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Abstract

Many endeavors of molecular-level engineering either relyon biological material such as nucleic acids and
restriction enzymes, or are inspired by biological processes such as self-assembly or cellular regulatory net-
works. This thesis develops theories on three such topics: self-assembled nanostructures, molecular automata,
and chemical reaction networks. The abstractions and underlying methods of the theories presented herein
are based on computer science and include Turing machines and circuits. Toward engineering self-assembled
nanostructures, we create a theory of scale-free shapes in which the complexity of their self-assembly is con-
nected to the shapes’ descriptional complexity. Further, we study patterns in terms of whether they can be
self-assembled robustly without an increase in scale to accommodate redundancy. We also describe a new
method of ensuring resilience to more types of error simultaneously. Toward creating molecular automata we
study the computational power of a restriction enzyme-based automaton. Toward designing chemical reac-
tion networks, we develop a technique of storing and processing information in molecular counts, which is
capable of achieving Turing universal computation. We alsostudy the computational complexity of simulat-
ing stochastic chemical reaction networks and formally connect robustness and simulation efficiency. Lastly,
we describe nucleic acid implementations of Boolean logic circuits and arbitrary mass-action kinetics. The
three areas of this thesis are promising realizations of molecular-level engineering, and the theories presented
here inform the range of possibility or delineate inherent difficulties in these areas.
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Chapter 1

Introduction

A note on the use of “we”: As a matter of style and to emphasize that most of the work presented here was
done in collaboration with others, “we” is used throughout the thesis, except in places where the personal
voice of the author is expected.

1.1 The Promise of Bionanotechnology

Can engineers manipulate molecules with the same ease that they can now construct macrolevel objects?
It is widely expected that the enabling technologies will become practical in this century [8]. Since the
complexity of living things is as yet unparalleled by the engineering feats of man, life may be the ultimate
example and proof of principle. Indeed one may consider the supreme promise of molecular engineering is
to give science all the tools available to life. Part of the challenge is also to interact with existing biological
systems and modify their function — for example to cure disease [4]. Bionanotechnology is one name of
the emerging field of bioinspired molecular-level engineering. It is innately multidisciplinary and interrelates
with molecular biology, synthetic biology, nanotechnology, chemical engineering, computer science, as well
as many other areas. While its boundaries are fuzzy, we can define it by the premise that biology has important
contributions for engineering with molecules.

Already one of the key contributions of bionanotechnology is the adaptation of nucleic acids for engi-
neering tasks. Rather than solely acting as the carrier of genetic information, DNA has been used to construct
nanoscale structures and even mechanical nanomachines [25]. Two main factors make nucleic acids the de-
sign substrate of choice. First, rational design with nucleic acids is tremendously simplified by the specificity
and predictability of Watson-Crick base pairing. In general the RNA/DNA 3-D folding problem, akin to the
protein folding problem, remains beyond the grasp of current computational methods. However, research
suggests that keeping track of secondary structure only (which bases bind to each other) is often sufficient
for understanding interactions between nucleic acids and for predicting the 3-D structure of rationally de-
signed complexes. Secondary structure prediction and design is computationally reasonable [7]. This is in
stark contrast to designing proteins, which requires modeling far more complex 3-space interactions between
constituent amino acids. The second reason for the success of nucleic acids in bionanotechnology is that
short DNAs and RNAs with arbitrary sequences are cheap to synthesize. Companies, such as IDT, specialize
in the synthesis of short (< 100 bases) DNA or RNA oligos. Current costs are less than a dollarper base
for reasonable experimental quantities, with prices steadily dropping. Longer strands can be manufactured,
replicated, and otherwise manipulated using methods adopted from biotechnology. For these reasons DNA is
used as the chemical substrate for most of the work in this thesis.

In this thesis I shall focus on three topics falling within the realm of bionanotechnology: the engineering
of self-assembled nanostructures, the design of molecularmachines for biocompatible computation, and the
analysis and design of networks of chemical reactions in dilute solutions.

Advances in self-assembly have been arguably the most prominent developments in bionanotechnology.
While we can exercise atomic-level engineering precision in the sense of positioning individual atoms and
molecules with an atomic force microscope or scanning tunnel microscope on a surface [16, 9], this manipula-
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tion requires vast investments of resources and time. Significantly each object has to be fabricated separately.
In contrast, nature shapes the intrinsic properties of molecules to direct their self-organization. The fabrica-
tion of such object occurs with massive parallelism (e.g., the classic example is virus capsid self-assembly).
Engineering self-assembly processes is a potentially promising way to adopt nature’s construction methods.
By positioning complementary domains appropriately on oneor more DNA molecules, a number of 3-D
shapes have been constructed, including cubes and octahedra [6, 26]. These objects assemble in bulk upon
the introduction of their components into solution. One of the more recent advances has been Rothemund’s
DNA “origami.” By designing short strands of DNA to effectively staple a long strand into a rastered form,
he was able to weave smiley faces and other 2D shapes [21].

Designing shapes via above methods requires making every part of a shape out of different components,
up to symmetry. In another important example, Winfree adopted Wang tiling theory [28] to control crystal-
lization [29, 30, 22] (see below). Then by designing the individual components (tiles) to have the right local
interactions, the global form and pattern of the constructed assembly can be controlled. Each type of tile may
be reused multiple times in the assembly process, akin to a loop in a computer program; consequently the
resulting assembly process is often called algorithmic.

Another area of significant progress in bionanotechnology has been in molecular computation. In his
ground-breaking experiments, Adleman showed that by encoding mathematical information in DNA se-
quences it is possible to solve difficult combinatorial problems [1, 19]. The original hope of using the massive
parallelism of DNA computation to exceed the power of digital computers has not realized. However, since
DNA is a biocompatible computational medium it may be possible to use DNA computers to imbue cells with
synthetic information processing capability which may augment or modify cellular regulatory networks. For
example, Benenson et al made an automaton in vitro consisting of a restriction enzyme and DNA molecules
which tests whether particular RNA molecules are present ornot, and releases an output DNA molecule only
if the combinatorial condition is met [3]. The computation consists of the enzyme sequentially cutting a DNA
molecule in a manner indirectly determined by the input mRNAmolecules present in solution. Benenson et
al. hope that such a design may form the basis of a “smart drug,” capable of detecting specific mRNA tran-
scripts that are indicative of cancer or other diseases, andoutputting a “therapeutic” ssDNA. Automata based
on other kinds of protein–DNA interactions have also been constructed [2].

Much of natural information processing within a cell seems to be in regulatory networks which must re-
spond appropriately to changes in the environment. Some of the best understood regulatory networks involve
transcription-level activation and inhibition. Some complex regulatory networks have been engineered and
incorporated into cells. For example, Elowitz et al. have created a synthetic oscillator which periodically
changes the color of a cell based on transcriptional regulators [10]. DNA/RNA transcriptional switches have
been designed to implement bistable dynamic behavior and oscillation [18, 17]. Engineered networks based
on transcriptional regulation can implement Boolean circuits (AND, OR, NOT logic gates) in vivo and in
cell-free extracts [15, 20]. If one ignores mechanistic details such as protein-protein and protein-DNA inter-
actions, such regulatory networks can be simply expressed as systems of chemical reactions in well-mixed
solutions. These chemical reaction network models are usually sufficient to explain the observed behavior;
thus we call these efforts chemical reaction network engineering.

1.2 The Mathematics of Computer Science

Computer science has developed a set of theoretical tools and a perspective on the world that can be applied to
many fields of human endeavor outside of programming computers. It is an unfortunate burden of computer
science to be confused with IT (information technology) by the layman; it is proper to classify computer
science as a branch of applied mathematics.

The three contributions of computer science most relevant for this thesis are as follows: First is the formal-
ization of the notion of computation and the recognition of computation as a universal phenomenon. Com-
putation is now found everywhere in nature and in mathematical abstractions, and informs many branches of
science from physics to biology. The ubiquity of computation has been popularized for the wider audience
by Wolfram [33]. The second contribution is asymptotic analysis. Although asymptotic analysis is not lim-
ited to computer science, it has taken off there as a consequence of making the theory of computation time
insensitive to implementation details. Asymptotic analysis of functions is helpful for deriving fundamental
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distinctions without getting lost in the details. For example since an exponential function is fundamentally
larger than a polynomial function, it is not necessary to trace out the polynomial exponent in the derivations.
In this thesis asymptotic analysis is used throughout, and computation, be it with Turing machines or circuits,
makes up the heart of most of the theories presented. Lastly,computer science brings a degree of mathe-
matical rigor to otherwise fuzzy areas of science. When objects are formally defined (or at least formally
definable), it becomes possible to communicate with less fear of being misunderstood. Often the difficult part
of research is isolating what is important from what is not. Having to formally define one’s model forces the
fixation on the essential kernel of the problem.

1.3 The Criteria for Success

The work in this thesis is largely theoretical. I propose twocriteria for success of the theories developed here.
First I feel the work must develop an elegant theory, although, of course, elegance is in the eye of the beholder
and it is difficult to describe what makes something possess it. Second, the work must be meaningful outside
of the artificial world of mathematical abstractions, and must have a take-home message for molecular-level
engineering. One form of the message may be expanding the horizons of what was previously thought
possible. Another may be in showing that something is inherently impossible, saving researchers time and
effort. Yet another message may be a way of systematizing messy existing knowledge. I would like to think
that each of these is achieved by one or another theory presented here.

A major inspiration for the manner of this work has been Winfree’s tile assembly model [29], which the
next three chapters directly address (see above). In Winfree’s ground-breaking work a computer-theoretic
abstraction called Wang tiling is realized in chemistry. The model is simple and elegant, and at the same time
leads to a conclusion with significant practical implications: that, per design instructions, simple crystalliza-
tion processes can be programmed to assemble arbitrarily complex structures. Recent work even suggests
how this type of crystal growth may possess certain properties of life, informing the origin of life debate [24].

1.4 The Contributions

1.4.1 Tile Self-Assembly

Chapters 2, 3, and 4 concern molecular engineering through programming the process of crystallization. The
underlying model is that of Winfree’s tile assembly, which formalizes the two-dimensional self-assembly of
square units (tiles) using a physically plausible abstraction of crystal growth [29, 30]. A new tile becomes
incorporated into the growing lattice if it binds the preexisting structure strongly enough, with the strength of
the bond between one tile and another being a function of the “glues” (bond types) on the abutting sides. The
usual molecular implementation uses DNA hybridization to define the glues, with complementary sequences
matching. At some locations in order to attach to the existing assembly a tile must bind two neighboring tiles
cooperatively. Winfree showed that this cooperativity allows for surprisingly rich behavior including Turing
universality.

One common goal of the assembly process in theory and experiment is to assemble a certain shape. The
natural question to ask is which shapes are easy to build through self-assembly and which are hard. Since each
type of tile (defined by its glues) can be mass produced, but designing each new tile type requires significant
effort, the number of tile types is the natural complexity measure [23]. Previous works have studied only the
construction of certain specific shapes as examples. In Chapter 2 we show that the natural formulation of the
complexity problem is the construction of scale-free shapes where the scale of the shape does not matter, only
the form. Somewhat paralleling the way that invariance withrespect to the coordinate system turns topology
into an elegant theory, our scale-free formalization allows for a number of compelling results. We prove that
the minimal number of tile types required is a function of theKolmogorov complexity of the shape. Thus
the class of shapes that are easy to build are mathematicallywell defined. Our result also shows that the very
simple process of crystallization is nonetheless powerfulenough to turn any description of shape into the
actual shape, fulfilling the role of von Neumann’s universalconstructor [27].

In Chapters 3 and 4 we turn to the problem of errors in tile self-assembly. A relatively high error rate
during assembly has has been one of the main setbacks in practical implementation of the theory. As opposed



4

to the shape of the assembly as in the previous chapter, here we consider the pattern produced by assembly:
when tiles are marked with different colors (which may represent different functional domains, etc.) the
assembly produces a labeled pattern [30]. Winfree and Bekbolatov first proposed to introduce redundancy
into the assembly to decrease the error rate akin to a repetition code [32]. A single tile in the original
error-prone tile system is replaced with a block of tiles, each carrying the information of the original tile
redundantly. In Chapter 3 we ask whether the redundancy can be encoded without increasing the scale of the
construction. Since scale is of direct concern here, in someways this chapter takes the opposite approach
of the theory developed in Chapter 2. Nonetheless, in practice minimizing the scale of the assembly is an
important goal for certain molecular fabrication tasks. The main result of this chapter is the argument that
patterns can be distinguished into two classes when scale-up is undesired: it is easy to make certain patterns
robust to errors by embedding redundancy, while for other patterns this is difficult without an exponential
increase in the number of tile types.

There is an additional type of error that has been studied: damage to the completed structure [31]. Chunks
of an assembly may be physically ripped off by external mechanical forces, such as shear due to fluid flow
during sample handling. It is desired that the constructed structure should be self-healing in the sense of being
able to repair itself, or at the very least to not regrow incorrectly. Erroneous addition of tiles and assembly
damage have previously been studied separately; however, existing constructions for making a tile system
robust to the two types of error could not be directly combined. In Chapter 4 we develop a new method to
make a pattern tile system simultaneously robust to both types of error.

1.4.2 Restriction Enzyme Automata

We next consider engineering chemical computers capable oftaking certain chemical species as inputs and
producing certain other species as output. One long-term goal of this type of engineering is to be able to create
biocompatible computers capable of interacting with intracellular processes and modifying or augmenting the
behavior of a cell in a complex way. In Chapter 5 we study the computational power of a molecular automaton
recently proposed and implemented in vitro by Benenson et al. [3]. In this scheme, a long DNA state molecule
is cut repeatedly by a restriction enzyme in a manner dependent upon the presence of particular short DNA
rule molecules.

How much computation can Benenson automata perform? It was known that a single automaton can
compute the conjunction of inputs (and negated inputs), yet, for example, it was not clear whether a single
Benenson automaton can compute a disjunction of conjunctions. Surprisingly, we show that a single automa-
ton is more powerful than expected and can compute arbitraryBoolean functions. We also determine the
class of functions that a Benenson automaton can compute efficiently: exactly those functions computable by
log-depth circuits.

1.4.3 Chemical Reaction Networks

A central feature of engineering in solution-based chemistry is the difficulty in controlling the targeting and
time of interactions: any two molecules may meet and the meeting will occur at an unknown time. In
biology as well as computer engineering, the resolution of this difficulty often requires space and geometry:
information is stored in a polymer such as DNA, on a tape, in spatial compartments, or in different locations
on a chip. For example the Benenson automaton relies on the ordered arrangement of information within a
polymer which can then be sequentially extracted by cuttingoperations. Another example is the classic model
of chemical Turing universal computation: Bennett’s DNA-inspired polymer automaton [5]. Yet clearly some
of the computation occurring within a cell is in the complex interactions of concentrations of some species
and does not rely on space and geometry for information processing.

Consequently, we ask in Chapter 6: what intrinsic limits areplaced on computation solely by the nature
of well-mixed chemistry? To answer this, we develop a theoretical way of storing and manipulating informa-
tion in the exact molecular counts of some molecules. In our construction, the tape of a Turing machine is
mapped to the molecular count of a “memory species,” and thismolecular count is manipulated in a way that
corresponds to a Turing machine computation. Our results say that, surprisingly, geometry is not necessary
for effective computation and well-mixed chemistry is Turing universal. We show that well-mixed chemistry
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can perform an a priori unbounded number of computational steps with an arbitrarily small (non-zero) cumu-
lative error probability. However, geometry seems necessary for error-free Turing universal computation: we
show that error-free Turing universal computation with chemical kinetics is impossible. Finally we show that
although information is stored in unary molecular counts, requiring volumes that potentially grow exponen-
tially in the number of Turing machine steps, the information can be manipulated quickly. The time for our
construction to simulate a run of a Turing machine grows onlypolynomially in the number of executed steps.

The behavior of coupled chemical reactions over time is at the foundation of chemistry. Traditionally
such systems are modeled with mass-action kinetics. However, numerous works have shown that in molec-
ular biology, it is often inappropriate to use mass-action laws to simulate certain intracellular pathways.
Indeed, when key molecular components are present in small molecular counts, as they often are, stochastic
effects can physiologically significant. Our constructionof Chapter 6 relied on having a single molecule of
certain species. Such systems effectively behave as continuous-time Markov processes, as opposed to sys-
tems described by the deterministic and continuous variation of concentration over time. Their simulation
is deemed to be significantly more difficult than large-volume systems susceptible to the mass-action ap-
proximation [14]. Yet simulation of these systems is essential for understanding cellular pathways and for
intracellular molecular engineering [14].

In Chapter 7 we consider the computational complexity of simulating a given stochastic chemical reac-
tion network. Gillespie’s stochastic simulation algorithm (SSA) can be used to model stochastic chemical
systems [12]. However, SSA is prohibitively slow for many applications, especially when there are certain
species whose molecular counts are large in addition to those species whose molecular counts are small. Re-
cently tau-leaping algorithms have been developed that canbe significantly faster than SSA, yet at the cost
of certain systematic errors entering the simulation [13].Despite the widespread use of stochastic simulation
algorithms for chemical reactions, the study of their computational complexity is nascent. In fact, the speeds
of different algorithms are generally compared only through specific numerical examples.

We attempt to develop a theory of the asymptotic computational complexity of a class of stochastic
chemical reactions networks. First we formalize the previously implicit condition on the reaction network that
guarantees the accuracy of tau-leaping algorithms: robustness to perturbations in reaction propensities. Then
by using the tools of computational complexity theory, we develop closely matching asymptotic upper and
lower bounds on the computational time that may be required for predicting the behavior of these systems. In
the process, we define a new stochastic simulation algorithmwe call bounded tau-leaping. The lower bound
on the required computation time is based on the ability of the chemical system itself to perform computation
in a manner akin to our construction of Chapter 6.

The major reason mass-action chemical systems are easier tosimulate is because the computation time is
not dependent on the total molecular count but just on concentration (molecular count per volume). Since the
concentration is always bounded (the solution must be dilute enough to remain well-mixed and not a solid)
the computational complexity of simulating mass action systems does not scale with the size of the system.
In stark contrast, the computation time of SSA may scale linearly with the total molecular count even for
bounded concentrations. Surprisingly, we show that, assuming bounded concentrations, for robust stochastic
chemical systems the required computation time is asymptotically essentially invariant with molecular count.
In this sense simulation of robust stochastic chemical reaction networks approaches the speed of mass action
systems.

In the last two chapters, we consider the design and implementation of chemical reaction networks in
practice. We restrict ourselves to the mass-action regime because single-molecule experiments were beyond
the capability of the available equipment in our laboratory.

As nucleic acid interactions are easily programmable through sequence design, DNA seemed a natural
choice for the chemical substrate with which to design reaction networks. Indeed, in Chapter 8 we show how
DNA hybridization alone can be used to design the simplest kind of reaction networks: feedforward circuits.
By maintaining digital abstraction over multiple layers weshow that such circuits can operate reliably in
vitro. To our knowledge our work is the first to experimentally demonstrate reliable circuits based solely
on hybridization capable of multi-layer cascading. Since biological nucleic acids such as microRNAs can
serve as inputs, several intriguing applications in biotechnology and bioengineering may be possible. A
major contribution of this work is the mechanism of attaining modularity using toehold-mediated branch
migration [34]. Hiding the toehold of an output strand keepsit inactive until intended release.

The last chapter (Chapter 9) asks: How can we implement arbitrary systems of coupled chemical reactions
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with realistic chemistry? It is well known that “chemical” ordinary differential equations are capable of
very complex dynamic behavior, including oscillation withlimit cycles and chaos [11]. Some experimental
chemical systems have even been found to behave in this manner. Yet there was not a systematic way to
implement an arbitrary system of chemical ODEs in actual chemistry. Here, using the method of obtaining
modularity from Chapter 8, we theoretically construct reaction cascades with arbitrary unimolecular and
bimolecular kinetics. Individual reactions can be coupledin arbitrary ways such that reactants can participate
in multiple reactions simultaneously, reproducing the desired dynamic behavior.
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Chapter 2

Complexity of Self-Assembled Shapes

This chapter was published as: David Soloveichik and Erik Winfree, “Complexity of Self-Assembled
Shapes,” SIAM Journal on Computing 36 (6): 1544–1569, 2007.

2.1 Abstract

The connection between self-assembly and computation suggests that a shape can be considered the output
of a self-assembly “program,” a set of tiles that fit togetherto create a shape. It seems plausible that the
size of the smallest self-assembly program that builds a shape and the shape’s descriptional (Kolmogorov)
complexity should be related. We show that when using a notion of a shape that is independent of scale, this is
indeed so: in the Tile Assembly Model, the minimal number of distinct tile types necessary to self-assemble a
shape, at some scale, can be bounded both above and below in terms of the shape’s Kolmogorov complexity.
As part of the proof, we develop a universal constructor for this model of self-assembly that can execute an
arbitrary Turing machine program specifying how to grow a shape. Our result implies, somewhat counter-
intuitively, that self-assembly of a scaled-up version of ashape often requires fewer tile types. Furthermore,
the independence of scale in self-assembly theory appears to play the same crucial role as the independence
of running time in the theory of computability. This leads toan elegant formulation of languages of shapes
generated by self-assembly. Considering functions from bit strings to shapes, we show that the running-time
complexity, with respect to Turing machines, is polynomially equivalent to the scale complexity of the same
function implemented via self-assembly by a finite set of tile types. Our results also hold for shapes defined
by Wang tiling — where there is no sense of a self-assembly process — except that here time complexity
must be measured with respect to non-deterministic Turing machines.

2.2 Introduction

Self-assembly is the process by which an organized structure can spontaneously form from simple parts. The
Tile Assembly Model [21, 22], based on Wang tiling [20], formalizes the two-dimensional self-assembly of
square units called “tiles” using a physically plausible abstraction of crystal growth. In this model, a new tile
can adsorb to a growing complex if it binds strongly enough. Each of the four sides of a tile has an associated
bond type that interacts with a certain strength with matching sides of other tiles. The process of self-
assembly is initiated by a single seed tile and proceeds via the sequential addition of new tiles. Confirming
the physical plausibility and relevance of the abstraction, simple self-assembling systems of tiles have been
built out of certain types of DNA molecules [23, 15, 14, 12, 10]. The possibility of using self-assembly for
nanofabrication of complex components such as circuits hasbeen suggested as a promising application [6].

The view that the “shape” of a self-assembled complex can be considered the output of a computational
process [2] has inspired recent interest [11, 1, 3, 9, 4]. While it was shown through specific examples that
self-assembly can be used to construct interesting shapes and patterns, it was not known in general which
shapes could be self-assembled from a small number of tile types. Understanding the complexity of shapes
is facilitated by an appropriate definition of shape. In our model, a tile system generates a particular shape
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if it produces any scaled version of that shape (Section 2.4). This definition may be thought to formalize
the idea that a structure can be made up of arbitrarily small pieces, but more importantly this leads to an
elegant theory that is impossible to achieve without ignoring scale. Computationally, it is analogous to
disregarding computation time and is thus more appropriateas a notion of output of auniversalcomputation
process.∗ Using this definition of shape, we show (Section 2.5) that forany shapẽS, if Ksa(S̃) is the minimal
number of distinct tile types necessary to self-assemble it, thenKsa(S̃) log Ksa(S̃) is within multiplicative
and additive constants (independent ofS̃) of the shape’s Kolmogorov complexity. This theorem is proved
by developing a universal constructor [19] for self-assembly which uses a program that outputs a fixed size
shape as a list of locations to make a scaled version of the shape (Section 2.6). This construction, together
with a new proof technique for showing that a tile set produces a unique assembly (local determinism), might
be of independent interest. Our result ties the computationof a shape and its self-assembly, and, somewhat
counter-intuitively, implies that it may often require fewer tile types to self-assemble a larger instance of a
shape than a smaller instance thereof. Another consequenceof the theorem is that the minimal number of
tile types necessary to self-assemble an arbitrary scalingof a shape is uncomputable. Answering the same
question about shapes of a fixed size is computable but NP complete [1].

The tight correspondence between computation (ignoring time) and self-assembly (ignoring scale) sug-
gests that complexity measures based on time (for computation) and on scale (for self-assembly) could also
be related. To establish this result, we consider “programmable” tile sets that will grow a particular member
of a family of shapes, dependent upon input information present in an initial seed assembly. We show that,
as a function of the length of the input information, the number of tiles present in the shape (a measure of
its scale) is polynomially related to the time required for aTuring machine to produce a representation of the
same shape. Furthermore, we discuss the relationship between complexities for Wang tilings (in which the
existence of a tiling rather than its creation by self-assembly is of relevance) and for self-assembly, and we
show that while the Kolmogorov complexity is unchanged, thescale complexity for Wang tilings is polyno-
mially related to the time fornon-deterministicTuring machines. These results are presented in Section 2.7.

2.3 The Tile Assembly Model

We present a description of the Tile Assembly Model based on Rothemund and Winfree [11] and Rothe-
mund [9]. We will be working on aZ×Z grid of unit square locations. ThedirectionsD = {N, E, S, W} are
used to indicate relative positions in the grid. Formally, they are functionsZ×Z→ Z×Z: N(i, j) = (i, j+1),
E(i, j) = (i+1, j), S(i, j) = (i, j−1), andW (i, j) = (i−1, j). The inverse directions are defined naturally:
N−1(i, j) = S(i, j), etc. LetΣ be a set ofbond types. A tile type t is a 4-tuple(σN , σE , σS , σW ) ∈ Σ4

indicating the associated bond types on the north, east, south, and west sides. Note that tile types are oriented,
so a rotated version of a tile type is considered to be a different tile type. A special bond typenull represents
the lack of an interaction and the special tile typeempty = (null, null, null, null) represents an empty
space. IfT is a set of tile types, atile is a pair(t, (i, j)) ∈ T × Z2 indicating that location(i, j) contains the
tile type t . Given the tilet = (t, (i, j)), type(t) = t andpos(t) = (i, j). Further,bondD(t), whereD ∈ D,
is the bond type of the respective side oft , andbondD(t) = bondD(type(t)). A configuration is a set of
non-empty tiles, with types fromT , such that there is no more than one tile in every location(i, j) ∈ Z×Z.
For any configurationA, we writeA(i, j) to indicate the tile at location(i, j) or the tile(empty, (i, j)) if
there is no tile inA at this location.

A strength function g : Σ × Σ → Z, wherenull ∈ Σ, defines the interactions between adjacent tiles:
we say that a tilet1 interacts with its neighbort2 with strengthΓ(t1, t2) = g(σ, σ′) whereσ is the bond
type of tile t1 that is adjacent to the bond typeσ′ of tile t2.† Thenull bond has a zero interaction strength

∗The production of a shape of a fixed size cannot be considered the output of a universal computation process. Whether a universal
process will output a given shape is an undecidable question, whereas this can be determined by exhaustive enumeration in the Tile
Assembly Model. Thus it is clear that the connection betweenKolmogorov complexity and the number of tile types we obtainin our
main result (Section 2.5) cannot be achieved for fixed-scaleshapes: this would violate the uncomputability of Kolmogorov complexity.

†More formally,

Γ(t1, t2) =



g(bondD−1 (t1), bondD(t2)) if ∃D ∈ D s.t.pos(t1) = D(pos(t2));
0 otherwise.
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(i.e.,∀σ ∈ Σ, g(null, σ) = 0). We say that a strength function isdiagonal if it is non-zero only forg(σ, σ′)
such thatσ = σ′. Unless otherwise noted, a tile system is assumed to have a diagonal strength function.
Our constructions use diagonal strength functions with therange{0, 1, 2}. We say that a bond typeσ has
strength g(σ, σ). Two tiles arebonded if they interact with a positive strength. For a configuration A, we
use the notationΓA

D(t) = Γ(t, A(D(pos(t)))).∗ ForL ⊆ D we defineΓA
L (t) =

∑

D∈L ΓA
D(t).

A tile systemT is a quadruple(T, ts, g, τ) whereT is a finite set of non-empty tile types,ts is a special
seed tile† with type(ts) ∈ T , g is a strength function, andτ is the threshold parameter. Self-assembly is
defined by a relation between configurations. SupposeA andB are two configurations, andt is a tile such
that A = B except atpos(t) andA(pos(t)) = null but B(pos(t)) = t. Then we writeA →T B if
ΓA
D(t) ≥ τ . This means that a tile can be added to a configuration iff the sum of its interaction strengths with

its neighbors reaches or exceedsτ . The relation→∗
T

is the reflexive transitive closure of→T.
Whereas a configuration can be any arrangement of tiles (not necessarily connected), we are interested in

the subclass of configurations that can result from a self-assembly process. Formally, the tile system and the
relation→∗

T
define the partially ordered set ofassemblies: Prod(T) = {A s.t. {ts} →∗T A}, and the set of

terminal assemblies: Term(T) = {A ∈ Prod(T) and∄B 6= A s.t.A →∗
T

B}. A tile systemT uniquely
producesA if ∀B ∈ Prod(T), B →∗

T
A (which impliesTerm(T) = {A}).

An assembly sequence~A of T is a sequence of pairs(An, tn) whereA0 = {t0} = {ts} andAn−1 →T

An = An−1 ∪ {tn}. Here we will exclusively consider finite assembly sequences. If a finite assembly
sequence~A is implicit, A indicates the last assembly in the sequence.

The tile systems used in our constructions haveτ = 2 with the strength function ranging over{0, 1, 2}.
It is known thatτ = 1 systems with strength function ranging over{0, 1} are rather limited [11, 9]. In our
drawings, the bond typeσ may be illustrated by a combination of shading, various graphics, and symbols.
Strength-2 bond types will always contain two dots in their representation. All markings must match for two
bond types to be considered identical. For example, the north bond type of the following tile has strength 2
and the others have strength-1.

σN

σE

σS

σW

r r

The constructions in this paper do not use strength-0 bond types (other than inemptytiles); thus, there is
no confusion between strength-1 and strength-0 bond types.Zero-strength interactions due to mismatches
between adjacent tiles do occur in our constructions.

2.3.1 Guaranteeing Unique Production

When describing tile systems that produce a desired assembly, we would like an easy method for showing
that this assembly is uniquely produced. While it might be easy to find an assembly sequence that leads to
a particular assembly, there might be many other assembly sequences that lead elsewhere. Here we present
a property of an assembly sequence that guarantees that the assembly it produces is indeed the uniquely
produced assembly of the tile system.

Rothemund [9] describes the deterministic-RC property of an assembly that guarantees its unique pro-
duction and that is very easy to check. However, this property is satisfied only by convex (in the sense of
polyaminos) assemblies and thus cannot be directly invokedwhen making arbitrary shapes.‡ A more general
poly-time test for unique production was also shown by Rothemund [9], but it can be difficult to prove that
a particular assembly would satisfy this test. On the other hand, the notion of locally deterministic assembly
sequences introduced here is easily checkable and sufficient for the constructions in this paper.

Definition 2.3.1. For an assembly sequence~A we define the following sets of directions for∀i, j ∈ Z, letting
t = A(i, j):

∗Note thatt 6= A(pos(t)) is a valid choice. In that caseΓA
D(t) tells us howt would bind if it were in A.

†While having a single seed tile is appropriate to the complexity discussion of the main part of this paper, it is useful to consider
whole seed assemblies(made up of tiles not necessarily inT ) when considering tile systems capable of producing multiple shapes
(Section 2.7.5).

‡Additionally, assemblies satisfying the deterministic-RC property must have no strength-0 interactions between neighboring non-
empty tiles. However, such interactions are used in our construction.
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• inputsides
~A(t) = {D ∈ D s.t. t = tn andΓAn

D (tn) > 0},

• propsides
~A(t) = {D ∈ D s.t.D−1 ∈ inputsides

~A(A(D(pos(t))))},

• termsides
~A(t) = D − inputsides

~A(t)− propsides
~A(t).

Intuitively, inputsidesare the sides with which the tile initially binds in the process of self-assembly; these
sides determine its identity.propsidespropagate information by being the sides to which neighboring tiles
bind. termsidesare sides that do neither. Note that by definitionemptytiles have fourtermsides.

Definition 2.3.2. A finite assembly sequence~A ofT = (T, ts, g, τ) is calledlocally deterministic if ∀i, j ∈ Z,
letting t = A(i, j),

1. ΓA

inputsides
~A(t)

(t) ≤ τ

2. ∀t′ s.t.type(t′) ∈ T , pos(t′) = pos(t) but type(t′) 6= type(t),

ΓA

D−propsides
~A(t)

(t′) < τ.

We allow the possibility of< in property (1) in order to account for the seed andempty tiles. Intuitively,
the first property says that when a new tile binds to a growing assembly, it binds “just barely.” The second
property says that nothing can grow from non-propagating sides except “as desired.” We say thatT is locally
deterministic if there exists a locally deterministic assembly sequence for it.

It is clear that if~A is a locally deterministic assembly sequence ofT, thenA ∈ Term(T). Otherwise, the
empty tile in the position where a new (non-empty) tile can be addedto A would violate the second property.
However, the existence of a locally deterministic assemblysequence leads to a much stronger conclusion:

Theorem 2.3.1. If there exists a locally deterministic assembly sequence~A of T thenT uniquely produces
A.

Proof. See Appendix 2.8.1.

2.4 Arbitrarily Scaled Shapes and Their Complexity

In this section, we introduce the model for the output of the self-assembly process used in this paper. LetS
be a finite set of locations onZ × Z. The adjacency graphG(S) is the graph onS defined by the adjacency
relation where two locations are considered adjacent if they are directly north/south, or east/west of one
another. We say thatS is acoordinated shapeif G(S) is connected.∗ Thecoordinated shape of assembly
A is the setSA = {pos(t) s.t. t ∈ A}. Note thatSA is a coordinated shape becauseA constitutes a single
connected component.

For any set of locationsS, and anyc ∈ N, we define ac-scaling of Sas

Sc = {(i, j) s.t. (⌊i/c⌋, ⌊j/c⌋) ∈ S} .

Geometrically, this represents a “magnification” ofS by a factorc. Note that a scaling of a coordinated shape
is itself a coordinated shape: every node ofG(S) gets mapped to ac2-node connected subgraph ofG(Sc)
and the relative connectivity of the subgraphs is the same asthe connectivity of the nodes ofG(S). A parallel
argument shows that ifSc is a coordinated shape, then so isS. We say that coordinated shapesS1 andS2

arescale-equivalentif Sc
1 = Sd

2 for somec, d ∈ N. Two coordinated shapes aretranslation-equivalent if
they can be made identical by translation. We writeS1

∼= S2 if Sc
1 is translation-equivalent toSd

2 for some
c, d ∈ N. Scale-equivalence, translation-equivalence, and∼= are equivalence relations (Appendix 2.8.2).
This defines the equivalence classes of coordinated shapes under∼=. The equivalence class containingS is
denotedS̃ and we refer to it as theshapeS̃. We say thatS̃ is theshape of assemblyA if SA ∈ S̃. The

∗We say “coordinated” to make explicit that a fixed coordinatesystem is used. We reserve the unqualified term “shape” for when
we ignore scale and translation.
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view of computation performed by the self-assembly processespoused here is the production of a shape
as the “output” of the self-assembly process, with the understanding that the scale of the shape is irrelevant.
Physically, this view may be appropriate to the extent that aphysical object can be constructed from arbitrarily
small pieces. However, the primary reason for this view is that there does not seem to be a comprehensive
theory of complexity of coordinated shapes akin to the theory we develop here for shapes ignoring scale.

Having defined the notion of shapes, we turn to their descriptional complexity. As usual, the Kolmogorov
complexity of a binary stringx with respect to a universal Turing machineU isKU (x) = min {|p| s.t.U(p) = x}.
(See the exposition of Li and Vitanyi [13] for an in-depth discussion of Kolmogorov complexity.) Let us fix
some “standard” universal machineU . We call the Kolmogorov complexity of a coordinated shapeS to be
the size of the smallest program outputting it as a list of locations:∗,†

K(S) = min {|s| s.t.U(s) = 〈S〉}.

The Kolmogorov complexity of a shapẽS is:

K(S̃) = min
{

|s| s.t.U(s) = 〈S〉 for someS ∈ S̃
}

.

We define thetile-complexity of a coordinated shapeS and shapẽS, respectively, as:

Ksa(S) = min

{

n s.t.∃ a tile systemT of n tile types that uniquely produces as-
semblyA andS is the coordinated shape ofA

}

Ksa(S̃) = min

{

n s.t.∃ a tile systemT of n tile types that uniquely produces as-
semblyA andS̃ is the shape ofA

}

.

2.5 Relating Tile-Complexity and Kolmogorov Complexity

The essential result of this paper is the description of the relationship between the Kolmogorov complexity
of any shape and the number of tile types necessary to self-assemble it.

Theorem 2.5.1.There exist constantsa0, b0, a1, b1 such that for any shapẽS,

a0K(S̃) + b0 ≤ Ksa(S̃) log Ksa(S̃) ≤ a1K(S̃) + b1. (2.1)

Note that since any tile system ofn tile types can be described byO(n log n) bits, the theorem implies
there is a way to construct a tiling system such that asymptotically at least a constant fraction of these bits is
used to “describe” the shape rather than any other aspect of the tiling system.

Proof. To see thata0K(S̃) + b0 ≤ Ksa(S̃) log Ksa(S̃), realize that there exists a constant size programpsa

that, given a binary description of a tile system, simulatesits self-assembly, making arbitrary choices where
multiple tile additions are possible. If the self-assemblyprocess terminates,psa outputs the coordinated
shape of the terminal assembly as the binary encoding of the list of locations in it. Any tile systemT of
n tile types with any diagonal strength function and any threshold τ can be represented‡ by a stringdT of
4n⌈log 4n⌉+16n bits: For each tile type, the first of which is assumed to be theseed, specify the bond types
on its four sides. There are no more than4n bond types. In addition, for each tile typet specify for which of
the16 subsetsL ⊆ D,

∑

D∈L g(bondD(t)) ≥ τ . If T is a tile system uniquely producing an assembly that
has shapẽS, thenK(S̃) ≤ |psadT|. The left inequality in eq. 2.1 follows with the multiplicative constant
a0 = 1/4− ε for arbitraryε > 0.

∗Note thatK(S) is within an additive constant ofKU (x) wherex is some other effective description ofS, such as a computable
characteristic function or a matrix. Since our results are asymptotic, they are independent of the specific representation choice. One
might also consider invoking a two-dimensional computing machine, but it is not fundamentally different for the same reason.

†Notation〈·〉 indicates some standard binary encoding of the object(s) inthe brackets. In the case of coordinated shapes, it means
an explicit binary encoding of the set of locations. Integers, tuples, or other data structures are similarly given simple explicit encodings.

‡Note that this representation could also be used in the case that negative bond strengths are allowed so long as the strength function
is diagonal.
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We prove the right inequality in eq. 2.1 by developing a construction (Section 2.6) showing how for any
programs s.t. U(s) = 〈S〉, we can build a tile systemT of 15 |p|

log |p| + b tile types, whereb is a constant
andp is a string consisting of a fixed programpsb ands (i.e., |p| = |psb| + |s|), that uniquely produces an
assembly whose shape is̃S. Programpsb and constantb are both independent ofS. The right inequality in
eq. 2.1 follows with the multiplicative constanta1 = 15 + ε for arbitraryε > 0.

Our result can be used to show that the tile-complexity of shapes is uncomputable:

Corollary 2.5.1. Ksa of shapes is uncomputable. In other words, the following language is undecidable:

L̃ =
{

(l, n) s.t. l = 〈S〉 for someS andKsa(S̃) ≤ n
}

.

LanguagẽL should be contrasted withL = {(l, n) s.t. l = 〈S〉 andKsa(S) ≤ n}which is decidable (but
hard to compute in the sense of NP-completeness [1]).

Proof. We essentially parallel the proof that Kolmogorov complexity is uncomputable. If̃L were decidable,
then we could make a program that computesKsa(S̃) and subsequently uses Theorem 2.5.1 to compute an
effective lower bound forK(S̃). Then we can construct a programp that givenn outputs some coordinated
shapeS (as a list of locations) such thatK(S̃) ≥ n by enumerating shapes and testing with the lower
bound, which we know must eventually exceedn. But this results in a contradiction sincep〈n〉 is a program
outputtingS ∈ S̃ and soK(S̃) ≤ |p|+ ⌈log n⌉. But for large enoughn, |p|+ ⌈log n⌉ < n.

2.6 The Programmable Block Construction

2.6.1 Overview

The uniquely produced terminal assemblyA of our tile system logically will consist of square “blocks”of
c by c tiles. There will be one block for each location inS. Consider the coordinated shape in Fig. 2.1(a).
An example assemblyA is graphically represented in Fig. 2.1(b), where each square represents a block
containingc2 tiles. Self-assembly initiates in theseed block, which contains the seed tile, and proceeds
according to the arrows illustrated between blocks. Thus ifthere is an arrow from one block to another, it
indicates that the growth of the second block (agrowth block) is initiated from the first. A terminated arrow
indicates that the block does not initiate the self-assembly of an adjacent block in that direction — in fact,
the boundary between such blocks consists of strength-0 interactions (i.e., mismatches). Fig. 2.1(c) describes
our nomenclature: an arrow comes into a block on its input side, arrows exit on propagating output sides, and
terminated arrows indicate terminating output sides. The seed block has four output sides, which can be either
propagating or terminating. Each growth block has one inputand three output sides, which are also either
propagating or terminating. The overall pattern of bondingof the finished target assemblyA is as follows.
Tiles on terminal output sides are not bound to the tiles on the adjacent terminal output side (i.e., there is no
bonding along the dotted lines in Fig. 2.8(a)), but all otherneighboring tiles are bound. We will program the
growth such that terminating output sides abut only other terminating output sides orempty tiles, and input
sides exclusively abut propagating output sides and vice versa.

The input/output connections of the blocks form a spanning tree rooted at the seed block. During the
progress of the self-assembly of the seed block, a computational process determines the input/output rela-
tionships of the rest of the blocks in the assembly. This information is propagated from block to block during
self-assembly (along the arrows in Fig. 2.1(b)) and describes the shape of the assembly. By following the
instructions each growth block receives in its input, the block decides where to start the growth of the next
block and what information to pass to it in turn. The scaling factorc is set by the size of the seed block. The
computation in the seed block ensures thatc is large enough that there is enough space to do the necessary
computation within the other blocks.

