in Figure 2(a)) is predicted to produce wider crystals when either top or bottom edge ones
were rare. The second tile set differed from the first only in that the outputs of the top 2 tiles were swapped.
This small change also changed the fitness landscape such that the fittest crystal is predicted to have no rule
tile rows.

In the simulation, tiles reversibly attached to each other or to existing assemblies with a diffusion de-
pendent forward rate (kf = 106/M/s [32]) and a backward rate set kr = kfe−∆G◦/RT set by the ∆G of tile
attachment, which was assumed to be strictly cooperative: ∆G◦ = −17 kcal/mol for an attachment by two
bonds and ∆G◦ = −8.5 kcal/mol for attachment by one bond. The energy for two sticky end bond attach-
ments was chosen in order to be close to experimental measurements [26]. The concentration of free tiles
was held constant, and crystal shearing was initiated at a given tile with rate 1

2500 seconds with probability

approximately e−l/4 where l is the length of a vertically or horizontally oriented shearing path. Rule tiles,
top edge tiles and the bottom edge zero tile were present at 2.25 µM, and the bottom edge one tile was
present at 0.025 µM. The simulation tracked the crystals in a volume of 10−14 liters, and serial dilution was
modelled by removing each crystal from the simulation with probability 0.5 when the mixture reached 1000
crystals consisting of at least 2 monomers.
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Fig. 7. Simulated evolution of zig-zag CA crystals. Numbers inside the graph indicate the width, including
edge tiles. (a) Logically reversible tile set 670873, where the minimum possible usage of a rare edge tile increases with
crystal width. (b) Logically reversible tile set 670874, where a crystal of width 2, which uses no rare edge tiles, is
predicted to be fittest.

Figure 7 shows the rate at which assemblies of different widths arise in the two simulations. An energetic
barrier to nucleation [28] meant that more than 99% of crystals originated as fragments sheared from another
crystal rather than having spontaneously nucleated. The resulting dynamics show that wide crystals appear
only for the tile set where this behavior was predicted by the analysis in Section 6. Equations 1 and 2 predict
that for a fixed rare tile concentration, there should be an optimal width. Optimal widths for both tile sets
in Figure 7 were observed.

8 Conclusions and Open Questions

This work suggests that the evolution of complex crystals from a simple set of monomers can be induced
by differences in the monomer concentrations during crystal growth and replication. The components are
simple in the sense that it would be feasible to synthesize their components and to watch their assembly and
replication in the laboratory [3]. It will be important to determine how much the predictions made here hold
up under a more realistic model of self-assembly. We must understand how growth errors and spontaneous
nucleation of new crystals affect the evolutionary process. In any evolutionary process there is a bit-wise
error rate (an error threshold) above which evolution becomes impossible [11]. There is reason to believe
the tile sets that we study may be robust to many errors and therefore, that they can evolve even under
imperfect assembly conditions. For example, in most of the logically irreversible cellular automata tile sets
that we investigate, there is only 1 pattern that can be copied at a given crystal width. A mismatch error
in such a tile set would simply change the segment of the pattern being copied at the growth front, rather
than changing the pattern altogether.

Unfortunately, though, the highest acceptable bit-wise mutation rate and therefore the robustness of a
sequence to mutation decreases with crystal width. Might we as a consequence expect a limit to the sizes
of patterns that can be copied under attainable physical conditions? Naively, the answer to this question
seems to be yes. But it may be that for some tile sets where the number of patterns a tile set can copy grows
sub-exponentially with width, the error rate for the whole pattern may not increase with width.

However these questions are answered, this work already suggests two important points. First, simple
crystals are capable of complex evolution. More investigation is needed to determine whether specific natural
crystals are capable of complex evolution; specific crystals such as clays will often have fewer monomer types,
more complex dynamics, and a greater variety of specific and nonspecific interactions between monomer
types. Since many of the details of these dynamics and affinities are still unknown in clay and other natural
crystal systems, simpler DNA tile systems such as DNA nanotubes [22, 39] may also be useful in further
investigations.

Second, our analysis suggests a more important point about complex evolution in simple systems. While
much attention has been given to the chemical functionality of sequences, it is generally assumed that the

9



dynamics of assembling a sequence are of ancillary interest in a Darwinian evolution process. In biology,
where sequence information is often stored in linear polymers such as genomic DNA, and all monomers bind
to their sequence neighbors using the same chemistry, this may be mostly true. But the constraints in crystal
patterns make logic a fertile ground for complex evolution, and similar constraints are likely for other kinds
of chemical replicators. In considering the replication in a more general class of chemical systems, therefore,
it is worth considering the contribution of logical evolution to the dynamics of an evolutionary process.
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