We present a general construction that represents a Turing-universal way of guiding large scale self-
assembly of blocks based on an input programp. In the following section, we describe the architecture of
seed and growth blocks on which arbitrary programs can be executed. In Section 2.6.3 we describe how
programp can be encoded using few tile types. In Section 2.6.4 we discuss the programming ofp that is
required to grow the blocks in the form of a specific shape and bound the scaling factorc. In Section 2.6.5
we demonstrate that the target assemblyA is uniquelyproduced.
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Figure 2.1: Forming a shape out of blocks: a) A coordinated shapeS. b) An assembly composed ofc by c
blocks that grow according to transmitted instructions such that the shape of the final assembly isS̃. Arrows
indicate information flow and order of assembly. (Not drawn to scale.) The seed block and the circled growth
block are schematically expanded in Fig. 2.2. c) The nomenclature describing the types of block sides.
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Figure 2.2: Internal structure of a growth block (a) and seedblock (b)

2.6.2 Architecture of the Blocks

2.6.2.1 Growth Blocks

There are four types of growth blocks depending upon where the input side is, which will be labeled by↑,
→, ↓, or←. The internal structure of a↑ growth block is schematically illustrated in Fig. 2.2(a). The other
three types of growth block are rotated versions of the↑ block. The specific tile types used for a↑ growth
block are shown in Fig. 2.3, and a simple example is presentedin Fig. 2.4. The first part is a Turing machine
simulation, which is based on [18, 11]. The machine simulated is a universal Turing machine that takes its
input from the propagating output side of the previous block. This TM has an output alphabet{0, 1, S}3
and an input alphabet{(000), (111)} on a two-way tape (withλ used as the blank symbol). The output of
the simulation, as 3-tuples, is propagated until the diagonal. The diagonal propagates each member of the
3-tuples crossing it to one of the three output sides, like a prism separating the colors of the spectrum. This
allows the single TM simulation to produce three separate strings targeted for the three output sides. The “S”
symbol in the output of the TM simulation is propagated like the other symbols. However, it acts in a special
way when it crosses the boundary tiles at the three output sides of the block, where it starts a new block. The
output sides that receive the “S” symbol become propagating output sides and the output sides that do not
receive it become terminating output sides. In this way, theTM simulation decides which among the three
output sides will become propagating output sides, and whatinformation they should contain, by outputting
appropriate tuples. Subsequent blocks will use this information as a program, as discussed in Section 2.6.4.
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a) Borders and basic info propagating tiles:
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c) TM Simulation tile types:
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q For every symbols and every stateq we add
the following “copy” tile type: C
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If in stateq, reading symbols, U writes s′,
goes to stateq′, and moves the head right, we
add the following “write” tile type:

W

s′

q′
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e

r r

If in stateq, reading symbols, U writes s′,
goes to stateq′, and moves the head left, we
add the following “write” tile type:

W

s′

e

qs
q′

r r

To startU in stateq0 we add the following
“start” tile type, which places the head at the
point at which the “S” symbol initiates the
block:

q0λ

B

S↑

B

r r

If in stateq, reading symbols, U halts writ-
ing s′ then we add the following “halting” tile
type:

H

s′

λ
qs

λ

r r

Figure 2.3: Growth block↑ tile types. All bond types in which a block type symbol is omitted have the block
type symbol “↑” to prevent inadvertent incorporation of tiles from a different block type. We assume that
in bond types above, a single symbolx ∈ {0, 1, S, λ} is the same as the tuplet(xxx). The tile types for
other growth block types are formed by 90, 180, 270 degree rotations of the tile types of the↑ block where
the block type symbols{↑, ↓,←,→} are replaced by a corresponding 90, 180, 270 degree rotationof the

symbol: i.e.,
B↑

B→
B↑

B↑ (↑ growth block)⇒
B→

B→
B↓

B→ (→ growth block). Looking at the border tile types, note that

external sides of tiles on output sides of blocks have block type symbols compatible with the tiles on an input
side of a block. However, tiles on output sides cannot bind tothe tiles on an adjacent output side because of
mismatching block type symbols.
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Figure 2.4: A trivial example of a↑ growth block. Here, the TM makes one state transition and halts. All
bond types in which a block type symbol is omitted have the block type symbol “↑”. We assume that in bond
types above, a single symbolx ∈ {0, 1, S, λ} is the same as the tuplet(xxx). The natural assembly sequence
to consider is adding tiles row by row from the south side (in which a new row is started by the strength-2
bond).
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2.6.2.2 Seed Block

The internal structure of the seed block is schematically shown in Fig. 2.2(b). It consists of a small square
containing all the information pertaining to the shape to bebuilt (the seed frame), a larger square in which this
information is unpacked into usable form, and finally four TMsimulations whose computations determine the
size of the seed block and the information transmitted to thegrowth blocks. For simplicity we first present
a construction without the unpacking process (thesimpleseed block), and then we explain the unpacking
process separately and show how it can be used to create the full construction. The tile types used for the
simple seed block are presented in Fig. 2.5 and an example is given in Fig. 2.6. While growth blocks contain
a single TM simulation that outputs a different string to each of the three output sides, the seed block contains
four identicalTM simulations that output different strings to each of the four output sides. This is possible
because the border tile types transmit information selectively: the computation in the seed block is performed
using 4-tuples as the alphabet in a manner similar to the growth blocks, but on each side of the seed block
only one of the elements of the 4-tuple traverses the border.As with growth blocks, if the transmitted symbol
is “S,” the outside edge initiates the assembly of the adjoining block. The point of having four identical TM
simulations is to ensures that the seed block is square: while a growth block uses the length of its input side to
set the length of its output sides (via the diagonal), the seed block does not have any input sides. (Remember
that it is the seed block that sets the size of all the blocks.)

The initiation of the Turing machine simulations in the seedblock is done by tile types encoding the
programp that guides the block construction. The natural approach toprovide this input is using 4 rows
(one for each TM) of unique tiles encoding one bit per tile, asillustrated in Figs. 2.5 and 2.6. However, this
method does not result in an asymptotically optimal encoding.

2.6.3 The Unpacking Process

To encode bits much more effectively we follow Adleman et al.[3] and encode on the order oflog n/ log log n
bits per tile wheren is the length of the input. This representation is then unpacked into a one-bit-per-tile
representation used by the TM simulation. Adleman et al.’s method requiresO(n/ log n) tiles to encoden
bits, leading to the asymptotically optimal result of Theorem 2.5.1.

Our way of encoding information is based on Adleman et al. [3], but modified to work in aτ = 2 tile
system (with strength function ranging over{0, 1, 2}) and to fit our construction in its geometry. We express
a lengthn binary string using a concatenation of⌈n/k⌉ binary substrings of lengthk, padding with0s if
necessary.∗ We choosek such that it is the least integer satisfyingnlog n ≤ 2k. Clearly,2k < 2n

log n . See
Fig. 2.7 for the tile types used in the unpacking for the northTM simulation and for a simple unpacking
example (which for the sake of illustration usesk = 4).

Let us consider the number of tile types used to encode and unpack then bit input string for a single TM
simulation (i.e., north). There are2⌈n/k⌉ ≤ 2⌈ n

log n
log n
⌉ = 2⌈ n

log n−log log n⌉ unique tile types in each seed

row. This implies that there exists a constanth such that2⌈n/k⌉ ≤ 3n
log n + h for all n. We need at most

2k + 2k−1 + · · · + 4 < 2k+1 “extract bit” tile types and2k−1 + 2k−2 + · · · + 4 < 2k “copy remainder”
tile types. To initiate the unpacking of new substrings we need2k tile types. To keep on copying substrings
that are not yet unpacked we need2(2k) tile types. The quantity of the other tile types is independent of
n, k. Thus, in total, to unpack then bit input string for a single TM simulation we need no more than
3n

log n + h + 2k+1 + 2k + 2k + 2(2k) ≤ 15 n
log n + O(1) tile types. Since there are4 TM simulations in the

seed block, we need60 n
log n + O(1) tile types to encode and unpack then bit input string.

If the seed block requires only one propagating output side,then a reduced construction using fewer tile
types can be used: only one side of the seed frame is specified,and only one direction of unpacking tiles are
used. A constant number of additional tile types are used to fill out the remaining three sides of the square.
These additional tile types must perform two functions. First, they must properly extend the diagonal on
either side of the unpacking and TM simulation regions. In the absence of the other three unpacking and TM
simulation processes, this requires adding strength-2 bonds that allow the diagonal to grow to the next layer.
Second, the rest of the square must be filled in to the correct size. This can be accomplished by adding tiles
that extend one diagonal to the other side of the seed frame (using the same logic as a construction in [11].)

∗We can assume that our universal TM U treats trailing0s just asλs
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a) Borders and half-diagonals:

The borders:
∀w, x, y, z ∈ {0, 1, λ}:
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w
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y
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B
wxyz
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B
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r S↑

B
Sxyz
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r r

B
S→
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w
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r wxSz

B
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Corner tile types:
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B

B←

B↑
B→
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B
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B
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The four half-diagonals to separate the TM simulations and
augment the TM tape with blanks:
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e

e

λ
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b) Seed frame for programp:

TM seed frame: for every symbolpi:

pi

i

⊘

i+1
r

r

r

r i+1
pi

i

⊘

⊘

i+1
pi

i

i

⊘

i+1

pi

r r

r r

If pi is “U” then the corresponding bond type is strength 2, starting the TM simulation
with the head positioned at that point readingλ.

Corners of the seed frame: letim = |p|:

λ

λ

im
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r r
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λ

im

r r
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r im
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We make the north-west corner the seed tile of our tile system.

To fill in the middle:

⊘

⊘

⊘

⊘

c) TM Simulation tile types (north only):

For every symbols in {0, 1, S, λ}4 the fol-
lowing tile types propagate the tape contents:

s

e

s

e

For every symbols and every stateq we add
the following “read” tile types: R

qs

q

s

e

r r

R

qs

e

s

q

r r

If in stateq, reading symbols, U writes s′,
goes to stateq′, and moves the head left, we
add the following “write” tile type:

W

s′

e

qs
q′

r r

If in stateq, reading symbols, U writes s′,
goes to stateq′, and moves the head right, we
add the following “write” tile type:

W

s′

q′

qs

e

r r

To startU in stateq0 we add the following
“start” tile type, which places the head at the
point at which the “S” symbol initiates the
block:

q0λ
e

U

e

r r

r r

If in stateq, reading symbols, U halts writ-
ing s′ = (wxyz) then we add the following
“halting” tile type, which also starts the border:

H

w↑

B
qs

B

r r

Figure 2.5: Seed block tile types without unpacking. All bond types in which a block type symbol is omitted
have the block type symbol “” to prevent inadvertent incorporation of tiles from a different block type. We
assume that in bond types above, a single symbolx ∈ {0, 1, S, λ} is the same as the tuplet(xxxx). Note that
as with output sides of growth blocks, the external sides of seed block border tiles have block type symbols
compatible with the tiles on an input side of a growth block. The three other TM simulations consist of tile
types that are rotated versions of the north TM simulation shown. The halting tile types propagate one of the
members of the tuple on which the TM halts, analogous to the border tile types. The bond types of TM tile
types have a symbol fromD which indicates which simulation they belong to (omitted above).
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Figure 2.6: A simple seed block without unpacking showing the north TM simulation and the selective
transmission of information through the borders. As shown,only the west side is a propagating output side;
the other three sides are terminating output sides. All bondtypes in which a block type symbol is omitted
have the block type symbol “.” We assume that in bond types above, a single symbolx ∈ {0, 1, S, λ} is the
same as the tuplet(xxxx). The natural assembly sequence to consider is growing the seed frame first and
then adding tiles row by row from the center (where a new row isstarted by the strength-2 bond).
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a) Unpacking tile types for the north side of the seed frame:

We usen/k coding tiles in the input row, each encoding a binary substring (wi)
of lengthk. These tiles are interspersed with buffer tiles holding thesymbol “∗”.
∀0 ≥ i ≥ k/n − 1:

wi

2i+1

⊘

2i+2
r

r

r

r ∗

2i

⊘

2i+1
r

r

r

r

The last tile of the seed row has symbol “U” which indicates the end of the input string.

To initiate the unpacking of new substrings:∀x ∈ {0, 1}k−1, b ∈ {0, 1}:

b
x

bx

∗

The following “extract bit” tile types perform the actual unpacking: ∀j ∈
{1, . . . , k − 1} , ∀x ∈ {0, 1}j , b ∈ {0, 1}:

b
x

bx

e

r r

The following “copy remainder” tile types pass the remaining bits to the next extrac-
tion: ∀j ∈ {2, . . . , k − 1} , ∀x ∈ {0, 1}j :

x
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∗

x

r r

To copy a single bit in the last step of the unpacking of a substring and after unpacking
every bit:b ∈ {0, 1}:
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b
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These tile types keep on copying substrings that are not yet being unpacked:∀x ∈
{0, 1}k:
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∗

x

Finally, the following tile types propagate the symbol “U”, which indicates the end of
the input string, and initiate the TM simulation once the unpacking process finishes:
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b) North unpacking example:
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Figure 2.7: The unpacking for the north side of the seed frame. (a) The tile types used. (b) An example
showing the unpacking of the string01100101 if k = 4 for a seed block with up to four propagating output
sides. Note that the unpacking process can be inserted immediately prior to the TM simulation without
modifying other tile types. (inset) Internal structure of aseed block with only one propagating output side.
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Altogether, a seed block with only one propagating output side requires only15 n
log n + O(1) tile types. We

will see in the next section that this is sufficient for growing any shape.

2.6.4 Programming Blocks and the Value of the Scaling Factorc

In order for our tile system to produce some assembly whose shape isS̃, instructions encoded inp must guide
the construction of the blocks by deciding on which side of which block a new block begins to grow and what
is encoded on the edge of each block. For our purposes, we takep = psb〈s〉 (i.e.,psb takess as input), where
s is a program that outputs the list of locations in the shapeS. psb runss to obtain this list and plans out a
spanning treet over these locations (it can just do a depth-first search) starting from some arbitrarily chosen
location that will correspond to the seed block.∗ The information passed along the arrows in Fig. 2.1(b) is
pgb〈t, (i, j)〉 which is the concatenation of a programpgb to be executed within each growth block, and an
encoding of the treet and the location(i, j) of the block into which the arrow is heading. When executed,
pgb〈t, (i, j)〉 evaluates to a 3-tuple encoding ofpgb〈t, D(i, j)〉 together with symbol “S” for each propagating
output sideD. Thus, each growth block passespgb〈t, D(i, j)〉 to itsDth propagating output side as directed
by t. Note that programpsb in the seed tile must also run long enough to ensure thatc is large enough that the
computation in the growth blocks has enough space to finish without running into the sides of the block or
into the diagonal. Nevertheless, the scaling factorc is dominated by the building oft in the seed block, as the
computation in the growth blocks takes onlypoly(|S|).† Since the building oft is dominated by the running
time ofs, we havec = poly(time(s)).

2.6.5 Uniqueness of the Terminal Assembly

By Theorem 2.3.1 it is enough to demonstrate a locally deterministic assembly sequence ending in our target
terminal assembly to be assured that this terminal assemblyis uniquely produced. Consider the assembly
sequence~A in which the assembly is constructedblock by blocksuch that every block is finished before the
next one started and each block is constructed by the naturalassembly sequence described in the captions to
Figs. 2.4 and 2.6. It is enough to confirm that in this natural assembly sequence every tile addition satisfies the
definition of local determinism (Definition 2.3.2). It is easy to confirm that every tile not adjacent to a terminal
output side of a block indeed satisfies these conditions. Other than on a terminal output side of a block (and
onnull tiles) there are notermsides: every side is either aninputsideor apropside. In our construction, each
new tile binds through either a single strength-2 bond or twostrength-1 bonds (thus condition 1 is satisfied
sinceτ = 2) such that no other tile type can bind through theseinputsides(condition 2 is satisfied if the tile
has notermsides). Note that inadvertent binding of a tile type from a different block type is prevented by the
block type symbols.

Now let’s considertermsidesaround the terminal output sides of blocks (Fig. 2.8(a)). Here block type
symbols come to the rescue again and prevent inadvertent binding. Let t ∈ A be a tile with atermside(t
can benull). We claim that∀t′ s.t. type(t′) ∈ T andpos(t′) = pos(t), if ΓA

termsides
~A(t)

(t′) > 0 then

ΓA

D−propsides
~A(t)

(t′) < τ = 2. In other words, ift′ binds on atermsideof t, then it cannot bind strongly

enough to violate local determinism, implying we can ignoretermsides. Figure 2.8(a) shows in dotted lines
the termsidesthat could potentially be involved in bonding. Thesetermsidescannot have a strength-2 bond
because symbol “S” is not propagated to terminal output sides of blocks. Thust′ binding only on a single
termsideof t is not enough. Cant′ bind on twotermsidesof t? To do so, it must be in a corner between
two blocks, binding two terminal output sides of different blocks. But to bind in this way would requiret′ to
bond to the block type symbol pattern‡ shown in Fig. 2.8(b) (or its rotation), which none of the tiletypes in

∗We can opt to always choose a leaf, in which case the seed blockrequires only one propagating output side. In this case the
multiplicative factora1 is 15 + ε, although the tile set used will depend upon the direction ofgrowth from the leaf.

†Note that fewer thann rows are necessary to unpack a string of lengthn (Section 2.6.3). Since we can presume thatpsb reads its
entire input and the universal TM needs to read the entire input program to execute it, the number of rows required for the unpacking
process can be ignored with respect to the asymptotics of thescaling factorc.

‡The block type symbol pattern of a tile type consists of the block type symbols among its four bond types. For instance, thetile

type

λ↑

λ↑

D3↑

λ↑

r r

has block type symbol pattern

↑

↑

↑

↑ . If two bond types do not have matching block type symbols then obviously they

cannot bind.
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Figure 2.8: (a) The target terminal assembly with the dottedlines indicating the edges that havetermsides
with non-null bonds. (b) The block type symbols of adjacent tiles on twotermsidesof t (west and south in
this case). (c) The block type symbols of adjacent tiles on atermside(west side in this case) and aninputside
of t. If t is in the seed block or← growth block, then the north, east, south sides may be theinputsides. If t
is in a↑ block then the east and south sides may be theinputsides. If t is in a↓ block then the north and east
sides may be theinputsides.

our tile system can do. Cant′ bind on onetermsideand oneinputsideof t? Say thetermsideof t thatt′ binds
on is the west side (Fig. 2.8(c)). The tile to the west oft must be on the east terminal output side of a block,
and thus it has symbol “→” on its east side. Sot′ must have “→” on the west, and depending on the type of
block t is in, one of the other block type symbols as shown in Fig. 2.8(c). But again none of the tile types in
our tile system has the necessary block type symbol pattern.

2.7 Generalizations of Shape Complexity

In this work we have established both upper and lower bounds relating the descriptional complexity of a shape
to the number of tile types needed to self-assemble the shapewithin the standard Tile Assembly Model. The
relationship is dependent upon a particular definition of shape that ignores its size. Disregarding scale in self-
assembly appears to play a similar role as disregarding timein theories of computability and decidability.
Those theories earned their universal standing by being shown to be identical for all “reasonable” models of
computation. To what extent do our results depend on the particular model of self-assembly? Can one define
a complexity theory for families of shapes in which the absolute scale is the critical resource being measured?
In this section we discuss the generality and limitations ofour result.

2.7.1 Optimizing the Main Result (Section 2.5)

Since the Kolmogorov complexity of a string depends on the universal Turing machine chosen, the com-
plexity community adopted a notion of additive equivalence, where additive constants are ignored. However,
Theorem 2.5.1 includes multiplicative constants as well, which are not customarily discounted. It might be
possible to use a more clever method of unpacking (Section 2.6.2) and a seed block construction that reduces
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the multiplicative constanta1 of Theorem 2.5.1. Correspondingly, there might be a more efficient way to
encode any tile system than that described in the proof of thetheorem, and thereby increasea0.

Recall thats is the program forU producing the target coordinated shapeS as a list of locations. For
cases where our results are of interest, the scaling factorc = poly(time(s)) is extremely large, since|S| is
presumably enormous ands must output every location inS. The programs′ that given(i, j) outputs0/1
indicating whetherS contains that location may run much faster thans for large shapes. Can our construction
be adapted to uses′ in each block rather thans in the seed block to obtain smaller scale? The problem
with doing this directly is that the scale of the blocks, which sets the maximum allowed running time of
computation in each block, must be set in the seed block. As a result, there must be some computable time
bound ons′ that is given to the seed block.

For any particular shape, there must be a range of achievableparameters: the number of tile types and the
scaling factor. We know that we can obtain scaling factor1 by using a unique tile type for each location. On
the other extreme is our block construction which allows us to obtain an asymptotically optimal number of
tile types at the expense of an enormous scaling factor. Presumably there is a gradual tradeoff between the
number of tile types and the scale that can be achieved by a range of tile systems. The characterization of this
tradeoff is a topic for future study.

In this vein, an important open problem remains of determining lower bounds on the scales of shapes
produced by tile systems with an asymptotically optimal number of tile types. As an initial result of this
kind, consider the following proof that an arbitrarily large scaling factor may need to be used if we stick to
asymptotically optimal tile systems. Consider the coordinated shape that is a rectangle of widthm and height
1. Clearly, it is an instance of the following shapeS̃: a long, thin rectangle that ism times as long as it is high.
According to Aggarwal et al. [4], the number of tile types required to self-assemble a long, thin rectangle that
is n tiles long andk tiles high isΩ(n1/k

k ). This implies that to produce any coordinated instance ofS̃ at scale

c requires|T | = Ω( (mc)1/c

c ) tile types. Now we can define what an asymptotically optimal tile system means
for us by choosinga1, b1 and requiring that the number of tile types|T | satisfy|T | log |T | ≤ a1K(S̃) + b1.
SinceK(S̃) = O(log m), it follows through simple algebra that no matter whata1, b1 are, for large enough
m, the scaling factorc needs to get arbitrarily large to avoid a contradiction.

2.7.2 Strength Functions

In most previous works on self-assembly, as in this work, strength functions are restricted with the following
properties: (1) the effect that one tile has on another is equal to the effect that the other has on the first, i.e.,
g is symmetric: g(σ, σ′) = g(σ′, σ); (2) the lack of an interaction is normalized to zero, i.e.,g(σ, null) = 0;
(3) there are no “adverse” interactions counteracting other interactions, i.e.,g is non-negative; (4) only sides
with matching bond types interact, i.e.,g is diagonal: g(σ, σ′) = 0 if σ 6= σ′.

Properties 1 and 2 seem natural enough. Our results are independent of property 3 because the encoding
used for the lower bound of Theorem 2.5.1 is valid for strength functions taking on negative values. Property
4, which reflects the roots of the Tile Assembly Model in the Wang tiling model, is essential for the quan-
titative relationship expressed in Theorem 2.5.1: recent work by Aggarwal et al. [4] shows that permitting
non-diagonal strength functions allows information to be encoded more compactly. Indeed, if property 4 is
relaxed then replacing our unpacking process with the method of encoding used in that work and using Ag-
garwal et al.’s lower bound leads to the following form of Theorem 2.5.1: Assuming the maximum threshold
τ is bounded by a constant, there exist constantsa0, b0, a1, b1 such that for any shapẽS,

a0K(S̃) + b0 ≤
(

Knd
sa (S̃)

)2

≤ a1K(S̃) + b1

whereKnd
sa is the tile-complexity when non-diagonal strength functions are allowed. It is an open question

whether the constant bound onτ can be relaxed.

2.7.3 Wang Tiling vs Self-Assembly of Shapes

Suppose one is solely concerned with the existence of a configuration in which all sides match, and not with
the process of assembly. This is the view of classical tilingtheory [7]. Since finite tile sets can enforce
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uncomputable tilings of the plane [8, 16], one might expect greater computational power when the existence,
rather than production, of a tiling is used to specify shapes. In this section we develop the notion of shapes
in the Wang tile model [20] and show that results almost identical to the Tile Assembly Model hold. One
conclusion of this analysis is that making a shape “practically constructible” (i.e., in the sense of the Tile
Assembly Model) does not necessitate an increase in tile-complexity.

We translate the classic notion of the origin-restricted Wang tiling problem∗ as follows. An(origin-
restricted) Wang tiling system is a pair(T, ts) whereT is a set of tile types andts is a seed tilewith
type(ts) ∈ T . A configurationA is a valid tiling if all sides match and it contains the seed tile. Formally,
A is a valid tiling if ∀(i, j) ∈ Z2, D ∈ D, (1) type(A(i, j)) ∈ T , (2) ts ∈ A, (3) bondD(A(i, j)) =
bondD−1(A(D(i, j))).

Since valid tilings are infinite objects, how can they define finite coordinated shapes? For tile sets contain-
ing theempty tile type, we can define shapes analogously to the Tile Assembly Model. However, we cannot
simply define the coordinated shape of a valid tiling to be theset of locations of non-empty tiles. For one
thing, the set of non-empty tiles can be disconnected, unlike in self-assembly where any produced assembly
is a single connected component. So we take the coordinated shapeSA of a valid tiling A to be the smallest
region of non-empty tiles containingts that can be extended to infinity byempty tiles. Formally,SA is the
coordinated shape of the smallest subset ofA that is a valid tiling containingts. If SA is finite, then it is the
coordinated shape of valid tilingA.† ShapeS̃ is theshape of a valid tilingA if SA ∈ S̃.

Produced assemblies of a tile system(T, ts, g, τ) are not necessarily valid tilings of Wang tiling system
(T, ts) because the Tile Assembly Model allows mismatching sides. Further, valid tilings of(T, ts) are not
necessarily produced assemblies of(T, ts, g, τ). Even if one considers only valid tilings that are connected
components, there might not be any sequence of legal tile additions that assembles these configurations.
Nonetheless, if a tile system uniquely produces a valid tiling A, then all valid tilings of the corresponding
Wang tile system agree withA and have the same coordinated shape asA:

Lemma 2.7.1. If empty ∈ T and the tile systemT = (T, ts, g, τ) uniquely produces assemblyA such
that A is a valid tiling of the Wang tiling system(T, ts) then for all valid tilingsA′: (1) ∀(i, j) ∈ Z2,
type(A(i, j)) 6= empty ⇒ A′(i, j) = A(i, j), (2)SA′ = SA.

Proof. Consider an assembly sequence~A of T ending in assemblyA and letA′ be a valid tiling of(T, ts).
Supposetn is the first tile added in this sequence such thatt′ = A′(pos(tn)) 6= tn. SinceA′ is a valid tiling,

t′ must match on all sides, includinginputsides
~A(tn). But this implies that two different tiles can be added

in the same location in~A which means thatA is not uniquely produced. This implies part (1) of the lemma.
Now, to be a valid tiling, all exposed sides of assemblyA must be null. Thus ifA′ andA agree on all places
whereA is non-empty, thenSA′ = SA and part (2) of the lemma follows.

Define thetile-complexity Kwt of a shapẽS in the origin-restricted Wang tiling model as the minimal
number of tile types in a Wang tiling system with the propertythat a valid tiling exists and there is a coordi-
nated shapeS ∈ S̃ such that for every valid tilingA, SA = S.

Theorem 2.7.1.There exist constantsa0, b0, a1, b1 such that for any shapẽS,

a0K(S̃) + b0 ≤ Kwt(S̃) log Kwt(S̃) ≤ a1K(S̃) + b1.

Proof. (Sketch) The left inequality follows in a manner similar to the proof of Theorem 2.5.1. Suppose
every valid tiling of our Wang tile system has coordinated shapeS. Any Wang tiling system ofn tile types
can be represented usingO(n log n) bits. Making use of this information as input, we can use a constant-
size program to find, through exhaustive search, the smallest region containingts surrounded bynull bond
types in some valid tiling. Thus,O(n log n) bits are enough to compute an instance ofS̃. To prove the
right inequality, our original block construction almost works, except that there are mismatches between a
terminal output side of a block and the abutting terminal output side of the adjacent block or the surrounding
empty tiles (i.e., along the dotted lines in Fig. 2.8(a)). Consequently, the original construction does not yield
a valid tiling. Nonetheless, a minor variant of our construction overcomes this problem. Instead of relying on

∗TheunrestrictedWang tile model does not have a seed tile [20, 5, 18].
†SA can be finite only ifempty ∈ T because otherwise no configuration containing anempty tile can be a valid tiling.
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mismatching bond type symbols to prevent inadvertent binding to terminal output sides of blocks, we can add
an explicit capping layer that covers the terminal output sides withnull bond types but propagates information
through propagating output sides. This way, the terminal output sides of blocks are covered bynull bond
types and match the terminal output sides of the adjacent block andempty tiles. These modifications can be
made preserving local determinism, which, by Lemma 2.7.1, establishes that the coordinated shape of any
valid tiling is an instance of̃S.

There may still be differences in the computational power between Wang tilings and self-assembly pro-
cesses. For example, consider the smallest Wang tiling system and the smallest self-assembly tile system that
produce instances of̃S. The instance produced by the Wang tiling system might be much smaller than the
instance produced by self-assembly. Likewise, there mightbecoordinatedshapes that can be produced with
significantly fewer tile types by a Wang tiling system than bya self-assembly system.

Keep in mind that the definition we use for saying when a Wang tiling system produces a shape was
chosen as a natural parallel to the definition used for self-assembly, but alternative definitions may highlight
other interesting phenomena specific to Wang tilings. For example, one might partition tiles into two subsets,
“solution” and “substance” tiles, and declare shapes to be connected components of substance tiles within
valid tilings. In such tilings — reminiscent of “vicinal water” in chemistry — the solution potentially can
have a significant (even computational) influence that restricts possible shapes of the substance, and hence the
size of produced shapes needn’t be so large as to contain the full computation required to specify the shape.

2.7.4 Sets of Shapes

Any coordinated shapeS can be trivially produced by a self-assembly tile system or by a Wang tiling of
|S| tile types. Interesting behavior occurs only when the number of tile types is somehow restricted and the
system is forced to perform some non-trivial computation toproduce a shape. Previously in this paper, we
restricted the number of tile types in the sense that we ask what is the minimal number of tile types that can
produce a given shape. We saw that ignoring scale in this setting allows for an elegant theory. In the following
two sections the restriction on the number of tile types is provided by the infinity of shapes they must be able
to produce. Here we will see as well that ignoring scale allows for an elegant theory.

Adleman [2] asks “What are the ‘assemblable [sic] shapes?’ — (analogous to what are the ‘computable
functions’)?” While this is still an open question for coordinated shapes, our definition of a shape ignoring
scale and translation leads to an elegant answer. A set of binary stringsL̃ is a language of shapes if it
consists of (standard binary) encodings of lists of locations that are coordinated shapes in some set of shapes:

L̃ =
{

〈S〉 s.t.S ∈ S̃ andS̃ ∈ R
}

for some set of shapesR. Note that every instance of every shape inR is

in this language. The language of shapesL̃ is recursively enumerable if there exists a Turing machine that
halts upon receiving〈S〉 ∈ L̃, and does not halt otherwise. We say a tile systemT produces the language of

shapes̃L if L̃ =
{

〈S〉 s.t.S ∈ S̃A for someA ∈ Term(T)
}

. We may want̃L to beuniquely producedin

the sense that theA ∈ Term(T) is unique for each shape. Further, to prevent infinite spurious growth we
may also requireT to satisfy thenon-cancerousproperty:∀B ∈ Prod(T), ∃A ∈ Term(T) s.t.B →∗

T
A.

The following lemma is valid whether or not these restrictions are made.

Lemma 2.7.2. A language of shapes̃L is recursively enumerable if and only if it is (uniquely) produced by a
(non-cancerous) tile system.

Proof. (Sketch) First of all, for any tile systemT we can make a TM that given a coordinated shapeS as
a list of locations, starts simulating all possible assembly sequences ofT and halts iff it finds a terminal
assembly that has shapẽS. Therefore, ifL̃ is produced by a tile system,̃L is recursively enumerable. In
the other direction, if̃L is recursively enumerable then there is a programp that givenn outputs thenth

shape from̃L (in some order) without repetitions. Our programmable block construction can be modified to
execute a non-deterministic universal TM in the seed block by having multiple possible state transitions. We
make a program that non-deterministically guessesn, feeds it top, and proceeds to build the returned shape.
Note that since every computation path terminates, this tile system is non-cancerous, and sincep enumerates
without repetitions, the language of shapes is uniquely produced.
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Note that the above lemma does not hold for languages of coordinated shapes, defined analogously. Many
simple recursively enumerable languages of coordinated shapes cannot be produced by any tile system. For
example, consider the language of equilateral width-1 crosses centered at(0, 0). No tile system produces
this language. Scale equivalence is crucial because it allows arbitrary amounts of information to be passed
between different parts of a shape; otherwise, the amount ofinformation is limited by the width of a shape.

The same lemma can be attained for the Wang tiling model in an analogous manner using the construction
from Section 2.7.3. Let us say a Wang tiling system(T, ts) produces the language of shapesL̃ if L̃ = {〈S〉
s.t. S ∈ S̃A for some valid tilingA of (T, ts)}. Analogously to tile systems, we may require theunique
productionproperty that there is exactly one suchA for each shape. Likewise, corresponding to the non-
cancerous property of tile systems, we may also require the tiling system to have thenon-cancerousproperty
that every valid tiling has a coordinated shape (i.e., is finite). Again, the following lemma is true whether or
not these restrictions are made.

Lemma 2.7.3. A language of shapes̃L is recursively enumerable if and only if it is (uniquely) produced by a
(non-cancerous) Wang tiling system.

2.7.5 Scale Complexity of Shape Functions

Expanding upon the notion of a shape being the output of a universal computation process as mentioned in
the Introduction, let us consider tile systems effectivelycomputing a function from binary strings to shapes.
The universal “programmable block” constructor presentedin Section 2.6 may be taken as an example of
such a tile set, if the full seed block is considered as an initial seed assembly rather than as part of the tile
set per se. In this case, the remaining tile set is of constantsize, and will construct an arbitrary algorithmic
shape when presented with a seed assembly containing the relevant program. The universal constructor
tile set’s efficiency, then, can be measured in terms of the scale of the produced shape. Similarly, other
“programmable” tile sets may produce a limited set of shapes, but potentially with greater efficiency. (Such
tile sets can be thought to produce a language of shapes (Section 2.7.4) such that the choice of the produced
shape can be deterministically specified.) For tile systemsoutputting shapes in this manner, we can show that
the total number of tiles (not tiletypes) in the produced shape is closely connected to the time complexity
of the corresponding function from binary strings to shapesin terms of Turing machines. The equivalent
connection can be made between non-deterministic Turing machines and the size of valid tilings in the Wang
tiling model.

Let f be a function from binary strings to shapes. We say that a Turing machineM computes this
function if for all x, f(x) = S̃ ⇔ ∃S ∈ S̃ s.t.M(x) = 〈S〉. The standard notion of time-complexity applies:
f ∈ TIMETM (t(n)) if there is a TM computing it running in time bounded byt(n) wheren is the size
of the input. In Section 2.6.2.2 we saw how binary input can beprovided to a tile system via a seed frame
wherein all four sides of a square present the bitstring. Letus apply this convention here.∗ Extending the
notion of the seed in self-assembly to the entire seed frame and using this as the input for a computation[17],
we say a tile system computesf if: [starting with the seed frame encodingx the tile system uniquely produces
an assembly of shapẽS] iff f(x) = S̃. We say thatf ∈ TILESSA(t(n)) if there is a tile system computing
it and the size of coordinated shapes produced (in terms of the number of non-empty locations) for inputs
of sizen is upper bounded byt(n). Similar definitions can be made for non-deterministic Turing machines
and Wang tiling systems. We say that a NDTMN computesf if: [every computation path ofN on input
x ending in an accept state (as opposed to a reject state) outputs 〈S〉 for someS ∈ S̃ ] iff f(x) = S̃. For
non-deterministic Turing machines,f ∈ TIMENDTM (t(n)) if there is a NDTM computingf such that
every computation path halts aftert(n) steps. Extending the notion of the seed for Wang tilings to the entire
seed frame as well, we say a Wang tiling system computesf if: all valid tilings containing the seed frame
have a coordinated shape and this coordinated shape is the same for all such valid tilings, and it is an instance
of the shapef(x). We say thatf ∈ TILESWT (t(n)) if there is a tiling system computing it and the size of
coordinated shapes produced for inputs of sizen is upper bounded byt(n).

Theorem 2.7.2. (a) If f ∈ TILESSA(t(n)) thenf ∈ TIMETM (O(t(n)4))

∗Any other similar method would do. For the purposes of this section, it does not matter whether we use the one bit per tile encoding
or the encoding requiring unpacking (Section 2.6.3).
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(b) If f ∈ TIMETM (t(n)) thenf ∈ TILESSA(O(t(n)3))

(c) If f ∈ TILESWT (t(n)) thenf ∈ TIMENDTM(O(t(n)4))

(d) If f ∈ TIMENDTM (t(n)) thenf ∈ TILESWT (O(t(n)3))

Proof. (Sketch) (a) LetT be a tile system computingf such that the total number of tiles used on an input
of sizen is t(n). A Turing machine with a 2-D tape can simulate the self-assembly process ofT with an
input of sizen in O(t(n)2) time: for each of thet(n) tile additions, it needs to searchO(t(n)) locations for
the next addition. This 2-D Turing machine can be simulated by a regular Turing machine with a quadratic
slowdown.∗

(b) LetM be a deterministic Turing machine that computesf and runs in timet(n). Instead of simulating
a universal Turing machine in the block construction, we simulate a Turing machineM ′ which runsM on
inputx encoded in the seed frame and acts as programpsb in Section 2.6.4. Then the scale of each block is
O(t(n)), which implies that each block consists ofO(t(n)2) tiles. Now the total number of blocks cannot be
more than the running time ofM sinceM outputs every location that corresponds to a block. Thus thetotal
number of tiles isO(t(n)3).

(c) A similar argument applies to the Wang tiling system as (a) with the following exception. A Wang
tiling system can simulate a non-deterministic Turing machine and still be able to output a unique shape. The
tiling system can be designed such that if a reject state is reached, the tiling cannot be a valid tiling. For
example, the tile representing the reject state can have a bond type that no other tile matches. Thus all valid
tilings correspond to accepting computations.

(d) Simulation of Wang tiling systems can, in turn, be done bya non-deterministic Turing machine as
follows. Suppose every valid tiling of our Wang tile system has coordinated shapeS. The simulating NDTM
acts similar to the TM simulating self-assembly above, except that every time two or more different tiles can
be added in the same location, it non-deterministically chooses one. If the NDTM finds a region containing
the seed frame surrounded bynull bond types, it outputs the shape of the smallest such region and enters an
accept state. Otherwise, at some point no compatible tile can be added, and the NDTM enters a reject state.
The running time of accepting computations isO(t(n)2) via the same argument as for (b).

If, as is widely believed, NDTMs can compute some functions in polynomial time that require exponential
time on a TM, then it follows that there exist functions from binary strings to shapes that can be computed
much more efficiently by Wang tiling systems than by self-assembly, where efficiency is defined in terms of
the size of the coordinated shape produced.

The above relationship betweenTIME andTILES may not be the tightest possible. As an alternative
approach, very small-scale shapes can be created as Wang tilings by using an NDTM that recognizes tuples
(i, j, x), rather than one that generates the full shape. This will often yield a compact construction. As
a simple example, this approach can be applied to generatingcircles with radiusx at scaleO(n2) where
n = O(log x). It remains an open question how efficiently circles can be generated by self-assembly.

2.7.6 Other Uses of Programmable Growth

The programmable block construction is a general way of guiding the large scale growth of the self-assembly
process and may have applications beyond those explored so far. For instance, instead of constructing shapes,
the block construction can be used to simulate other tile systems in a scaled manner using fewer tile types.
It is easy to reprogram it to simulate, using few tile types, alarge deterministicτ = 1 tile system for which
a short algorithmic description of the tile set exists. We expect a slightly extended version of the block
construction can also be used to provide compact tile sets that simulate otherτ = 2 tile systems that have
short algorithmic descriptions.

To self-assemble a circuit, it may be that the shape of the produced complex is not the correct notion.
Rather one may consider finite patterns, where each locationin a shape is “colored” (e.g. resistor, transistor,

∗The rectangular region of the 2-D tape previously visited bythe 2-D head (the arena) is represented row by row on a 1-D tape
separated by special markers. The current position of the 2-D head is also represented by a special marker. If the arena isl×m, a single
move of the 2-D machines which does not escape the current arena requires at mostO(m2) steps, while a move that escapes it in the
worst case requires an extraO(ml2) steps to increase the arena size. We havem, l = O(t(n)), and the number of times the arena has
to be expanded is at mostO(t(n)).
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wire, etc.). Further, assemblies that can grow arbitrarilylarge may be related to infinite patterns. What is the
natural way to define the self-assembly complexity of such patterns? Do our results (Section 2.5) still hold?

2.8 Appendix

2.8.1 Local Determinism Guarantees Unique Production: Proof of Theorem 2.3.1

Lemma 2.8.1. If ~A is a locally deterministic assembly sequence ofT, then for every assembly sequence~A′

of T and for every tilet′ = t′n added in~A′ the following conditions hold, wheret = A(pos(t′)).

(i) inputsides
~A′

(t′) = inputsides
~A(t),

(ii) t′ = t.

Proof. Supposet′ = t′n is the first tile added that fails to satisfy one of the above conditions. Consider any

D ∈ inputsides
~A′

(t′). Tile tD = A′(D(pos(t′))) must have been added beforet′ in ~A′ and soD−1 6∈
inputsides

~A′

(tD) = inputsides
~A(tD). This impliesD 6∈ propsides

~A(t) and so,

inputsides
~A′

(t′) ∩ propsides
~A(t) = ∅. (2.2)

Now,∀D, ΓA′
n

D (t′) ≤ ΓA
D (t′) becauseA′n has no more tiles thanA and except atpos(t) they all agree. eq. 2.2

implies
ΓA

inputsides
~A′

(t′)
(t′) ≤ ΓA

D−propsides
~A(t)

(t′) .

Therefore,
Γ

A′
n

inputsides
~A′

(t′)
(t′) ≤ ΓA

D−propsides
~A(t)

(t′) .

So by property (2) of Definition 2.3.2, no tile of type6= type(t) could have been sufficiently bound here by

inputsides
~A′

(t′) and thust′ = t. Therefore,t′ cannot fail the second condition (ii).
Now, supposet′ fails the first condition (i). Because of property (1) of Definition 2.3.2, this can only

happen if∃D ∈ inputsides
~A′

(t′)− inputsides
~A(t′). SinceD 6∈ inputsides

~A(t′)), tD must have been added

aftert′ in ~A. So sincetD bindst′, D−1 ∈ inputsides
~A(tD) and soD ∈ propsides

~A(t). But by eq. 2.2 this
is impossible. Thus we concludeA′ ⊆ A.

Lemma 2.8.1 directly implies that if there exists a locally deterministic assembly sequence~A of T then
∀A′ ∈ Prod(T), A′ ⊆ A. Theorem 2.3.1 immediately follows: If there exists a locally deterministic assem-
bly sequence~A of T thenT uniquely producesA.

Since local determinism is a property of theinputsidesclassification of tiles in a terminal assembly,
Lemma 2.8.1 also implies:

Corollary 2.8.1. If there exists a locally deterministic assembly sequence~A of T then every assembly se-
quence ending inA is locally deterministic.

2.8.2 Scale-Equivalence and “∼=” are Equivalence Relations

Translation-equivalence is clearly an equivalence relation. Let us writeS0
tr
= S1 if the two coordinated shapes

are translation equivalent.

Lemma 2.8.2. If S = Sd
0 andS0 = Sk

m thenS = Sdk
m .

Proof. S(i, j) = S0(⌊i/d⌋, ⌊j/d⌋) = Sm(⌊⌊i/d⌋/k⌋, ⌊⌊j/d⌋/k⌋) = Sm(⌊i/dk⌋, ⌊j/dk⌋).

Lemma 2.8.3. If S0
tr
= S1 thenSd

0
tr
= Sd

1 .
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Proof. Sd
0 (i, j) = S0(⌊i/d⌋, ⌊j/d⌋) = S1(⌊i/d⌋ + ∆i, ⌊j/d⌋ + ∆j) = S1(⌊ i+d∆i

d ⌋, ⌊ j+d∆j
d ⌋) = Sd

1 (i +
d∆i, j + d∆j).

To show that scale equivalence is an equivalence relation, the only non-trivial property is transitivity.
SupposeSc

0 = Sd
1 andSd′

1 = Sc′

2 for somec, c′, d, d′ ∈ N. (Sd
1 )d′

= (Sd′

1 )d = Sd′d
1 by Lemma 2.8.2. Thus,

Sd′d
1 = (Sc

0)
d′

= (Sc′

2 )d, and by Lemma 2.8.2,Scd′

0 = Sc′d
2 .

To show that “∼=” is an equivalence relation, again only transitivity is non-trivial. SupposeS0
∼= S1

and S1
∼= S2. In other words,Sc

0
tr
= Sd

1 and Sd′

1
tr
= Sc′

2 for somec, c′, d, d′ ∈ N. By Lemma 2.8.3,

(Sc
0)

d′ tr
= (Sd

1 )d′

and(Sd′

1 )d tr
= (Sc′

2 )d. Then by Lemma 2.8.2,Scd′

0
tr
= Sd′d

1 andSd′d
1

tr
= Sc′d

2 which implies

Scd′

0
tr
= Sc′d

2 by the transitivity of translation equivalence. In other words,S0
∼= S2.
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Chapter 3

Complexity of Compact Proofreading
for Self-Assembled Patterns

This chapter was published as:David Soloveichik and Erik Winfree, “Complexity of CompactProofread-
ing for Self-Assembled Patterns,” Proceedings of DNA Computing 11, Lecture Notes in Computer Science
3892: 305-324, 2006.

3.1 Abstract

Fault-tolerance is a critical issue for biochemical computation. Recent theoretical work on algorithmic self-
assembly has shown that error-correcting tile sets are possible, and that they can achieve exponential decrease
in error rates with a small increase in the number of tile types and the scale of the construction [24, 4].
Following [17], we consider the issue of applying similar schemes to achieve error correction without any
increase in the scale of the assembled pattern. Using a new proofreading transformation, we show that
compact proofreading can be performed for some patterns with a modest increase in the number of tile
types. Other patterns appear to require an exponential number of tile types. A simple property of existing
proofreading schemes — a strong kind of redundancy — is the culprit, suggesting that if general purpose
compact proofreading schemes are to be found, this type of redundancy must be avoided.

3.2 Introduction

The Tile Assembly Model [22, 23] formalizes a generalized crystal growth process by which an organized
structure can spontaneously form from simple parts. This model considers the growth of two dimensional
“crystals” made out of square units called tiles. Typically, there are many types of tiles that must compete
to bind to the crystal. A new tile can be added to a growing complex if it binds strongly enough. Each of
the four sides of a tile has an associated bond type that interacts with matching sides of other tiles that have
already been incorporated. The assembly starts from a specified seed assembly and proceeds by sequential
addition of tiles. Tiles do not get used up since it is assumedthere is an unbounded supply of tiles of each
type. This model has been used to theoretically examine how to use self-assembly for massively parallel
DNA computation [21, 26, 16, 13], for creating objects with programmable morphogenesis [10, 1, 2, 20],
for patterning of components during nanofabrication of molecular electronic circuits [6], and for studying
self-replication and Darwinian evolution of information-bearing crystals [18, 19]. Fig. 3.1 illustrates two
different patterns and the corresponding tile systems thatself-assemble into them. Both patterns are produced
by similar tile systems using only two bond types, four tile types, simple Boolean rules and similar seed
assemblies (the L-shaped boundaries).

Confirming the physical plausibility and relevance of the abstraction, several self-assembling systems
have been demonstrated using DNA molecules as tiles, including both periodic [25, 15, 12] and algorithmic
patterns [14, 9, 3]. A major stumbling block to making algorithmic self-assembly practical is the error rate
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Figure 3.1: (a) A binary counter pattern and (b) a tile systemconstructing it. (c) A Sierpinski pattern and (d) a
tile system constructing it. In this formalism, identically labeled sides match and tiles cannot be rotated. Tiles
may attach to the growing assembly only if at least two sides match, i.e., if two bonds can form. Mismatches
neither help nor hinder assembly. Note that the tile choice at each site is deterministic for these two tile sets.

inherent in any stochastic biochemical implementation. Current implementations seem to suffer error rates
of 1% to 15% [9, 3]. This means that on average every eighth to hundredth tile that is incorporated does not
correctly bond with its neighbors. Once such a mistake occurs, the erroneous information can be propagated
to tiles that are subsequently attached. Thus, a single mistake can result in a drastically different pattern being
produced. With this error rate, structures of size larger than roughly100 tiles cannot be assembled reliably.

There are generally two ways to improve the error-robustness of the assembly process. First, the physics
of the process can be modified to achieve a lower probability of the incorporation of incorrect tiles into the
growing complex. The second method, which we pursue here, isto use some logical properties of the tiles to
perform error correction.

Proofreading tile setsfor algorithmic self-assembly were introduced by Winfree and Bekobolatov [24].
The essential idea was to make use of a redundant encoding of information distributed acrossk tiles, making
isolated errors impossible: to continue growth, errors must appear in multiples ofk. Thanks to the reversible
nature of crystallization, growth from erroneous tiles stalls and the erroneous tiles subsequently dissociate,
allowing another chance for correct growth. Using this approach, a large class of tile sets can be transformed
into more robust tile sets that assemble according to the same logic.

However (a) the proofreading tile sets produce assembliesk times larger than the original tile sets, in-
volving k2 times as many tiles; and (b) the improvement in error rates did not scale well withk in simulation.
Chen and Goel [4] developedsnaked proofreading tile setsthat generalize the proofreading construction in a
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way that further inhibits growth on crystal facets. They were able to prove, with respect to a reversible model
of algorithmic self-assembly, that error rates decrease exponentially withk, and thus to make anN × N
pattern required onlyk = Ω(log N). This provides a solution for (b), although the question of optimality
remains open. Reif et al. [17] raised the question of whethermore compact proofreading schemes could
be developed, and showed how to transform the two tiles sets shown in Fig. 3.1 to obtain lower error rates
without any sacrifice in scale. However, Reif et al. did not give a general construction that works for any
original tile set, and did not analyze how the number of tile types would scale if the construction were to
be generalized to obtain greater degrees of proofreading. Thus, question (a) concerning whether this can be
improved in general and at what cost remained open.

The question of compactness is particularly important whenself-assembly is used for molecular fabrica-
tion tasks, in which case the scale of the final pattern is of direct and critical importance. Furthermore, the
question of scale is a fundamental issue for the theory of algorithmic self-assembly. In the error-free case,
disregarding scale can drastically change the minimal number of tile types required to produce a given shape
(Chapter 2); some shapes can be assembled from few tile typesat a small scale, while other shapes canonly
be assembled from few tile types at a large scale. Examining whether proofreading can be performed without
sacrificing scale is both of practical significance and couldlead to important theoretical distinctions.

If it is the case that some patterns can’t be assembled with low error rates at the original scale using a
concise tile set, while for other patterns compact proofreading can be done effectively, then we would be
justified in calling the former intrinsically fragile, and the latter intrinsically robust. Any such distinctions
should be independent of any particular proofreading scheme. Indeed, we here show that this is true (in a
certain sense), and we give a combinatorial criterion that distinguishes fragile patterns from robust patterns.
As examples, we show that the two patterns discussed in Reif et al.’s work on compact proofreading [17] and
shown in Fig. 3.1 are fundamentally different, in that (within a wide class of potential proofreading schemes
considered here) the cost of obtaining reliable assembly atthe same scale becomes dramatically different as
lower error rates are required.

3.2.1 The Abstract Tile Assembly Model

This section informally summarizes the abstract Tile Assembly Model (aTAM). See [8], Chapter 2 for a
formal treatment. Self-assembly occurs on aZ × Z grid of unit square locations, on which unit-squaretiles
may be placed under specific conditions. Each tile hasbond typeson its north, east, south, and west sides.
A finite set oftile typesdefines the set of possible tiles that can be placed on the grid. Tile types are oriented
and therefore a rotated version of a tile type is considered to be a different tile type. A single tile type may
be used an arbitrary number of times. Aconfiguration is a set of tiles such that there is at most one tile in
every location(i, j) ∈ Z × Z. Two adjacent tilesbond if their abutting sides have matching bond types.
Further, each bond type forms bonds of a specific strength, called its interaction strength. In this paper the
three possible strengths of bonds are{0, 1, 2}. A new tile can be added to an empty spot in a configuration if
and only if the sum of its interaction strengths with its neighbors reaches or exceeds some parameterτ . The
tile systems shown in this paper useτ = 2, i.e., at least a single strong (strength2) or two weak (strength1)
bonds are needed to secure a tile in place.

For the purposes of this paper, a tile system consists of a finite set of tile typesT with specific interaction
strengths associated with each bond type, and a start configuration. Whereas a configuration can be any
arrangement of tiles, we are interested in the subclass of configurations that can result from a self-assembly
process. Thus, anassemblyis a configuration that can result from the start configuration by a sequence of
additions of tiles according to the above rules atτ = 1 or τ = 2 (i.e., it is connected). Aτ -stableassembly is
one that cannot be split into two parts without breaking bonds with a total strength of at leastτ . Deterministic
tile systems are those whose assemblies can incorporate at most1 tile type at any location at any time.

3.2.2 The Kinetic Tile Assembly Model and Errors

The kinetic Tile Assembly Model (kTAM) augments the abstract Tile Assembly Model with a stochastic
model of self-assembly dynamics, allowing calculation of error rates and the duration of self-assembly. Fol-
lowing [23, 24] we make the following assumptions. First, the concentration of each tile type in solution is
held constant throughout the self-assembly process, and the concentrations of all tile types are equal. We
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assume that for every tile association reaction there is a corresponding dissociation reaction (and no others).
We further assume that the rate of addition (forward rate f ) of any tile type at any position of the perimeter
of the growing assembly is the same. Specifically,f = kfe−Gmc wherekf is a constant that sets the time
scale, andGmc is the logarithm of the concentration of each tile type in solution. The rate that a tile falls off
the growing assembly (reverse raterb) depends exponentially on the number of bonds that must be broken.
Specifically,rb = kf e−bGse whereb is the total interaction strength with which the tile is attached to the
assembly, andGmc is the unit bond free energy, which may depend, for example, on temperature.

We assume the following concerningf andrb. Following [23] we letf ≈ r2 for a τ = 2 system since it
provides the optimal operating environment [23]. Further,we assumef (and thereforer2) can be arbitrarily
chosen in our model by changingGmc andGse, for example by changing tile concentrations and temperature.
(In practice, there are limits to how much these parameters can be changed.) However,kf is assumed to be a
physical constant not under our control.

In the kTAM, the τ = 2 tile addition requirement imposed by the abstract Tile Assembly Model is
satisfied only with a certain probability: assumingf ≈ r2 so r1 ≫ f , if a tile is added that bonds only
with strength 1, it falls off very quickly as it should in the aTAM with τ = 2. Tiles attached with strength 2
stick much longer, allowing an opportunity for other tiles to attach to them. Once a tile is bonded with total
strength3, it is very unlikely to dissociate (unless surrounding tiles fall off first).

Following [4], the fundamental kind of error we consider here is aninsufficient attachment. At threshold
τ = 2, an insufficient attachment occurs when a tile attaches withstrength1, but before falling off, another
tile attaches next to it, resulting in a 2-stable assembly. Since insufficient attachments are the only kind of
error we analyze in this paper, we’ll use “error” and “insufficient attachment” interchangeably.

Chen and Goel [4] make use of a simplification of the kTAM that captures the essential behavior while
being more tractable for rigorous proofs. Under the conditions wheref = r2, the self-assembly process is
dominated by tiles being added with exactly2 bonds and tiles falling off via exactly2 bonds. Thelocking
kTAM model assumes that these are the only possible single-tile events. That is,rb = 0 for b ≥ 3, and tiles
never attach via a single strength-1 bond. Additionally, insufficient attachments are modeled in the locking
kTAM as atomic events, in which two tiles are added simultaneously at any position in which an insufficient
attachment can occur. Specifically, any particular pair of tile types that can create an insufficient attachment in
the kTAM is added at a rateferr = O(e−3Gse). (This is asymptotically the rate that insufficient attachments
occur in kTAM [4].) Thus the total rate of insufficient attachments at a particular location isQferr, where
Q is the number of different ways (with different tile types) that an insufficient attachment can occur there.
We don’t absorbQ into theO(·) notation because we will be considering tile sets with an increasing number
of tile types that can cause errors. Note thatQ can be bounded by the square of the total number of tile
types. These insufficient attachments are the sole cause of errors during growth.∗ Growth during which no
insufficient attachments occur we call (reversible)τ = 2 growth.

3.2.3 Quarter-Plane Patterns

The output of the self-assembly process is usually considered to be either the shape of the uniquely produced
terminal assembly [10, 1, 2] (also see Chapter 2) or the pattern produced if we focus on the locations of
certain types of tiles [24, 4, 17, 6]. Here we will focus on self-assembling ofquarter-plane patterns. A
quarter-plane pattern (or justpattern for short)P is an assignment of symbols from a finite alphabet of
“colors” to points on the quarter plane (Z+ × Z+ by convention). A deterministic tile system can be thought
to construct a pattern in the sense that there is some function (not necessarily a bijection) mapping tile types
to colors such that tiles in any produced assembly correctlymap to corresponding colors of the pattern. As
the assembly grows, a larger and larger portion of the pattern gets filled. There are patterns that cannot be
deterministically constructed by any tile system (e.g., uncomputable ones), but for the purposes of this paper

∗Another error, with respect to the aTAM, that can occur in theoriginal kTAM is when a tile attached by strength 3 (or more) falls
off. Why do we feel comfortable neglecting this error in the locking kTAM, especially since as a function ofGse, bothr3 andferr are
bothO(e−3Gse)? One reason is that in practice the dissociation of tiles held to the assembly with strength3 does not seem to cause
the problems that insufficient attachments induce, in tile sets that we have simulated and examined: no incorrect tiles are immediately
introduced, often the correct tile will quickly arrive to repair the hole, and if an incorrect tile fills the hole, furthergrowth may be
impossible, usually allowing time for the incorrect tile tofall off. A second reason is that as the number of tile types increases (i.e., with
more complex patterns or more complex proofreading schemes), Qferr becomes arbitrarily large, whiler3 stays constant. Nonetheless,
a more satisfying treatment would not make these approximations and would address the original kTAM directly.
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Figure 3.2: Winfree and Bekbolatov (a) and Chen and Goel (b) proofreading transformations using4 × 4
blocks. Each tile type is replaced withk2 tile types that fit together to form the block as shown. Strength
2 bonds are indicated with 2 dots. Strength 0 bonds are indicated with a cross. All unlabeled (internal)
bond types are unique (within the block and between blocks.)The placement of weak and strong bonds is
dependent upon the orientation of growth, which in this caseis to the north-east, since for quarter-plane tile
systems the input is always received from the west and south sides.

we consider patterns constructible from deterministic tile systems where all bond strengths are1 and the seed
assembly (defining the boundary conditions) is an infinite L shape that is eventually periodic, with its corner
on the origin. See Fig. 3.1 for two examples. Such tile systemwe’ll call quarter-plane tile systemsand
the patterns produced by them theconstructible quarter-plane patterns. These systems include a wide
variety of patterns, including the Sierpinski pattern, thebinary counter pattern, the Hadamard pattern [6],
and patterns containing the space-time history of arbitrary 1-D block cellular automata and Turing machines.
Note that by including the infinite seed assembly we are avoiding the issue of nucleation, which requires
distinct error-correcting techniques [18].

3.3 Making Self-Assembly Robust

The kinetic Tile Assembly Model predicts that for any quarter-plane tile system, arbitrarily small error rates
can be achieved by increasingGmc and Gse, but at the cost of decreasing the overall rate of assembly.
Specifically, the worst case analysis (which assumes that after any single error, assembly can be continued
by valid τ = 2 growth) predicts that the relationship between per tile error rateε and the rate of assembly
r (layers per second) approximately satisfiesr ∝ ε2 [23]. This is rather unsatisfactory since, for example,
decreasing the error rate by a factor of 10 necessitates slowing down self-assembly by a factor of 100.

Rather than talking about the relationship between the per tile error rate and the total rate of self-assembly,
following [4] one can ask how long it takes to produce the correctN ×N initial portion of the pattern with
high probability. To produce this initial portion correctly with high probability, we need the per-tile error rate
to beε = O(N−2) to ensure that no mistake occurs. This implies thatr = O(N−4) for worst case tile sets.
This informal argument suggests that the time to produce theN ×N square isΩ(N4). This is unsatisfactory,
because the same assembly can be grown in timeO(N) in the aTAM augmented with rates [1], and thus the
cost of errors appears to be considerable.

Despite this pessimistic argument, certain kinds of tile systems can achieve better error rate/rate of as-
sembly tradeoffs. Indeed, the reversibility of the self-assembly process can help. Some tile systems have the
property that upon encountering an error, unless many more mistakes are made, the self-assembly process
stalls. Stalling gives time for the incorrectly incorporated tiles to be eventually replaced by the correct ones
in a random walk process, so long as not too many incorrect tiles have been added.

Exploiting this observation, several schemes have been proposed for converting arbitrary quarter-plane
tile systems into tile systems producing ascaled-upversion of the same pattern, resulting in better robustness
to error. The initial proposal due to Winfree and Bekbolatov[24] suggests replacing each tile type of the
original tile system withk2 tile types, with unique internal strength-1 bonds (Fig. 3.2(a)). Such proofreading
assemblies have the property that for a block correspondingto a single tile in the old system to get completed,
either no mistakes, or at leastk mistakes must occur. However, this scheme suffers from the problem that the
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Figure 3.3: The Winfree and Bekbolatov proofreading schemeis susceptible to single facet nucleation errors.
If an insufficient attachment results in the twoE tiles shown, then subsequentτ = 2 growth (G) can continue
indefinitely to the right. Thus many incorrect tiles can be added following a single facet nucleation error even
if the block thatE is in does not get completed. The dotted lines indicate blockboundaries (for4×4 blocks).
Note that most of the incorrect tiles are attached with strength3; therefore, they do not easily fall off, except
at the left and the right sides.

self-assembly process after a single insufficient attachment can still result in a large number of incorrect tiles
that must later be removed, spanning the length of the assembly. Consider the situation depicted in Fig. 3.3.
If the insufficient attachment illustrated occurs (The firstE is added with interaction strength1, but before
it dissociates, a tile attaches to it on the right with interaction strength2), the incorrect information can be
propagated indefinitely to the edge of the assembly by subsequentτ = 2 tile additions.

Currently the only scheme that provably achieves a guaranteed level of proofreading is due to Chen and
Goel [4] using the locking kTAM model. Their proofreading scheme, calledsnaked proofreading, is similar
to the Winfree and Bekbolatov system, but additionally controls the order of self-assembly within each block
by using strength-0 and strength-2 bonds, making sure that not too many incorrect tiles can be added by
τ = 2 growth after an insufficient attachment. In particular, thestrength-0 bonds ensure that unless most of
the block gets completed, self-assembly stalls. Fig. 3.2(b) shows their4× 4 construction; see their paper for
the general construction for arbitrary block size.∗ They can attain a polynomial decrease in the error rate with
only a logarithmic increase ink. Specifically the formal results they obtain are the following:†‡

Theorem 3.3.1(Theorem 4.2 of [4]). For any constantp < 1, theN ×N block initial portion of the pattern
is produced correctly with probability at leastp in timeO(N poly(log(N)) by thek×k snaked proofreading
tile system wherek = θ(log N), using the locking kTAM with appropriateGmc andGse.

To obtain this result, assembly conditions (Gmc andGse) need be adjusted only slightly asN increases.§

The above construction requires increasing the scale of theproduced pattern, even if only logarithmically
in the size of the total desired size of the self-assembled pattern. Reif et al. [17] pointed this out as a potential
problem and proposed schemes for decreasing the effective error rate while preserving the scale of the pattern.
However, they rely on certain specific properties of the original tile system, and do not provide a general
construction that can be extended to arbitrary levels of error correction. Further, their constructions suffer
from the same problem as the original Winfree and Bekbolatovproofreading system. In the next section
we argue that the snaked proofreading construction can be adopted to achieve same-scale proofreading for
sufficiently “simple” patterns.

∗Note that, unlike the original proofreading transformation, the snake proofreading transformation does not result ina quarter-plane
tile system as it uses both strong and weak bonds.

†[4] also guarantees that the assembly is stable for a long time after it is complete, a concern we ignore in this paper. For fixedk,
they also provide Theorem 4.1, which guarantees reliable assembly of anN × N square in timeO(N1+8/k).

‡Chen and Goel only prove their result for the case when the initial L seed assembly has arms that span exactlyN blocks. We need
to cover the case when an infinite L seed assembly is used. See Appendix 3.6.1 for a proof that their results can be extended to an infinite
seed assembly.

§It is hard to say whether the snaked proofreading construction is asymptotically optimal. While the best possible assembly time in
a model where concentrations are held constant with changing N is linear inN , we assume thatGmc andGse are free to change as
long as the relationshipf = r2 is maintained. Of course while decreasingGmc andGse speeds up the assembly process, the rate of
errors is increased; thus, the optimal tradeoff is not obvious.



37

3.4 Compact Proofreading Schemes for Simple Patterns

In this section we argue that a wide variety of sufficiently “simple” patterns can be produced with arbitrarily
small effective error rates without increasing the scale ofself-assembly, at the cost of slightly increasing the
number of tile types and the time of self-assembly. Based on Reif et al.’s nomenclature [17], we call these
proofreading schemescompactto indicate that the scale of the pattern is not allowed to change.

The following definition illustrates our goal:

Definition 3.4.1. Letp < 1 be a constant (e.g., 0.99). A sequence of deterministic tilesystems{T1,T2, . . .}
is a compact proofreading scheme for patternP if:

(1: correctness)TN produces the full infinite patternP under the aTAM.

(2: conciseness)TN haspoly(log N) tile types.

(3: robustness)TN produces the correctN ×N initial portion of patternP (without scaling) with proba-
bility at leastp in timeO(N poly(log N)) in the locking kTAM for someGse andGmc.

If you want to construct the initialN × N portion of patternP with probability at leastp in time
O(N poly(log N)) you pick tile systemTN and the correspondingGse andGmc. The same tile system
might be used for manyN (i.e., the sequence of tile systems may have repetitions). The second condition
indicates that we don’t want this tile system to have too manytile types. For constructible quarter-plane
patterns, a constant number of tile types suffices to create the infinite pattern in the absence of errors. If the
second condition is satisfied then the error correction itself is accomplished with a polylogarithmic number
of additional tiles, which is comparable to the cost of errorcorrection in other models studied in computer
science. While one can imagine different versions of these conditions, the stated version gives the proof-
reading condition that can be obtained by adapting the snaked proofreading construction, as argued below.
Finally, note that the tile systems{T1,T2, . . .} do not have to be quarter-plane tile systems, and therefore
our theorems will apply to a wide range of potential proofreading schemes.

For which patterns do there exist compact proofreading schemes? Given a pattern and a quarter-plane tile
systemT producing it, consider any assembly ofT. For a givenk, imagine splitting the assembly intok× k
disjoint blocks starting at the origin. We’ll use the termblock to refer to aligned blocks, andsquare to refer
to blocks without the restriction that they be aligned to integer multiples ofk with respect to the origin. Each
complete block containsk2 tiles; two blocks at different locations are considered equivalent if they consist
of the same arrangement of tile types. If there is some polynomial Q(k) such that repeating this process for
all assemblies and allk yields at mostQ(k) different (completed) block types, then we say thatT segments
into poly(k) k× k block types.∗ Patterns produced by such tile systems are the “simple” patterns, for which,
we will argue, there exist compact proofreading schemes; weterm such patternsrobust to indicate this.

On the other hand, there are patterns for which it is easy to see that no quarter-plane tile system producing
them segments intopoly(k) k×k block types. For example these include patterns which have2Ω(k) different
types ofk × k squares of colors.† We’ll prove negative results about such patterns, which we termfragile in
the next section.‡

Definition 3.4.2. A patternP is called robust if it is constructible by a quarter-plane tile systemT that
segments intopoly(k) differentk × k block types. A patternP is calledfragile if every quarter-plane tile
system segments into2Ω(k) differentk × k block types.

∗We use disjoint blocks aligned with the origin for simplicity in what follows. It is inessential that we define segmentation in terms
of blocks rather than squares: A tile system segments intopoly(k) different k × k block types if and only if it produces assemblies
that containpoly(k) different types of non-alignedk × k squares. This is also true for other shapes than squares, as long as they have
sufficient extent. See Appendix 3.6.2 for an example, the size-k diagonals.

†In what follows, we will consider both the number of blocks (or squares) in an assembly, in which case we mean blocks (or squares)
of tile types, as well as the number of blocks (or squares) in apattern, which which case we mean block (or squares) of colors. Since
each tile type has a color, the latter is less than or equal to the former for patterns produced by quarter-plane tile systems.

‡Analogous to the uncomputability of topological entropy for cellular automata [11], it is in general undecidable whether a tile set
produces a robust or fragile pattern, due to the undecidability of the Halting Problem: a tile system that simulates a universal Turing
machine may either produce a pattern that is eventually periodic (if the Turing machine halts), or else it may continue toproduce ever
more complicated subpatterns. The former patterns (that are eventually periodic) are formally robust, although only for very largek
does this become apparent, while the latter patterns are fragile.
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Figure 3.4: Compact proofreading transformations using4× 4 blocks. Strength 2 bonds are indicated with 2
dots. Strength 0 bonds are indicated with a cross. Question marks indicate arbitrary bond types. All unlabeled
(internal) bond types are unique (within the block and between blocks.) This construction is equivalent
to “compressing” thek × k block on the left to a single tile and then applying the snakedproofreading
construction, remembering to paint the resulting tiles with the original colors.

The natural way to use Chen and Goel’s construction to implement compact proofreading for robust
patterns is as follows. For anyk, for each of thepoly(k) k × k block types described above, createk2

unique tile types with bond strengths according to the snaked proofreading blocks and colors according to the
original pattern. The internal bond types are unique to eachtransformedk × k block type and do not depend
upon the internal bond types in the originalk × k block type. External bond types in the transformed block
redundantly encode the full tuple of external bond types in the original block. (This transformation for a4×4
block is illustrated in Fig. 3.4.) The L-shaped seed assembly must also be revised to use the new compound
bond types. The above set of tile types together with this seed assembly yields a new tile systemT(k).

It is easy to check that under aTAMT(k) correctly produces the pattern. At the corner between two
existing blocks, only a tile that matches all the border tiles of both blocks can attach. Any other internal
tile must bind correctly since at least one side must match a bond type unique to the block. Since the
original block assembled deterministically from its west and south sides, the transformed block also grows
deterministically in the same direction. In fact,T(k) is locally deterministic [20], which makes a formal
proof easy. Furthermore, for any particular choice ofk, Chen and Goel’s Theorem 4.1 applies directly to our
compact proofreading tile sets, but with multiplicative constants that increase withk. But we also claim the
following, whereM = ⌈N/k⌉ is the size of our target assembly in units of blocks:

Lemma 3.4.1. If a patternP is robust then: For any constantp < 1, theM ×M block initial portion of
the pattern is produced correctly with probability at leastp in timeO(M poly(log M)) by someT(k) (as
defined above) wherek = θ(log M), using the locking kTAM with appropriateGmc andGse.

Proof. Recall, as long as a particular location remains susceptible, insufficient attachments at that location
constitute a Poisson process with rateQO(e−3Gse). HereQ can be upper bounded by the total number of
different blocks since that is the maximum number of different tile types that can be added as an insufficient
attachment at any location. Thus, the maximum rate of insufficient attachments at any location isq(Gse) =
Q(k)O(e−3Gse), whereQ(k) = poly(k) since the pattern is robust.

The difference between the proof of Chen and Goel [4] and whatwe need is that Chen and Goel assumed
thatQ(k) was a constant. Thus, whereas they were able to increasek without increasing the rate of insuffi-
cient attachments,q, we are not so fortunate. To remedy this situation, we must slow down growth slightly in
order to sufficiently decrease the rate of insufficient attachments, but not so fast as to change the asymptotic
form of the results.

Informally, note that Chen and Goel’s bound on the probability of successfully completing the square
within a certain time (scaled relative tof ) depends only on the ratioq/f ; the absolute time scale does not mat-
ter, nor does it matter whetherq is the result of many or a few possible erroneous block types.Thus, we can
slow downf by a polynomial ink without affecting the completion time asymptotics ofO(Mpoly(log M),
sincek = Θ(log M). Doesq decrease enough? So long as it decreases faster relative tof , we can compensate
for the polynomial increase in insufficient attachments. Wewill see that a factor ofQ(k)2 is sufficient.
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Formally, assuming the maximum rate of insufficient attachments is anỹq(Gse) = O(e−3Gse) indepen-
dent ofk, and the forward (=reverse) rate is anyf̃(Gse) = Ω(e−2Gse), for anyM , Chen and Goel give
a valuek̃ for k andG̃se for Gse such that with high probability the assembly completes correctly in time
t = O(M poly(log M)). We, of course, haveq(Gse) = O(Q(k)e−3Gse) andf(Gse) = Ω(e−2Gse). Now
let us definẽq(Gse) = q(Gse + lnQ(k)) · Q(k)2 andf̃(Gse) = f(Gse + lnQ(k)) · Q(k)2. Observe that
q̃(Gse) = O(e−3Gse) and f̃(Gse) = O(e−2Gse). This means that if the maximum rate of insufficient at-
tachments and the forward rate were theseq̃ andf̃ , then Chen and Goel’s proof gives valuesk̃ andG̃se such
that with high probability the assembly completes correctly in time t = O(M poly(log M)). But now note
that if we setGse = G̃se + lnQ(k̃), then the actual maximum rate of insufficient attachments and the for-
ward rate are both exactly a factor ofQ(k̃)2 slower thañq andf̃ . Thus our system is simply overall slower
by a factor ofQ(k̃)2. This means that our system would finish correctly with the same high probability as
achieved by Chen and Goel by timeO(tQ(k̃)2). But this is stillO(M poly(log M)) sincek̃ = θ(log M) and
Q(k̃) = poly(k̃).

Theorem 3.4.1. If a patternP is robust then there exists a compact proofreading scheme for P.

Proof. Let us use the sequence{TN = T(k)}N wherek for eachN is from Lemma 3.4.1. Each of these tile
systems can produce the whole pattern correctly under aTAM so the correctness condition of Definition 3.4.1
is satisfied. SinceO(M poly(log M)) = O(N poly(log N)), Lemma 3.4.1 implies that the sequence satisfies
the robustness condition. Further, becauseT segments intopoly(k) differentk × k block types andk =
θ(log M) impliesk = O(log N), TN = T(k) has onlypoly(k)k2 = poly(log N) tile types, satisfying the
conciseness condition.

For some patterns, Chen and Goel’s theorem can be applied directly (without requiring Lemma 3.4.1).
These include patterns whose quarter-plane tile systems segment into a constant number ofk×k block types.
Furthermore, consider the Sierpinski pattern (Fig. 3.1(c)). The Sierpinski pattern is a fractal that has the
following property: split the pattern into blocks of sizek × k for anyk that is a power of2, starting at the
origin. For any suchk there are exactly2 different types of blocks in the pattern. If you consider theassembly
produced by the Sierpinski tile system in Fig. 3.1(d), thereare exactly4 differentk × k blocks of tiles (the
difference is due to the fact there are now two types of black and two types of white tiles.) We can let the
sequence of tile systems for the compact proofreading scheme for the Sierpinski pattern consist only ofT(k)
for k that are a power of2. Note that because of the restriction onk, we may have to use a block size larger
than that which results from Chen and Goel’s theorem. But since it does not have to be more than twice as
large, Definition 3.4.1 is still satisfied.

It would be interesting to identify constructible quarter-plane patterns that have at leastkd differentk× k
block types for allk and for some constantd ≥ 1.

3.5 A Lower Bound

In this section we will show that we cannot make compact proofreading schemes for fragile patterns using
known methods.

First of all, note that although the definition of fragile patterns quantifies over all quarter-plane tile sys-
tems, it can be very easy to prove that a pattern is fragile using the following lemma.

Lemma 3.5.1. If a patternP has2Ω(k) different types ofk × k squares of colors then it is fragile.

Proof. If a pattern contains2Ω(k) different types ofk× k squares of colors, then any tile system producing it
contains at least2Ω(k) different types ofk × k squares, and therefore comparably many block types.

The scheme described in the previous section does not work for quarter-plane tile systems that segment
into 2Ω(k) k × k block types (i.e., fragile patterns). This is because fork = θ(log N), T(k) would then have
poly(N) tile types, violating the second condition (conciseness) of compact proofreading schemes (Defini-
tion 3.4.1).∗ However, it is unclear whether other methods exist to make compact proofreading schemes for

∗Further, we believe Lemma 3.4.1 does not hold if the number ofblock types increases exponentially, rather than polynomially in
k. This is an open question.



40

patterns produced by such tile systems. While we cannot eliminate this possibility entirely, we can show that
a variety of schemes will not work.

Existing attempts at making self-assembly robust through combinatorial means ([24, 4, 17]) are based on
creating redundancy in the produced assembly. Specifically, knowing only a few tiles allows one to figure
out a lot more of the surrounding tiles. Intuitively, this redundancy allows the tile system to “detect” when an
incorrect tile has been incorporated and stall. We will argue that if a pattern is sufficiently complex, then only
if there are many possible tile types can a few tiles uniquelydetermine a large portion of the pattern. Since
the definition of compact proofreading schemes (Definition 3.4.1) limits the number of tile types, we will be
able to argue that for complex patterns there do not exist compact proofreading schemes that rely on this type
of redundancy.

Definition 3.5.1. An assemblyA is (k, d)-redundant if there exists a decision procedure that, for anyk × k
(completed) square of tiles inA, querying at mostd relative locations in the assembly for its tile type, can
determine the types of all tiles in that square.

The proofreading schemes of [24] and [4], using a block sizek × k, are(k, 3)-redundant: even if the
square is not aligned with the blocks, it is enough to ask for the types of the tiles in the upper-left, lower-
left, and lower-right corners of the square. Because all tiles in a block are unique, and because the tile
system is deterministic, these three tiles allow you to figure out all four blocks that the square may intersect.
A proofreading construction that generalizes Reif et al.’s[17] 2-way and 3-way overlay tile sets tok-way
overlays is shown in Appendix 3.6.2 to be(k, 3)-redundant as well. This construction is not based on block
transformations; the fact that its power is nonetheless limited by Theorem 3.5.1, below, illustrates the strength
of our lower bound.

Lemma 3.5.2. If a tile systemT produces(k, d)-redundant assemblies in which more than2ck different types
of (completed)k × k squares appear, then it must have at least2ck/d tile types.

Proof. Let m be the number of tile types ofT. If an assembly produced byT is (k, d)-redundant, then it has
no more thanmd types of squares of sizek × k because the decision procedure’s decision tree is of depth at
mostd and of fan-out at mostm. But we assumed thatT makes assemblies that have2ck different types of
k × k squares. Thus,md ≥ 2ck, which can only happen ifm ≥ 2ck/d.

Lemma 3.5 lets us limit the types of compact proofreading schemes that such complex patterns may have.

Theorem 3.5.1.If a pattern is fragile then there does not exist a compact proofreading scheme{T1,T2, . . .}
such thatTN produces assemblies that are(Ω(log N), d)-redundant (for any constantd).

Proof. Any tile system producing this pattern makes2Ω(k) different types ofk × k (completed) squares
of tiles. SupposeTN produces assemblies which are(c′ log N, d)-redundant, for constantsc′, d. Take
k = c′ log N and note that for largek, TN makes at least2ck k × k squares for some constantc. Apply
Lemma 3.5.2 to conclude thatTN has at least2ck/d = N cc′/d tile types, which violates the second condition
of Definition 3.4.1.

Even though both the Sierpinski pattern and the counter pattern (Fig. 3.1) are infinite binary patterns that
can be constructed by very similar tile systems, they are very different with respect to error correction. We
saw that the Sierpinski pattern has compact proofreading schemes. However, because the counter must count
through every binary number, for anyk there are2k rows that have different initial patterns of black and
white squares. This implies that there are exponentially many (in k) different squares. By Theorem 3.5.1
this implies that the counter pattern does not have compact proofreading schemes that use(Ω(log N), d)-
redundant assemblies. That is, no existing proofreading scheme can be adapted for making compact binary
counters arbitrarily reliable.

This theorem suggests that in order to find universal compactproofreading schemes we must find a
method of making self-assembly more error-robust without making it too redundant. However, we conjecture
that there are inherent trade-offs between robustness and conciseness (small number of tile types), raising the
possibility that there do not exist compact proofreading schemes for patterns having an exponential number
of k × k squares.
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3.6 Appendix

3.6.1 Extension of Chen and Goel’s Theorem to Infinite Seed Boundary Assemblies

The following argument uses terms and concepts from [4].
First, suppose we desire to build an(N + N2) × (N + N2) block initial portion of the pattern starting

with the L seed assembly having arms that areN + N2 blocks long. The extraN2 blocks will serve as a
buffer region. Chen and Goel’s [4] Theorem 4.2 then gives us ak = θ(log (N + N2)) = θ(log N) and
Gse s.t. with high probability no block error occurs in the(N + N2) × (N + N2) block region in time
O(N2 poly(log N)) that it takes to finish it. Further, with high probability theinitial N × N block portion
of the pattern is completed in timetN = O(N poly(log N)).

Now, let’s suppose we use thisk andGse with an infinite L seed assembly, and we’ll be interested in
just theN × N block initial portion of the pattern. The only way the infinite seed assembly can affect us
is if a block error outside the(N + N2) × (N + N2) block region propagates to theN × N initial region
before it completes. For this to occur, at leastN2 tiles must be added sequentially, at least one per block
through the buffer region, to propagate the error. The expected time for this to happen isN2/f with standard
deviationN/f (i.e., it is a gamma distribution with shape parameterN2 and rate parameterf ). However,
the propagated error can only cause a problem if it reaches the N × N rectangle before timetN . Since
tN = O(N poly(log N)), this becomes less and less likely asN increases by Chebyshev’s inequality. Small
N are handled by increasingk andGse appropriately, which does not affect the asymptotic results. Thus we
have ak = θ(log N) andGse such that with high probability (i.e.,≥ p) the initial N × N block portion of
the pattern is completed correctly in timeO(N poly(log N)), even if we use an infinite L seed assembly.

3.6.2 An Overlay Proofreading Scheme

In this appendix we give an example showing that our lower bound on the complexity of same-scale proof-
reading schemes also applies to proofreading schemes that are not based on block transformations. Here, we
consider ak-way overlay scheme (suggested by Paul Rothemund and Matt Cook) that generalizes the 2-way
and 3-way overlay schemes introduced by Reif et al. [17]. Theconstruction is shown in Fig. 3.5.

Consider the assembly grown using some original tile set, asin Fig. 3.5a. When the shaded tilex was
added, it attached to the tilesa andb to its west and to its south. Since we consider only deterministic quarter-
plane tile sets, the tile type at a particular location is a function of the tile types to its south and to its west,
e.g.,x = f(a, b) = fab. Therefore, it is possible to reconstruct the same pattern without keeping track of
bond types, explicitly transmitting only information about tile types.

The 1-overlay tile set, derived from the original tile set, is a deterministic tile set for doing exactly that.
As shown in Fig. 3.5b, for each triple of neighboring tilesa,b, andx that appears in the assembly produced
by the original tile set (in the relative positions shown in (a)), create a new tile(x, x, b, a), colored the same
asx, that “inputs” the original tile types of its west and its south neighbors, and “outputs” tile typex to
both its north and its east neighbor. With an appropriately re-coded L-shaped boundary, the new tile set will
produce exactly the same pattern as the original tile set: the output of the tile at location〈i, j〉 in the 1-overlay
assembly is the tile type at〈i, j〉 in the original assembly. Supposing the original tile setT has|T | tile types,
the new tile set contains at most|T |2 tile types, and possibly fewer if not all pairs of inputsa, b appear in the
pattern.

Redundancy is achieved in ak-way overlay tile set by encoding not just one original tile,but k adjacent
tiles along the diagonal growth front. Specifically, each tile in thek-way overlay assembly will output the
k-tuple of original tile types that appear in the same location in the original assembly and locations to the east
and south. For example, in Fig. 3.5c, the output of the tile at〈i, j〉 in the 4-overlay assembly is the 4-tuple
abcd containing the tile types at locations〈i, j〉, 〈i + 1, j − 1〉, 〈i + 2, j − 2〉, and〈i + 3, j − 3〉. Each new
tile is colored according to the first tile type in its output tuple. The new tile set consists of all such tiles that
appear in thek-overlay assembly∗†. The new tile set contains at most|T |k+1 tiles, since there are at most

∗In addition, the L-shaped boundary must be properly re-coded to carry the boundary information in the form the new tiles require.
This is easy to do if the pattern is consistent with a larger hypothetical assembly that extendsk tiles beyond the quarter-plane region,
since then tuples on the boundary encode for tile types in this buffer zone. Otherwise a few extra tile types will be necessary, but as this
does not change the nature of our arguments, we ignore this detail here.

†Note that the exact (minimal) set of such tiles is in general uncomputable, since the original tile set could be Turing universal, and



42

fab
 fbc fcd

 fde
fbc fcd

 fde fef
fcd

 fde fef ffg

a b c d

b c d e

c d e f

d e f g

?
?

a
a

?
?

b
b

?
?

c
c

?
?

d
d

b
a

x
x

c
b

y
y

d
c

z
z

6
1

9
a x

x=fab y=fbc z=fcd

b

8

12
7

5
3 y

4
3

15
23

z
5

13
51

35c
12

10
4

13

d
11

14
5

3

5
8

4
2

original 1-overlay 4-overlay

a) b) c)

Figure 3.5: The construction fork-way overlay proofreading tile sets.(a) An original quarter-plane tile set
T , containing|T | tile types. Numbers indicate bond types. Letters name the tile types. For example, the
tile x = (4, 8, 5, 2). (b) The 1-overlay transformation of the original tile set. The question marks indicate
that there may be several different new tile types that output a or b; (c) The 4-overlay transformation of the
original tile set

|T |k inputk-tuples, and the two inputs to a given tile will always agree at k − 1 indices. This is exponential
in k, but for some patterns — e.g., robust patterns, as we will see— only a polynomial number of tile types
will be necessary. Note that growth with the new tile set is still deterministic, since the tuple output by a tile
is a function of the two input tuples.

In what sense is thek-overlay tile set guaranteed to be proofreading? Consider agrowth site where a
tile is about to be added. Unless the two inputk-tuples agree at allk − 1 overlapping positions, there will
be no tile that matches both inputs. Thus, every time that a tile is added without a mismatch, it provides a
guarantee thatk − 1 parallel computations are carrying the same information, locally. Note that the fact that
site 〈i, j〉 in the original assembly contains tile typet is encoded ink locations in thek-overlay assembly.
It is reasonable to conjecture that it is impossible for allk locations to have incorrect information, unless at
leastk insufficient attachments have occurred.

Unfortunately, like the original proofreading tile sets of[24] and the 2-way and 3-way overlay tile sets
described in [17], thek-way overlay tile sets do not protect against facet nucleation errors, and therefore
we do not expect error rates to decrease substantially withk. We do not see an obvious way to correct this
deficiency.

Nonetheless, as a demonstration of the general applicability of our lower bound, we will show thateven
if thek-way overlay tile sets reduced errors sufficiently, for fragile patterns thek-way overlay tile sets will
contain an exponential number of tile types and are thus infeasible, whereas for robust patterns thek-way
overlay tile sets will contain a polynomial number of tile types and are thus feasible.

First we show that allk-overlay tile sets are(k, 3)-redundant, regardless of the original tile set. To
determine all tile types in thek × k square with lower left coordinate〈i, j〉, we need only know the tiles at
〈i, j − 1〉, 〈i− k, j + k− 1〉, and〈i + k− 1, j − k〉. The outputs of these tiles encode for the entire diagonal
from 〈i − k, j + k − 1〉 to 〈i + 2k − 2, j − 2k + 1〉 in the original assembly. Deterministic growth from
this diagonal results in a triangle of tiles with upper rightcorner at〈i + 2k − 1, j + k − 1〉, in the original
assembly. Thus all tile types are known for the input and output k-tuples of overlay tiles in thek × k square
of interest.

Theorem 3.5.1 tells us that fragile patterns cannot have compact proofreadingschemes that are(Ω(log N), d)-
redundant for any constantd. Therefore,k-overlay tile sets can’t work as compact proofreading schemes for
fragile patterns; they must have an exponential number of tile types. This is what we wanted to show.

Alternatively, we could have directly bounded the number oftile types ink-overlay tile sets for fragile and

thus predicting whether a particular original tile appearsin the assembly is equivalent to the Halting Problem. However, the new tile set
is well defined and in many cases can be easily computed.
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robust patterns. For robust patterns, withpoly(k) k × k squares of tile types, clearly there are alsopoly(k)
size-k diagonals. Since each tile in thek-overlay tile set contains two inputs encoding size-k diagonals,
there can be at mostpoly(k)2 = poly(k) tile types altogether. Thus, (although probably not satisfying the
robustness criterion of Definition 3.4.1)k-overlay tile sets are at least concise for robust patterns.Conversely,
concisek-overlay tile sets, havingpoly(k) tile types by construction, have a comparable number of size-k
diagonals in the original assembly. Consider now the original assembly. Since growth is deterministic, the
diagonal determines the upper right half of ak× k square, and thus there arepoly(k) tops andpoly(k) sides;
taking these as inputs to other squares, we see that there arepoly(k)2 = poly(k) k × k squares. In this loose
sense,k-overlay tile sets are neither more nor less concise thank×k snaked proofreading, for robust patterns.

On the other hand, for a fragile pattern, requiring2Ω(k) k × k squares of tiles in any tile system that
produces it, we can see that there will also be at least2Ω(k) size-k diagonals of tiles. Specifically, ifS(k)
is the number of such squares, andD(k) is the number of such diagonals, thenS(k) ≤ D(2k) because
deterministic growth from a size-2k diagonal results in the completion of a triangular region containing a
k × k square.S(k) being at least exponential therefore implies the same forD(k). Conversely, a pattern
generated by a tile system with2Ω(k) size-k diagonals obviously also has at least that manyk × k squares as
well. Thus, our notions of fragile and robust patterns appears to be sufficiently general.
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Chapter 4

Combining Self-Healing and
Proofreading in Self-Assembly

Collaborators: Matthew Cook and Erik Winfree.My contribution: I invented the construction with some
discussion with MC. I developed the proofs and wrote the textof the paper.
This chapter was published as:David Soloveichik, Matthew Cook, Erik Winfree, “CombiningSelf-Healing
and Proofreading in Self-Assembly,” Natural Computing, (on-line July 2007).

4.1 Abstract

Molecular self-assembly is a promising approach to bottom-up fabrication of complex structures. A major
impediment to the practical use of self-assembly to create complex structures is the high rate of error under
existing experimental conditions. Recent theoretical work on algorithmic self-assembly has shown that under
a realistic model of tile addition and detachment, error-correcting tile sets are possible that can recover from
the attachment of incorrect tiles during the assembly process. An orthogonal type of error correction was
recently considered as well: whether damage to a completed structure can be repaired. It was shown that
such self-healing tile sets are possible. However, these tile sets are not robust to the incorporation of incorrect
tiles. It remained an open question whether it is possible tocreate tile sets that can simultaneously resist
wholesale removal of tiles and the incorporation of incorrect ones. Here we present a method for converting
a tile set producing a pattern on the quarter-plane into a tile set that makes the same pattern (at a larger scale)
but is able to withstand both of these types of errors.

4.2 Introduction

The Tile Assembly Model [21, 22] formalizes a generalized crystal growth process by which an organized
structure can spontaneously form from simple parts. It provides the foundation for theoretically examining
how to use self-assembly for massively parallel DNA computation [20, 26, 15, 12], for creating objects
with programmable morphogenesis [10, 1, 2] (also see Chapter 2), for patterning of components during
nanofabrication of molecular electronic circuits [6], andfor studying self-replication and Darwinian evolution
of information-bearing crystals [16, 17]. In addition to this theoretical work, several self-assembling systems
have been implemented experimentally using DNA molecules as tiles, including both periodic [25, 14, 11]
and algorithmic patterns [13, 9, 3].

The Tile Assembly Model considers the growth of two dimensional “crystals” made out of square units
called tiles. Typically, there are many types of tiles that must compete to bind to the crystal. A new tile can be
added to a growing complex if it binds strongly enough. Each of the four sides of a tile has an associated bond
type that interacts with abutting sides of other tiles that have already been incorporated. If the two abutting
sides have different bond types then their interaction strength is0. Otherwise, the bond type determines the
interaction strength. For tile systems shown in this paper,at least a single strong bond (strength2) or two
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Figure 4.1: (a) A binary counter pattern and (b) a tile systemconstructing it. (c) A Sierpinski pattern and (d)
a tile system constructing it. The L-shaped boundary (represented in (a) and (b) as the x and y axes) is the
seed. We assume it is exactly as large as the portion of the pattern we are trying to build. In this formalism,
identically-labeled sides match and tiles cannot be rotated. All bond types are weak (strength1); thus, tiles
may attach to the growing assembly only if at least two sides match. Note that the tile choice at each site
is deterministic for these two tile sets if the assembly is growing north-east. Growth in the south-west and
north-west directions is not deterministic for the counter, and south-west growth is not deterministic for the
Sierpinski.

weak bonds (strength1 each) need to be formed for a tile to attach. This is callederror-free tile addition.
The assembly process starts from a specified seed assembly and proceeds by sequential addition of tiles. An
assemblyis an arrangement of tiles that can result by this process. Tiles do not get used up since it is assumed
there is an unbounded supply of tiles of each type. If every tile type is “colored” a certain way, then the self-
assembly process can produce a pattern. Fig. 4.1 illustrates two different patterns and the corresponding tile
systems that self-assemble into them. Patterns, like these, that grow from an L-shaped boundary are called
quarter-planepatterns; while more complex growth paths are possible within the Tile Assembly Model, we
do not consider them here, because quarter-plane patterns are a rich class (including universal computation)
and we feel that their study is sufficient for identifying theessential principles.

A major stumbling block to making algorithmic self-assembly practical is the error rate inherent in current
implementations. While the abstract model supposes that tile additions are error-free and permanent, in reality
tile additions are error prone and tiles can dissociate froma growing complex. Further, huge chunks of the
structure may be physically ripped off by external mechanical forces, such as shear due to fluid flow during
sample handling. Erroneous addition of tiles and wholesaleremoval of tiles have been examined separately
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Figure 4.2: (a) Chen and Goel’s snaked proofreading transformations using4×4 blocks (i.e.,k = 4), and (b)
Winfree’s self-healing transformations for quarter-plane tile systems. Each tile type is replaced with the tile
types that fit together to form the block as shown. Strong bonds (strength 2) are indicated with 2 dots. Null
bonds (strength 0) bonds are indicated with a cross. All unlabeled (internal) bond types are unique (within
the block and between blocks.) The placement of weak and strong bonds is dependent upon the orientation
of growth, which is to the north-east for quarter-plane tilesystems.

in the literature, so let us review them in turn.
Recent experimental demonstrations of algorithmic self-assembly exhibit error rates of1% to 15%: on

average every eighth to hundredth tile that is incorporateddoes not correctly bond with its neighbors [9, 3].
Once such a mistake occurs, the erroneous information can bepropagated to tiles that are subsequently
attached. Thus, a single mistake can result in a drasticallydifferent pattern being produced. With this error
rate, structures of size larger than roughly100 tiles cannot be assembled reliably.

While the physics of the self-assembly process could possibly be modified to achieve a lower probabil-
ity of the incorporation of incorrect tiles into the growingcomplex, it is also possible to use some logical
properties of the tiles to perform error correction [24]. Inthis vein, Chen and Goel [4] developedsnaked
proofreadingtile sets that make use of redundant encoding of informationto achieve robustness to error (see
Fig. 4.2(a)). Each tile type of the original tile system is replaced byk2 tile types that form a block correspond-
ing to the original tile and is colored the same. If growth occurs without error, the same pattern is produced,
albeit at ak times larger scale. However, an error leads to an assembly whose growth cannot be continued
without further errors. Since further errors are unlikely to happen in just the right time and place, growth
around erroneous tiles stalls and the erroneous tiles are able to subsequently dissociate, allowing another
chance for correct growth. Using this approach, a large class of tile sets can be transformed into more robust
tile sets that assemble according to the same logic at a larger scalek. Chen and Goel were able to prove, with
respect to a reversible model of algorithmic self-assembly, that error rates decrease exponentially withk, and
thus making anN ×N initial portion of the pattern, which requires an error rateof ≈ 1/N2, can be done in
timeO(Npoly(log(N)) using onlyk = Ω(log N).

Extensive damage to the completed parts of the structure wasconsidered in [23]. Damage caused by
external destructive physical processes is modeled by simply removing some number of tiles from the growing
(or completed) structure. Because the assembly model allows crystals to grow in any direction, tiles may
begin to fill in holes in the structure from a different direction than the direction of their original growth.
While forward growth was deterministic, most of the time backward and sideways growth is not (unless the
computation being performed is reversible in some sense). For example, both the binary counter and the
Sierpinski pattern do not have deterministic backward growth. Self-healingtile sets were developed that
perfectly heal such damage to the self-assembled object, assuming that only error-free tile additions occur
(see Fig. 4.2(b)). Each tile in the original tile set is replaced with9 tiles as shown in the figure, and thus
the pattern is produced at a fixed scale-up factor of3.∗ The key idea of the construction is that it guarantees
that the regrowth occurs from the same direction as originalgrowth by the placement of null bonds (strength
0) that prevent backward growth and strong bonds (strength2) that allow the assembly process to proceed
correctly in the forward direction.

∗Allowing self-assembly to start from a preexisting seed boundary as in this paper, rather than from a single seed tile as in [23],
actually permits the use of a simpler transformation that produces a scale-up factor of just2.
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In summary we have two types of errors: (1) tile additions that violate the rule that a tile may only be
added if it binds strongly enough, and (2) the removal of tiles despite them being strongly bonded. With
existing techniques, each of these types of errors can be controlled separately, but not when they can occur
in the same assembly process. Further, simply applying the snaked proofreading transformation followed by
the self-healing transformation, or vice versa, does not provide a solution (see the beginning of Section 4.4).
In this paper we describe a new construction that has the sameprovable properties as snaked proofreading
for the first type of error, but is also able to heal damaged areas where tiles have been removed from the
assembly, even when errors in tile addition are allowed.

We assume the reader is familiar with the formal details of the Tile Assembly Model (see Chapter 2 for a
long version, or Chapter 3 for a short summary). In the next section we review the model of the dynamics of
self-assembly that allows us to speak more precisely about the rate of incorrect tile additions and to show that
our construction is robust to such errors. Further, we’ll specify more precisely the kind of damage we allow
to our assemblies in studying the self-healing property. Inthe final section, we introduce our construction and
prove that it is robust to both types of error. Our proof technique provides an alternative way of analyzing the
error correction process in that all analysis pertains to individual blocks.

4.3 Modeling Errors

4.3.1 Erroneous Tile Additions During Growth

To be able to discuss whether or not a tile set is robust to erroneous tile additions, we need a model of
the process of incorporation of erroneous tiles into the growing structure. In physical realizations of self-
assembly, the growth process involves tiles dynamically attaching and detaching from the assembly. An error
occurs if a tile that is held on with total strength less than2 does not fall off quickly enough and becomes
effectively locked in place when another tile attaches suchthat both tiles are now held on to the rest of
the structure with strength at least2. We term this event aninsufficient attachment. Thus to determine the
effective rate of insufficient attachments we need to study the dynamics of tile attachments and detachments.

Following [22, 24, 18] let us define the kinetic Tile AssemblyModel (kTAM) as follows. The concentra-
tion of each tile type in solution is held constant throughout the self-assembly process, and the concentrations
of all tile types are equal. We assume that for every tile association reaction there is a corresponding disso-
ciation reaction. We further assume that the rate of addition (forward ratef ) of any tile type at any position
of the perimeter of the growing assembly is the same. Specifically, f = kf e−Gmc wherekf is a constant that
sets the time scale, andGmc is the logarithm of the concentration of each tile type in solution. The rate that a
tile falls off the growing assembly (reverse raterb) depends exponentially on the number of bonds that must
be broken. Specifically,rb = kf e−bGse whereb is the total interaction strength with which the tile is attached
to the assembly, andGse is the unit bond free energy, which may depend, for example, on temperature∗.

We assume the following concerningf andrb. As in [22], we letf ≈ r2 since then the tile addition
requirement imposed by the abstract Tile Assembly Model is satisfied with high probability, yet forward
growth can still occur.† In Section 4.5.1 we discuss how closef andr2 have to be for our proof to work
out, but for the purposes of the rest of the paper we assumef = r2. We assumef (and thereforer2) can be
arbitrarily chosen in our model by changingGmc andGse, for example by changing tile concentrations and
temperature. (In practice, there are limits to how much these parameters can be changed.) However,kf is
assumed to be a physical constant not under our control.

Following [4, 18] we make use of a simplification of the kTAM that captures the essential behavior while
being more tractable for rigorous proofs. Under the conditions wheref = r2, the self-assembly process is
dominated by tiles being added with exactly2 bonds and tiles falling off via exactly2 bonds. Thelocking
kTAM model assumes that these are the only possible single-tile events. That is,rb = 0 for b ≥ 3, and tiles

∗This formulation ignores the initiation free energy of hybridization, which is non-negligible. See [22] for details ofhow this free
energy can be treated, yielding a model that is formally identical, but with slightly altered physical meanings forGmc andkf .

†Assumingf = r2, sincer1 ≫ f , if a tile is added that bonds only with strength 1, it falls off very quickly as it should to obey the
aTAM. Tiles attached with strength 2 stick much longer, allowing an opportunity for other tiles to attach to them. Once a tile is bonded
with total strength3, it is very unlikely to dissociate (unless surrounding tiles fall off first). Requiringf > r2 ensures that on average,
crystals grow, and for fixedr2, choosingf ≈ r2 minimizes the probability of an insufficient attachment. Wewill encounter additional
reasons for choosingf ≈ r2 later.
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never attach via a single weak (strength-1) bond. Additionally, insufficient attachments are modeledin the
locking kTAM as atomic events, in which two tiles are added simultaneously at any position in which an
insufficient attachment can occur. Specifically, any particular pair of tile types that can create an insufficient
attachment in the kTAM is added at a rateferr = O(e−3Gse). (This is asymptotically the rate that insufficient
attachments occur in the kTAM [4].) Thus the total rate of insufficient attachments at a particular location is
Qferr, whereQ is the number of different ways (with different tile types) that an insufficient attachment can
occur there. These insufficient attachments are the sole cause of errors during growth.

If a tile set is robust to insufficient attachments, then we can setGse andGmc such that the assembly
grows quickly enough, yet the assembly will itself correct the errors caused by insufficient attachments.

4.3.2 Wholesale Removal of Tiles

Let us now consider how to model the event when (potentially large) portions of the completed pattern are
physically ripped off the assembly despite being strongly bonded to it. We simply suppose that any number
of tiles can be spontaneously removed from the assembly in a distinct event. However, we assume the L-
shaped boundary tiles cannot get removed. If the assembled structure becomes disconnected after the event,
we assume that the part of the assembly containing the L-shaped boundary remains.

The reason we suppose that the L-shaped boundary cannot get detached is that to make the boundary self-
healing requires a different self-healing transformationthan the one shown in Fig. 4.2 (see [23]), and we wish
to keep our argument as simple as possible. It remains an openquestion whether the self-healing/proofreading
construction presented in this paper can be extended to recover the boundary after damage, and whether the
techniques used here can be extended to a wider class of tile sets that perform complex growth to create
shapes and patterns (see Chapter 2). We expect an affirmativeanswer.

4.4 Self-Healing Proofreading Construction

First, let us return to the following issue raised in the Introduction: Why can’t we simply apply the snaked
proofreading transformation followed by the self-healingtransformation, or vice versa, to produce a tile
set robust to both insufficient attachments and wholesale removal of tiles? There are two difficulties. The
first is of a technical nature: both transformations shown inFig. 4.2 only are defined if precursor tiles have
weak bonds on all four sides, yet they result in tile sets thatalso involve both strong and null bonds. Thus
the two transformations can’t be composed. Sufficiently general (though more complicated) self-healing
transformations do exist [23], but although more generallyapplicable proofreading transformations have
been proposed [24], there are as yet none with provably good performance. Even supposing this technicality
can be overcome, there is no guarantee that the tile set resulting from composing both transformations will
retain both robustness properties. One problem is that no matter in which order the transformations are
applied, the blocks produced by the last transformation aresensitive to even one insufficient attachment after
wholesale removal of tiles. Fig. 4.3 illustrates two incorrect structures that can form and become locked in
(according to the locking kTAM). Therefore, we choose to combine the ideas from the snaked proofreading
and self-healing constructions, and do not simply compose the transformations directly.

Our self-healing proofreading construction is illustrated in Fig. 4.4.
Suppose we are trying to assemble anN × N initial portion of the given pattern such that it assembles

quickly and correctly with some fixed high probability (like99%) from the starting L-shaped boundary or
from any subassembly that may be formed by removing tiles from the target assembly. We have the following
result∗:

Theorem 4.4.1. Fix any constantε > 0, and consider anyN . There is ak = Θ(log N) such that using
the self-healing proofreading construction with block size k and an L-shaped boundaryN blocks long, with
an appropriate choice ofGmc andGse, the following holds in the locking kTAM model. Starting with any
subassembly ofAN containing the L-shaped boundary, with probability at least 1 − ε, the initial N × N
block portion of the patternAN completes correctly in timeO(N poly (log N)).

∗We use the standard asymptotic notation defined as follows:f(x) = O(g(x)) means that that there isc > 0 such thatf(x) ≤
c · g(x) for large enoughx. Similarly, f(x) = Ω(g(x)) means that there isc > 0 such thatf(x) ≥ c · g(x) for large enoughx. We
write f(x) = Θ(g(x)) if f(x) = O(g(x)) andf(x) = Ω(g(x)).
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Figure 4.3: (a) The self-healing and (b) the snaked proofreading blocks are sensitive to a few insufficient
attachments in the backward growth direction. Consider thecase where in the original tile set, backward
growth is not deterministic. The structures shown can form after a single insufficient attachment and may
be incorrect since they involve backward growth. Every one of the tiles is attached with strength at least3
and thus cannot dissociate in the locking kTAM. The striped areas show a part of the remaining (correct)
assembly after wholesale removal of tiles. The grayed out tiles, which need not be present, show the entire
block for reference. There are other structures that can form that cause similar problems.

As a special case, the subassembly we start out with may just be the L-shaped boundary. Then the
assembly process we are talking about is the regular case considered by Chen and Goel which starts out from
this boundary. However, we also consider the case where the assemblyAN was damaged by the removal of
some tiles. Note that the assumption is that this damage is anisolated event rather than occurring continuously
at some rate. If wholesale damage events occur less frequently than the time required to complete theN ×N
square, then a reasonable probability of success can be inferred. However, if damage occurs at an intermediate
time during assembly — when many incorrect tiles are still present before being replaced by correct growth
— then we need a stronger theorem that states that such initial conditions are also allowed. As this requires
technical language defining just how much incorrect growth is allowable, we defer this discussion until the
end of the proof of the stated theorem.

Proof. (of Theorem 4.4.1) First we need to make some terms precise. Then we will prove a number of
lemmas about the assembly process, and finally with their help we will prove the theorem. In the following,
when we sayblockwe will mean the squarek × k region which should become filled by a block in the ideal
error-free assembly. We say a tile in an assembly isincorrect if it is not the same tile type as in the ideal
error-free assembly we are trying to produce. Of the directions{north, east, south, west}, we will call the
directions west and south theinput directions, and east and north theoutputdirections (because the growth
direction is north-east and thus information must pass fromthe west and south toward north and east). We
say that a block or a region becomescleanif all incorrect tiles detach (correct tiles may remain.)

Now refer to Fig. 4.4(b) where rectanglesN , E, S, W are defined. We define the following in relation to
a particular block in a growing assembly:

• StateDOOM: The block enters this state when an input rectangleW or S touches an output rectangle
N or E or if any of the rectangles touches the “spine” of the block (marked with wavy patterns in the
figure). We will see that unless DOOM occurs, all of the rectangles are easy to clean. If DOOM occurs,
this can no longer be guaranteed and indeed the block can lockin with incorrect tiles.

• Event IA: This event occurs whenever an insufficient attachment happens in the block or its input
blocks.

• StateCLEAN: This state occurs when the block becomes clean, together with the abutting output
rectangles of its input blocks. We will demonstrate that after a CLEAN, many IA events are required
to enter the DOOM state.

• StateCOMPLETE: The block enters this state when it and its input blocks complete correctly. We will
see that once a block enters this state the correct structureis locked in and we can move on to other
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Figure 4.4: (a) The self-healing proofreading transformations for block sizek = 8. (b) Schematic of the
self-healing proofreading block fork divisible by4. Tiles in thek × k block are not explicitly drawn; just
the pattern of null bonds (Xs) and strong bonds (double-dots) are indicated, and all other bonds are weak.
For discussing the growth process in the presence of errors,the state of the assembly is characterized by
Ni, Ei, Si, andWi, which are the smallest non-negative integers such that thefollowing statements hold:
RectangleN (E) contains all incorrect tiles connected to the north (east)side of the block. (We say that a
tile is connected to a side of a block if there is a path of connected tiles (abutting with matching bond types)
within the block from the given tile to the given side.) RectangleS (W ) contains all incorrect tiles connected
to an input side of the block that are incorrect with respect to the west (south) side of the precursor tile. (An
incorrect tile must be incorrect with respect to at least oneof the input sides of the precursor tile.) Wavy
patterns indicate tiles forming the block “spine”.
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Figure 4.5: (a,b) Illustration for the proof of Lemma 4.4.3.(c) Illustration for the proof of lemma 4.4.4. In
(a)–(b) the thick black lines indicate where the incorrect tiles defining the rectangles shown may be bonded
to the rest of the assembly (and conversely the dashed lines indicate where they may not be bonded to the
rest of the assembly). In (c) the thick black lines indicate where the correct tiles are bonded to the rest of the
assembly.

blocks in our argument.

Lemma 4.4.1. If a block is COMPLETE then no tile from the block can detach.

Proof. By inspection: except for the most south-west tile, every tile in a completed block is attached by
strength at least3. Assuming both input blocks are completed, the most south-west tile is also attached by
strength at least3.

Lemma 4.4.2. If a block is CLEAN then (a) at least one IA is needed to get an incorrect tile in the block, (b)
at leastk/4 IA events are needed to enter DOOM, assuming no DOOM occurs inits input blocks first.

Proof. Part (a) follows immediately. Unless a DOOM occurs in our block or its input blocks, each insufficient
attachment inside our block increases one ofN2, E2, S1, S2, W1, W2 by at most2 or one ofN1, E1 by at most
1. An insufficient attachment in the west or south input block can increaseS2 or W2 respectively by2 (if
the incorrect tiles extend into the input blocks). Thus, thenumber of IAs must be at leastN1 + E1 + (N2 +
E2 + S1 + S2 + W1 + W2)/2. At least one of the following inequalities must hold for DOOM to occur:
N1 +N2 ≥ k/2−1, E1 +E2 ≥ k/2−1, W2 ≥ k/2−1, S2 ≥ k/2−1, W1 +N2 ≥ k/2, orS1 +E2 ≥ k/2.
Part (b) easily follows.

Lemma 4.4.3. The expected time for a block to enter CLEAN isO(k3/f), assuming (1) no IA occurs, and
(2) no DOOM occurs in this block or its input blocks.

Proof. Let us first show that the output rectangles of the input blocks become clean in expected timeO(k3/f).
Let’s consider rectangleE sinceN can be treated identically. Since no DOOM occurs in this block, we can
safely assume that these incorrect tiles are surrounded by either correct tiles or empty space on the north and
west, and thus cannot bind to them. Then the largest incorrect structure is illustrated in Fig. 4.5(a). Recall that
we are assuming that the forward ratef is equal to the reverse rater2 (see Section 4.3.1). Thus the leftmost
two rows can fall off via a 1-D random walk with expected timeO(k2/f) (see Section 4.5.1). Once the two
rows fall off, they cannot attach again except via another insufficient attachment. Since there areO(k) pairs
of rows, the total expected time for rectangleN to fall off is O(k3/f).

Once the output rectangles of the input blocks become clean,only correct (or empty) tiles abut our block
on the west and south sides. Let’s consider the tiles definingrectangleW (rectangleS can be treated sim-
ilarly). Since these tiles are incorrect with respect to thesouth side of the block, they cannot be attached
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to anything on the south side of the rectangle. Further they cannot be attached to anything inside the block
along the east or north sides of the rectangle since then those tiles would be part of the rectangle. Since we
are assuming that no DOOM occurs, the rectangle cannot extend to and bind the north output border of the
block either. Further, the rectangle cannot reach the column of strength-2 bonds on its right because other-
wise a block error would occur (a spine tile would be covered by the rectangle). Thus the rectangleW is as
illustrated in Fig. 4.5(b). TheW2×W1 top rectangle can fall off via 1-D random walks as before. After that,
again by the same argument, the rest of rectangleW can fall off in timeO(k3/f).

Lemma 4.4.4.The expected time for a block whose input blocks are COMPLETEto enter COMPLETE itself
is O(k3/f), assuming (1) no IA occurs, and (2) no DOOM occurs.

Proof. First the block enters CLEAN in expected timeO(k3/f) using Lemma 4.4.3 (note that no DOOM
can occur in the input blocks because they are completed). ByLemma 4.4.2(a) the block remains free of
incorrect tiles. Then let us consider how long it takes to complete the cleaned block whose input blocks are
complete, assuming no insufficient attachments occur. Consider the south-west quarter of the block shown in
Fig. 4.5(c). Once each row or column completes it is held by strength at least3 and thus cannot dissociate.
Each row or column completes via a 1-D random walk with expected timeO(k2/f). Since there areO(k)
row/columns, the total expected time to complete the squareshown isO(k3/f). The remaining areas of the
block can be completed using a similar argument in timeO(k3/f) as well, after the spine of the block (wavy
pattern in Fig. 4.4) completes in timeO(k/f).

Now using these lemmas we can finish the proof of Theorem 4.4.1. The argument will proceed as follows.
First, we sete−Gse low enough as a function of the block sizek so that insufficient attachments are sufficiently
rare that a block has a high probability of entering CLEAN or COMPLETE before an IA occurs. This will
ensure that, assuming no DOOM occurs anywhere, the assemblycompletes in timeO(poly(k)N/ε). Then
we will setk large enough as a function ofN andε to ensure that no block enters the DOOM state during the
entire assembly process. We will see thatk need not be more than logarithmic inN/ε.

Recall that as long as a particular location remains susceptible, we model insufficient attachments at that
location as a Poisson process with rateO(Qe−3Gse) whereQ is the number of different tile types that can be
added via an insufficient attachment there.Q can be bounded by the total number of different (made up of
different tiles) blocks, and since this is the number of tiletypes in the original tile system, it does not change
with k and can be absorbed into the constant. Thus for any block, thedistribution of the time until an IA
occurs can be upper bounded by an exponential random variable with expected timetia = Ω(1/(k2e−3Gse))
since there are no more than3k2 locations where an insufficient attachment can occur (in theblock and its
input blocks). Lettc = O(k3/f) be the worst case expected time for Lemmas 4.4.3 and 4.4.4 (over all
possible assemblies, blocks and configurations of tiles in blocks). We will want thattc ≤ (1/2)tia. Recalling
thatf = r2 = O(e−2Gse) (Section 4.3.1), we can guarantee that this inequality is satisfied if we sete−Gse

low enough:e−Gse = O(1/k5). However, settinge−Gse too low slows down the rate of assembly more than
necessary, and thus for the following we assume thate−Gse = Θ(1/k5). Then,tc = O(k13).

We wanted to havetc ≤ (1/2)tia in order to show that theN × N blocks are likely, with probability
at least1 − ε/2, to assemble correctly in timeO(poly(k)N/ε) assuming no DOOM occurs anywhere. This
can be argued as follows. Consider any block whose input blocks are COMPLETE. Lemma 4.4.4 lets us
bound the time until the block itself COMPLETES assuming no IAs or DOOM occur. But what if IAs
can occur? The probability that COMPLETE occurs within time2tc given that an IA doesn’t happen in
this time is at least1/2 by Lemma 4.4.4 and the Markov inequality.∗ The probability that an IA doesn’t
happen in this time is at least1/e since2tc ≤ tia. Thus the probability that COMPLETE occurs within
time 2tc is at least(1/2)(1/e) = 1/(2e). If it doesn’t (i.e., an IA occurs or it simply doesn’t finish), the
probability that a COMPLETE will occur in the next2tc interval is again at least1/(2e). Thus the expected
time until COMPLETE occurs is at most2e2tc = 4etc. Recall that once a block completes, it can’t fall
apart (Lemma 4.4.1). Thus, the current situation is equivalent to irreversible, error-free self-assembly of tiles,
where each tile represents a block in our system. In irreversible assembly, the time to assemble anN ×N tile
square from an L boundary is on the order ofN times the expected time for a single tile to attach [1]. Thus,

∗The Markov inequality states that for any non-negative random variableX, Pr[X ≥ a] ≤ E[X]/a whereE[X] is the expected
value ofX.
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the expected total time to complete theN ×N block assembly isttot = O(N ·4etc) = O(Ntc) assuming no
DOOM occurs anywhere. Therefore, the probability that it takes longer thantmax = ttot(2/ε) = O(Nk13/ε)
to complete the assembly or to get a DOOM somewhere is at mostε/2, again by the Markov inequality.

Next we bound the probability that DOOM occurred anywhere inthe assembly in timetmax. We’ll
show that by an appropriate choice ofk = Θ(log (N/ε)), the probability of this happening is no more
thanε/2. Again focus on a particular block; but this time the two input blocks may not be completed. Let
us make the worst case assumption that the block remains uncompleted for the duration of assemblytmax

and thus susceptible to DOOM. We want such a block to be without DOOM for the entire time. Recall
that the expected time until an IA is bounded bytia = Ω(1/(k2e−3Gse)). Thus even with the worst case
assumption that the block is never completed, the expected number of IAs for this block in timetmax is at
mostq = O(tmaxk2e−3Gse). Recalling thate−Gse = O(1/k5), we haveq = O(N/ε). The probability that
there will be more thanqN2(4/ε) is at mostε/(4N2) by the Markov inequality. After each IA occurs, with
probability at least1/(2e) there will be a CLEAN but no IA within time2tc (using the same argument as
we followed in the previous paragraph for COMPLETE). Thus with probability at least1/(2e), a CLEAN
will occur between two IAs. So the probability that among no more thanqN2(4/ε) IAs, a run ofk/4 occur
in a row without intervening CLEANs can be upper-bounded byprun = qN2(4/ε)(1 − 1/(2e))k/4. Since
for DOOM to occur,k/4 IAs must occur without intervening CLEANs (Lemma 4.4.2(b)), the probability of
DOOM in this block during the entire assembly time is upper bounded byprun if no more thanqN2(4/ε)
IAs occur. If we can somehow guarantee thatprun ≤ ε/(4N2), then the probability that DOOM occurs in
this block during the entire assembly timetmax is at mostε/(4N2) + ε/(4N2) = ε/(2N2). Since there are
N2 blocks, the probability that DOOM will occur even in one of them during the entire assembly timetmax

is at mostε/2.
Now all that is left is to guarantee thatprun = qN2(4/ε)(1− 1/(2e))k/4 ≤ ε/(4N2). Solving fork, we

get:k ≥ O(1) log (16N4q/ε2) = O(log (N/ε)).
Recall that the total assembly timetmax = O((N/ε)k13(Q(k))2). Usingk = O(log (N/ε)), we get that

tmax = O(N · poly(logN)), for any fixedε.

Note that Theorem 4.4.1 can be strengthened to allow incorrect tiles in the starting subassembly, as long
as there is no DOOM in any of the blocks. Thus we can cover the case in which the assembly process does not
entirely complete before the wholesale removal of tiles occurs. However, if this removal occurs periodically
and large enough portions of the assembly are taken out each time, it may be that the assembly is never given
a chance to complete. In any case DOOM will eventually prevail.

4.5 Extensions

4.5.1 Random Walks in ther2 6= f Regime

Our proofs require thatf = r2 exactly. This can’t be achieved exactly in practice, which begs the question,
is it a necessary requirement for our construction and proof, and can it be relaxed somewhat? We believe it
can be only slightly relaxed, due to the competing pressuresof needing large patches of incorrect growth to
be quickly removed, and at the same time needing correct growth to proceed quickly.

In the proofs of Lemmas 4.4.3 and 4.4.4, we model the completion and dissociation of a chain of sequen-
tially added/removed tiles as a continuous time 1-D random walk, where the rate with which a tile is added
at the end isf and the rate as which the last tile is removed isr2. Specifically, we rely on the fact that the
expected time for the entire chain to complete (allowing fast forward growth) and the expected time for the
chain to fall off (allowing errors to be quickly undone), areboth fast (polynomial in the block sizek and
therefore logarithmic in the size of the target assemblyN ).

In order to compute the expected time until the entire chain is completed (or equivalently falls off) we can
use the following argument. In the discrete time 1-D random walk of lengtha = O(k), the expected number
of steps to reach a predetermined end (with the other end being a reflective barrier) isO(a2) if the forward
and backward transition probabilities are equal [7]. In ourcase, ifr2 = f , the two transition probabilities are
indeed equal. Further, since the expected time to take one step is1/(r2 + f) = 1/(2f), the expected time to
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reach the predetermined end isO(a2/f) = O(k2/f).∗

However, what happens if the forward ratef does not equal the reverse rater2? In the discrete time
biased 1-D random walk of lengtha (with a reflecting barrier on the favored end), the expected number of

steps to complete in the unfavored direction isS(γ, a) = 1
2γ2 (1 + γ)

[(

1+γ
1−γ

)a

− 1
]

− a/γ whereγ is the

difference between the transition probability in the favored and the unfavored directions.† This expected time
is monotonic increasing inγ and exponentially increasing ina. So if γ is not decreased as we attempt to
build larger and larger portions of patterns requiring larger block sizes, then the average number of steps in
this random walk grows exponentially witha = O(k), which would not allow us to obtain Theorem 4.4.1.

Thus, as the block size increases, we needr2 andf to be closer to each other. As a function ofk (and
thus ultimately ofN ) how fast does the difference need to decrease in order for Theorem 4.4.1 to still hold?
Let us assume thatGse and thusr2 is set as required by our proof, but we didn’t getGmc quite right such
that the actual forward ratef is slightly smaller thanr2. This would normally mean that crystals would be
thermodynamically driven to shrink, but since some tile additions form multiple bonds, locking the tile in,
assembly is still ratcheted forward. The rate of insufficient attachments can only be smaller and thus still
ferr = O(e−3Gse). Thus as long as we can still prove Lemmas 4.4.3 and 4.4.4 we would be done. Observe
thatγ = r2−f

r2+f is the difference between the transition probabilities in the favored and unfavored directions
in the corresponding discrete time 1-D random walk. Assuming thatγ decreases at least as fast as1/a, the
expected number of steps of the discrete time Markov processto complete in the unfavored direction is no

more thanS( 1
a , a) = 1

2 (a2 + a)
[(

a+1
a−1

)a

− 1
]

− a2 = O(a2), sincelima→∞

(

a+1
a−1

)a

= e2. This implies

that the expected time for the continuous-time Markov process to complete in the unfavored direction is still
O(k2/f), as required for Lemmas 4.4.3 and 4.4.4, as long asγ decreases at least as fast as a function in
O(1/k).

A thermodynamic argument based on a more realistic kTAM model may requireγ to decrease slightly
faster, however. In the full kTAM [22], in which every reaction has a reverse reaction and an equilibrium-
satisfying detailed balance can be defined, growth of blocksis biased forward if the free energy of adding
an entirek × k block is favorable. This free energy may be calculated as∆nGmc − ∆bGse, where∆n is
the number of tiles added, and∆b is the total strength of all new bonds. In our construction, adding a block
entails∆n = k2 and∆b = 2k2 + 2. Thus, favorable growth requires thatGmc

Gse
< 2 + 2

k2 . Now, since neatly

γ = r2−f
r2+f = tanh

(

Gmc−2Gse

2

)

, the favorable growth condition requires thatγ < tanh(Gse/k2). Since

the proof of Theorem 4.4.1 required thate−Gse = Θ(1/k5), Gse = Θ(log k) and thus the favorable growth
condition reduces toγ = O(tanh(log k/k2)). This is slightly more strict thanγ = O(1/k) derived in the
locking kTAM above.

4.5.2 Preventing Spurious Nucleation

The blocks produced by our construction have large regions in which tiles are connected to each other via
strong (strength 2) bonds (i.e., the “spine” of the block, wavy pattern in Figure 4.4). When the constituent
tiles are placed in solution, there is a danger that they willspontaneously nucleate and growth will proceed
disconnected from the seed L-shaped boundary. Further, growth may proceed by the aggregation of the
separately-nucleated fragments. In other words, our modelassumptions that only the assembly containing
the L-shaped boundary will grow, and that it will grow by single tile additions, may be violated in practice for
such tile sets. Can we avoid large regions of strongly bondedtiles in our construction? We believe “zig-zag”
boundaries [16] can be adopted to replace the spine, although details remain to be worked out. Rather than a
fixed-width spine, this spine would need to be thicker to be more and more robust to spurious nucleation.

∗At the reflecting barrier the expected time to take a step is twice as large since only the forward direction is possible. However, this
does not affect the asymptotic results.

†See [7] for the general form of the expected duration of 1-D discrete time random walks, from which the above expression is
derived.
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Chapter 5

The Computational Power of Benenson
Automata

This chapter was published as:David Soloveichik and Erik Winfree, “The Computational Power of Be-
nenson Automata,” Theoretical Computer Science, 244(2–3):279-297, 2005.

5.1 Abstract

The development of autonomous molecular computers capableof making independent decisions in vivo
regarding local drug administration may revolutionize medical science. Recently Benenson et al. [4] have
envisioned one form such a “smart drug” may take by implementing an in vitro scheme, in which a long
DNA state molecule is cut repeatedly by a restriction enzymein a manner dependent upon the presence of
particular short DNA “rule molecules.” To analyze the potential of their scheme in terms of the kinds of
computations it can perform, we study an abstraction assuming that a certain class of restriction enzymes is
available and reactions occur without error. We also discuss how our molecular algorithms could perform
with known restriction enzymes. By exhibiting a way to simulate arbitrary circuits, we show that these
“Benenson automata” are capable of computing arbitrary Boolean functions. Further, we show that they are
able to compute efficiently exactly those functions computable by log-depth circuits. Computationally, we
formalize a new variant of limited width branching programswith a molecular implementation.

5.2 Introduction

The goal of creating a molecular “smart drug” capable of making independent decisions in vivo regarding
local drug administration has excited many researchers [10]. Recently, Benenson et al. [4] (based on [5, 3])
have envisioned what such an automaton may look like, and reported a partial implementation of the design
in vitro. They made a system consisting of an enzyme and a set of DNA molecules which tests whether
particular RNA molecules are present in high concentrationand other particular RNA molecules are present
in low concentrations, and releases an output DNA molecule in high concentration only if the condition is
met. The actual computation process consists of the enzyme cutting a special DNA molecule in a manner
ultimately determined by the concentrations of input mRNA molecules present in solution. The authors
suggest that such a design, or a similar one, can be used to detect concentrations of specific mRNA transcripts
that are indicative of cancer or other diseases, and that theoutput can take the form of a “therapeutic” ssDNA.

The key computational element in the scheme is an enzyme thatcuts DNA in a controlled manner. Nature
provides many biologically realizable methods of cutting DNA that can be adapted for computing. For
instance, bacteria have evolved methods to cut the DNA of invading viruses (phages) with numerous enzymes
called restriction enzymes. Most restriction enzymes cut double-stranded DNA exclusively at sites where a
specific sequence, called the recognition site, is found. Some restriction enzymes leave a so-called “sticky
end overhang” which is a region of single-stranded DNA at theend of a double-stranded DNA molecule.
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Figure 5.1: (a)FokI recognition and cut sites on a generic DNA substrate. The parametersD andS will be
used to characterize restriction enzymes in this paper.D is called the cutting range andS the sticky end size.
(b) Example of a cutting rule application. (c) Illustrationof the output loop. Cutting far enough opens the
loop. (In (a),(b),(c) the top strand is 5’→3’.)

Sticky ends are important because if there is another DNA molecule with a complementary sticky end, the
two molecules can bind to each other forming a longer double-stranded DNA strand.

Benenson et al. use type IIS restriction enzymes, which cut double-stranded DNA at a specific distance
away from their recognition sites in a particular direction[11]. These enzymes were first considered in
molecular computation by Rothemund [6] in an non-autonomous simulation of a Turing machine. For an
example of a type IIS restriction enzyme, considerFokI which is known to cut in the manner shown in
Fig. 5.1(a). Note that afterFokI cuts, the DNA molecule is left with a sticky end overhang of 4bases.
The automaton of Benenson et al. is based on a series of restriction enzyme cuts of a longstate molecule.
Each cut is initiated by the binding of acutting rule moleculeto the state molecule via matching sticky
ends (Fig. 5.1(b)). Cutting rule molecules have an embeddedrestriction enzyme recognition site at a certain
distance from their sticky end. The number of base pairs between the restriction enzyme recognition site
and the sticky end on the cut rule molecule determines the number of bases that are cut away from the
state molecule after the rule molecule attaches. Since the sequence of the sticky end on the state molecule
determines which rule molecule attaches, it determines howmany bases are cut off the state molecule in
the presence of some set of rule molecules. Fig. 5.1(b) illustrates how TGGC can encode the “cut 7 bases”
operation when the appropriate cutting rule molecule is present. After each cut, a new sticky end is revealed
which encodes the location of the next cut, and the process can continue.

Benenson et al. [4] describe how any set of RNA or DNA molecules can act as input to their automaton.
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In particular, each input species converts some rule molecules that are initially inactive into active form, and
inactivates others that are initially active. The net effect of multiple pre-processing steps is that the presence
of input molecules in either high or low concentration determines which rule molecules will be available.
Note that input is provided all at once, at the beginning of the computation; the activated rule molecules are
used by the automaton as needed during the course of the computation.

A single-stranded loop is attached to the end of the state DNAmolecule (Fig. 5.1(c)). The loop is held
closed by the remaining double-stranded part of the state molecule — the so-calledstem. If the state molecule
is cut close enough to the loop, the loop is opened and released. Assuming the loop has a chemical function
only when open (e.g., it is translated to create a protein or effectively acts as antisense DNA), this results
in the production of the “theraputic” molecule in an input-dependent manner. If the system worked without
error, and supposing that the input RNA molecules are eitherpresent in high concentration or not at all, the
output DNA molecule should be released if and only if a set of RNAs is present that results in a set of rule
molecules that cut the state DNA molecule sufficiently far. To accommodate the possibility of error, which
we ignore here, Benenson et al. implement two possible outputs that compete between each other, with the
one produced in largest quantities “winning.”

We are interested in the class of computations that can be implemented using the approach developed
by Benenson et al. [4]. One possibility of performing complex computations using this scheme is to use the
output DNA molecule of one Benenson automaton as an input foranother, allowing feed-forward circuits
to be implemented. However, we would like to study the computational power of a system with a single
state molecule. Showing how to compute complex functions with a single Benenson automaton examines the
computational power of the basic unit of computation, and makes it clear how one can compute even more
complex functions with many state molecules.

In the first part of this paper, we formalize the computational process implemented by Benenson et al.
using a system with a single state molecule. As part of our abstraction, we are going to ignore concentration
dependence and other analog operations such as those involving probabilistic competition between various
reactions, and will focus on a binary model in which a reaction is either possible or not.∗ We treat the state
molecule and the set of possible cutting rule molecules as a program specifying what computation is to be
performed, while the input determines which rule moleculesare active. Each rule molecule depends upon
a specific input RNA species which either activates or deactivates it, or it may be always active. We’ll say
that a Benenson automaton outputs1 if at some point at least a total ofp bases has been cut off, wherep
represents the point in the state string cutting beyond which opens the loop. Otherwise, we say it outputs
a 0. Our constructions will cut the state molecule to leave no stem on a1 output, and some length of stem
otherwise.†

Like circuits, Benenson automata are best studied as a non-uniform computing model. But while the
computational power of circuits is well characterized, thecomputational power of Benenson automata has
not been studied. For example, while it was shown [4] how a single Benenson automaton can compute a
conjunction of inputs (and negated inputs), it was not clearhow a single Benenson automaton can compute
a disjunction of conjunctions. While [5] and [3] show how finite automata can be simulated by a similar
scheme‡, a different input method is used. Here, we show that a Benenson automaton can simulate an
arbitrary circuit, implying that it is capable of doing arbitrary non-uniform computation.

Lastly we study the cost of implementing more complex computations (e.g., more complex diagnostic
tests) using Benenson automata. While increasing the length of the state molecule is relatively easy and
incurs approximately linear cost, increasing the size of the sticky ends or the range at which the restriction
enzyme cuts requires discovering or creating new enzymes. Enzymes with very large cutting ranges that
leave large sticky ends may not exist in nature, and while some success has been achieved in creating new
restriction enzymes [8, 7], engineering new restriction enzymes suitable for Benenson automata will require

∗We’ll consider non-deterministic computation in which more than one cutting rule molecule can attach and cut. However,unlike [1]
we will not assign probabilities to the various reactions and the output.

†Even with a stem remaining, the loop may still open at a certain rate (the “stem” must be long enough to keep the loop locked
closed — see [4]). Nevertheless, our constructions can be modified to assure a longer remaining stem on a0 output at the cost of using
a few additional unique sticky ends (see Discussion).

‡In contrast to [4], [5, 3, 1] treat the state molecule as an input string for a uniform computation, while the set of rule molecules
is always the same and specifies the finite state machine computation to be performed. It is interesting to note the difference in the
computational power of these two approaches. To implement aFSM with K symbols andN states, a type IIS restriction enzyme with
cutting rangeN and sticky end sizeO(log KN) is sufficient and probably necessary.
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further technological advances.
Let us consider a family of Boolean functions{fn}, wheren = 1, 2, . . . andfn : {0, 1}n → {0, 1}.

We show that any{fn} can be computed by a family of Benenson automata such that thesize of the sticky
ends grows only logarithmically withn and the range of enzyme cutting stays constant. (This is analogous
to noting that any{fn} can be computed by a family of circuits using constant fan-in/fan-out, but it is
non-trivial to prove.) If we restrict the length of the statemolecule to bepoly(n), then the families of
functions computable by these Benenson automata are exactly those computable byO(log(n)) depth circuits.
These results are asymptotically optimal, since sticky endlengths must grow aslog n in order to read all
the input bits. We’ll also show that allowing the sticky end size to grow faster thanO(log n) does not
increase computational power, and that allowing logarithmic cutting range cannot increase it significantly.
Finally, we’ll define non-deterministic computation and prove that function families cannot be computed
more efficiently using non-deterministic Benenson automata than deterministic ones.

Independent of the relevance of our formalization to biological computation, Benenson automata capture
a model of string cutting with input-dependent cutting rules, and may be of interest as such.

5.3 Formalization of Benenson Automata

We consider Benenson automata over a fixed alphabetΣ. For biological plausibility, one may want to consider
Σ = {A, T, C, G}. However, our constructions assume only that|Σ| ≥ 3. If so desired, all our results can be
adapted to a binary alphabet by utilizing two bits to represent a single symbol, which entails changes in the
constants used in the theorems.

Let N be the set of non-negative integers{0, 1, . . .}. For any stringσ ∈ Σ∗, |σ| is the length ofσ. For
j ∈ N such thatj ≤ |σ|, we’ll use the notationσ[j] to indicate the string that is left over after the firstj
symbols ofσ are stripped off.

A Benenson automaton is parameterized by four numbers. Parametern is the number of inputs that the
automaton is sensitive to. Further, parameterS corresponds to the sticky end size,D to the maximum cutting
range of the restriction enzyme (see Fig. 5.1(a)), andL to the length of the computational portion of the
state molecule. A particular Benenson automaton is defined by specifying a state stringσ and a selection of
input-dependent cutting rulesR as follows.

Definition 5.3.1. A Benenson automatonis a tuplet(S, D, L, Σ, n, σ,R) wheren, S, D, L ∈ N, Σ is a finite
alphabet,σ ∈ ΣL is a state string andR ⊆ {0, . . . , n} × {0, 1} × ΣS × {1, ..., D} is a rule set using sticky
ends of lengthS and maximum cutting distanceD. Each rule(i, b, ω, d) specifies an inputi, a binary value
b, a sticky endω, and a cutting distanced.

Interpreted as a DNA state molecule,σ[j] represents the remaining portion of the molecule afterj initial
bases have been cut off. The firstS symbols ofσ[j] represent the single-stranded sticky end overhang. This
revealed sticky endω and the value of an input bitxi determine where the next cut will be made by the
application of some cutting rule(i, b, ω, d) which is applicable ifxi = b and cuts at a distanced.

Definition 5.3.2. Given a Benenson automaton(S, D, L, Σ, n, σ,R), for a binary inputx = x1x2...xn, a
rule (i, b, ω, d) ∈ R appliesto σ[j], wherej ∈ N s.t. |σ[j]| ≥ S + d, if xi = b andω is the initialS symbol
portion ofσ[j]. We writeσ[j]→x σ[j + d] iff there exists a rule(i, b, ω, d) ∈ R that applies toσ[j]. Further,
→∗x is the reflexive transitive closure of→x.

Our definition of Benenson automata (as well as the biochemical implementation) allows for conflicting
cutting rules. For example, if the rule set contains rules(1, 0, ω, 4) and(2, 1, ω, 6), then either4 or 6 bases
may be cut off if the sticky endω is revealed andx1 = 0, x2 = 1. An important class of Benenson automata
are those in which it is impossible for conflicting cutting rules to apply simultaneously:

Definition 5.3.3. A Benenson automaton(S, D, L, Σ, n, σ,R) is said to bedeterministicif ∀x ∈ {0, 1}n and
j ∈ N s.t.σ →∗x σ[j], there exists at most onej′ ∈ N such thatσ[j]→x σ[j′].

While in computer science non-determinism often seems to increase computational power, we’ll see this
is not the case with Benenson automata. On the other hand, implementing deterministic Benenson automata
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may be advantageous because (assuming error-free operation) each state molecule is cut up in the same way
and thus there is no need for a combinatorially large number of state molecules.

Cutting the state string far enough indicates a1 output. We’ll think of Benenson automata computing
Boolean functions as follows:

Definition 5.3.4. For p ∈ N, we say that a Benenson automaton(S, D, L, Σ, n, σ,R) non-deterministically
computesa Boolean functionf : {0, 1}n → {0, 1} at positionp if ∀x ∈ {0, 1}n, f(x) = 1 ⇔ (∃j ∈ N,
p ≤ j ≤ |σ| s.t.σ →∗x σ[j]). We’ll say simply that the Benenson automatonnon-deterministically computes
f if such ap exists.

Definition 5.3.5. For p ∈ N, we say that a Benenson automaton(S, D, L, Σ, n, σ,R) computesa Boolean
functionf : {0, 1}n → {0, 1} at positionp if the automaton is deterministic and∀x ∈ {0, 1}n, f(x) = 1⇔
(∃j ∈ N, p ≤ j ≤ |σ| s.t.σ →∗x σ[j]). We’ll say simply that the Benenson automatoncomputesf if such ap
exists.

Other reasonable output conventions have the same computational power. For example, the following
lemma shows that Benenson automata cutting to exactlyp symbols to output a1 and never cutting to exactly
p symbols to indicate a0, can be easily modified to output according to our convention.

Lemma 5.3.1. If for a deterministic Benenson automaton(S, D, L, Σ, n, σ,R) andf : {0, 1}n → {0, 1},
∃p ∈ N, p ≤ L s.t.∀x ∈ {0, 1}n, σ →∗x σ[p]⇔ f(x) = 1, then there is a Benenson automaton(S, D, p +
S, Σ, n, σ′,R) that computesf .

An identical lemma also holds for non-deterministic computation. The lemma is trivially proven by taking
σ′ to be the firstp + S symbols ofσ. All our constructions of Section 5.5 will produce Benensonautomata
requiring Lemma 5.3.1 to satisfy our definition of computingBoolean functions (Definition 5.3.5).

Note that interpreted as a DNA state molecule, the length of the remaining state string minusS represents
the remaining double-stranded stem holding the output loopclosed. Thus, as mentioned in the Introduction,
automata from our constructions (like any automata produced by the above lemma) leave no stem only on a
1 output, allowing the loop to open.

In a biochemical implementation, it may seem that in order tochange the input (say from being all
zeros to all ones) it may be necessary to activate or inactivate a rule molecule for every cutting rule inR.
However, for certain Benenson automata much smaller changes need be made. Consider the example of an
automaton whose rule set contains the rules(1, 0, ω, d) and(1, 1, ω, d). This pair of rules is really a single
input-independent rule to cutd bases if sticky endω is found no matter what the input is; thus, the cutting rule
molecule for it can be always active in solution. The following definition quantifies the maximum “amount
of effort” needed the change the input for a given Benenson automaton.

Definition 5.3.6. For s ∈ N, a Benenson automaton(S, D, L, Σ, n, σ,R) is said to bes-encodedif for
every input biti, 1 ≤ i ≤ n, there are at mosts sticky endsω ∈ ΣS such that∃(i, b, ω, d) ∈ R but
(i, 1− b, ω, d) 6∈ R.

An s-encoded automaton has at mosts sticky ends “reading” any given input bit. In order to changethe
input, in a biochemical implementation of a deterministics-encoded Benenson automaton, it is enough to
activate or inactivate at mosts pairs of rule molecules per changed bit.

5.4 Characterizing the Computational Power of Benenson Automata

In Section 5.5 we show that to compute function families using Benenson automata, only logarithmic scaling
of the restriction enzyme sticky end size, and no scaling of the maximum cutting distance is needed. This
result holds no matter what the complexity of the function family is. Further, if the family of functions
is computable by log-depth circuits∗, then a state string of only polynomial size is required. Allof our
constructions use deterministic Benenson automata.

∗For the purposes of this paper, circuits are feed-forward and consist of AND, OR, and NOT gates with fan-in bounded by2. For
an introduction to circuit complexity see for example [9].



63

Theorem 5.4.1.

(a) Any functionf : {0, 1}n → {0, 1} can be computed by a Benenson automaton with sticky end size
S = O(log n) and maximum cutting distanceD = O(1).

(b) Families of functions computable byO(log n) depth circuits can be computed by Benenson automata
with sticky end sizeS = O(log n), maximum cutting distanceD = O(1), and state string length
L = poly(n).

The constants implicit in both statements are rather small.(In this and in the following discussions
we assume that the alphabet size|Σ| is a constant.) Note that the sticky end size cannot be smaller than
O(log n) since there must be at least a different sticky end for each input bit (otherwise the input isn’t
completely “read”). Thus, in computing arbitrary Boolean functions, we cannot do better thanS = O(log n)
andD = O(1).

Further, in Section 5.6 we prove that our computation of families of functions computable by log-depth
circuits is optimal, and neither allowing non-determinismnor larger sticky ends adds computational power:

Theorem 5.4.2. Families of functions computable, possibly non-deterministically, by Benenson automata
with D = O(1), L = poly(n) can be computed byO(log n)-depth circuits.

Corollary 5.4.1. Benenson automata withS = O(log n), D = O(1), L = poly(n) can compute the same
class of families of functions asO(log n)-depth circuits.

So if we consider only Benenson automata withS = O(log n), D = O(1), L = poly(n) efficient,
then Benenson automata can compute a family of non-uniform functions efficiently if and only if it can be
computed by a circuit of logarithmic depth. In Section 5.6, we’ll also show that relaxing this notion of
efficiency to include logarithmic cutting range does not increase the computational power significantly.

5.5 Simulating Branching Programs and Circuits

Benenson automata are closely related to the computationalmodel known as branching programs. (For a
review of branching programs see [12].) In the next section we show how arbitrary branching programs can
be simulated. In the following two sections, we show how restricted classes of branching programs (fixed-
width and permutation branching programs) can be simulatedby Benenson automata withS = O(log n)
andD = O(1). Since fixed-width permutation branching programs are still powerful enough to compute
arbitrary Boolean functions (Section 5.5.4), Theorem 5.4.1(a) follows. Further, in Section 5.5.4 we’ll also
see that fixed-width permutation branching programs ofpoly(n) size can simulateO(log n) depth circuits,
implying Theorem 5.4.1(b).

5.5.1 General Branching Programs

A branching program is a directed acyclic graph with three types of nodes: variable, accept and reject (e.g.,
Fig. 5.2(a)). The variable nodes are labeled with an input variablexi (1 ≤ i ≤ n) and have two outgoing
edges, one labeled0 and the other1, that lead to other (variable, accept, or reject) nodes. Theaccept and
reject nodes have no outgoing edges. One variable node with no incoming edges is designated the start
node. The process of computation consists of starting at thestart node and at every nodexi, following the
outgoing edge whose label matches the value of theith bit of the input. If an accept node is reached, we
say that the branching program accepts the inputx. Otherwise, a reject node is reached, and we say that the
branching program rejects the inputx. The functionf : {0, 1}n → {0, 1} computed by a branching program
is f(x) = 1 if x is accepted and0 otherwise.

Because a branching program is a directed acyclic graph, we can index the nodes in such a way that we
can never go from a node with a higher index to a node with a lower one (as shown in Fig. 5.2(a)). We can
ensure that the first node is the start node and that there is only one accept node (convert all other accept
nodes into variable nodes with all outgoing edges to this accept node). LetH be the total number of nodes
in the given branching program. To each node with indexq ∈ {1, . . . , H} we associate a unique string
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σq ∈ Σ∗ of lengthS = ⌈log|Σ|(H)⌉. Let the state stringσ be the concatenation of these segments in order:
σ1 . . . σH . Thus, the sizeL of the state string isHS. For every variable nodeq labeledxi, definevar(q) = i.
Further, for every variable nodeq, goto0(q) ∈ {q + 1, . . . , H} is the node targeted by the0 outgoing edge
andgoto1(q) ∈ {q +1, . . . , H} is the node targeted by the1 outgoing edge ofq. Using this notation, the rule
set of our automaton consists of the following cutting rules. For every variable nodeq, there are two rules:
(var(q), 0, σq , (goto0(q)−q)S) and(var(q), 1, σq , (goto1(q)−q)S). Depending on the branching program,
the cutting distance may have to be as large as(H − 1)S if goto0(1) = H or goto1(1) = H .

By construction, for any remaining portion of the state stringσq · · ·σq′ · · ·σH , we have thatσq · · ·σq′ · · ·σH →x

σq′ · · ·σH iff the branching program goes to nodeq′ from q on input x in one step. This implies that
σ1 · · ·σq · · ·σH →∗x σq · · ·σH iff the branching program eventually goes from the start node to nodeq
on inputx. Thus, this Benenson automaton cuts to the beginning of the segment corresponding to the accept
node iff the branching program accepts the inputx. Thus, employing Lemma 5.3.1 (i.e., shortening the state
string) we have a Benenson automaton computing the functionf computed by the branching program. As
there is exactly one outgoing edge from any variable node foreach value of the read input bit, it follows that
the resultant automaton is deterministic. See Fig. 5.2(a,b) for an example of a branching program and the
corresponding Benenson automaton. Thus we have the following lemma:

Lemma 5.5.1. For any functionf : {0, 1}n → {0, 1} computed by a branching program ofH nodes and
any alphabetΣ s.t. |Σ| ≥ 2, there is a deterministic Benenson automaton(S, D, L, Σ, n, σ,R) with sticky
end sizeS = ⌈log|Σ| (H)⌉, maximum cutting distanceD = (H − 1)S, and state string lengthL ≤ HS
computingf .

Note that all three complexity parameters (S, D, andL) of Benenson automata needed to simulate general
branching programs using the above construction scale withthe size of the branching program. Thus, for
families of functions for which the size of branching programs computing them increases very fast withn,
new restriction enzymes must be developed that scale similarly. Consequently, this is not enough to prove
Theorem 5.4.1(a).

5.5.2 Fixed-Width Branching Programs

In this section, we demonstrate a sufficiently powerful subclass of branching programs whose simulation
is possible by Benenson automata such that only the sizeL of the state string scales with the size of the
branching program, whileS = O(log n) andD = O(1).

In the general case discussed in Section 5.5.1, our cutting range had to be large because we had no
restriction on the connectivity of the branching program and may have needed to jump far. Further, we used a
different sticky end for each node because there may be many different “connectivity patterns.” Restricting the
connectivity of a branching program in a particular way permits optimizing the construction to significantly
decreaseS andD. In fact, both will loose their dependence on the size of the branching program. In the final
construction, the sticky end sizeS will depend only on the size of the inputn and the cutting range will be a
constant.

A width J , lengthK branching program consists ofK layers ofJ nodes each (e.g., Fig. 5.2(c)). The
total number of nodes isH = KJ . We will think of J as a constant since for our purposesJ ≤ 5 will be
enough. Nodes in each layer have outgoing edges only to the next layer, and every node in the last layer is
either accepting or rejecting. We can ensure that the first node in the first layer is the start node and that the
last layer has a single accept node. (Otherwise, the branching program can be trivially modified.) It turns out
that width5 branching programs are sufficiently powerful to simulate any circuit (Section 5.5.4). Further, the
results of Section 5.6 ensure that we have not restricted ourmodel of computation too much; more general
Benenson automata cannot compute more efficiently.

Given a widthJ branching programs, we index nodes consecutively from eachlayer: thejth node in
layerk obtains indexq = (k−1)J + j. We use the same cutting rules as before, and construct the state string
identically to the previous section, but with the followingdifference. Instead of using a unique segment for
each node in the branching program as we did in the previous section, we letσq = σq′ iff var(q) = var(q′),
goto0(q)−q = goto0(q

′)−q′ andgoto1(q)−q = goto1(q
′)−q′. In other words, we allow the segments to be

the same if their cutting rules have the same behavior. This does not change the behavior of the automaton but
allows us to use fewer unique segments, thereby decreasingS. For a widthJ branching program,goto0(q)−q
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• Segments: All segmentsσ1, . . . , σ9 are unique.

• Cutting rules:
σ1 : (3, 0, σ1, 5S), (3, 1, σ1, S)
σ2 : (1, 0, σ2, S), (1, 1, σ2, 3S)
σ3 : (2, 0, σ3, 4S), (2, 1, σ3, S)
σ4 : (1, 0, σ4, 2S), (1, 1, σ4, S)
σ5 : (1, 0, σ5, 3S), (1, 1, σ5, 4S)
σ6 : (3, 0, σ6, 3S), (3, 1, σ6, 2S)
σ7 : (4, 0, σ7, 2S), (4, 1, σ7, S)

• Segments:
w1 = σ1 = σ5 = σ7 = σ8 = σ9

w2 = σ2

w3 = σ3 = σ6

w4 = σ4

• Cutting rules:
w1 : (3, 0, w1, 4S), (3, 1, w1, 3S)
w2 : (2, 0, w2, 4S), (2, 1, w2, 3S)
w3 : (1, 0, w3, 2S), (1, 1, w3, 3S)
w4 : (4, 0, w4, 4S), (4, 1, w4, 5S)

S = ⌈log|Σ| 9⌉

S = ⌈log|Σ| 4⌉

Figure 5.2: (a) An example of a general branching program of 9nodes over 4 inputs and (b) the corresponding
Benenson automaton. (c) An example of a width 3 branching program of 9 nodes over 4 inputs and (d) the
corresponding Benenson automaton. Note that some nodes areinaccessible but these will be a small fraction
for large programs. In both examples,σ1 · · ·σ9 →∗x σ9 iff the branching program acceptsx.

andgoto1(q) − q range from1 to 2J − 1. So we need no more thann(2J − 1)2 different segments, which
implies that at most we needS = ⌈logΣ(n(2J − 1)2)⌉. (The segments corresponding to the accept and
reject nodes can be anything as long as we cannot go from a reject node to the accept node. We can choose a
segment such thatgoto0(q)− q, goto1(q)− q ≥ J .) Note that the resultant automaton is(2J − 1)2-encoded
asgoto0(q)− q andgoto1(q)− q range from1 to 2J − 1. Further, the maximum cutting distance needs to be
at mostD = (2J − 1)S since in the worst case we need to go from the first node of a layer to the last node
of the next layer. See Fig. 5.2(c,d) for an example of how a fixed-width branching program can be converted
to a Benenson automaton.

As a result of the above optimizations for fixed-width branching programs, the sticky end sizeS and the
maximum cutting distanceD loose their dependence on the length of the branching program K. Assuming
the widthJ is fixed, this means that the choice of the restriction enzymeis independent of the size of the
branching program and is dependent only on the number of input bitsn.

Lemma 5.5.2. For any functionf : {0, 1}n → {0, 1} computed by a branching program of widthJ and
lengthK, and any alphabetΣ s.t. |Σ| ≥ 2, there is a(2J − 1)2-encoded deterministic Benenson automaton
(S, D, L, Σ, n, σ,R) with sticky end sizeS = ⌈logΣ(n(2J−1)2)⌉, maximum cutting distanceD = (2J−1)S,
and state string lengthL ≤ KJS computingf .
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The constructions described above rely on being able to skipentire segments in a single cut. It seems
that the cutting range must be at least logarithmic inn, since the size of the segments is logarithmic inn
to be able to read all the input variables. However, in the following we describe the construction in which
the maximum cutting distanceD is dependent only on the widthJ and no longer onn, and is thus shorter
than the segments. As before, we will still have thatσ = σ1 · · ·σq · · ·σH →∗x σq · · ·σH iff the branching
program eventually goes from the start node to nodeq on inputx. However, while previously following a
single arrow on the branching program corresponded to the application of a single cutting rule, now it will
involve the application of many. We’ll separate the cuttingrules into two logical types:segmentcutting rules
andskip cutting rules. If previously the applicable cutting rule removed(goto0(q) − q) or (goto1(q) − q)
entire segments, now the corresponding segment cutting rule only removes(goto0(q)− q) or (goto1(q)− q)
symbols from the beginning of the current segmentσq. How can the cutting ofd symbols from the beginning
of a segment result in the eventual cutting ofd entire segments? This is accomplished by the skip cutting
rules as follows (see also Fig. 5.3).

A new symbolι ∈ Σ marks the beginning of each segment, while the rest of the segment uses symbols
in Σ − {ι}. A skip cutting rule is always applicable if the first symbol of the revealed sticky end is notι,
while segment cutting rules are only applicable if the first symbol of the revealed sticky end isι. All skip
cutting rules cut exactlyD symbols. We use segments of lengthm = D · k + 1 for some integerk ≥ 1.
After the application of some segment cutting rule removesd initial symbols of the state string, exactlyd · k
applications of skip cutting rules follow because afterd · k · D + d = d · m symbols have been removed,
it follows that d entire segments (each of lengthm) have been cut off and a new segment cutting rule is
applicable. No segment cutting rule is applicable before then since this is the first time the first symbol of the
revealed sticky end isι.

Formally, we use segments of the formσq = ιτqν, whereτq, ν ∈ (Σ − {ι})∗ andν is an arbitrary
string such that|σq| = D · k + 1 for some integerk ≥ 1. The stringsτq are chosen such thatτq = τq′ iff
var(q) = var(q′), goto0(q) − q = goto0(q

′) − q′, andgoto1(q) − q = goto1(q
′) − q′. For each variable

nodeq, the segment cutting rules are:(var(q), 0, ιτq , (goto0(q) − q)) and(var(q), 1, ιτq , (goto1(q) − q)).
Since we have at mostn(2J − 1)2 uniqueτqs and we also need to read theι, we need the sticky end to be of
sizeS = 1+ ⌈log|Σ|−1 (n(2J − 1)2)⌉. In the worst case, as before, we havegoto0/1(q)− q = 2J −1 and so
the maximum cutting distance needs to beD = 2J − 1 so that we can skip2J − 1 segments. Since the skip
cutting rules should be independent of the input, for everyω ∈ ΣS s.t. the first symbol ofω is notι, we can
use the following two rules:(1, 0, ω, D) and(1, 1, ω, D). Note that since for both segment and skip cutting
rules, there is at most one cutting rule applicable at any time, and because a segment cutting rule cannot
be applicable at the same time as a skip cutting rule, it follows that our construction yields a deterministic
Benenson automaton.

With the above trick (of course after applying Lemma 5.3.1),we have the following lemma for fixed-width
branching programs:

Lemma 5.5.3. For any functionf : {0, 1}n → {0, 1} computed by a branching program of widthJ and
lengthK, and any alphabetΣ s.t. |Σ| ≥ 3, there is a(2J − 1)2-encoded deterministic Benenson automaton
(S, D, L, Σ, n, σ,R) with sticky end sizeS = 1 + ⌈log|Σ|−1 (n(2J − 1)2)⌉, maximum cutting distanceD =
2J − 1, and state string lengthL ≤ KJS computingf .

Lemma 5.5.3 together with Barrington’s theorem (Lemma 5.5.5) is enough to prove both parts of Theo-
rem 5.4.1. However, we first optimize our construction even further to obtain better constants.

5.5.3 Permutation Branching Programs

We can obtain better constants if we restrict the branching program even more. Again, in the next section
we’ll see that, even with this restriction, branching programs can simulate circuits.

First, we need a notation for the context of layered branching programs. For nodej in layer k let
goto0(k, j) = j′ if the j′th node in layerk + 1 is targeted by the0 outgoing edge of this node;goto1(k, j) is
defined analogously. A widthJ permutation branching program is a widthJ branching program such that for
all layersk, the sequencesgoto0(k, 1), . . . , goto0(k, J) andgoto1(k, 1), . . . , goto1(k, J) are permutations of
1, . . . , J . Further, there is exactly one accept node in the last layer (this can no longer be trivially assumed).
It turns out that width5 permutation branching programs are still sufficiently powerful to simulate any circuit
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Figure 5.3: An example of a segment cutting rule applicationand the subsequent application of skip cutting
rules. In this case,D = 5, k = 2, and the size of the segments ism = D · k + 1 = 11. The sticky end
size isS = 8; the black horizontal lines above the state string show the sticky end in each step. The grayed
squares compriseτq, τq+1, andτq+2 that, together with a bit of input, determine which segment cutting rule
is applicable. The empty white squares compriseν.

(Section 5.5.4). In Section 5.6, we’ll confirm that we have not restricted our model of computation too much:
efficient Benenson automata cannot simulate anything more powerful than permutation branching programs.

For permutation branching programs we can use fewer unique sequences for theτqs than for general
fixed width branching programs. It is easy to see that for every permutation branching program, there is
another permutation branching program of the same width andlength that accepts the same inputs as the
original program but for all layersk, goto0(k, ·) is the identity permutation (i.e.,goto0(k, j) = j). In this
case, sincegoto0(q) − q is alwaysJ , we need at mostn(2J − 1) uniqueτqs. Thus, sticky ends of size
S = 1 + ⌈log|Σ|−1 (n(2J − 1))⌉ are sufficient and our automaton is(2J − 1)-encoded. This leads to the
following lemma:

Lemma 5.5.4. For any functionf : {0, 1}n → {0, 1} computed by a permutation branching program of
widthJ and lengthK, and any alphabetΣ s.t. |Σ| ≥ 3, there is a(2J − 1)-encoded deterministic Benenson
automaton(S, D, L, Σ, n, σ,R) with sticky end sizeS = 1 + ⌈log|Σ|−1 (n(2J − 1))⌉, maximum cutting
distanceD = 2J − 1, and state string lengthL ≤ KJS computingf .
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Figure 5.4: Illustration of the construction achieving1-encoded automata. (a) The portion of the branching
program being simulated. In this case the width of the branching program isJ = 3. (b) The relevant portion
of the Benenson automaton. Note that each skip illustrated by the dashed lines consists of many cuts like
those illustrated in Fig. 5.3.

5.5.4 Simulating Circuits

While it may seem that fixed-width permutation branching programs are a very weak model of computation,
it turns out that to simulate circuits, width5 permutation branching programs is all we need:

Lemma 5.5.5(Barrington [2]). A functionf : {0, 1}n → {0, 1} computed by a circuit of depthC can be
computed by a length4C width5 permutation branching program.

Corollary 5.5.1 (of Lemmas 5.5.4 and 5.5.5). For any functionf : {0, 1}n → {0, 1} computed by a cir-
cuit of depthC, and any alphabetΣ s.t. |Σ| ≥ 3, there is a9-encoded deterministic Benenson automaton
(S, D, L, Σ, n, σ,R) with sticky end sizeS = 1 + ⌈log|Σ|−1 (9n)⌉, maximum cutting distanceD = 9, and
state string lengthL = 4C5S computingf .

This provides an alternative proof of Theorem 5.4.1 and implies, for instance, that a Benenson automaton
using the restriction enzymeFokI can do arbitrary 3-bit computation. Any increase in the sticky end size,
exponentially increases the number of inputs that can be handled. If an enzyme is discovered that cuts9
bases away likeFokI but leaves size7 sticky ends, then it can do all81-bit computation.

LettingC = O(log n), this proves Theorem 5.4.1(b). Theorem 5.4.1(a), of course, follows trivially since
the complexity of the circuit (depthC) enters only in the length of the state string.

5.5.5 Achieving1-Encoded Automata

If it is essential that the Benenson automaton be1-encoded, the scheme from Section 5.5.3 can be adapted
at the expense of slightly increasing the maximum cutting rangeD and the length of the state stringL. The
modification actually decreases the size of the sticky ends.

We provide a sketch of the construction; the details are carried over from the previous sections. The main
idea is to use a pair of segmentsσq = ιτq andσ′q = ιτ ′q, whereτq, τ

′
q ∈ (Σ − {ι})∗, for each nodeq of the

permutation branching program, rather than a single segment as before (see Fig. 5.4). The first segment of
the pairσq (the reading segment) reads the corresponding variable and skips either2J segments ifxi = 0
or goes to the next segment ifxi = 1. Thus, the segment cutting rules for this segment are:(i, 0, ιτq, 2J)
and(i, 1, ιτq, 1). Segmentσ′q (theskip segment) encodes an input-independent skip of2(goto1(q) − q) − 1
segments to go to the correct reading segment. Thus, for the skip segment we can use the following segment
cutting rules:(1, 0, ιτ ′q, 2(goto1(q)−q)−1) and(1, 1, ιτ ′q, 2(goto1(q)−q)−1). We need at mostn+2J−1
unique segment types:n to read all the variables, and2J − 1 to be able to skip2(goto1(q)− q)− 1 segments
for all the values of(goto1(q) − q) which ranges from1 to 2J − 1. The maximum number of segments to
skip is2(2J − 1) − 1 = 4J − 3. Note that there is at most one reading segment per input bit and thus the
construction is1-encoded.
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Lemma 5.5.6. For any functionf : {0, 1}n → {0, 1} computed by a permutation branching program of
widthJ and lengthK, and any alphabetΣ s.t.|Σ| ≥ 3, there is1-encoded deterministic Benenson automaton
(S, D, L, Σ, n, σ,R) with S = 1 + ⌈log|Σ|−1 (n + 2J − 1)⌉, D = 4J − 3, andL ≤ 2KJS computingf .

This implies, for instance, that1-encoded Benenson automata using restriction enzymeFokI can simulate
any width3 permutation branching program over22 inputs.

Corollary 5.5.2 (of Lemmas 5.5.6 and 5.5.5). For any functionf : {0, 1}n → {0, 1} computed by a cir-
cuit of depthC, and any alphabetΣ s.t. |Σ| ≥ 3, there is a1-encoded deterministic Benenson automaton
(S, D, L, Σ, n, σ,R) with S = 1 + ⌈log|Σ|−1 (n + 9)⌉, D = 17, andL = 4C10S computingf .

This implies, for example, that if a DNA restriction enzyme can be found that leaves sticky ends of size
4 like FokI but cuts17 bases away, then this enzyme can do all18 bit computation with1-encoded Benenson
automata.

5.6 Shallow Circuits to Simulate Benenson automata

We’ll now show that our constructions from the previous section are asymptotically optimal.

Lemma 5.6.1.A functionf : {0, 1}n → {0, 1} computed, possibly non-deterministically, by a Benenson au-
tomaton(S, D, L, Σ, n, σ,R) can be computed by aO(log (L/D) log D + D) depth,O(D4DL) size circuit.

To see that this lemma implies Theorem 5.4.2, takeD = O(1), S = O(log n), andL = poly(n). Further,
this Lemma implies that allowing non-determinism does not increase the computational power of Benenson
automata. Likewise, note that sticky end sizeS does not affect the complexity of the circuit simulating a
Benenson automaton. This implies that increasing the sticky end size to be larger thanO(log n) does not
increase computational power.

Finally, Lemma 5.6.1 implies that Benenson automata using maximum cutting distanceD = O(log n),
and state string lengthL = poly(n) cannot be much more powerful than Benenson automata withD = O(1),
andL = poly(n) . Specifically,∀ε > 0, functions computable by Benenson automata withD = O(log n),
andL = poly(n) are computable byO(log1+ε n) depth,poly(n) size circuits.

Let us be given a Benenson automaton(S, D, L, Σ, n, σ,R) computing, possibly non-deterministically,
a Boolean functionf at positionp. Observe that in order to check if, for a given input, the state string can
be cut to or beyondp, it is enough to check if it can be cut top or the followingD symbols. The idea of our
construction is that we split the state string into segmentsof lengthD and compute for all cut locations in
every segment where the possible cuts in the next segment canbe (for the given input). Then this information
can be composed using a binary tree of matrix multiplications to reveal all possible cuts in theD symbols
following p starting with the full state string. Making the segments shorter thanD allows the possibility that
a cut entirely bypasses a segment, thereby fouling the composition, and making them longer thanD makes
the construction less efficient (i.e., results in a deeper circuit). This proof is similar to the argument that
poly-length fixed-width branching programs can be simulated by log-depth circuits (e.g., [2]), in which the
construction computes a binary tree of compositions of permutations rather than matrix multiplications.

For convenience let us assumep is divisible byD (sayQ = p/D) and that|σ| ≥ p + D. For q and
q′ ∈ N, q < q′ ≤ Q, define aD ×D binary matrixTq,q′(x) in which thehth bit (0 indexed) of thejth row
(0 indexed) is1 iff σ[qD + j] →∗x σ[q′D + h]. Observe thatTq,q′(x) × Tq′,q′′ (x) = Tq,q′′ (x) where in the
matrix multiplication+ is logical OR and· is logical AND. Therefore,f(x) = 1 iff there is at least one1 in
the0th row of T1,Q(x) = T1,2(x) × T2,3(x) × · · · × TQ−1,Q(x). If p is not divisible byD or |σ| < p + D,
we can let the first or last of these matrices be smaller as necessary.

We can create a shallow binary tree computing the productT1,Q. For clarity of exposition, let us assume
thatQ − 1 is a power of 2. Our circuit consists of gadgetsAq (1 ≤ q ≤ Q − 1), gadgetsB, and gadgetC
(see Fig. 5.5). The input and output lines of gadgetsB represent a matrixTq,q′(x) for a range of segmentsq
to q′ as shown in Fig. 5.5. To compute the initial series of matrices, each gadgetAq needs only to know at
most2D bits of inputx on whichTq,q+1(x) may depend (a segment of lengthD can read at mostD input
bits). Each gadgetAq can be a selector circuit that uses the relevant input bits toselect one of22D possible
hardwired outputs (different for eachAq). These gadgetsAq have depthO(D) and sizeO(D24D). The
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Figure 5.5: Circuit outline for simulating a Benenson automaton. TheT lines represent a bundle of at most
D2 wires. Input lines represent a bundle of at most2D wires (a different subset for each gadget, possibly
overlapping).

output of gadgetB is the product of its first input matrix by the second input matrix, where+ is logical OR
and· is logical AND. GadgetB can be made of depthO(log D) and sizeO(D3). GadgetC outputs1 iff
there is at least one1 in the0th row of its input matrix.

5.7 Discussion

This work generalizes the non-uniform model of computationbased on the work of Benenson et al. [4] and
characterizes its computational power. We considered restriction enzymes with variable reach and sticky end
size, and studied how the complexity of the possible computation scales with these parameters. In particular,
we showed that Benenson automata can simulate arbitrary circuits and that polynomial length Benenson au-
tomata with constant cutting range are equivalent to fixed-width branching programs and therefore equivalent
to log-depth circuits. We achieve these asymptotic resultswith good constants, suggesting that the insights
and constructions developed here may have applications.

There may be ways to reduce the constants in our results even further. Although the fixed-width permu-
tation branching programs produced via Barrington’s theorem have the same variable read by every node in a
layer, this fact is not used in our constructions. Exploiting it may achieve smaller sticky end size or maximum
cutting distance.

As mentioned in the Introduction, in a biochemical implementation of our constructions the last possible
cut in the case thatf(x) = 0 may have to be sufficiently far away from the output loop to prevent its erroneous
opening. By using a few extra unique sticky ends we can achieve this with our constructions. For example, by
adding one more unique sticky end corresponding to the reject states and making sure the accept state is last,
we can ensure that in the constructions simulating general branching programs and fixed-width branching
programs the last possible cut in the casef(x) = 0 is at least the length of a segment away (≥ S, D) from
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the last cut in the casef(x) = 1.
Some Benenson automata may pose practical problems for existing or future restriction enzymes not

discussed in this paper. For example, a cutting rule withd = 1 would require a single base adjacent to a
nick to be cleaved off each strand, which may not be biochemically plausible for certain restriction enzymes
(a ligation enzyme may have to be used). Such issues must be considered carefully for an experimental
implementation.

The major problem with directly implementing our construction is the potential of an error during the at-
tachment of the rule molecule and during cuts. While a practical implementation of a Benenson automaton [4]
has to work reliably despite high error rates, our formalization does not take the possibility of erroneous cut-
ting into account. Further work is needed to formalize and characterize effective error-robust computation
with Benenson automata. Similarly, while it is easiest to study the binary model in which a reaction either oc-
curs or not, a model of analog concentration comparisons maybetter match some types of tests implemented
by Benenson et al.
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Chapter 6

Computation with Finite Stochastic
Chemical Reaction Networks

Collaborators: Matthew Cook, Erik Winfree, and Jehoshua Bruck.My contribution: MC, EW, and I
proved basic Turing-universality. I developed the fast construction, and wrote the text of the paper.
This chapter was published as:David Soloveichik, Matt Cook, Erik Winfree, and Shuki Bruck, “Compu-
tation with Finite Stochastic Chemical Reaction Networks,” Natural Computing (on-line Feb 2008).

6.1 Abstract

A highly desired part of the synthetic biology toolbox is an embedded chemical microcontroller, capable of
autonomously following a logic program specified by a set of instructions, and interacting with its cellular
environment. Strategies for incorporating logic in aqueous chemistry have focused primarily on implement-
ing components, such as logic gates, that are composed into larger circuits, with each logic gate in the circuit
corresponding to one or more molecular species. With this paradigm, designing and producing new molec-
ular species is necessary to perform larger computations. An alternative approach begins by noticing that
chemical systems on the small scale are fundamentally discrete and stochastic. In particular, the exact molec-
ular counts of each molecular species present, is an intrinsically available form of information. This might
appear to be a very weak form of information, perhaps quite difficult for computations to utilize. Indeed,
it has been shown that error-free Turing universal computation is impossible in this setting. Nevertheless,
we show a design of a chemical computer that achieves fast andreliable Turing universal computation using
molecular counts. Our scheme uses only a small number of different molecular species to do computation
of arbitrary complexity. The total probability of error of the computation can be made arbitrarily small (but
not zero) by adjusting the initial molecular counts of certain species. While physical implementations would
be difficult, these results demonstrate that molecular counts can be a useful form of information for small
molecular systems such as those operating within cellular environments.

6.2 Introduction

Many ways to perform computation in a chemical system have been explored in the literature, both as the-
oretical proposals and as practical implementations. The most common and, at present, successful attempts
involve simulating Boolean circuits [36, 8, 34, 32]. In suchcases, information is generally encoded in the
high or low concentrations of various signaling molecules.Since each binary variable used during the compu-
tation requires its own signaling molecule, this makes creating large circuits onerous. Computation has also
been suggested via a Turing machine (TM) simulation on a polymer [5, 30], via cellular automaton simula-
tion in self-assembly [31], or via compartmentalization ofmolecules into membrane compartments [6, 29].
These approaches rely on the geometrical arrangement of a fixed set of parts to encode information. This
allows unbounded computation to be performed by molecular systems containing only a limited set of types
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of enzyme and basic information-carrying molecular components. It had been widely assumed, but never
proven, that these two paradigms encompassed all ways to do computation in chemistry: either the spatial
arrangement and geometric structure of molecules is used, so that an arbitrary amount of information can be
stored and manipulated, allowing Turing universal computation; or a finite number of molecular species react
in a well-mixed solution, so that each Boolean signal is carried by the concentration of a dedicated species,
and only finite circuit computations can be performed.

Here we show that this assumption is incorrect: well-mixed finite stochastic chemical reaction networks
with a fixed number of species can perform Turing universal computation with an arbitrarily low error prob-
ability. This result illuminates the computational power of stochastic chemical kinetics: error-free Turing
universal computation is provably impossible, but once anynon-zero probability of error is allowed, no mat-
ter how small, stochastic chemical reaction networks become Turing universal. This dichotomy implies that
the question of whether a stochastic chemical systemcaneventually reach a certain state is always decidable,
the question of whether this islikely to occur is uncomputable in general.

To achieve Turing-universality, a system must not require apriori knowledge of how long the computation
will be, or how much information will need to be stored. For instance, a system that maintains some fixed
error probability per computational step cannot be Turing universal because, after sufficiently many steps,
the total error probability will become large enough to invalidate the computation. We avoid this problem
by devising a reaction scheme in which the probability of error, according to stochastic chemical kinetics, is
reduced at each step indefinitely. While the chance of error cannot be eliminated, it does not grow arbitrarily
large with the length of the computation, and can in fact be made arbitrarily small without modifying any of
the reactions but simply by increasing the initial molecular count of an “accuracy” species.

We view stochastic chemical kinetics as a model of computation in which information is stored and pro-
cessed in the integer counts of molecules in a well-mixed solution, as discussed in [22] and [2] (see Section 6.6
for a comparison with our results). This type of informationstorage is effectively unary and thus it may seem
inappropriate for fast computation. It is thus surprising that our construction achieves computation speed
only polynomially slower than that achievable by physical processes making use of spatial and geometrical
structure. The total molecular count necessarily scales exponentially with the memory requirements of the
entire computation. This is unavoidable if the memory requirements are allowed to grow while the number of
species is bounded. However, for many problems of interest memory requirements may be small. Further, our
scheme may be appropriate for certain problems naturally conceived as manipulation of molecular “counts,”
and may allow the implementation of such algorithms more directly than previously proposed. Likewise,
engineering exquisite sensitivity of a cell to the environment may effectively require determining the exact
intracellular molecular counts of the detectable species.Finally, it is possible that some natural processes
can be better understood in terms of manipulating molecularcounts as opposed to the prevailing regulatory
circuits view.

The exponential trend in the complexity of engineered biochemical systems suggests that reaction net-
works on the scale of our construction may soon become feasible. The state of the art in synthetic biology
progressed from the coupling of 2–3 genes in 2000 [9], to the implementation of over 100 deoxyribonuclease
logic gates in vitro in 2006 [23]. Our construction is sufficiently simple that significant aspects of it may be
implemented with the technology of synthetic biology of thenear future.

6.3 Stochastic Model of Chemical Kinetics

The stochastic chemical reaction network (SCRN) model of chemical kinetics describes interactions involv-
ing integer number of molecules as Markov jump processes [26, 38, 11, 15]. It is used in domains where the
traditional model of deterministic continuous mass actionkinetics is invalid due to small molecular counts.
When all molecular counts are large the model scales to the mass action law [20, 12]. Small molecular counts
are prevalent in biology: for example, over 80% of the genes in theE. colichromosome are expressed at fewer
than a hundred copies per cell, with some key control factorspresent in quantities under a dozen [17, 21].
Experimental observations and computer simulations have confirmed that stochastic effects can be physiolog-
ically significant [25, 10, 37]. Consequently, the stochastic model is widely employed for modeling cellular
processes (e.g., [3]) and is included in numerous software packages [35, 39, 19, 1]. The algorithms used for
modeling stochastic kinetics are usually based on Gillespie’s algorithm [14, 13, 16].
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Consider a solution containingp species. Its state is a vectorz ∈ Np (whereN = {0, 1, 2, . . .}) specifying
the integral molecular counts of the species. A reactionα is a tuple〈l, r, k〉 ∈ Np×Np×R+ which specifies
the stoichiometry of the reactants and products, and the rate constantk. We use capital letters to refer to

the various species and standard chemical notation to describe a reaction (e.g.,A + C
k−→ A + 2B). We

write #zX to indicate the number of molecules of speciesX in statez, omitting the subscript when the state
is obvious. ASCRNC is a finite set of reactions. In statez a reactionα is possible if there are enough
reactant molecules:∀i, zi − li ≥ 0. The result of reactionα occurring in statez is to move the system
into statez − l + r. Given a fixed volumev and current statez, the propensity of a unimolecular reaction

α : Xi
k−→ . . . is ρ(z, α) = k#zXi. The propensity of a bimolecular reactionα : Xi + Xj

k−→ . . .

whereXi 6= Xj is ρ(z, α) = k
#zXi#zXj

v . The propensity of a bimolecular reactionα : 2Xi
k−→ . . . is

ρ(z, α) = k
2

#zXi(#zXi−1)
v . Sometimes the model is extended to higher-order reactions[38], but the merit

of this is a matter of some controversy. We follow Gillespie and others and allow unary and bimolecular
reactions only. The propensity function determines the kinetics of the system as follows. If the system is in
statez, no further reactions are possible if∀α ∈ C, ρ(z, α) = 0. Otherwise, the time until the next reaction
occurs is an exponential random variable with rate

∑

α∈C ρ(z, α). The probability that next reaction will be
a particularαnext is ρ(z, αnext)/

∑

α∈C ρ(z, α).
While the model may be used to describe elementary chemical reactions, it is often used to specify higher-

level processes such as phosphorylation cascades, transcription, and genetic regulatory cascades, where com-
plex multistep processes are approximated as single-step reactions. Molecules carrying mass and energy are
assumed to be in abundant supply and are not modeled explicitly. This is the sense in which we use the
model here because we allow reactions violating the conservation of energy and mass. While we will not
find “atomic” reactions satisfying our proposed SCRNs, a reasonable approximation may be attained with
complex organic molecules, assuming an implicit source of energy and raw materials. The existence of a
formal SCRN with the given properties strongly suggests theexistence of a real chemical system with the
same properties. Thus, in order to implement various computations in real chemistry, first we should be able
to write down a set of chemical reactions (a SCRN), and then find a set of physical molecular species that
behave accordingly. This approach is compatible with the philosophy of synthetic biology [32, 34]. Here
we focus on the first step, reaction network design, and explore computation in SCRNs assuming arbitrary
reactions can be used, and that they behave according to the above model of stochastic kinetics.

6.4 Time/Space-Bounded Algorithms

There is a rich literature on abstract models of computationthat make use of integer counts, primarily because
these are among the simplest Turing universal machines known. Minsky’s register machine (RM) [27] is the
prototypical example. A RM is a finite state machine augmented with fixed number of registers that can each
hold an arbitrary non-negative integer. Aninc(i, r, j) instruction specifies that when in statei, increment
registerr by 1, and move to statej. A dec(i, r, j, k) instruction specifies that when in statei, decrement
registerr by 1 if it is nonzero and move to statej; otherwise, move to statek. There are two special states:
start and halt. Computation initiates in the start state with the input count encoded in an input register, and
the computation stops if the halt state is reached. The output is then taken to be encoded in the register values
(e.g., the final value of the input register). While it may seem that a RM is a very weak model of computation,
it is known that even two-register RMs are Turing universal.Given any RM, our task is to come up with a
SCRN that performs the same computation step by step. This SCRN is then said to simulate the RM.

For a given RM, we may construct a simple SCRN that simulates it with high probability as follows. We
use a set of state species{Si}, one for each statei of the RM, and set of register species{Mr}, one for each
register. At any time there will be exactly one molecule of some speciesSi corresponding to the current state
i, and none of the other speciesSj , for j 6= i. The molecular count ofMr represents the value of registerr.
For everyinc(i, r, j) instruction we add aninc reactionSi → Sj + Mr. For everydec(i, r, j, k) instruction
we add two reactionsdec1: Si + Mr → Sj anddec2: Si → Sk. We must ensure that a nonzero register
decrements with high probability, which is the only source of error in this simulation. The probability of
error per step isε = k2/(k1/v + k2) in the worst case that the register holds the value1, wherek1 is the rate
constant fordec1 andk2 is the rate constant fordec2. To decrease the error, we can increasek1, decreasek2,
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Figure 6.1: (A) Bounded RM simulation. SpeciesC (#C = 1) acts as a dummy catalyst to ensure that
all reactions are bimolecular, simplifying the analysis ofhow the simulation scales with the volume. Initial
molecular counts are: if̂i is the start state then#Sî = 1, #Sj = 0 for j 6= î, and#Mr is the initial value
of registerr. (B) Clock module for the RM and CTM simulations. Intuitively, the clock module maintains
the average concentration ofC1 at approximately(#A∗)

l
/(#A)

l−1. Initial molecular counts are:#Cl = 1,
#C1 = · · · = #Cl−1 = 0. For the RM simulation#A∗ = 1 and#A = Θ(1/ε1/(l−1)). In the RM
simulation,A∗ acts as a dummy catalyst to ensure that all reactions in the clock module are bimolecular
and thus scale equivalently with the volume. This ensures that the error probability is independent of the
volume. For the bounded CTM simulation, we use#A∗ = Θ((3sct

sct
)1/l) and#A = Θ(( 1

ε3/2 )1/(l−1)) (see
Section 6.7.3). Because constructions of Section 6.5 will require differing random walk lengths, we allow
different values ofl.

or decrease the volumev.
Decreasing the volume or changing the rate constants to modify the error rate is problematic. Changing

the volume may be impossible (e.g., the volume is that of a cell). Further, a major assumption essential
to maintain well-mixedness and justify the given kinetics is that the solution is dilute. Thefinite density
constraintimplies that the solution volume cannot be arbitrarily small and in fact must be at least proportional
to the maximum molecular count attained during computation. Further, since developing new chemistry to
perform larger computation is undesirable, improving the error rate of the chemical implementation of an
RM without adjusting rate constants is essential.

In every construction to follow, the error probability is determined not by the volume or rate constants,
but by the initial molecular count of an “accuracy species” which is easily changed. In fact, we use exclu-
sively bimolecular reactions∗ and all rate constants are fixed at some arbitrary valuek. Using exclusively
bimolecular reactions simplifies the analysis of how the speed of the simulation scales with the volume and
ensures that the error probability is independent of the volume. Further, working with the added restriction
that all rate constants are equal forces us to design robust behavior that does not depend on the precise value
of the rate constants.

We modify our first attempt at simulating an RM to allow the arbitrary decrease of error rates by increasing
the initial molecular count of the accuracy speciesA. In the new construction,dec2 is modified to take a
molecule of a new speciesC1 as reactant (see Fig 6.1(a)), so that decreasing the effective molecular count
of C1 is essentially equivalent to decreasing the rate constant of the original reaction. While we cannot
arbitrarily decrease#C1 (at the bottom it is either1 or 0), we can decrease the “average value” of#C1.
Fig 6.1(b) shows a “clock module” that maintains the averagevalue of#C1 at approximately(1/#A)l−1,
wherel is the length of the random walk in the clock module (see Lemma6.7.4 in the Appendix). Thus, to
obtain error probability per stepε we use#A = Θ(1/ε1/(l−1)) while keeping all rate constants fixed.†

How do we measure the speed of our simulation? We can make the simulation faster by decreasing the
volume, finding a physical implementation with larger rate constants, or by increasing the error rate. Of

∗All unimolecular reactions can be turned into bimolecular reactions by adding a dummy catalyst.
†The asymptotic notation we use throughout this paper can be understood as follows. We writef(x, y, . . .) = O(g(x, y, . . .))

if ∃c > 0 such thatf(x, y, . . .) ≤ c · g(x, y, . . .) for all allowed values ofx, y, . . .. The allowed range of the parameters will be
given either explicitly, or implicitly (e.g., probabilities must be in the range[0, 1]). Similarly, we writef(x, y, . . .) = Ω(g(x, y, . . .))
if ∃c > 0 such thatf(x, y, . . .) ≥ c · g(x, y, . . .) for all allowed values ofx, y, . . .. We sayf(x, y, . . .) = Θ(g(x, y, . . .)) if both
f(x, y, . . .) = O(g(x, y, . . .)) andf(x, y, . . .) = Ω(g(x, y, . . .)).
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course, there are limits to each of these: the volume may be set (i.e., operating in a cell), the chemistry is
what’s available, and, of course, the error cannot be increased too much or else computation is unreliable. As
a function of the relevant parameters, the speed of the RM simulation is as given by the following theorem,
whose proof is given in Section 6.7.2.

Theorem 6.4.1(Bounded computation: RM simulation). For any RM, there is an SCRN such that for any
non-zero error probabilityδ, any input, and any bound on the number of RM stepst, there is an initial amount
of the accuracy speciesA that allows simulation of the RM with cumulative error probability at mostδ in
expected timeO(vt2

kδ ), wherev is the volume, andk is the rate constant.

The major effort of the rest of this section is in speeding up the computation. The first problem is that
while we are simulating an RM without much of a slowdown, the RM computation itself is very slow, at
least when compared to a Turing machine (TM). For most algorithmst steps of a TM correspond toΩ(2t)
steps of a RM [27].∗ Thus, the first question is whether we can simulate a TM instead of the much slower
RM? We achieve this in our next construction where we simulate an abstract machine called a clockwise TM
(CTM)[28] which is only quadratically slower than a regularTM (Lemma 6.7.9).

Our second question is whether it is possible to speed up computation by increasing the molecular counts
of some species. After all, in bulk chemistry reactions can be sped up equivalently by decreasing the volume
or increasing the amount of reactants. However, storing information in the exact molecular counts imposes
a constraint since increasing the molecular counts to speedup the simulation would affect the information
content. This issue is especially important if the volume isoutside of our control (e.g., the volume is that of
a cell).

A more essential reason for desiring a speed-up with increasing molecular counts is the previously stated
finite density constraint that the solution volume should beat least proportional to the maximum molecular
count attained in the computation. Since information stored in molecular counts is unary, we require molec-
ular counts exponential in the number of bits stored. Can we ensure that the speed increases with molecular
counts enough to compensate for the volume that necessarilymust increase as more information is stored?

We will show that the CTM can be simulated in such a manner thatincreasing the molecular counts of
some species does not interfere with the logic of computation and yet yields a speed-up. To get a sense of the
speed-up possible, consider the reactionX + Y → Y + . . . (i.e.,Y is acting catalytically with products that
don’t concern us here) with both reactants initially havingmolecular countsm. This reaction completes (i.e.,
every molecule ofX is used up) in expected time that scales withm asO( log m

m ) (Lemma 6.7.5); intuitively,
even though moreX must be converted for largerm, this is an exponential decay process ofX occurring at
rateO(#Y ) = O(m). Thus by increasingm we can speed it up almost linearly. By ensuring that all reactions
in a step of the simulation are of this form, or complete just as quickly, we guarantee that by increasingm we
can make the computation proceed faster. The almost linear speed-up also adequately compensates for the
volume increasing due to the finite density constraint.

For the purposes of this paper, a TM is a finite state machine augmented with a two-way infinite tape, with
a single head pointing at the current bit on the tape. A TM instruction combines reading, writing, changing the
state, and moving the head. Specifically, the instructionop(i, j, k, zj, zk, D) specifies that if starting in statei,
first read the current bit and change to either statej if it is 0 or statek if it is 1, overwrite the current bit withzj

or zk respectively, and finally move the head left or right along the tape as indicated by the directionD. It is
well known that a TM can be simulated by an “enhanced” RM in linear time if the operations of multiplication
by a constant and division by a constant with remainder can also be done as one-step operations. To do this,
the content of the TM tape is represented in the binary expansion of two register values (one for the bits
to the left of the head and one for the bits to the right, with low-order bits representing tape symbols near
the TM head, and high-order bits representing symbols far from the head). Simulating the motion of the
head involves division and multiplication by the number base (2 for a binary TM) of the respective registers
because these operations correspond to shifting the bits right or left. In a SCRN, multiplication by2 can be
done by a reaction akin toM → 2M ′ catalyzed by a species of comparable number of molecules, which has
the fast kinetics of theX + Y → Y + . . . reaction above. However, performing division quickly enough

∗By the (extended) Church-Turing thesis, a TM, unlike a RM, isthe best we can do, if we care only about super-polynomial
distinctions in computing speed.
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seems difficult in a SCRN.∗ To avoid division, we use a variant of a TM defined as follows. ACTM is a
TM-like automaton with a finite circular tape and instructions of the formop(i, j, k, zj, zk). The instruction
specifies behavior like a TM, except that the head always moves clockwise along the tape. Any TM with a
two-way infinite tape using at moststm space andttm time can easily be converted to a clockwise TM using
no more thansct = 2stm space andtct = O(ttmstm) time (Lemma 6.7.9). The instructionop(i, j, k, zj, zk)
corresponds to: if starting in statei, first read the most significant digit and change to either state j if it is 0 or
statek if it is 1, erase the most significant digit, shift all digits left via multiplying by the number base, and
finally write a new least significant digit with the valuezj if the most significant digit was0 or zk if it was 1.
Thus, instead of dividing to shift bits right, the circular tape allows arbitrary head movement using only the
left bit shift operation (which corresponds to multiplication).

The reactions simulating a CTM are shown in Fig. 6.2. Tape contents are encoded in the base-3 digit
expansion of#M using digit1 to represent binary0 and digit2 to represent binary1. This base-3 encoding
ensures that reading the most significant bit is fast enough (see below). To read the most significant digit of
#M , it is compared with a known threshold quantity#T by the reactionM +T → . . . (such that eitherT or
M will be in sufficient excess, see below). We subdivide the CTMsteps into microsteps for the purposes of
our construction; there are four microsteps for a CTM step. The current state and microstate is indicated by
which of the state species{Si,z} is present, withi indicating the state CTM finite control andz ∈ {1, 2, 3, 4}
indicating which of the four corresponding microstates we are in. The division into microsteps is necessary
to prevent potentially conflicting reactions from occurring simultaneously as they are catalyzed by different
state species and thus can occur only in different microsteps. Conflicting reactions are separated by at least
two microsteps, since during the transition between two microsteps there is a time when both state species
are present. A self-catalysis chain reaction is used to movefrom one microstep to the next. The transition is
initiated by a reaction of a state species with a clock molecule C1 to form the state species corresponding to
the next microstep.

Now with m = 3sct−1, Lemmas 6.7.5–6.7.7 guarantee that all reactions in a microstep (excluding state
transition initiation reactions) complete in expected time O(v log m

km ) = O( vsct

k3sct
). Specifically, Lemma 6.7.5

ensures that the memory operation reactions having a state species as a catalyst complete in the required
time. Lemma 6.7.7 does the same for the self-catalytic statetransition reactions. Finally, ensuring that either
M or T is in excess of the other byΘ(m) allows us to use Lemma 6.7.6 to prove that the reading of the
most significant bit occurs quickly enough. The separation of #M or #T is established by using values of
#M expressed in base 3 using just the digits 1 and 2. Then the threshold value#T as shown in Fig. 6.2 is
Θ(3sct) larger than the largest possiblesct-digit value of#M starting with1 (base-3) andΘ(3sct) smaller
than the smallest possiblesct-digit value of#M starting with2 (base-3), implying that eitherT or M will
be in sufficient excess.

The only source of error is if not all reactions in a microstepfinish before a state transition initiation
reaction occurs. This error is controlled in an analogous manner to the RM simulation: state transition
initiation reactions work on the same principle as the delayeddec2 reaction of the RM simulation. We adjust
#A so that all reactions in a microstep have a chance to finish before the system transitions to the next
microstep (see Section 6.7.3).

Since as a function ofsct, the reactions constituting a microstep in the CTM simulation finish in expected
timeO( vsct

k3sct
), by increasingsct via padding of the CTM tape with extra bits we can decrease exponentially

the amount of time we need to allocate for each microstep. This exponential speed-up is only slightly damp-
ened by the increase in the number of CTM steps correspondingto a single step of the TM (making the worst
case assumption that the padded bits must be traversed on every step of the TM, Lemma 6.7.9).

In total we obtain the following result (see Section 6.7.3).It shows that we can simulate a TM with only
a polynomial slowdown, and that computation can be sped up byincreasing the molecular count of some
species through a “padding parameter”∆.

Theorem 6.4.2(Bounded computation: TM simulation). For any TM, there is an SCRN such that for any
non-zero error probabilityδ, any amount of padding∆, any input, any bound on the number of TM steps
ttm, and any bound on TM space usagestm, there is an initial amount of the accuracy speciesA that allows

∗For example, the naive approach of dividing#M by 2 by doingM + M → M ′ takesΘ(1) time (independent of#M ) as a
function of the initial amount of#M . Note that the expected time for the last two remainingMs to react is a constant. Thus, if this
were a step of our TM simulation we would not attain the desired speed-up with increasing molecular count.



78

Base 3 representationInitial molecular counts

Rxn Catalysts Logical function

S
ta

te
 t

ra
n

s
it
io

n
s

M
e

m
o

ry
 o

p
e

ra
ti
o

n
s

B

A

Figure 6.2: Bounded CTM simulation: reactions and initial molecular counts. (A) Reactions for
op(i, j, k, zj, zk). The clock module is the same as for the RM simulation (Fig. 6.1(B)). Here∅ indicates
“nothing.” (B) Letting s = sct, initial molecular counts for binary inputb1b2 . . . bs. Input is padded with
zeros to be exactlys bits long. Herêi is the start state of the CTM. All species not shown start at0.
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simulation of the TM with cumulative error probability at mostδ in expected timeO(
v(stm+∆)7/2t

5/2
tm

k 3(2stm+∆)δ3/2 ), where
v is the volume, andk is the rate constant.

Under realistic conditions relatingv, stm, andttm, this theorem implies that the SCRN simulates the
TM in polynomial time, specificallyO(t6tm). The finite density constraint introduced earlier requiresthat the
solution volume be proportional to the maximum molecular count attained in the course of the computation.
This constraint limits the speed of the simulation: there isa minimum volume to implement a particular
computation, and if the volume is larger than necessary, thefinite density constraint bounds∆. In most cases,
the total molecular count will be dominated by32stm+∆ (see Section 6.7.3). Thus the maximum allowed

padding satisfies32stm+∆ = Θ(v), yielding total expected computation timeO(
(log v)7/2t

5/2
tm

k δ3/2 ). This implies
that although∆ cannot be used to speed up computation arbitrarily, it can beused to minimize the effect of
having a volume much larger than necessary since increasingthe volume decreases the speed of computation
poly-logarithmically only. Alternatively, if we can decrease the volume as long as the maximum density is
bounded by some constant, then the best speed is obtained with zero padding and the smallestv possible:

v = Θ(32stm). Then the total computation time isO(
s
7/2
tm t

5/2
tm

kδ3/2 ). Since we can always ensurestm ≤ ttm, we
experience at most a polynomial (6th-order) slowdown overall compared with a regular error-free TM.

6.5 Unbounded Algorithms

The above simulations are not Turing universal because theyincur a fixed probability of error per step of the
computation. Since the probability of correct computationdecreases exponentially with the number of steps,
only finite computation may be performed reliably. Additionally the TM simulation has the property that
the tape size must be specified a priori. We now prove that a fixed SCRN can be Turing universal with an
arbitrarily small probability of error over an unlimited number of steps. In the course of a computation that is
not a priori bounded, in addition to stirring faster and injecting energy and raw materials, the volume needs to
grow at least linearly with the total molecular count to maintain finite density. Therefore, in this section our
model is that the volume dynamically changes linearly with the total molecular count as the system evolves
over time. We desire that the total error probability over arbitrarily long computation does not exceedδ and
can be set by increasing the initial molecular counts of the accuracy speciesA.

We now sketch how to modify our constructions to allow Turinguniversal computation. Consider the
RM simulation first. We can achieve a bounded total probability of error over an unbounded number of steps
by sufficiently decreasing the probability of error in each subsequent error-prone step. Onlydec steps when
the register is non-zero are error-prone. Further, ifdec2 occurs then either the register value was zero and no
error was possible, or an error has just occurred and there isno need to decrease the error further. Therefore
it is sufficient to decrease the probability of error after each dec1 step by producingA as a product ofdec1.
If the clock Markov chain length isl = 3, then adding a single molecule ofA as a product of everydec1

reaction is enough: the total probability of error obtainedvia Lemma 6.7.4 isO(
∑∞

#A=i0
1/#A2); since

this sum converges, the error probability over all time can be bounded by any desiredδ > 0 by making the
initial number ofAs, i0, sufficiently large. Usingl = 3 is best becausel > 3 unnecessarily slows down the
simulation. The total expected computation time is thenO(t(1/δ + t)2(1/δ + t + s0)/k), wheres0 is the
sum of the initial register counts (see Section 6.7.4).

A similar approach can be taken with respect to the TM simulation. The added difficulty is that the tape
size must no longer be fixed, but must grow as needed. This can be achieved if the SCRN triples the molecular
count of the state species,M , T , D, andP whenever the tape needs to increase by an extra bit. However,
simply increasing#A by 1 per microstep without changing#A∗ as in the RM construction does not work
since the volume may triple in a CTM step. Then the clock wouldexperience an exponentially increasing
expected time. To solve this problem, in Section 6.7.5 we show that if the SCRN triples the amount ofA and
A∗ whenever extending the tape and increases#A by an appropriate amount,Θ(3sct), on every step then
it achieves a bounded error probability over all time and yields the running time claimed in Theorem 6.5.1
below. The clock Markov chain of lengthl = 5 is used. All the extra operations can be implemented by
reactions similar to the types of reactions already implementing the CTM simulation (Fig. 6.2). For example,
tripling A can be done by reactions akin toA→ A† andA† → 3A catalyzed by different state species in two
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non-consequitive microsteps.∗

Theorem 6.5.1(Turing universal computation). For any TM, there is an SCRN such that for any non-zero
error probability δ, and any boundstm0 on the size of the input, there is an initial amount of the accuracy
speciesA that allows simulation of the TM on inputs of size at moststm0 with cumulative error probability
at mostδ over an unbounded number of steps and allowing unbounded space usage. Moreover, in the model
where the volume grows dynamically in proportion with the total molecular count,ttm steps of the TM com-
plete in expected time (conditional on the computation being correct) ofO((1/δ+stm0+ttmstm)5ttmstm/k)
wherestm is the space used by the TM, andk is the rate constant.

For stm ≈ ttm this gives a polynomial time (12th-order) simulation of TMs. This slowdown relative to
Theorem 6.4.2 is due to our method of slowing down the clock toreduce errors.

Can SCRNs achieve Turing universal computation without error? Can we ask for a guarantee that the
system will eventually output a correct answer with probability 1?† Some simple computations are indeed
possible with this strong guarantee, but it turns out that for general computations this is impossible. Intu-
itively, when storing information in molecular counts, thesystem can never be sure it has detected all the
molecules present, and thus must decide to produce an outputat some point without being certain. Formally,
a theorem due to Karp and Miller [18] when adapted to the SCRN context (see Section 6.7.6) rules out the
possibility of error-free Turing universal computation altogether if the state of the TM head can be determined
by the presence or absence (or threshold quantities) of certain species (i.e., state species in our constructions).
Here recall that in computer science a question is called decidable if there is an algorithm (equivalently TM)
that solves it in all cases. (Recall a state of a SCRN is a vector of molecular counts of each of the species.
Below operator≥ indicates element-wise comparison.)

Theorem 6.5.2. For any SCRN, given two statesx and y, the question of whether any statey′ ≥ y is
reachable fromx is decidable.

How does this theorem imply that error-free Turing universal computation is impossible? Since all the
constructions in this paper rely on probabilities we need torule out more clever constructions. First recall
that a question is undecidable if one can prove that there canbe no algorithm that solves it correctly in all
cases; the classic undecidable problem is the Halting problem: determine whether or not a given TM will
eventually halt [33]. Now suppose by way of contradiction that someone claims to have an errorless way of
simulating any TM in a SCRN. Say it is claimed that if the TM halts then the state species corresponding to
the halt state is produced with non-zero probability (this is weaker than requiring probability1), while if the
TM never halts then the halt state species cannot be produced. Now note that by asking whether a state with
a molecule of the halting species is reachable from the initial state, we can determine whether the TM halts:
if such a state is reachable then there must be a finite sequence of reactions leading to it, implying that the
probability of producing a halt state species is greater than 0; otherwise, if such a state is not reachable, the
halt state species can never be produced. This is equivalentto asking whether we can reach anyy′ ≥ y from
the initial state of the SCRN, wherey is the all zero vector with a one in the position of the haltingspecies
— a question that we know is always computable, thanks to Karpand Miller. Thus if an errorless way of
simulating TMs existed, we would violate the undecidability of the halting problem.

Finally note that our Turing-universality results imply that the their long-term behavior of SCRNs is
unknowable in a probabilistic sense. Specifically, our results imply that the question of whether a given
SCRN, starting with a given initial statex, produces a molecule of a given species with high or low probability
is in general undecidable. This can be shown using a similar argument: if the question were decidable the
halting problem could be solved by encoding a TM using our construction, and asking whether the SCRN
eventually produces a molecule of the halting state species.

∗A slight modification of the clock module is necessary to maintain the desired behavior. Because of the need of intermediate
species (e.g.,A†) for tripling #A and#A∗, the clock reactions need to be catalyzed by the appropriateintermediate species in addition
to A andA∗.

†Since a reaction might simply not be chosen for an arbitrarily long time (although the odds of this happening decrease exponen-
tially), we can’t insist on a zero probability of error at anyfixed time.



81

6.6 Discussion

We show that computation on molecular counts in the SCRN model of stochastic chemical kinetics can be
fast, in the sense of being only polynomially slower than a TM, and accurate, in the sense that the cumulative
error probability can be made arbitrarily small. Since the simulated TM can be universal [33], a single set of
species and chemical reactions can perform any computationthat can be performed on any computer. The
error probability can be manipulated by changing the molecular count of an accuracy species, rather than
changing the underlying chemistry. Further, we show that computation that is not a priori bounded in terms
of time and space usage can be performed assuming that the volume of the solution expands to accommodate
the increase in the total molecular count. In other words SCRNs are Turing universal.

The Turing-universality of SCRNs implies that the questionof whether given a start state the system is
likely to produce a molecule of a given species is in general undecidable. This is contrasted with questions of
possibility rather than probability: whether a certain moleculecouldbe produced is always decidable.

Our results may imply certain bounds on the speed of stochastic simulation algorithms (such as variants
of τ -leaping [16]), suggesting an area of further study. The intuition is as follows: it is well known by the
time hierarchy theorem [33] that certain TMs cannot be effectively sped up (it is impossible to build a TM that
has the same input/output relationship but computes much faster). This is believed to be true even allowing
some probability of error [4]. Since a TM can be encoded in an SCRN, if the behavior of the SCRN could be
simulated very quickly, then the behavior of the TM would also be determined quickly, which would raise a
contradiction.

Our results were optimized for clarity rather than performance. In certain cases our running time bounds
can probably be significantly improved (e.g., in a number of places we bound additive termsO(x+y), where
x ≥ 1 andy ≥ 1, by multiplicative termsO(xy)). Also the roles of a number of species can be performed by
a single species (e.g.,A∗ andC in the RM simulation).

A number of previous works have attempted to achieve Turing-universality with chemical kinetics. How-
ever, most proposed schemes require increasing the varietyof molecular species (rather than only increasing
molecular counts) to perform larger computation (e.g., [24] which shows finite circuit computation and not
Turing universal computation despite its title). Liekens and Fernando [22] have considered computation in
stochastic chemistry in which computation is performed on molecular counts. Specifically, they discuss how
SCRNs can simulate RMs. However, they rely on the manipulation of rate constants to attain the desired
error probability per step. Further, they do not achieve Turing universal computation, as the prior knowledge
of the length of the computation is required to set the rate constants appropriately to obtained a desired total
error probability. While writing this manuscript, the workof Angluin et al. [2] in distributed computing and
multi-agent systems came to our attention. Based on the formal relation between their field and our field,
one concludes that their results imply that stochastic chemical reaction networks can simulate a TM with
a polynomial slowdown (a result akin to our Theorem 6.4.2). Compared to our result, their method allows
attaining a better polynomial (lower degree), and much better dependence on the allowed error probability
(e.g., to decrease the error by a factor of10, we have to slow down the system by a factor of103/2, while
an implementation based on their results only has to slow down by a factor polynomial inlog 10). However,
because we focus on molecular interactions rather than the theory of distributed computing, and measure
physical time for reaction kinetics rather than just the number of interactions, our results take into account
the solution volume and the consequences of the finite density constraint (Section 6.4). Further, while they
consider only finite algorithms, we demonstrate Turing-universality by discussing a way of simulating algo-
rithms unbounded in time and space use (Section 6.5). Finally, our construction is simpler in the sense that
it requires far fewer reactions. The relative simplicity ofour system makes implementing Turing universal
chemical reactions a plausible and important goal for synthetic biology.

6.7 Appendix

6.7.1 Clock Analysis

The following three lemmas refer to the Markov chain in Fig. 6.3. We usepi(t) to indicate the probability of
being in statei at timet. CDF stands for cumulative distribution function.
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Figure 6.3: Continous-time Markov chain for Lemmas 6.7.1–6.7.3. Statesi = 1, . . . , l indicate the identity
of the currently present clock speciesC1, . . . , Cl. Transition to state0 represents reactiondec2 for the RM
simulation or the state transition initiation reaction of the CTM simulation.

Lemma 6.7.1. Suppose the process starts in statel. Then∀t, p1(t) ≤ (1 − p0(t))µ whereµ = 1/(1 + r
f +

( r
f )2 + · · ·+ ( r

f )l−1).

Proof. Consider the Markov chain restricted to states1, . . . , l. We can prove that the invariancepi+1(t)/pi(t) ≥
r/f (for i = 1, . . . , l − 1) is maintained at all times through the following argument.Letting φi(t) =
pi+1(t)/pi(t), we can showdφi(t)/dt ≥ 0 whenφi(t) = r/f and∀i′, φi′ (t) ≥ r/f , which implies that
for no i canφi(t) fall below r/f if it starts above. This is done by showing thatdpi(t)/dt = pi+1(t)f +
pi−1(t)r− (r + f)pi(t) ≤ 0 sinceφi(t) = r/f andφi−1(t) ≥ r/f , anddpi+1(t)/dt = pi+2(t)f + pi(t)r−
(r + f)pi+1(t) ≥ 0 sinceφi(t) = r/f andφi+1(t) ≥ r/f (the pi−1 or thepi+2 terms are zero for the
boundary cases).

Now pi(t) = φi−1(t)φi−2(t) · · · φ1(t)p1(t). Thus
∑

i pi(t) = 1 impliesp1(t) = 1/(1 + φ1 + φ2φ1 +
· · ·+ φl−1φl−2 · · ·φ1) ≤ 1/(1 + r

f + ( r
f )2 + · · ·+ ( r

f )l−1). This is a bound on the probability of being in
state1 given that we haven’t reached state0 in the full chain of Fig. 6.3. Thus multiplying by1− p0(t) gives
us the desired result.

Lemma 6.7.2.Suppose for someµ we have∀t, p1(t) ≤ (1−p0(t))µ. LetT be a random variable describing
the time until absorption at state0. ThenPr[T < t] ≤ 1− e−λt for λ = fµ (i.e., our CDF is bounded by the
CDF for an exponential random variable with rateλ = fµ).

Proof. The result follows from the fact thatdp0(t)/dt = p1(t)f ≤ (1− p0(t))µf .

Lemma 6.7.3.Starting at statel, the expected time to absorb at state0 is O(( r
f )l−1/f) assuming sufficiently

larger/f .

Proof. The expected number of transitions to reach state0 starting in statei is di =
2pq((q/p)l−(q/p)l−i)

(1−2p)2 −
i

q−p , wherep = f
f+r is the probability of transitioning to a state to the left andq = 1 − p is the probability

of transitioning to the state to the right. This expression is obtained by solving the recurrence relationdi =

pdi−1 + qdi+1 + 1 (0 > i > l) with boundary conditionsd0 = 0, dl = dl−1 + 1. Thusdl < 2pq(q/p)l

(1−2p)2 =

2(r/f)l+1

(r/f−1)2 . This implies that forr/f larger than some constant,dl = O(( r
f )l−1). Since the expected duration

of any transition is no more than1/f , the desired bound is obtained.

By the above lemmas, the time for the clock to “tick” can be effectively thought of as an exponential
random variable with rateλ = f/(1 + r

f + ( r
f )2 + · · · + ( r

f )l−1) = Θ( f
(r/f)l−1 ). Lemma 6.7.2 shows

that the CDF of the tick is bounded by the CDF of this exponential random variable. Further, Lemma 6.7.3
shows that the expected time for the tick is bounded by (the order of) expected time of this exponential
random variable. Note that Lemma 6.7.2 is true no matter how long the clock has already been running (a
“memoryless” property). For our clock construction (Fig. 6.1(b)), we setλ by changing#A and#A∗ which

define the forward and reverse ratesf andr. Specifically, we haveλ = Θ( k#A∗l

v#Al−1 ).

6.7.2 Time/Space-Bounded RM Simulation

Lemma 6.7.4. For the finite RM simulation, the probability of error per step isO((1/#A)l−1). Further, the
expected time per step is bounded byO((#A)l−1v/k).
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Proof. Consider the point in time when the RM simulation enters a state in which it should decrement a
non-empty register. If the time untildec2 occurs were an exponential random variable with rateλ then the
probability of error per step would be bounded byλ/(k/v + λ). (We are making the worst case assumption
that there is exactly one register molecule; otherwise, theerror is even smaller.) The time untildec2 is not
exponentially distributed, but by Section 6.7.1, it can be bounded by an exponential random variable with
rateλ = O( k

v#Al−1 ) (#A∗ = 1 for the RM construction). Note that the clock may have been running for a
while since the lastdec operation (while the RM performsinc operations for example); however, this amount
of time is irrelevant by the memoryless property established in Section 6.7.1. Thus the probability of error
per step is bounded byλ/(k/v + λ) = O((1/#A)l−1). The expected time per RM step is bounded by the
expected time fordec2 which isO((#A)l−1v/k) by Section 6.7.1.

The above lemma implies that we can use#A = Θ((t/δ)1/(l−1)) resulting in the expected time for the
whole computation ofO(vt2

kδ ) and the total probability of error being bounded byδ.

6.7.3 Time/Space-Bounded CTM Simulation

In the following lemmas, we say a reactioncompletely finisheswhen it happens enough times that one of the
reactants is used up.

Lemma 6.7.5. Starting withΘ(m) molecules ofX and Θ(m) molecules ofY , the expected time for the
reactionX +Y → Y to completely finish isO( v

km log m). The variance of the completion time isO(( v
km )2).

Proof. When there areq molecules ofX remaining, the waiting time until next reaction is an exponential ran-
dom variable with rateΘ(kqm/v) and therefore meanO( v

kqm ). Each waiting time is independent. Thus the

total expected time is
∑Θ(m)

q=1 O( v
kqm ) = O( v

km log m).∗ The variance of each waiting time isO(( v
kqm )2).

Thus the total variance is
∑Θ(m)

q=1 O(( v
kqm )2) = O(( v

km )2).

Lemma 6.7.6. Starting withΘ(m) molecules ofX andΘ(m) molecules ofY such that∆ = #Y −#X =
Ω(m) the expected time for the reactionX + Y → ∅ to completely finish isO( v

km log m). The variance of
the completion time isO(( v

km )2).

Proof. This case can be proven by reducing to Lemma 6.7.5 with initial amounts#Y ′ = ∆ and#X ′ =
#X .

Lemma 6.7.7. Starting withΘ(m) molecules ofX and1 molecule ofY , the expected time for the reaction
X + Y → 2Y to completely finish isO( v

km log m). The variance of the completion time isO(( v
km )2).

Proof. Consider splitting the process into two halves, with the first part bringing the amount ofX to half
its initial value and the second part using up the remainder.The time-reverse of the first part, as well as the
second part, can both be bounded by processes covered by Lemma 6.7.5. (Assume that#X is fixed at its
minimal value for part one, and assume#Y is fixed at its minimal value for part two. The variance can only
decrease.)

Lemma 6.7.8. Someλ = Θ(kε3/23sct

vsct
) attains error at mostε per microstep of the CTM simulation.

Proof. Using the above lemmas withm = 3sct−1, by Chebyshev’s inequality,† with probability at least
1 − ε/2 all reactions finish before some timetf = Θ( v

km (log(m) + 1/
√

ε)) = O( v log m
kmε1/2 ). Now we setλ

such that the probability that the clock ticks before timetf is smaller thanε/2 (for a total probability of error
ε). Since the time until the clock ticks is bounded by the CDF ofan exponential random variable with rateλ

(Sec 6.7.1), it is enough thatλ < ε
2tf

and so we can choose someλ = Θ( ε3/2km
v log m ).

∗As m → ∞, the difference between
Pm

q=1(1/q) andlog m approaches the Euler-Mascheroni constant.
†Chebyshev’s inequality states that for a random variableX with expected valueµ and finite varianceσ2, for any d > 0,

Pr[|X − µ| ≥ dσ] ≤ 1/d2.
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Lemma 6.7.9. Any TM with a two-way infinite tape using at moststm space andttm time can be converted
to a CTM usingsct = 2stm space andtct = O(ttmstm) time. If∆ extra bits of padding on the CTM tape is
used, thentct = O(ttm(stm + ∆)) time is required.

Proof. (sketch, see [28]) Two bits of the CTM are used to represent a bit of the TM tape. The extra bit is
used to store a TM head position marker. To move in the direction corresponding to moving the CTM head
clockwise (the easy direction) is trivial. To move in the opposite direction, we use the temporary marker to
record the current head position and then move each tape symbol clockwise by one position. Thus, a single
TM operation in the worst case corresponds toO(s) CTM operations.

In order to simulatettm steps of a TM that usesstm bits of space on a CTM using∆ bits of padding
requirestct = O(ttm(stm + ∆)) CTM steps and a circular tape of sizesct = 2stm + ∆ (Lemma 6.7.9).
Recall that in our CTM simulation, there are four microstepscorresponding to a single CTM operation, which
is asymptotically stillO(tct). Thus, in order for the total error to be at mostδ, we need the error per CTM
microstep to beε = O( δ

ttm(stm+∆)). Setting the parameters of the clock module (#A, #A∗) to attain the

largestλ satisfying Lemma 6.7.8, the expected time per microstep isO( vsct

k3sct ε3/2 ) = O(
v(stm+∆)5/2t

3/2
tm

k32stm+∆δ3/2 ).

This can be done, for example, by setting#A∗l = Θ(3sct

sct
) and#Al−1 = Θ( 1

ε3/2 ). Since there are total

O(ttm(stm + ∆)) CTM microsteps, the total expected time isO(
v(stm+∆)7/2t

5/2
tm

k 3(2stm+∆)δ3/2 ).
How large is the total molecular count? If we keepδ constant while increasing the complexity of the

computation being performed, and setting#A∗ and#A as suggested above, we have that the total molecular
count isΘ(m + #A) wherem = 32stm+∆. Now m increases at least exponentially withstm + ∆, while
#A increases at most polynomially. Further,m increases at least quadratically withttm (for any reasonable
algorithm2stm ≥ ttm) while #A increases at most as a polynomial of degree(3/2) 1

l−1 < 2. Thusm will
dominate.

6.7.4 Unbounded RM Simulation

After i dec2 steps, we have#A = i0 + i wherei0 is the initial number ofAs. The error probability for the
next step isO(1/#A2) = O(1/(i0 + i)2) by Lemma 6.7.4 whenl = 3. The total probability of error over
an unbounded number of steps isO(

∑∞
i=0 1/(i0 + i)2). To make sure this is smaller thanδ we start out with

i0 = Θ(1/δ) molecules ofA.∗

Now what is the total expected time fort steps? By Lemma 6.7.4 the expected time for the next step
afteri dec2 steps isO(#A2v/k) = O((i0 + i)2v/k). Since each step at most increases the total molecular
count by1, aftert total stepsv is not larger thanO(i0 + t + s0), wheres0 is the sum of the initial values
of all the registers. Thus the expected time for thetth step is bounded byO((i0 + i)2(i0 + t + s0)/k) =
O((1/δ + t)2(1/δ + t + s0)/k) and so the expected total time fort steps isO(t(1/δ + t)2(1/δ + t + s0)/k).

6.7.5 Unbounded CTM Simulation

We want to follow a similar strategy as in the RM simulation (Section 6.7.4) and want the error probability
on the ith CTM step to be bounded byε = 1/(Θ(1/δ) + i)2 such that the total error probability after
arbitrarily many steps is bounded byδ. By Lemma 6.7.8, we can attain per-step error probability (taking
the union bound over the 4 microsteps in a step) bounded by this ε when we choose a small enoughλ =

Θ(kε3/23sct

vsct
) = Θ( k3sct

v(1/δ+i)3sct
), wheresct is the current CTM tape size. Recall thatλ is set by#A and

#A∗ such thatλ = Θ( k#A∗l

v#Al−1 ) (Section 6.7.1). It is not hard to see that we can achieve the desiredλ

using clock Markov chain lengthl = 5, and appropriate#A = Θ((i0 + i)3sct) and#A∗ = Θ(3sct), for
appropriatei0 = Θ(1/δ + sct0), wheresct0 is the initial size of the tape. These values of#A and#A∗ can
be attained if the SCRN triples the amount ofA andA∗ whenever extending the tape and increases#A by
an appropriate amountΘ(3sct) on every step.

How fast is the simulation with these parameters? From Section 6.7.1 we know that the expected

time per microstep isO(1/λ) = O(v(1/δ+sct0+i)4

k3sct
). Since the total molecular count is asymptotically

∗If i0 > 1/δ + 1, thenδ >
R ∞

i0−1
1

x2 dx >
P∞

x=i0
1

x2 .
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O(#A) = O((1/δ + sct0 + i)3sct), this expected time isO((1/δ + sct0 + i)5/k). However, unlike in
the bounded time/space simulations and the unbounded RM simulation, this expected time is conditional on
all the previous microsteps being correct because if a microstep is incorrect,A andA∗ may increase by an
incorrect amount (for example reactions tripling#A akin toA → A† andA† → 3A can driveA arbitrarily
high if the catalyst state species for both reactions are erroneously present simultaneously). Nonetheless,
the expected duration of a microstep conditional on the entire simulation being correct is at most a factor
of 1/(1 − δ) larger than this.∗ Since we can assumeδ will always be bounded above by a constant less
than one, the expected duration of a microstep conditional on the entire simulation being correct is still
O((1/δ + sct0 + i)5/k). By Lemma 6.7.9, this yields total expected time to simulatettm steps of a TM using
at moststm space and with initial input of sizestm0 is O((1/δ + stm0 + ttmstm)5ttmstm/k) assuming the
entire simulation is correct.

6.7.6 Decidability of Reachability

We reduce the reachability question in SCRNs to the reachability question in Vector Addition Systems (VAS),
a model of asynchronous parallel processes developed by Karp and Miller [18]. In the VAS model, we
consider walks through ap dimensional integer lattice, where each step must be one of afinite set of vectors in
Np, and each point in the walk must have no negative coordinates. It is known that the following reachability
question is decidable: given pointsx andy, is there a walk that reaches some pointy′ ≥ y from x [18]?
The correspondence between VASs and SCRNs is straightforward [7]. First consider chemical reactions in
which no species occurs both as a reactant and as a product (i.e., reactions that have no catalysts). When
such a reactionα = 〈l, r, k〉 occurs, the state of the SCRN changes by addition of the vector −l + r. Thus
the trajectory of states is a walk throughNp wherein each step is any of a finite number of reactions, subject
to the constraint requiring that the number of molecules of each species remain non-negative. Karp and
Miller’s decidability results for VASs then directly implythat our reachability question of whether we ever
enter a state greater than or equal to some target state is decidable for catalyst-free SCRNs. The restriction to
catalyst-free reactions is easily lifted: each catalytic reaction can be replaced by two new reactions involving
a new molecular species after which all reachability questions (not involving the new species) are identical
for the catalyst-free and the catalyst-containing networks.
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Chapter 7

Robust Stochastic Chemical Reaction
Networks

7.1 Abstract

The behavior of some stochastic chemical reaction networksis largely unaffected by slight inaccuracies in
reaction rates. We formalize the robustness of state probabilities to reaction rate deviations, and describe a
formal connection between robustness and efficiency of simulation. Without robustness guarantees, stochas-
tic simulation seems to require computational time proportional to the total number of reaction events. Even
if the concentration (molecular count per volume) stays bounded, the number of reaction events can be linear
in the duration of simulated time and total molecular count.We show that the behavior of robust systems can
be predicted such that the computational work scales linearly with the duration of simulated time and con-
centration, and only polylogarithmically in the total molecular count. Thus our asymptotic analysis captures
the dramatic speed-up when molecular counts are large, and shows that for bounded concentrations the com-
putation time is essentially invariant with molecular count. Finally, by noticing that even robust stochastic
chemical reaction networks are capable of embedding complex computational problems, we argue that the
linear dependence on simulated time and concentration is optimal.

7.2 Introduction

The stochastic chemical reaction network (SCRN) model of chemical kinetics is used in chemistry, physics,
and computational biology. It describes interactions involving integer number of molecules as Markov jump
processes [26, 33, 9, 14], and is used in domains where the traditional model of deterministic continuous mass
action kinetics is invalid due to small molecular counts. Small molecular counts are prevalent in biology: for
example, over 80% of the genes in theE. coli chromosome are expressed at fewer than a hundred copies
per cell, with some key control factors present in quantities under a dozen [18, 23]. Indeed, experimental
observations and computer simulations have confirmed that stochastic effects can be physiologically signifi-
cant [25, 8, 32]. Consequently, the stochastic model is widely employed for modeling cellular processes (e.g.,
[5]) and is included in numerous software packages [34, 21, 1].∗ The stochastic model becomes equivalent
to the classical law of mass action when the molecular countsof all participating species are large [22, 10].

Gillespie’s stochastic simulation algorithm (SSA) can be used to model the behavior of SCRNs [13].
However, simulation of systems of interest often requires an unfeasible amount of computational time. Some
work has focused on optimizing simulation of large SCRNs (many different species and reaction channels)
with few reaction occurrences. For example, one can implement tricks to improve the speed of deciding
which reaction occurs next among the many possible choices (e.g., [12]). However, for the purposes of this

∗Some stochastic simulation implementations on the web: Systems Biology Workbench:http://sbw.sourceforge.net;
BioSpice: http://biospice.lbl.gov; Stochastirator: http://opnsrcbio.molsci.org; STOCKS: http://www.
sysbio.pl/stocks; BioNetS:http://x.amath.unc.edu:16080/BioNetS; SimBiology package for MATLAB:http:
//www.mathworks.com/products/simbiology/index.html
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paper we suppose that the number of species and reactions is relatively small, and that it is fundamentally the
number of reaction occurrences in a given interval of time that presents the difficulty. Because SSA simulates
every single reaction event, simulation is slow when the number of reaction events is large.

On the face of it, simulation should be possible without explicitly modeling every reaction occurrence.
In the mass action limit, fast simulation is achieved using numerical ODE solvers. The complexity of the
simulation does not scale at all with the actual number of reaction occurrences but with overall simulation time
and the concentration of the species. If the volume gets larger without a significant increase in concentration,
mass action ODE solvers achieve a profound difference in computation time compared to SSA.∗ Moreover
maximum concentration is essentially always bounded, because the model is only valid for solutions dilute
enough to be well mixed, and ultimately because of the finite density of matter. However, mass action
simulation can only be applied if molecular counts ofall the species are large. Even one species that maintains
a low molecular count and interacts with other species prevents the use of mass action ODE solvers.

Another reason why it seems that it should be possible to simulate stochastic chemical systems quickly, is
that for many systems the behavior of interest does not depend crucially upon details of events. For example
biochemical networks tend to be robust to variations in concentrations and kinetic parameters [27, 3]. If these
systems are robust to many kinds of perturbations, including sloppiness in simulation, can we take advantage
of this to speed up simulation? For example, can we approach the speed of ODEs but allow molecular counts
of some species to be small? Indeed, tau-leaping algorithms(e.g., [15, 29, 7], see [17] for a review) are based
on the idea that if we allow reaction propensities to remain constant for some amount of timeτ , but therefore
deviate slightly from their correct values, we don’t have toexplicitly simulate every reaction that occurs in
this period of time (and can thus “leap” by amount of timeτ ).

In this paper we formally define robustness of the probability that the system is in a certain state at a certain
time to perturbations in reaction propensities. We also provide a method for proving that certain simple
systems are robust. We then describe a new approximate stochastic simulation algorithm called bounded
tau-leaping (BTL), which naturally follows from our definition of robustness. In contrast to Gillespie’s and
others’ versions of tau-leaping, in each step of our algorithm the leap time, rather than being a function of
the current state, is a random variable. This algorithm naturally avoids some pitfalls of tau-leaping: the
concentrations cannot become negative, and the algorithm scales to SSA when necessary, in a way that there
is always at least one reaction per leap. However, in the cases when there are “opposing reactions” (canceling
or partially cancelling each other) other forms of tau-leaping may be significantly faster (e.g., [28]).

BTL seems more amenable to theoretical analysis than Gillespie’s versions [15, 16, 7], and may thus act as
a stand-in for approximate simulation algorithms in analytic investigations. In this paper we use the language
and tools of computational complexity theory to formally study how the number of leaps that BTL takes
varies with the maximum molecular countm, time span of the simulationt, and volumeV . In line with the
basic computational complexity paradigm, our analysis is asymptotic and worst-case. “Asymptotic” means
that we do not evaluate the exact number of leaps but rather look at the functional form of the dependence of
their number onm, t, andV . This is easier to derive and allows for making fundamental distinctions (e.g., an
exponential function is fundamentally larger than a polynomial function) without getting lost in the details.
“Worst-case” means that we will not study the behavior of ouralgorithm on any particular chemical system
but rather upper bound the number of leaps our algorithm takes independent of the chemical system. This
will allow us to know that no matter what the system we are trying to simulate, it will not be worse than our
bound.

In this computational complexity paradigm, we show that indeed robustness helps. We prove an upper
bound on the number of steps our algorithm takes that is logarithmic in m, and linear int and total concen-
trationC = m/V . This can be contrasted with the exact SSA algorithm which, in the worst case, takes a
number of steps that is linear inm, t, andC. Since a logarithmic dependence is much smaller than a linear
one, BTL is provably “closer” to the speed of ODE solvers which have no dependence onm.†

Finally we ask whether it is possible to improve upon BTL, or did we exhaust the speed gains that can
be obtained by using robustness? In the last section of the paper we connect this question to a widely held
conjecture in computer science. Assuming the conjecture istrue, we prove that there are robust systems

∗As an illustrative example, a prokaryotic cell and a eukaryotic cell have similar concentrations of proteins but vastlydifferent
volumes.

†Indeed, the total molecular countm can be extremely large compared to its logarithm. For example, Avogadro’s number= 6×1023

while its log2 is only79.
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whose behavior cannot be predicted in fewer computational steps than the number of leaps that BTL makes,
ignoring multiplicative constant factors and powers oflog m. We believe other versions of tau-leaping have
similar worst-case complexities as our algorithm, but proving equivalent results for them remains open.

7.3 Model and Definitions

A Stochastic Chemical Reaction Network(SCRN)S specifies a set ofN speciesSi (i ∈ {1, . . . , N}) andM
reactionsRj (j ∈ {1, . . . , M}). Thestateof S is a vector~x ∈ NN indicating the integral molecular counts
of the species.∗ A reactionRj specifies a reactants’ stoichiometry vector~rj ∈ NN , a products’ stoichiometry
vector~pj ∈ NN , and a real-valued rate constantkj > 0. We describe reaction stoichiometry using a standard
chemical “arrow” notation; for example, if there are three species, the reactionRj : S1 + S2 → S1 + 2S3 has
reactants vector~rj = (−1,−1, 0) and products vector~pj = (1, 0, 2). A reactionRj is possiblein state~x if
there are enough reactant molecules:(∀i) xi − rij ≥ 0. Then if reactionRj occurs (or “fires”) in state~x, the
state changes to~x + ~νj , where~νj ∈ ZN is the state change vector for reactionRj defined as~νj = ~pj − ~rj .
We follow Gillespie and others and allow unary (Si → . . .) and bimolecular (2Si → . . . or Si + Si′ → . . .,
i 6= i′) reactions only. Sometimes the model is extended to higher-order reactions [33], but the merit of this
is a matter of some controversy.

Let us fix an SCRNS. Given a starting state~x0 and a fixed volumeV , we can define a continuous-time
Markov process we call anSSA process† C of S according to the following stochastic kinetics. Given a
current state~x, the propensity functionaj of reactionRj is defined so thataj(~x)dt is the probability that
oneRj reaction will occur in the next infinitesimal time interval[t, t + dt). If Rj is a unimolecular reaction
Si → . . . then the propensity is proportional to the number of molecules ofSi currently present since each
is equally likely to react in the next time instant; specifically, aj(~x) = kjxi for some reaction rate constant
kj . If Rj is a bimolecular reactionSi + Si′ → . . ., wherei 6= i′, then the reaction propensity is proportional
to xixi′ , which is the number of ways of choosing a molecule ofSi and a molecule ofSi′ , since each pair is
equally likely to react in the next time instant. Further, the probability that a particular pair reacts in the next
time instant is inversely proportional to the volume, resulting in the propensity functionaj(~x) = kj

xixi′

V . If
Rj is a bimolecular reaction2Si → . . . then the number of ways of choosing two molecules ofSi to react is
xi(xi−1)

2 , and the propensity function isaj(~x) = kj
xi(xi−1)

2V .
Since the propensity functionaj of reactionRj is defined so thataj(~x)dt is the probability that oneRj

reaction will occur in the next infinitesimal time interval[t, t + dt), state transitions in the SSA process are
equivalently described as follows: If the system is in state~x, no further reactions are possible if

∑

aj(~x) = 0.
Otherwise, the time until the next reaction occurs is an exponential random variable with rate

∑

j αj(~x). The
probability that next reaction will be a particularRj∗ is αj∗(~x)/

∑

j αj(~x).
We are interested in predicting the behavior of SSA processes. While there are potentially many different

questions that we could be trying to answer, for simplicity we define theprediction problemas follows. Given
an SSA processC, a timet, a state~x, andδ ≥ 0, predict‡ whetherC is in ~x at timet, such that the probability
that the prediction is incorrect is at mostδ. In other words we are interested in algorithmically generating
values of a Bernoulli random variableI(~x, t) such that the probability thatI(~x, t) = 1 whenC is not in~x at
time t plus the probability thatI(~x, t) = 0 whenC is in ~x at timet is at mostδ. We assumeδ is some small
positive constant. We can easily extend the prediction problem to a set of statesΓ rather than a single target
state~x by asking to predict whether the process is in any of the states in Γ at timet. SinceΓ is meant to
capture some qualitative feature of the SSA process that is of interest to us, it is called anoutcome.

By decreasing the volumeV (which speeds up all bimolecular reactions), increasingt, or allowing for
more molecules (up to some boundm) we are increasing the number of reaction occurrences that we may
need to consider. Thus for a fixed SCRN, one can try to upper bound the computational complexity of the
prediction problem as a function ofV , t, andm. Given a molecular count boundm, we define thebounded-

∗
N = {0, 1, 2, . . .} andZ = {. . . ,−1, 0, 1, . . .}.

†It is exactly the stochastic process simulated by Gillespie’s Stochastic Simulation Algorithm (SSA) [13].
‡We phrase the prediction problem in terms appropriate for a simulation algorithm. An alternative formulation would be the problem

of estimating the probability that the SSA process is in~x at timet. To be able to solve this problem using a simulation algorithm we can
at most require that with probability at leastδ1 the estimate is withinδ2 of the true probability for some constantsδ1, δ2 > 0. This can
be attained by running the simulation algorithm a constant number of times.
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count prediction problemas before, but allowing an arbitrary answer if the molecularcount exceedsm within
time t. SupposeP is a bounded-count prediction problem with molecular countboundm, error boundδ,
about timet and an SSA process in which the volume isV . We then sayP is a (m, t, C, δ)-prediction
problemwhereC = m/V is a bound on the maximum concentration.∗ Fixing some smallδ, we study how
the computational complexity of solving(m, t, C, δ)-prediction problems may scale with increasingm, t, and
C. If the (m, t, C, δ)-prediction problem is regarding an outcomeΓ consisting of multiple states, we require
the problem of deciding whether a particular state is inΓ to be easily solvable. Specifically we require it to
be solvable in time at most polylogarithmic inm.

It has been observed that permitting propensities to deviate slightly from their correct values, allows for
much faster simulation, especially if the molecular countsof some species are large. This idea forms the
basis of approximate stochastic simulation algorithms such as tau-leaping [15]. As opposed to the exact SSA
process described above, consider letting the propensity function vary stochastically. Specifically, we define
new propensity functionsa′j(~x, t) = ξj(t)aj(~x) where{ξj(t)} are random variables indexed by reaction and
time. The value ofξj(t) describes the deviation from the correct propensity of reaction Rj at timet, and
should be close to1. For any SSA processP we can define a new stochastic process called aperturbation
of P through the choice of the distributions of{ξj(t)}. Note that the new process may not be Markov, and
may not possess Poisson transition probabilities. If thereis a0 < ρ < 1 such that∀j, t, (1 − ρ) ≤ ξj(t) ≤
(1 + ρ), then we call the new process aρ-perturbation. There may be systems exhibiting behavior such that
any slight inexactness in the calculation of propensities quickly gets amplified and results in qualitatively
different behavior. However, for some processes, ifρ is a small constant, theρ-perturbation may be a good
approximation of the SSA process.

We now define our notion of robustness. Intuitively, we want the prediction problem to not be affected
even if reaction propensities vary slightly. Formally, we say an SSA processC is (ρ, δ)-robustwith respect
to state~x at time t if for any ρ-deviating process̃C based onC, the probability of being in~x at time t is
within plus or minusδ of the corresponding probability forC. This definition can be extended to an outcome
Γ similar to the definition on the prediction problem. Finallywe say an SSA processC is (ρ, δ)-robust with
respect to a prediction problem(or bounded-count prediction problem)P if C is (ρ, δ)-robust with respect to
the same state (or outcome) as specified inP , at the same time as specified inP .

For simplicity, we often use asymptotic notation. The notation O(1) is used to denote an unspecified
positive constant. This constant is potentially differentevery time the expressionO(1) appears.

7.4 Robustness Examples

In this section we elucidate our notion of robustness by considering some examples. In general, the question
of whether a given SSA process is(ρ, δ)-robust for a particular outcome seems a difficult one. The problem
is especially hard because we have to consider every possibleρ-perturbation — thus we may not even be able
to give an approximate characterization of robustness by simulation with SSA. However, we can characterize
the robustness of certain (simple) systems.

For an SSA process orρ-perturbationC, and outcomeΓ, let FΓ(C, t) be the probability of being inΓ at
time t. Consider the SCRN shown in Fig. 7.1(a). We start with300 molecules ofS1 andS3 each, and are
interested in the outcomeΓ of having at least150 molecules ofS4. The dashed line with circles showsF for
the correct SSA processC. (All plots of F are estimated from103 SSA runs.) The two dashed lines without
circles showF for two “extremal”ρ-perturbations:̃C+ρ with constantξj(t) = 1 + ρ, andC̃−ρ with constant
ξj(t) = 1 − ρ. What can we say about otherρ-perturbations, particularly where theξj(t) have much more
complicated distributions? It turns out that for this SCRN and Γ, we can prove that anyρ-perturbation falls
within the bounds set by the two extremalρ-perturbations̃C−ρ andC̃+ρ. ThusF for anyρ-perturbation falls
within the dashed lines. Formally,C is monotonic with respect toΓ using the definition of monotonicity in
Appendix 7.8.2. This is easily proven by Lemma 7.8.5 becauseevery species is a reactant in at most one
reaction. Then by Lemma 7.8.4,FΓ(C̃−ρ, t) ≤ FΓ(C̃, t) ≤ FΓ(C̃+ρ, t) for anyρ-perturbationC̃.

To see how the robustness of this system can be quantified using our definition of(ρ, δ)-robustness, first
consider two time pointst = 4.5 andt = 6. At t = 4.5, the probability that the correct SSA processC

∗Maximum concentrationC is a more natural measure of complexity compared toV because similar tom andt, computational
complexity increases asC increases.
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Figure 7.1: Examples of SCRNs exhibiting contrasting degrees of robustness. The SSA processC and
outcomeΓ are defined for the two systems by: (a) Rate constants:k1 = 1, k2 = 0.001; start state:
~x0 = (300, 0, 300, 0); outcomeΓ: x4 ≥ 150. (b) Rate constants:k1 = 0.01, k2 = 0.01; start state:
~x0 = (300, 10, 10); outcomeΓ: x2 ≥ 160. Plots showFΓ(·, t) for an SSA process orρ-perturbation esti-
mated from103 SSA runs. (Dashed line with circles) Original SSA processC. (Dashed lines without circles)
The two extremalρ-perturbations:̃C+ρ with constantξj(t) = 1+ρ, andC̃−ρ with constantξj(t) = 1−ρ. For
SCRN (b) we also plotFΓ(·, t) for a ρ-perturbation with constantξ1(t) = 1 + ρ, ξ2(t) = 1 − ρ (triangles),
or constantξ1(t) = 1− ρ, ξ2(t) = 1 + ρ (diamonds). Perturbation parameterρ = 0.1 throughout.

has produced at least150 molecules ofS4 is slightly more than0.5. The corresponding probability forρ-
perturbations ofC can be no larger than about0.95 and no smaller than about0.1. ThusC is (ρ, δ)-robust
with respect to outcomeΓ at timet = 4.5 for ρ = 0.1 andδ approximately0.45, but not for smallerδ. On
the other hand att = 6, the dashed lines are essentially on top of each other, resulting in a tinyδ. In factδ is
small for all times less than approximately3.5 or greater than approximately5.5.

What information did we need to be able to measure(ρ, δ)-robustness? ProcessesC̃−ρ and C̃+ρ are
simply C scaled in time. Thus knowing howFΓ(C, t) varies witht allows one to quantify(ρ, δ)-robustness
at the various times;FΓ(C, t) can be estimated from multiple SSA runs ofC as in Fig. 7.1. Intuitively,C is
(ρ, δ)-robust for smallδ at all timest whenFΓ(C, t) does not change quickly witht (see Appendix 7.8.2).
For systems that are not monotonic, knowing howFΓ(C, t) varies with time may not help with evaluating
(ρ, δ)-robustness.

For a contrasting example, consider the SCRN in Fig. 7.1(b).We start with300 molecules ofS1, 10
molecules ofS2, and10 molecules ofS3, and we are interested in the outcome of having at least160
molecules ofS2. SinceS1 is a reactant in both reactions, Lemma 7.8.5 cannot be used. In fact, the fig-
ure shows twoρ-perturbations (triangles and diamonds) that clearly escape from the boundaries set by the
dashed lines. The triangles showF for theρ-perturbation where the first reaction is maximally sped up and
the second reaction is maximally slowed down. (Vice versa for the diamonds.) For characterization of the
robustness of this system via(ρ, δ)-robustness, consider the time pointt = 2.5. The probability of hav-
ing at least160 molecules ofS2 in the correct SSA processC is around0.5. However, this probability for
ρ-perturbations ofC can deviate by at least approximately0.4 upward and downward as seen by the twoρ-
perturbations (triangles and diamonds). Thus at this time the system is not(ρ, δ)-robust forδ approximately
0.4. What about otherρ-deviations? It turns out that for this particular system, the twoρ-perturbations cor-
responding to the triangles and diamonds boundF in the same way that̃C−ρ andC̃+ρ boundedF in the first
example (exercise left to the reader). Nonetheless, for general systems that are not monotonic it is not clear
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how one can find such boundingρ-perturbation and in fact they likely would not exist.
Of course, there are other types of SSA process that are not like either of the above examples: e.g.,

systems that are robust at many times but not monotonic. General ways of evaluating robustness of such
systems remains an important open problem.

Finally, it is important to note that quantifying the robustness of SSA processes, even monotonic ones,
seems to require computing many SSA runs. This is self-defeating when in practice one wants to show that
the given SSA process is(ρ, δ)-robust in order to justify the use of an approximate simulation algorithm to
quickly simulate it. In these cases, we have to consider(ρ, δ)-robustness a theoretical notion only.

7.5 Bounded Tau-Leaping

7.5.1 The Algorithm

We argued in the Introduction that sloppiness can allow for faster simulation. In this section we give a
new approximate stochastic simulation algorithm calledbounded tau-leaping(BTL) that simulates exactly a
certainρ-perturbation rather than the original SSA process. Consequently, the algorithm solves the prediction
problem with allowed errorδ for (ρ, δ)-robust SSA processes.

The algorithm is a variant of existing tau-leaping algorithms [17]. However, while other tau-leaping al-
gorithms have an implicit notion of robustness, BTL is formally compatible with our explicit definition. As
we’ll see below, our algorithm also has certain other advantages over many previous tau-leaping implementa-
tions: it naturally disallows negative concentrations, and seems easier to formally analyze. In fact obtaining
a result similar to Theorem 7.5.1 is an open question for other tau-leaping variants.

BTL has overall form typical of tau-leaping algorithms. Rather than simulating every reaction occur-
rence explicitly as per the SSA, BTL divides the simulation into leaps which group multiple reaction events.
The propensities of all of the reactions are assumed to be fixed throughout the leap. This is obviously an
approximation since each reaction event affects molecularcounts and therefore the propensities. However,
this approximation is useful because simulating the systemwith the assumption that propensities are fixed
turns out to be much easier. Instead of having to draw random variables for each reaction occurrence, the
number of random variables drawn to determine how many reaction firings occurred in a leap is independent
of the number of reaction firings. Thus we effectively “leap”over all of the reactions within a leap in few
computational steps. If molecular counts do not change by much within a leap then the fixed propensities are
close to their correct SSA values and the approximation is good.

Our definition of aρ-perturbation allows us to formally define “good.” We want toguarantee that the
approximate SSA process that tau-leaping actually simulates is aρ-perturbation of the exact SSA process.
We can achieve this as follows. If~x is the state on which the leap started, throughout the leap the simulated
reaction propensities are fixed at their SSA propensities onx: aj(~x). For any state~y within the leap we
want the correct SSA propensitiesaj(~y) to satisfy the followingρ-perturbation constraint(0 < ρ < 1):
(1 − ρ)aj(~y) ≤ aj(~x) ≤ (1 + ρ)aj(~y). As soon as we reach a state~y for which this constraint is violated,
we start a new leap at~y which will use simulated reaction propensities fixed ataj(~y). This ensures that at
any time in the simulation, there is some(1 − ρ) ≤ ξj(t) ≤ (1 + ρ) such that multiplying the correct SSA
propensity of reactionRj by ξj(t) yields the propensity ofRj that the simulation algorithm is actually using.
Therefore, we actually simulate aρ-perturbation, and for(ρ, δ)-robust SSA processes, the algorithm can be
used to provably solve the prediction problem with errorδ.

Can we implement this simulation quickly, and, as promised,do little computation per leap? Note that in
order to limit the maximum propensity deviation in a leap, weneed to make the leap duration be a random
variable dependent upon the stochastic events in the leap. If we evaluateaj(~y) after each reaction occurrence
in a leap to verify the satisfaction of theρ-perturbation constraint, we do not save time over SSA. However,
we can avoid this by using a stricter constraint we call the{εij}-perturbation constraint(0 < εij < 1),
defined as follows. If the leap starts in state~x, reactionRj is allowed to change the molecular count of
speciesSi by at most plus or minusεijxi within a leap. Again, as soon as we reach a state~y where this
constraint is violated, we start a new leap at~y.

For anyρ, we can find a set of{εij} bounds such that satisfying the{εij}-perturbation constraint satisfies
theρ-perturbation constraint. For simplicity, suppose we set all εij equal to some globalε. The maximum
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0. Initialize with timet = t0 and the system’s state~x = ~x0.

1. With the system in state~x at timet, evaluate all the propensitiesaj , and determine firing bounds
bj for all possible reactions, wherebj is the smallest positive integer such that|bjνij | > εijxi for
someSi.

2. Generate violating timesτj ∼ Gamma(bj , aj) for all possible reactions.

3. Find the first-violating reaction and set the step size to the time of the first violation: letj∗ =
argminj{τj} andτ = τj∗ .

4. Determine the number of times each possible reaction occurred in intervalτ : for j 6= j∗, nj ∼
Binomial(bj − 1, τ/τj); for j∗, nj∗ = bj∗ .

5. Effect the leap by replacingt← t + τ and~x← ~x +
∑

j ~νjnj.

6. Record(~x, t) as desired. Return to Step 1, or else end the simulation.

Figure 7.2: The bounded tau-leaping (BTL) algorithm. The algorithm is given the SCRN, the initial state
~x0, the volumeV , and a set of perturbation bounds{εij} > 0. If the state at a specific timetf is desired,
the algorithm checks ift + τ > tf in step (3), and if so usesτ = tf − τ , and treats all reactions as not
first-violating in step (4). Gamma(n, λ) is a gamma distribution with shape parametern and rate parameter
λ. Binomial(n, p) is a binomial distribution with number of trialsn and success probabilityp.

change of any speciesSi is plus or minusMεxi, whereM is the number of reactions in the SCRN. We
want to find anε > 0 such that if the changes to all species stay within theMε bounds, then no reaction
violates theρ-perturbation constraint. Let us consider the most difficult case first which is a bimolecular
reactionRj : 2Si → . . .. The algorithm simulates its propensity asaj(~x) = kjxi(xi − 1)/V throughout
the leap. Ifxi < 2, thenaj(~x) = 0, and as long asMε < 1, yi < 2 andaj(~y) = 0, satisfying theρ-
perturbation constraint forRj . Otherwise, supposexi ≥ 2. At state~y within the leap, the SSA propensity
is aj(~y) = kjyi(yi − 1)/V ≤ kj(1 + Mε)xi((1 + Mε)xi − 1)/V . So the left half of theρ-perturbation
constraintaj(~x) ≤ (1+ ρ)aj(~y) is satisfied if(1− ρ)(1+Mε)xi((1+Mε)xi− 1) ≤ xi(xi− 1). Similarly,
aj(~y) = kjyi(yi − 1)/V ≥ kj(1 − Mε)xi((1 − Mε)xi − 1)/V and the right half of theρ-perturbation
constraintaj(~x) ≤ (1 + ρ)aj(~y) is satisfied if(1 + ρ)(1 −Mε)xi((1 −Mε)xi − 1) ≥ xi(xi − 1). These

inequalities are satisfied forxi ≥ 2 whenε ≤ 3
4M (1 −

√

1+ρ/9
1+ρ ) (which also ensures thatMε < 1). It turns

out this setting ofε also works for other reaction types,∗ and thus for anyρ we know how smallε needs to
be such that satisfying the corresponding{εij}-perturbation constraint ensures that we are exactly simulating
someρ-perturbation.†‡

Simulating a leap such that it satisfies the{εij}-perturbation constraint is easy and only requires drawing
M gamma andM − 1 binomial random variables. Suppose the leap starts in state~x. For each reactionRj ,
let bj be the number of timesRj needs to fire to cause a violation of the{εij} bounds for some species.
Thusbj is the smallest positive integer such that|bjνij | > εijxi for someSi. To determineτ , the duration of
the leap, we do the following. First we determine when each reactionRj would occurbj times, by drawing
from a gamma distribution with shape parameterbj and rate parameteraj . This generates a timeτj for each
reaction. The leap ends as soon as some reactionRj occursbj times; thus to determine the duration of the

∗Consider a unimolecular reactionRj : Si → . . .. Using the same reasoning, theρ-perturbation constraint forRj is satisfied if
(1−ρ)(1+Mε)xi ≤ xi and(1+ρ)(1−Mε)xi ≥ xi. For any value ofxi, settingε as stated fulfills these inequalities. Similarly, for a
bimolecular reactionRj : Si +Si′ → . . ., the inequalities are(1−ρ)(1+Mε)2xixi′ ≤ xixi′ and(1+ρ)(1−Mε)2xixi′ ≥ xixi′ .
Again for anyxi, xi′ , settingε as stated fulfills these inequalities.

†Throughout the paper we assume thatρ, ε or {εij} are fixed and most of our asymptotic results do not show dependence on these
parameters. Nonetheless, we can observe that for a fixed SCRNand for small enoughρ, ε can be within the rangeO(1)ρ ≤ ε ≤ O(1)ρ
and thus scales linearly withρ. Therefore, in asymptotic results, the dependence onε andρ can be interchanged. Specifically, theε
dependence explored in Appendix 7.8.1 can be equally well expressed as a dependence onρ.

‡Being given bounds in the form of{εij} rather thanρ allows some flexibility on the part of the user to assign less responsibility
for a violation to a reaction that is expected to be fast compared to a reaction that is expected to be slow, thereby potentially speeding up
the simulation, while still preserving theρ-perturbation constraint. We do not explore this possibility further.
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leapτ we take the minimum of theτjs. At this point we know that the first-violating reactionRj∗ — the one
with the minimumτj∗ — occurredbj∗ times. But we also need to know how many times the other reactions
occur. Consider any other reactionRj (j 6= j∗). Given that thebj th occurrence of reactionRj would have
happened at timeτj had the leap not ended, we need to distribute the otherbj − 1 occurrences to determine
how many happen before timeτ . The number of occurrences at timeτ is given by the binomial distribution
with number of trialsbj(~x) − 1 and success probabilityτ/τj . This enables us to define BTL as shown in
Fig. 7.2.

The algorithm is called “bounded” tau-leaping because the deviations of reaction propensities within
a leap are always bounded according toρ. This is in contrast with other tau-leaping algorithms, such as
Gillespie’s [7], in which the deviations in reaction propensities are small with high probability, but not always,
and in fact can get arbitrarily high if the simulation is longenough. This allows BTL to satisfy our definition
of aρ-perturbation, and permits easier analysis of the behaviorof the algorithm (see next section).

As any algorithm exactly simulating aρ-perturbation would, BTL naturally avoids negative concentra-
tions. Negative counts can occur only if an impossible reaction happens — in some state~x reactionRj

fires for whichaj(~x) = 0. But since in aρ-perturbation propensity deviations are multiplicative,in state~x,
a′j(~x, t) = ξj(t)aj(~x) = 0 and soRj cannot occur.

On the negative side, in certain cases the BTL algorithm can take many more leaps than Gillespie’s tau-
leaping [15, 16, 7] and other versions. Consider the case where there are two fast reactions that partially undo
each others’ effect (for example the reactions may be reverses of each other). While both reactions may be
occurring very rapidly, their propensities may be very similar (e.g., [28]). Gillespie’s tau-leaping will attempt
to leap to a point where the molecular counts have changed enough according to theaveragedbehavior of
these reactions. However, our algorithm considers each reaction separately and leaps to the point where the
first reaction violates the bound on the change in a species inthe absence of the other reactions. (Of course,
the increased number of leaps that our algorithm takes results in greater accuracy, but this accuracy may be
excessive).

7.5.2 Upper Bound on the Number of Leaps

Suppose we fix some SCRN of interest, and run BTL on different initial states, volumes, and lengths of
simulated time. How does varying these parameters change the number of leaps taken by BTL? In this
section, we prove that no matter what the SCRN is, we can upperbound the number of leaps as a function of
the total simulated timet, the volumeV , and the maximum total molecular countm encountered during the
simulation. For simplicity we assume that all theεij are equal to some globalε.∗

Theorem 7.5.1.For any SCRNS with M species, anyε such that0 < ε < 1/(12M), and anyδ > 0, there
are constantsc1, c2, c3 > 0 such that for any bounds on timet and total molecular countm, for any volume
V and any starting state, afterc1 log m + c2 t (C + c3) leaps whereC = m/V , either the bound on time or
the bound on total molecular count will be exceeded with probability at least1− δ.

Proof. The proof is presented in Appendix 7.8.1.

Note that the upper bound onε implies that the algorithm is exactly simulating someρ-perturbation (see
previous section).

Intuitively, a key to the argument is that the propensity of areaction decreasing a particular species is
linear to the amount of that species (since the species must appear as a reactant). This allows us to bound
the decrease of any species if a leap is short. Actually this implies that a short leap probably increases the
amount of some species by a lot (some species must cause a violation — if not by a decrease it must be by
an increase). This allows us to argue that if we have a lot of long leaps we exceed our time boundt and if we
have a lot of short leaps we exceed our bound on total molecular countm. In fact because the effect of leaps
is multiplicative, logarithmically many short leaps are enough to exceedm.

It is informative to compare this result with exact SSA, which in the worst case takesO(1)m t (C+O(1))
steps, since each reaction occurrence corresponds to an SSAstep and the maximum reaction propensity is
kjm

2/V or kjm. Sincem can be very large, the speed improvement can be profound.

∗Alternatively, the theorem and proof can be easily changed to use min/max{εij} values where appropriate.
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We believe, although it remains to be proven, that other versions of tau-leaping (see e.g., [17] for a review)
achieve the same asymptotic worst case number of leaps as ouralgorithm.

How much computation is required per each leap? Each leap involves arithmetic operations on the molec-
ular counts of the species, as well as drawing from a gamma andbinomial distributions. Since there are fast
algorithms for obtaining instances of gamma and binomial random variables (e.g., [2, 20]), we do not expect
a leap of BTL to require much more computation than other forms of tau-leaping, and should not be a major
contributor to the total running time. Precise bounds are dependent on the model of computation. (In the next
section we state reasonable asymptotic bounds on the computation time per leap for a randomized Turing
machine implementation of BTL.)

7.6 On the Computational Complexity of the Prediction Problem for
Robust SSA Processes

What is the computational complexity inherent in the prediction problem for robust SSA processes, and how
close does BTL come to the optimum computation time? In orderto be able to consider these questions
formally, we specify our model of computation as being randomized Turing machines. Then in terms of
maximum total molecular countm, log m computation time is required to simply read in the initial state of
the SSA process and target state of the prediction problem. We say that computation time polylogarithmic
in m is efficient inm. What about the length of simulated timet and maximum concentrationC? We have
shown that the number of leaps that BTL takes scales at most linearly with t andC. However, for some
systems there are analytic shortcuts to determining the probability of being inΓ at timet. For instance the
“exponential decay” SCRN consisting of the single reactionS1 → S2 is easily solvable analytically [24].
The calculation of the probability of being in any given state at any given timet (among other questions) can
be solved in time that grows minimally witht andC. In this section we prove that despite such examples,
for any algorithm solving prediction problems for robust SSA processes, there are prediction problems about
such processes that cannot be solved faster than linear int andC, assuming a widely believed conjecture in
computational complexity theory. We prove this result for any algorithm that is efficient inm. We finally
argue, with certain caveats regarding implementing BTL on aTuring machine, that as an algorithm for solving
prediction problems for robust SSA processes, BTL is asymptotically optimal among algorithms efficient in
m because its computation time scales linearly witht andC.

In order to prove formal lower bounds on the computational complexity of the prediction problem, we
must be specific about our computation model. We use the standard model of computation which captures
stochastic behavior: randomized Turing machines (TM). A randomized TM is a non-deterministic TM∗

allowing multiple possible transitions at a point in a computation. The actual transition taken is uniform over
the choices. (See for example [30] for equivalent formalizations.) We say a given TM on a given input runs
in computational timettm if there is no set of random choices that makes the machine runlonger.

We want to show that for some SCRNs, there is no method of solving the prediction problem fast, no
matter how clever we are. We also want these stochastic processes to be robust despite having difficult
prediction problems. We use the following two ideas. First,a method based on [4] shows that predicting
the output of given randomized TMs can be done by solving a prediction problem for certain robust SSA
processes, similar to the construction of Chapter 6. Second, an open conjecture, but one that is widely
believed in computational complexity theory, bounds how quickly the output of randomized TMs can be
determined.

Computational complexity theory concerns measuring how the computational resources required to solve
a given problem scale with input sizen (in bits). The two most prevalent efficiency measures are time and
space — the number of TM steps and the length of the TM tape required to perform the computation. Let
us say a Boolean functionf(x) is probabilistically computableby a TM M in time t(|x|) and spaces(|x|)
if M(x) runs in timet(|x|) using space at mosts(|x|), and with probability at least2/3 outputsf(x).† It is
widely believed‡ that the followinghierarchy conjectureis true:

∗Arbitrary finite number of states and tapes. Without loss of generality, we can assume a binary alphabet.
†Any other constant probability bounded away from1/2 will do just as well: to achieve a larger constant probability of being

correct, we can repeat the computation a constant number of times and take majority vote.
‡If we do not allow any chance of error and do not restrict spaceusage, the equivalent statement is proven as the (deterministic)
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Conjecture 7.6.1((Probabilistic, Space-Limited) Time Hierarchy). For anyα < 1, and polynomialst(n) and
s(n) such thatt(n)α ands(n) are at least linear, there are Boolean functions that can be probabilistically
computed within time and space bounds boundst(n) and s(n), but not in timeO(1)t(n)α, even allowing
unrestricted space usage.

Intuitively, we take a Boolean function that requirest(n) time and embed it in a chemical system in
such a way that solving the prediction problem is equivalentto probabilistically computing the function.
The conjecture implies that we cannot solve the prediction problem fast enough to allow us to solve the
computational problem faster thant(n). Further, since the resulting SSA process is robust, the result lower-
bounds the computational complexity of the prediction problem for robust processes. Note that we need a
time hierarchy conjecture that restricts the space usage and talks about probabilistic computation because it
is impossible to embed a TM computation in an SCRN such that its computation is error free (see Chapter 6)
and such embedding seems to require more time as the space usage increases.

The following theorem lower-bounds the computational complexity of the prediction problem. The bound
holds even if we restrict ourselves to robust processes. It shows that this computational complexity is at least
linear int andC, as long as the dependence onm is at most polylogarithmic. It leaves the possibility that there
are algorithms for solving the prediction problem that require computation time more than polylogarithmic
in m but less than linear int or C. Let the prediction problem be specified by giving the SSA process (via
the initial state and volume), the target timet, and the target outcomeΓ in some standard encoding such that
whether a state belongs toΓ can be computed in time polylogarithmic inm.

Theorem 7.6.1.Fix any perturbation boundρ > 0 andδ > 0. Assuming the hierarchy conjecture (Conjec-
ture 7.6.1), there is an SCRNS such that for any prediction algorithmA and constantsc1, c2, β, η, γ > 0,
there is an SSA processC of S and a(m, t, C, 1/3)-prediction problemP of C such thatC is (ρ, δ)-robust
with respect toP , andA cannot solveP in computational timec1 (log m)β tη (C + c2)

γ if η < 1 or γ < 1.

Proof. The proof is presented in Appendix 7.8.4.

With the above theorem demarcating a boundary of what is possible, the natural question is how close to
optimal does BTL come? In the previous section, we have derived an upper bound on the number of leaps that
our algorithm takes. However, we need to address how the idealized bounded-tau leaping algorithm presented
in Section 7.5.1 can be implemented on a randomized TM which allows only finite precision arithmetic and
a restricted model of randomness generation. We have to dealwith round-off error and approximate gamma
and binomial random number generators, whose effect on the probability of outcome is difficult to track
formally. Further, the computational complexity of these operations is a function of the bits of precision and
is complicated to rigorously bound.

As shown in Appendix 7.8.5, BTL on a randomized TM runs in total computation time

O(1)((log(m))O(1) + l) t (C + O(1)) (7.1)

where, in each leap, polylogarithmic time inm is required for arithmetic manipulation of molecular counts,
and l captures the extra computation time required for the real number operations and drawing from the
gamma and binomial distributions.l is potentially a function ofm, V , t, and the bits of precision used.
Assuming efficient methods for drawing the random variables, l is likely very small compared to the total
number of leaps. Further, as we discuss in Appendix 7.8.5, assuming round-off errors and deviations due
to approximate random number generation do not cause problems, for any fixedδ1 < δ, the randomized
TM implementation solves the(m, t, C, δ)-prediction problem for(ρ, δ1)-robust processes. So in as far as
l in (eq. 7.1) can be neglected, and further assuming we can ignore errors introduced due to finite precision
arithmetic and approximate random number generation, bounded-tau leaping is asymptotically optimal up to
multiplicative constants and powers oflog m among algorithms efficient inm.

Assuming the hierarchy conjecture and with the caveats above, we have matching asymptotic upper and
lower bounds int andC for solving the prediction problem for robust SSA processes. However, non-robust
systems may require much more computation time to solve the prediction problem since BTL may not be
used. This may mean that there are ways to imbed computation in non-robust SSA processes that is more
efficient than the method of [4] that is used in the proof of Theorem 7.6.1.

time hierarchy theorem [30]. Also see [6, 11] for progress inproving the probabilistic version with unrestricted spaceusage.
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7.7 Discussion

The behavior of many stochastic chemical reaction networksdoes not depend crucially on getting the reaction
propensities exactly right, prompting our definition ofρ-perturbations and(ρ, δ)-robustness. Aρ-perturbation
of an SSA process is a stochastic process with stochastic deviations of the reaction propensities from their
correct SSA values. These deviations are multiplicative and bounded between1 − ρ and1 + ρ. If we are
concerned with how likely the SSA process is in a given state at a given time, then(ρ, δ)-robustness captures
how far these probabilities may deviate for aρ-perturbation.

We formally showed that predicting the behavior of robust processes does not require simulation of ev-
ery reaction event. Specifically, we described a new approximate simulation algorithm called bounded tau-
leaping (BTL) that simulates a certainρ-perturbation as opposed to the exact SSA process. The accuracy of
the algorithm in making predictions about the state of the system at given times is guaranteed for(ρ, δ)-robust
processes. We further proved an upper bound on the number of leaps of BTL that helps explain the savings
over SSA. The bound is a function of the desired length of simulated timet, volumeV , and maximum molec-
ular count encounteredm. This bound scales linearly witht andC = m/V , but only logarithmically with
m, while the total number of reactions (and therefore SSA steps) may scale linearly witht, C, andm. When
total concentration is limited, but the total molecular count is large, this represents a profound improvement
over SSA. We also argue that asymptotically as a function oft andC our algorithm is optimal in as far as no
algorithm can achieve sublinear dependence of the number ofleaps ont or C. This result is proven based
on a widely believed assumption in computational complexity theory. Unlike Gillespie’s tau-leaping [7], our
algorithm seems better suited to theoretical analysis. Thus while we believe other versions of tau-leaping
have similar worst-case running times, the results analogous to those we obtain for BTL remain to be proved.

Our results can also be seen to address the following question. If concerned solely with a particular
outcome rather than with the entire process trajectory, canone always find certain shortcuts to determine the
probability of the outcome without performing a full simulation? Since our lower bound on computation
time scales linearly witht, it could be interpreted to mean that, except in problem-specific cases, there is no
shorter route to predicting the outcomes of stochastic chemical processes than via simulation. This negative
result holds even restricting to the class of robust SSA processes.

While the notion of robustness is a useful theoretical construct, how practical is our definition in deciding
whether a given system is suitable to approximate simulation via BTL or not? We prove that for the class
of monotonic SSA processes, robustness is guaranteed at alltimes when in the SSA process the outcome
probability is stable over an interval of time determined byρ. However, it is not clear how this stability can
be determined without SSA simulation. Even worse, few systems of interest are monotonic. Consequently,
it is compelling to develop techniques to establish robustness for more general classes of systems. A related
question is whether it is possible to connect our notion of robustness to previously studied notions in mass
action stability analysis [19, 31].

7.8 Appendix

7.8.1 Proof of Theorem 7.5.1: Upper Bound on the Number of Leaps

In this section we prove Theorem 7.5.1 from the text, which upper bounds the number of leaps BTL takes as
a function ofm, t, andC:

Theorem. For any SCRNS with M species, anyε such that0 < ε < 1/(12M), and anyδ > 0, there are
constantsc1, c2, c3 > 0 such that for any bounds on timet and total molecular countm, for any volumeV
and any starting state, afterc1 log m + c2 t (C + c3) leaps whereC = m/V , either the bound on time or the
bound on total molecular count will be exceeded with probability at least1− δ.

We prove a more detailed bound than stated in the theorem above which explicitly shows the dependence
on ε hidden in the constants. Also since we introduce the asymptotic results only the end of the argument,
the interested reader may easily investigate the dependence of the constants on other parameters of the SCRN
such asN , M , νij , andkj . We also show an approach to probability1 that occurs exponentially fast as the
bound increases: if the bound above evaluates ton, then the probability that the algorithm does not exceedm
or t in n leaps is at most2e−O(1)n.
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Our argument starts with a couple of lemmas. Looking within asingle leap, the first lemma bounds the
decrease in the molecular count of a species due to a given reaction as a function of time. The argument is
essentially that for a reaction to decrease the molecular count of a species, that species must be a reactant,
and therefore the propensity of the reaction is proportional to its molecular count. Thus we see a similarity
to an exponential decay process and use this to bound the decrease. Note that a similar result does not hold
for the increasein the molecular count of a species, since the molecular count of the increasing species need
not be in the propensity function.∗ Then the second lemma uses the upper bound on how fast a species can
decrease (the first lemma), together with the fact that in a leap some reaction must change some species by
a relatively large amount, to classify leaps into those thateither (1) take a long time or (2) increase some
species significantly without decreasing any other speciesby much. Finally we show that this implies that if
there are too many leaps we either violate the time bound or the total molecular count bound.

For the following, valuesf andg will be free parameters to be determined later. It helps to think of them
as0 < f ≪ g ≪ 1. How long does it take for a reaction to decreasexi by gth fraction of the violation bound
εxi? The number of occurrences ofRj to decreasexi by gεxi or more is at leastgεxi/ |νij |. The following
lemma bounds the time required for these many occurrences tohappen.

Lemma 7.8.1. Take anyf andg (0 < f, g < 1), any reactionRj and speciesSi such thatνij < 0, any state
~x, and anyε. Assuming that the propensity ofRj is fixed ataj(~x), with probability at least1 − f/g, fewer
thangεxi/ |νij | occurrences ofRj happen in timefε/(|νij | kj) if Rj is unimolecular, or timefε/(|νij | kjC)
if Rj is bimolecular.

Proof. For reactionRj to decrease the amount ofSi, it must be thatSi is a reactant, and thusxi is a factor
in the propensity function. SupposeRj is unimolecular. Thenaj = kjxi and the expected number of
occurrences ofRj in time f ε

|νij |kj
is ajf

ε
|νij |kj

≤ f εxi

|νij |
. The desired result then follows from Markov’s

inequality. IfRj is bimolecular withSi 6= Si′ being the other reactant thenaj = kj
xixi′

V ; alternatively,aj =

kj
xi(xi−1)

V if Rj is bimolecular with identical reactants. In general for bimolecular reactionsaj ≤ kjxiC.
So the expected number of occurrences ofRj in time f ε

|νij |kjC is ajf
ε

|νij |kjC ≤ f εxi

|νij |
. The desired result

follows as before.

Let time τ̃ be the minimum over all reactionsRj and Si such thatνij < 0 of 1/(|νij | kj) if Rj is
unimolecular, or1/(|νij |kjC) if Rj is bimolecular. We can think of̃τ setting the units of time for our
argument. The above lemma implies that with probability at least1 − f/g no reaction decreasesxi by
gεxi or more within timefετ̃ . The following lemma defines typical leaps; they are of two types: long or
Si-increasing. RecallM is the number of reaction channels andN is the number of species.

Lemma 7.8.2. (Typical leaps). For anyf and g (0 < f, g < 1), and for anyε, with probability at least
1−NMf/g one of the following is true of a leap:

1. (long leap)τ > fετ̃

2. (Si-increasing leap)τ ≤ fετ̃ , and the leap increases some speciesSi at least asxi 7→ xi + ⌈εxi⌉ −
gMεxi, while no speciesSi′ decreases as much asxi′ 7→ xi′ − gMεxi′ .

Proof. By the union bound over theM reaction channels and theN species, Lemma 7.8.1 implies that the
probability thatsomereaction decreases the amount ofsomespeciesSi by gεxi or more in timefετ̃ is at
mostNMf/g. Now suppose this unlucky event does not happen. Then if the leap time isτ ≤ fετ̃ , no
decrease is enough to cause a violation of the deviation bounds, and thus it must be that some reactionRj

increases some speciesSi by more thanεxi. (SinceRj must occur an integer number of times, it actually
must increaseSi by ⌈εxi⌉ or more.) Since no reaction decreasesSi by gεxi or more, we can be sure thatSi

increases at least by⌈εxi⌉ − gMεxi.

Lemma 7.8.3. For any speciesSi, a leap decreasesSi at most asxi 7→ xi −M⌊εxi⌋ − 2.

∗If a reaction is converting a populous species to a rare one, the rate of the increase of the rare species can be proportional to m
times its molecular count. The rate of decrease, however, isalways proportional to the molecular count of the decreasing species, or
proportional toC times the molecular count of the decreasing species (as we’ll see below).
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Proof. At mostM reactions may be decreasingSi. A reaction can decreaseSi by as much as⌊εxi⌋ without
causing a violation of the deviation bounds. The last reaction firing that causes the violation of the deviation
bounds ending the leap uses up at most2 molecules ofSi (since reactions are at most bimolecular).

Note that a similar lemma does not hold for Gillespie’s tau-leaping algorithms [15, 16, 7] because the
number of reaction firings in a leap can be only bounded probabilistically. With some small probability a
leap can result in “catastrophic” changes to some molecularcounts. Since with enough time such events are
certain to occur, the asymptotic analysis must consider them. Consequently, asymptotic results analogous to
those we derive in this section remain to be proved for tau-leaping algorithms other than BTL.

Our goal now is to use the above two lemmas to argue that if we have a lot of leaps, we would either
violate the molecular count bound (due to manySi-increasing leaps for the sameSi), or violate the time
bound (due to long leaps). Letn be the total number of leaps. By Hoeffding’s inequality, with probability
at least1 − 2e−2n(NMf/g)2 (i.e., exponentially approaching1 with n), the total number of atypical steps is
bounded as:

[# of atypical leaps]< 2nNMf/g. (7.2)

Further, in order not to violate the time boundt, the number of long steps can be bounded as:

[# of long leaps]≤ t/(fετ̃). (7.3)

How can we bound the number of the other leaps (Si-increasing, for some speciesSi)? Our argument
will be that having too many of such leaps results in an excessive increase of a certain species, thus violating
the bound on the total molecular count. We start by choosing an Si for which there is the largest number of
Si-increasing steps. Since there areN species, there must be a speciesSi for which

[# of Si-increasing leaps]>
1

N

∑

Si′ 6=Si

[# of Si′ -increasing leaps]. (7.4)

At this point, it helps to develop an alternative bit of notation labeling the different kinds of leaps with
respect to the above-chosen speciesSi to indicate how muchxi may change in the leap. Since our goal will
be to argue that the molecular count ofSi must be large, we would like to lower-bound the increase inSi

and upper-bound the decrease. An atypical leap or a long leapwe label “↓↓”. By Lemma 7.8.3 these leaps
decreaseSi at mostasxi 7→ xi−M⌊εxi⌋−2. An Si-increasing leap we label “↑”. Finally, anSi′ -increasing
leap forSi′ 6= Si we label “↓”. By Lemma 7.8.2,↑ leaps increaseSi at leastasxi 7→ xi + ⌈εxi⌉ − gMεxi,
while ↓ leaps decreaseSi by lessthanxi 7→ xi − gMεxi.

We would like to express these operations purely in a multiplicative way so that they become commuta-
tive, allowing for bounding their total effect onxi independent of the order in which these leaps occurred but
solely as a function of the number of each type. Further, the multiplicative representation of the leap effects is
important because we want to bound the number of leaps logarithmically in the maximum molecular count.
Note that↓↓ leaps cause a problem because of the subtractive constant term, and↑ leaps cause a problem
because ifxi drops to0 multiplicative increases are futile. Nonetheless, for thesake of argument suppose
we knew that throughout the simulationxi ≥ 3. Then assumingε ≤ 1/(12M), we can bound the largest
decrease due to a↓↓ leap multiplicatively asxi 7→ (1/4)xi. Further, we lower-bound the increase due to a↑
leap asxi 7→ (1 + (1− gM)ε)xi. Then the lower bound on the final molecular count ofSi and therefore the
total molecular count is

3(1 + (1− gM)ε)n↑

(1 − gMε)n↓

(1/4)n↓↓ ≤ m. (7.5)

This implies an upper bound on the number of↑ leaps, that together with eqns. 7.2–7.4 provides an upper
bound on the total number of leaps, as we’ll see below.

However,xi might dip below3 (including at the start of the simulation). We can adjust theeffective
number of↑ leaps to compensate for these dips. We say a leap is in a dip if it starts atxi < 3. Observe that
the first leap in a dip starts atxi < 3 while the leap after a dip starts atxi ≥ 3. Thus, unless we end in a
dip, cutting out the leaps in the dips can only decrease our lower bound on the finalxi. We’ll make an even
looser bound and modify (7.5) simply by removing the contribution of the↑ leaps that are in dips.∗ How

∗We know we cannot end in a dip if the resulting bound evaluatesto 3 or more. Thus technically we assumem ≥ 3 for the bound
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many↑ leaps can be in dips? First let us ensureg < 1/(3M). Then since a↓ leap decreasesxi by less than
gMεxi < xi/3, and the decrease amount must be an integer, a↓ leap cannot bringxi below3 starting at
xi ≥ 3. Thus if we start atxi ≥ 3 a ↓↓ leap must occur before we dip below3. Thus the largest number
of dips isn↓↓ + 1 (adding1 since we may start the simulation below3). Let n↑d andn↓↓d be the number of↑
and↓↓ leaps in thedth dip (we don’t care about↓ leaps in a dip since they must leavexi unchanged). Then
n↑d < 2n↓↓d + 3 and

∑

d n↑d <
∑

d 2n↓↓d +
∑

d 3 ≤ 2n↓↓ + 3(n↓↓ + 1) = 5n↓↓ + 3. Therefore, the adjusted

bound (7.5) becomes:3(1 + (1 − gM)ε)n↑−5n↓↓−3(1 − gMε)n↓

(1/4)n↓↓ ≤ m. For simplicity, we use the
weaker bound

3(1 + (1− gM)ε)n↑

(1− gMε)n↓

(1/4)6n↓↓+3 ≤ m. (7.6)

In order to argue that this bounds the number of↑ leaps, we need to make sure the↓ leaps and the↓↓
leaps don’t cancel out the effect of the↑ leaps. By inequality 7.4 we know thatn↓ < Nn↑. If we can choose
g to be a small enough constant such that more thanN ↓ leaps are required to cancel the effect of a↑ leap
we would be certain the bound increases exponentially withn↑ without caring about↓ leaps. Specifically,
we choose ag small enough such that(1 + (1 − gM)ε)(1 − gMε)N ≥ 1 + ε/2. For example we can let
g = 1

M (1 − (9/10)1/N).∗ Note thatg depends only on constantsN andM and is independent ofε. The

bound then becomes3(1 + ε/2)n↑

(1/4)6n↓↓+3.
Thus finally we have the following system of inequalities that are satisfied with probability exponentially

approaching1 asn→∞:
n = n↑ + n↓ + n↓↓ (7.7)

n↓↓ ≤ t/(fετ̃) + 2nNMf/g (7.8)

n↓ < Nn↑ (7.9)

3(1 + ε/2)n↑

(1/4)6n↓↓+3 ≤ m. (7.10)

Solving forn we obtain†

n ≤ h log(m/3) + (12h + 1)t/(fετ̃) + 6h

(1− 24hNMf/g)

if (1− 24hf/g) > 0 whereh = (N + 1)/ log(1 + ε/2) (also recallg = 1
M (1− (9/10)1/N)). To ensure this

we letf ≤ g/(48hNM). Then with probability exponentially approaching1 asn increases,

n ≤ 2 log(m/3) + 96(12h + 1)th/(gετ̃) + 12h.

Asymptotically asε → 0, m → ∞, t → ∞ with the system of chemical equations being fixed, we
haveg = O(1), h ≤ O(1)/ε, and write the above asn ≤ O(1)(1/ε) log m + O(1)(1/ε)3t/τ̃ . Recall our
unit of time τ̃ was defined to be the minimum over all reactionsRj and speciesSi such thatνij < 0 of
1/(|νij | kj) if Rj is unimolecular, or1/(|νij | kjC) if Rj is bimolecular. No matter whatC is, we can say
τ̃ ≥ 1/(O(1)C + O(1)). Thus we can write the above as

n ≤ O(1)(1/ε) log m + O(1)(1/ε)3t(C + O(1)).

For anyδ, we can find appropriate constants such that the above bound is satisfied with probability at least
1− δ.

This bound on the number of leaps has been optimized for simplicity of proof rather than tightness. A
more sophisticated analysis can likely significantly decrease the numerical constants. Further, we believe the
cubic dependence on1/ε in the time term is excessive.‡

to be always valid.
∗Sinceg ≤ 1/(3M), make the simplification(1 + (1 − gM)ε) ≥ (1 + 2ε/3) and solve forg. The solution is minimized when

ε = 1.
†Logarithms are base-2.
‡The cubic dependence on1/ε in the time term is due to having to decrease the probability of an atypical step asε decreases.

It may be possible to reduce the cubic dependence to a linear one by moving up the boundary between a dip and the multiplicative

regime as a function ofε rather than fixing it at3. The goal is to replace the constant base(1/4)O(1)n↓↓+O(1) term with a(1 −
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7.8.2 Proving Robustness by Monotonicity

In this section we develop a technique that can be used to prove the robustness of certain SSA processes. We
use these results to prove the robustness of the example in Section 7.4 as well as of the construction of [4]
simulating a Turing machine in Appendix 7.8.3.

Sinceρ-perturbations are not Markovian, it is difficult to think about them. Can we use a property of the
original SSA process that would allow us to prove robustnesswithout referring toρ-perturbations at all?

Some systems have the property that every reaction can only bring the system “closer” to the outcome
of interest (or at least “no futher”). Formally, we say an SSAprocess ismonotonicfor outcomeΓ if for all
reachable states~x, ~y such that there is a reaction taking~x to ~y, and for allt, the probability of reachingΓ
within time t starting at~y is at least the probability of reachingΓ within time t starting at~x. Note that by this
definitionΓ must be absorbing. Intuitively, perturbation of propensities in monotonic systems only change
how fast the system approaches the outcome. Indeed, we can bound the deviations in the outcome probability
of anyρ-perturbation at any time by two specificρ-perturbations, which are the maximally slowed down and
sped up versions of the original process. This implies that monotonic SSA processes are robust at all times
t when the outcome probability does not change quickly witht, and thus slowing down or speeding up the
SSA process does not significantly affect the probability ofthe outcome.

For an SSA process orρ-perturbationC and set of statesΓ, defineFΓ(C, t) to be the probability of being in
Γ at timet. For SSA processC, let C̃−ρ be theρ-perturbation defined by the constant deviationsξj(t) = 1−ρ.
Similarly, let C̃+ρ be theρ-perturbation defined by the constant deviationsξj(t) = 1 + ρ.

Lemma 7.8.4.If an SSA processC is monotonic for outcomeΓ, then for anyρ-perturbationC̃ ofC, FΓ(C̃−ρ, t) ≤
FΓ(C̃, t) ≤ FΓ(C̃+ρ, t).

Proof. If an SSA process is monotonic, allowing extra “spontaneous” transitions (as long as they are legal
according to the SSA process) cannot induce a delay in entering Γ. We can decompose a perturbation with
ξj(t) ≥ 1 as the SSA process combined with some extra probability of reaction occurrence in the next interval
dt. Thus, for a perturbatioñC of a monotonic SSA processC in which ξj(t) ≥ 1, we haveFΓ(C, t) ≤
FΓ(C̃, t). By a similar argument, if̃C hasξj(t) ≤ 1, thenFΓ(C̃, t) ≤ FΓ(C, t). Now C̃−ρ and C̃+ρ are
themselves monotonic SSA processes (C scaled in time). Then by the above bounds, for anyρ-perturbation
C̃ of C we haveFΓ(C̃−ρ, t) ≤ FΓ(C̃, t) ≤ FΓ(C̃+ρ, t).

SinceC̃−ρ and C̃+ρ are simply the original SSA processC scaled in time by a factor of1/(1 + ρ) and
1/(1 − ρ), respectively, we can write the bound of the above lemma asFΓ(C, t/(1 + ρ)) ≤ FΓ(C̃, t) ≤
FΓ(C, t/(1− ρ)). Rephrasing Lemma 7.8.4:

Corollary 7.8.1. If an SSA processC is monotonic for outcomeΓ then it is(ρ, δ)-robust with respect toΓ at
timet whereδ = FΓ(C̃+ρ, t)− FΓ(C̃−ρ, t) = FΓ(C, t/(1− ρ))− FΓ(C, t/(1 + ρ)).

For many SSA processes, it may not be obvious whether they aremonotonic. We would like a simple
“syntactic” property of the SCRN that guarantees monotonicity and can be easily checked. The following
lemma makes it easy to prove monotonicity in some simple cases.

Lemma 7.8.5. Let C be an SSA process andΓ an outcome of SCRNS. If every species is a reactant in at
most one reaction inS, and there is a set{nj} such that outcomeΓ occurs as soon as every reactionRj has
fired at leastnj times, thenC is monotonic with respect toΓ.

Proof. The restriction onΓ allows us phrase everything in terms of counting reaction occurrences. For every
reactionRj , defineFj(n, t) to be the probability thatRj has fired at leastn times within timet. Now suppose
we induce some reaction to fire by fiat. The only way this can decrease someFj(n, t) is if it decreases the
count of a reactant ofRj or makes it more likely that some reactionRj′ (j′ 6= j) will decrease the count of a
reactant ofRj . Either possibility is avoided if the SCRN has the property that any species is a reactant in at
most one reaction. SinceFΓ(C, t) =

∏

j Fj(nj , t), this quantity cannot decrease as well, and monotonicity
follows.

O(1)ε)O(1)n↓↓+O(1) term. Then the effect of a↓↓ leap would scale withε, as does the effect of an↑ leap.
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7.8.3 Robust Embedding of a TM in an SCRN

Since we are trying to bound how the complexity of the prediction problem scales with increasing bounds
on t andC but not with different SCRNs, we need a method of embedding a TM in an SCRN in which the
SCRN is independent of the input length. Among such methods available ([4], Chapter 6), asymptotically the
most efficient and therefore best for our purposes is the construction of Angluin et al. This result is stated in
the language of distributed multi-agent systems rather than molecular systems; the system is a well-mixed set
of “agents” that randomly collide and exchange information. Each agent has a finite state. Agents correspond
to molecules (the system preserves a constant molecular countm); states of agents correspond to the species,
and interactions between agents correspond to reactions inwhich both molecules are potentially transformed.

Now for the details of the SCRN implementation of Angluin’s protocol. Suppose we construct an SCRN
corresponding to the Angluin et al. system as follows: Agentstates correspond to species (i.e., for every
agent statei there is a unique speciesSi). For every pair of speciesSi1 , Si2 , (i1 ≤ i2) we add reaction
Si1 + Si2 → Si3 + Si4 if the population protocol transition function specifies(i1, i2) 7→ (i3, i4). Note that
we allow null reactions of the formSi1 +Si2 → Si1 +Si2 including fori1 = i2. For every reactionRj , we’ll

use rate constantkj = 1. The sum of all reaction propensities isλ = m(m−1)
2V since every molecule can react

with any other molecule.∗ The time until next reaction is an exponential random variable with rateλ. Note
that the transition probabilities between SCRN states are the same as the transition probabilities between the
corresponding configurations in the population protocol since in the SCRN every two molecules are equally
likely to react next. Thus the SSA process is just a continuous time version of the population protocol process
(where unit “time” expires between transitions). Therefore the SCRN can simulate a TM in the same way as
the population protocol.

But first we need to see how does time measured in the number of interactions correspond to the real-
valued time in the language of SCRNs?

Lemma 7.8.6. If the time between population protocol interactions is an exponential random variable with
rateλ, then for any positive constantsc, c1, c2 such thatc1 < 1 < c2, there isN0 such that for allN > N0,
N interactions occur between timec1N/λ andc2N/λ with probability at least1−N−c.

Proof. The Chernoff bound for the left tail of a gamma random variableT with shape parameterN and rate
λ is Pr[T ≤ t] ≤ (λt

N )NeN−λt for t < N/λ. ThusPr[T ≤ c1N/λ] ≤ (c1e
1−c1)N . Sincec1e

1−c1 < 1 when
c1 6= 1, Pr[T ≤ c1N/λ] < N−c for large enoughN . An identical argument applies to the right tail Chernoff
boundPr[T ≥ t] ≤ (λt

N )NeN−λt for t > N/λ.

The following lemma reiterates that an arbitrary computational problem can be embedded in a chemical
system, and also shows that the chemical computation is robust with respect to the outcome of the computa-
tion. For a given TM and agent countm, let ~xf0 and ~xf1 be SCRN states corresponding to the TM halting
with a0 and1 output respectively.

Lemma 7.8.7. Fix a perturbation boundρ > 0, δ > 0, and a randomized TMM with a Boolean output.
There is an SCRN implementing Angluin et al.’s population protocol, such that ifM(x) halts in no more
thanttm steps using no more thanstm time, then starting with the encoding ofx and usingm = O(1)2stm

molecules, at any timet ≥ tssa = O(1)V ttm log4(m)/m the SSA process is in~xfb
with probability that is

within δ of the probability thatM(x) = b. Further, this SSA process is(ρ, δ)-robust with respect to states~xf0

and ~xf1 at all timest ≥ tssa.

The first part of the lemma states that we can embed an arbitrary TM computation in an SCRN, such that
the TM computation is performed fast and correctly with arbitrarily high probability. The second part states
that this method can be made arbitrarily robust to perturbations of reaction propensities. The first part follows
directly from the results of [4], while the second part requires some additional arguments on our part.

If we only wanted to prove the first part, fix any randomized TMM with a Boolean output and any
constantδ > 0. There is a population protocol of Angluin et al. that can simulate the TM’s computation

∗Just to confirm, splitting the reactions between the same species and between different species, the sum of the propensities is
P

i
xi(xi−1)

2V
+

P

i<i′
xixi′

V
= 1

2V
(
P

i xixi −
P

i xi + 2
P

i<i′ xixi′ ) = 1
2V

(
P

i,i′ xixi′ −
P

i xi) =
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2V
using the fact

that2
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i<i′ xixi′ =
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on arbitrary inputs as follows: If on some inputx, M usesttm computational time andstm space, then the
protocol usesm = O(1)2stm agents, and the probability that the simulation is incorrect or takes longer than
N = O(1)ttmm log4 m interactions is at mostδ/2. This is proved by using Theorem 11 of [4], combined
with the standard way of simulating a TM by a register machineusing multiplication by a constant and
division by a constant with remainder. The total probability of the computation being incorrect or lasting
more thanN interactions obtained is at mostO(1)ttmm−c. Since for any algorithm terminating inttm steps,
2stm ≥ O(1) ttm, we can make sure this probability is at mostδ/2 by using a large enough constant in
m = O(1)2stm . By Lemma 7.8.6, the probability thatO(1)N interactions take longer thanO(1)N/λ time
to occur is at mostδ/2. Thus the total probability of incorrectly simulatingM on x or taking longer than
O(1)N/λ = O(1)V ttm log4(m)/m time is at mostδ. The Boolean output ofM is indicated by whether we
end up in state~xf0 or ~xf0 . (If the computation was incorrect or took too long we can be in neither.) This
proves the first part of the lemma.

We now sketch out the proof of how the robustness of the Angluin et al. system can be established,
completing the proof of Lemma 7.8.7. The whole proof requires retracing the argument in the original paper;
here, we just outline how this retracing can be done. First, we convert the key lemmas of their paper to use
real-valued SCRN time rather than the number of interactions. The consequences of the lemmas (e.g., that
something happens before something else) are preserved andthus the lemmas can be still be used as in the
original paper to prove the corresponding result for SCRNs.The monotonicity of the processes analyzed in
the key lemmas can be used to argue that the overall construction is robust.

We need the following consequence of Lemma 7.8.4:

Corollary 7.8.2. If an SSA processC is monotonic for outcomeΓ, and with probabilityp it entersΓ after time
t1 but before timet2, then for anyρ-perturbationC̃ of C, the probability of enteringΓ after timet1/(1 + ρ)
but before timet2/(1− ρ) is at leastp.

Proof. Let p1 = FΓ(C, t1) andp2 = FΓ(C, t2). Using Lemma 7.8.4 we know that∀t, FΓ(C, t/(1 − ρ)) ≥
FΓ(C̃, t). Thus,p1 = FΓ(C, t1) ≥ FΓ(C̃, (1 − ρ)t1). Similarly we obtainp2 = FΓ(C, t2) ≤ FΓ(C̃, (1 +
ρ)t2). ThusFΓ(C̃, (1 + ρ)t2)− FΓ(C̃, (1− ρ)t1) ≥ p2 − p1 = p.

As an example let us illustrate the conversion of Lemma 2 of [4]. The lemma bounds the number of
interactions to infectk agents in a “one-way epidemic” starting with a single infected agent. In the one-way
epidemic, a non-infected agent becomes infected when it interacts with a previously infected agent. With our
notation, this lemma states:

LetN(k) be the number of interactions before a one-way epidemic starting with a single infected
agent infectsk agents. Then for any fixedε > 0 andc > 0, there exist positive constantsc1 and
c2 such that for sufficiently large total agent countm and anyk > mε, c1m ln k ≤ N(k) ≤
c2m lnk with probability at least1−m−c.

For anym andk we consider the corresponding SSA processC and outcomeΓ in which at leastk agents are
infected. Since the bounds onN(k) scale at least linearly withm, we can use Lemma 7.8.6 to obtain:

Let t(k) be the time before a one-way epidemic starting with a single infected agent infectsk
agents. Then for any fixedε > 0 andc > 0, there exist positive constantsc1 andc2 such that
for sufficiently large total agent countm and anyk > mε, c1m ln(k)/λ ≤ t(k) ≤ c2m ln(k)/λ
with probability at least1−m−c.

Finally consider the SSA process of the one-way epidemic spreading. The possible reactions either do nothing
(reactants are either both infected or both non-infected),or a new agent becomes infected. It is clear that for
anym andk, C is monotonic with respect to outcomeΓ in which at leastk agents are infected. This allows
us to use Corollary 7.8.2 to obtain:

Fix anyρ > 0, and lett(k) be the time before a one-way epidemic starting with a single infected
agent infectsk agents in some correspondingρ-perturbation. Then for any fixedε > 0, c > 0,
there exist positive constantsc1 andc2 such that for sufficiently large total agent countm and
anyk > mε, c1m ln(k)/(λ(1 + ρ)) ≤ t(k) ≤ c2m ln(k)/(λ(1 − ρ)) with probability at least
1−m−c.
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Sinceρ is a constant, what we have effectively done is convert the result in terms of interactions to a result
in terms of real-valued time that is robust toρ-perturbations simply by dividing byλ and using different
multiplicative constants.

The same process can be followed for the key lemmas of Angluinet al. (Lemma 3 through Lemma 8).
This allows us to prove a robust version of Theorem 11 of Angluin et al. by retracing the argument of their
paper using the converted lemmas and the real-valued notionof time throughout. Since the only way that
time is used is to argue that something occurs before something else, the new notion of time, obtained by
dividing byλ with different constants, can always be used in place of the number of interactions.

7.8.4 Proof of Theorem 7.6.1: Lower Bound on the Computational Complexity of
the Prediction Problem

In this section we prove Theorem 7.6.1 from the text which lower-bounds the computational complexity of the
prediction problem as a function ofm, t, andC. The bound holds even for arbitrarily robust SSA processes.
The theorem shows that this computational complexity is at least linear int andC, as long as the dependence
onm is at most polylogarithmic. The result is a consequence of the robust embedding of a TM in an SCRN
(Lemma 7.8.7).

Let the prediction problem be specified by giving the SSA process (via the initial state and volume), the
target timet, and the target outcomeΓ in some standard encoding such that whether a state belongs to Γ can
be computed in time polylogarithmic inm.

Theorem. Fix any perturbation boundρ > 0 and δ > 0. Assuming the hierarchy conjecture (Conjec-
ture 7.6.1), there is an SCRNS such that for any prediction algorithmA and constantsc1, c2, β, η, γ > 0,
there is an SSA processC of S and a(m, t, C, 1/3)-prediction problemP of C such thatC is (ρ, δ)-robust
with respect toP andA cannot solveP in computational timec1 (log m)β tη (C + c2)

γ if η < 1 or γ < 1.

Suppose someone claims that for any fixed SCRN, they can produce an algorithm for solving(m, t, C, 1/3)-
prediction problems for SSA processes of this SCRN assumingthe SSA process is(ρ, δ)-robust with respect
to the prediction problem for some fixedρ andδ, and further they claim the algorithm runs in computation
time at most

O(1) (log(m))β tη (C + O(1))γ (7.11)

for someη < 1 (β, γ > 0). We argue that assuming the hierarchy conjecture is true, such a value ofη is
impossible.

To achieve a contradiction of the hierarchy conjecture, consider any function probabilistically computable
in ttm(n) = O(1)nζ time andstm(n) = O(1)n space forζ = β+4η

1−η +1. Construct a randomized TM having
error at most1/24 by running the original randomized TMO(1) times and taking the majority vote. Use
Lemma 7.8.7 to encode the TM probabilistically computing this function in a(ρ, δ)-robust SSA process such
that the error of the TM simulation is at most1/24. Then predicting whether the process ends up in state
~xf0 or ~xf1 provides a probabilistic algorithm for computing this function. The resulting error is at most

1/24 + 1/24 + 1/3 = 5/12 < 1/2, where the first term1/24 is the error of the TM, the second term
1/24 is for the additional error of the TM embedding in the SSA process, and the last term1/3 is for the
allowed error of the prediction problem. By repeatingO(1) times and taking the majority vote, this error
can be reduced below1/3, thereby satisfying the definition of probabilistic computation. How long does
this method take to evaluate the function? We useV = m so thatC is a constant, resulting intssa =
O(1)ttm(n) log4 m = O(1)nζ+4 sincem = O(1)2n. Setting up the prediction problem by specifying the
SSA process (via the initial state and volume), target final state and timetssa requiresO(1) log m = O(1)n
time.∗ Then the prediction problem is solved in computation timeO(1)(log(m))βtηssa = O(1)nβ+(ζ+4)η.
Thus the total computation time isO(1)(nβ+(ζ+4)η + n) which, by our choice ofζ, is less thanO(1)nζ ,
leading to a contradiction of the hierarchy conjecture.

∗By the construction of [4], setting up the initial state requires letting the binary expansion of the molecular count of acertain species
be equal the input. Since the input is given in binary and all molecular counts are represented in binary, this is a linear time operation.
Setting up the final state~xf0

or ~xf1
is also linear time. Computing the target time for the prediction problemtssa is asymptotically

negligible.
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Is γ < 1 possible? Observe that ifγ < η then the claimed running time of the algorithm solving the
prediction problem (expression 7.11) with timetssa = O(1)V ttm(n) log4(m)/m can be made arbitrarily
small by decreasingV . This leads to contradiction of the hierarchy conjecture. Thereforeγ ≥ η ≥ 1.

7.8.5 On Implementing BTL on a Randomized TM

The idealized BTL algorithm presented in Section 7.5.1 relies on infinite precision real-value arithmetic,
while only finite precision floating-point arithmetic is possible on a TM. Further, the basic randomness gen-
erating operation available to a randomized TM is choosing one of a fixed number of alternatives uniformly,
which forces gamma and binomial draws to be approximated. This complicates estimates of the computation
time required per leap, and also requires us to ensure that wecan ignore round-off errors in floating-point
operations and tolerate approximate sampling in random number draws.

Can we implement gamma and binomial random number generators on a randomized TM and how much
computational time do they require? It is easy to see that arbitrary precision uniform[0, 1] random variates
can be drawn on a randomized TM in time linear in precision. Itis likely that approximate gamma and
binomial random variables can be drawn using methods available in the numerical algorithms literature which
uses uniform variate draws as the essential primitive. Since many existing methods for efficiently drawing
(approximate) gamma and binomial random variables involvethe rejection method, the computation time for
these operations is likely to be an expectation. Specifically, it seems reasonable that drawing gamma and
binomial random variables can be approximately implemented on a randomized TM such that the expected
time of these operations is polynomial in the length of the floating-point representation of the distribution
parameters and the resultant random quantity.∗

The computational complexity of manipulating integer molecular counts on a TM is polylogarithmic in
m. Let l be an upper bound on the expected computational time required for drawing the random variables
and real number arithmetic;l is potentially a function ofm, V , t, and the bits of precision used. Using
Markov’s inequality and Theorem 7.5.1 we can then obtain a bound on the total computation time that is true
with arbitrarily high probability. We also make the TM keep track of the total number of computational steps
it has taken† and cut off computation when it exceeds the expectation by some fixed factor. Then we obtain
the following bound on the total computation time:O(1)((log(m))O(1) + l) t (C + O(1)).

We have three sources of error. First, since BTL simulates aρ-perturbation rather than the original SSA
process, the probability of the outcome may be off byδ1, assuming the SSA process was(ρ, δ1)-robust.
Further, since we are using finite precision arithmetic and only approximate random number generation, the
deviation from the correct probability of the outcome may increase by anotherδ2. Finally, there is aδ3

probability that the algorithm cuts off computation beforeit completes. We have assumed a fixedδ1 < δ,
whereδ is the allowed error of the prediction problem. We can makeδ3 an arbitrarily small constant by
increasing the total computation time by a constant factor (using Markov’s inequality). Further, let us assume
thatδ2 is small enough to ensure that the total errorδ1 + δ2 + δ3 ≤ δ fulfills the requirements of solving the
(m, t, C, δ)-prediction problem.‡
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Chapter 8

Enzyme-Free Nucleic Acid Logic
Circuits

Collaborators: Georg Seelig, David Yu Zhang, and Erik Winfree.My contribution: GS and I came up with
the basic idea, informed by some constructions of DYZ. I performed a couple of the experiments, but the
majority was done by GS, including data analysis. The text was written by all.
This chapter was published as:Georg Seelig, David Soloveichik, David Yu Zhang, Erik Winfree, “Enzyme-
Free Nucleic Acid Logic Circuits,” Science, 314:1585-1588, 2006. (Supplementary information appears
online.)

8.1 Abstract

Biological organisms perform complex information processing and control tasks using sophisticated bio-
chemical circuits, yet the engineering of such circuits remains ineffective compared to that of electronic cir-
cuits. To systematically create complex yet reliable circuits, electrical engineers employ digital logic wherein
gates and subcircuits are composed modularly and signal restoration prevents signal degradation. We report
the design and experimental implementation of DNA-based digital logic circuits. We demonstrate AND, OR,
and NOT gates, signal restoration, amplification, feedback, and cascading. Gate design and circuit construc-
tion is modular. The gates use single-stranded nucleic acids as inputs and outputs, and the mechanism relies
exclusively on sequence recognition and strand displacement. Biological nucleic acids such as microRNAs
can serve as inputs, suggesting applications in biotechnology and bioengineering.

8.2 Introduction

To date, no man-made chemical circuits even remotely approach the complexity and reliability of silicon-
based electronics. Once reliable principles for their design are established, synthetic chemical circuits could
be used routinely to control nanoscale devices in vitro, to analyze complex chemical samples in situ, or to
interface with existing biological circuits in vivo [7]. Construction of synthetic biological circuits de novo is
a powerful test of design principles [15].

Rational design of nucleic acid devices is simplified by the predictability of Watson-Crick base pairing;
thus nucleic acids are a promising alternative to proteins for synthetic chemical circuits. Allosteric ribozymes
that take small molecules as input have been shown to performlogical functions [4]; however, their out-
put (a cleaved or ligated oligonucleotide) is of a differentform than the input, hence cascading is difficult.
Automata performing multiple logical operations in parallel [17], single-step signaling cascades [12], and a
feedback cycle that acts as an exponential chain reaction [10] were built using deoxyribozymes controlled by
input oligonucleotides [16]. Another approach utilizes sequence recognition to control enzyme catalysis of
covalent bond formation and breakage [21, 3, 2]. Alternatively, nucleic-acid reactions can be driven without
enzyme or (deoxy)ribozyme catalysis [22, 18]; this principle has been exploited to construct DNA-based
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logic gates and signaling cascades [5, 6]. Such molecular automata may give rise to “smart” therapeutics
for medical applications [21, 16, 2]. Recently, engineerednucleic-acid logic switches based on hybridization
and conformational changes have been successfully demonstrated in vivo [8, 1]. The remaining challenge is
to design chemical logic gates that can be combined to construct large, reliable circuits. The analogous chal-
lenge for engineering electronic circuits was met by the development of digital design principles;∗ likewise
these may prove essential for designing complex, yet robust, chemical circuits.

We report the construction of in vitro DNA-based logic gatesand circuits that embody digital design
principles: logic, cascading, restoration, fan-out, and modularity. These circuits implement a complete set of
Boolean logic functions (AND, OR, and NOT) using short oligonucleotides as input and output. Because the
input and output are of the same form, the gates can be cascaded to create multilayer circuits. Logical values
“0” and “1” are represented by low and high concentrations, respectively. Signal restoration is performed
by threshold and amplifier gates that protect against noise,signal loss, and leaky reactions. Amplifier gates
can also be used to ensure that a logic gate generates sufficient signal to drive multiple downstream targets.
Watson-Crick interactions between modular recognition domains determine the connectivity of gates. Se-
quences can be chosen with few constraints, allowing the construction of arbitrary circuits with negligible
cross-activation. Furthermore, modular construction allows for interfacing with existing molecular compo-
nents — be they pre-designed subcircuits or naturally occurring nucleic acids.

8.3 Gate Construction and Verification

Gate function is entirely determined by base pairing and breaking. Every gate consists of one or more
gate strands and one output strand (Figs. 8.1A and S1). The output strand either serves as an input to a
downstream gate or it is modified with a dye-label to provide areadout in a fluorescence experiment. Both
ends of the output strand (Fig. 8.1A), or only one end (translator gates in Fig. 8.2), can be attached to the gate
complex. Fig. 8.1A shows an AND-gate assembled from an output strand and two gate strands. Addition
of single-stranded inputs to a solution containing the gateinitiates a computation. Each gate strand contains
a recognition region that is complementary to its input. Initially the recognition regions of all gate strands
are double-stranded and therefore inert, except for the toehold farthest from the output strand (strand G in
Fig. 8.1A). When the first input binds this toehold, it displaces the first gate strand by three-way branch
migration [9, 20], exposing the toehold for the subsequent input and releasing an inert double-stranded waste
product. A similar process can now occur for the second input. The output strand is released if and only if
both inputs are present. To implement this design, DNA sequences (Tables S1–S3) were selected to ensure
correct complementarity while minimizing spurious interactions [23].

The two-input AND gate has four entries in its truth table (Fig. 8.1B) and has been shown to function
correctly, using fluorescence kinetics experiments and gelelectrophoresis (Figs. 8.1C–D). Multi-input AND
gates can also be designed using the same principles and havebeen shown to work reliably (Fig. S2). The
gates in all our experiments were purified by gel electrophoresis after triggering “leaky” complexes ([23],
Fig. S3).

8.4 Circuit Construction

The output strand of one gate may be an input strand to a downstream gate. It is essential that the output
strand does not interact with downstream gates prior to release. Protecting the toehold binding region of
output strands in upstream gates prevents such interactions. We built a circuit composed of one AND gate
and two translator gates that demonstrates this principle (Fig. 8.2A and S4). A translator gate converts the
signal encoded in the input strand to the signal encoded in the output strand and is implemented as a single
input AND gate. The translator gatesJK andLM translate two biological microRNA sequences (mouse
let-7c and mir-124) into outputs with recognition regions identical to strandsGin andFin. The input to a

∗In contrast to digital electronic circuits, analog electronic circuits have not advanced rapidly because circuit design remains more
“art” than systematic engineering, making the construction of large reliable circuits difficult. This is often attributed to the lack of the
digital abstraction: in analog circuits even slight signalchanges carry meaning (e.g., the value is 5.2 not 5.3) and thus restoration to clean
up noise or gate misfunction is not possible. The lack of restoration also complicates circuit modularity, because circuit behavior can be
subtly changed when subcircuits are combined. See, e.g., [13].
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Figure 8.1: Two-input AND gate. (A) The gate consists of three DNA strands,Eout (57mer), F (60mer),
andG (36 mer). The 3’-ends are marked by arrows. Toeholds and toehold binding regions (all 6nt) are
indicated in color. Input strandsFin andGin (36mers) are complementary to recognition regions within the
corresponding gate strandsF andG. (B) Truth table for the two-input AND gate. The released outputstrand
is highlighted. (C) In fluorescence experiments, strandsFf (TAMRA fluorophore at the 3’-end) andEq (Iowa
Black RQ quencher at the 5’-end, without bulge loop) were used instead ofF andEout (see inset). Release
of output strand results in increased fluorescence. Experiments conducted at 25◦ C with gate concentrations
of 250 nM and input concentrations of 300 nM in a Tris-acetate-EDTA buffer containing 12.5 mM Mg++.
(D) Non-denaturing gel electrophoresis directly confirms reaction intermediates and waste products for each
possible input combination. Lanes 1–4: The samples are as described in entries 1–4 of the truth table. The
gate used in this experiment is as shown in (A). Lane 5: 10bp ladder.

translator gate and the recognition region of its output strand need only share sequence in the toehold region.
If two translators are cascaded then there is no sequence restriction between the initial input strand and the
final output strand. This is called a full translator; the cascading ofNO andHI is an example (Fig. 8.3
and Fig. S1). Translators can connect subcircuits that do not a priori use the same sequences for the toehold
and recognition regions. This is particularly useful for adapting an existing circuit to compute on arbitrary
biological inputs.

The circuit of Fig. 8.2A was also tested under conditions relevant to potential biological applications.
The circuit works comparably with RNA inputs as with DNA inputs because gate function depends solely on
Watson-Crick complementarity (Fig. 8.2A and Fig. S4). Increasing the temperature to 37◦C does not degrade
circuit performance. Finally, the circuit functions well in the presence of potentially interfering biological
RNA (mouse brain total RNA) at a concentration in excess of gate complexes and input strands.

Since a small set of logic gates (AND, OR, and NOT) is sufficient for effective computation of any
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Figure 8.2: Translator gates, NOT operation and signal restoration. Dashed arrows indicate where input or
output strands can serve as inputs to downstream gates. (A) Circuit operation at 37◦C with RNA inputs and
DNA gates in a total RNA background. All gates are at 25 nM, synthetic RNA inputs are at 30 nM, and
total RNA (mouse brain) is at a concentration of 200µg/ml. Proper function is observed. For comparison,
experiments with no total RNA were performed, using either both RNA inputs or both DNA inputs. (B)
The NOT gate consists of a translator gate and an inverter strand complementary to let-7c. Gate, inverter
strand, and input concentrations are 250 nM, 300 nM, and 300 nM, respectively. Here and in all following
experiments the temperature was 25◦C and DNA equivalents of the biological microRNAs were used.If
let-7c is present, inverter strandK will preferentially hybridize to let-7c. Otherwise, inverter strandK will
trigger the translator. (C) The thresholding gate, using a dye/quencher-labeled “read-out” gate to monitor the
output. StrandTh2in is part of the thresholding unit and is added before the startof the experiment. The final
fluorescence is plotted against the input concentration fortwo different concentrations of the threshold gate.

Boolean function, we developed DNA gates to perform these operations. Logical OR functionality is obtained
by using two gates that produce the same output. We constructed a three-gate chemical circuit in which a
logical OR feeds into a logical AND (Fig. S4B). Acting as a logical OR, translator gatesST andUV take
different inputs (mir-15a and mir-10b) but release outputswith identical recognition regions. If Boolean
values are represented by the presence of either one strand (0) or another strand (1) — the so-called “dual-
rail” representation [11] — then AND and OR are themselves sufficient to compute any Boolean function.

If a Boolean value is represented by the presence or absence of a single input strand, a NOT gate may be
necessary. We modified the circuit shown in Fig. 8.2A to invert the let-7c input (Fig. 8.2C). The NOT gate
makes use of an additional “inverter” strand that triggers the gate unless the input strand is present to act as
a competitive inhibitor. Since the inverter strand must be added simultaneously with the input, NOT gates
are restricted to the first layer of the circuit. This is sufficient to create a dual-rail representation from which
arbitrary subsequent computation can be performed with just AND and OR.
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Figure 8.3: Signal propagation through a complex chemical circuit combining AND, OR, sequence transla-
tion, input amplification, and signal restoration. The 5-layer circuit consists of a total of eleven gates and
accepts six inputs. With the exception of the threshold gatewhich is at 100 nM (Th2in is at 150 nM), all
gates are at 200 nM (1x) per gate. Unless otherwise specified,inputs were added at 250 nM (1.25x). Mir-143
was added at 50 nM (0.25x) and subsequently amplified by the input amplifier. Inset: fluorescence traces
of circuit operation without and with the signal restoration module (threshold plus amplifier). The traces for
input conditions corresponding to a logical TRUE output (“ON”) are clearly distinguishable from the logical
FALSE output (“OFF”). Cases tested include when all inputs are present, all cases where exactly one input
is missing, and combinations of inputs that turn off an OR clause. Assuming monotonicity, withholding ad-
ditional inputs will never lead to a logical TRUE output. To determine the response of the circuit to a leaky
OFF signal, input mir-124 was added at 50 nM (0.25x) while allother inputs were added normally.

A gate may fail in two ways: it may fail to produce enough output when triggered, or it may “leak” by
spontaneously releasing the output strand. Both types of error require signal restoration; the former requires
increasing a moderate output amount to the full activation level, and the latter requires decreasing a small
output amount to a negligible level. To implement signal restoration, we developed gates for amplification
and thresholding. The threshold gate (Fig. 8.2D) is a three-input AND gate with identical first and third
inputs. The second input is only necessary for structural purposes; it is always present and can be considered
part of the thresholding unit. A substoichiometric amount of input (with respect to threshold gates) will cause
most gates to lose only their first and second gate strands — thus releasing no output. Input concentrations
two-fold greater than the concentration of threshold gateswill cause most gates to produce output. The
threshold gate’s concentration sets the threshold for a sigmoidal non-linearity (Figs. 8.2D, S5, [23]).

Since the threshold gate’s output cannot exceed half the input signal, subsequent amplification is neces-
sary. A hybridization-based system for catalytic amplification was demonstrated previously [14]. With minor
modifications, the system serves as both an input amplifier and full translator (Fig. S6 and Fig. 8.3, left,
mir-143 translator), or as a fluorescence readout (Figs. S7Aand 8.3, right). Alternatively, amplifiers based
on feedback logic can be designed (Fig. S6B). A threshold gate together with an amplifier gate constitutes a
signal restoration module whose incorporation into large circuits at multiple intermediate points ensures the
stability of digital representation [19].

Finally, to demonstrate modularity and scalability we composed eleven gates into a larger circuit. The
circuit combines previously introduced modules for input translation and amplification, calculation of AND
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and OR, and signal restoration (Fig. 8.3). The inputs to the circuit are DNA analogs of six mouse microR-
NAs. To determine the effectiveness of signal restoration,we constructed an equivalent circuit without signal
restoration and tested both circuits with an input at 0.25x to simulate a large upstream leak. The complete
circuit maintained a low output signal, whereas the circuitwithout signal restoration exhibited a≈ 25% out-
put leak (Fig. 8.3, inset). To verify other circuit components, several subcircuits were constructed and tested
independently (Figs. S8 and S9). The feedback fluorescence amplifier was tested as a replacement for the
catalytic amplifier at the output, resulting in a circuit containing 12 gates (Fig. S10).

8.5 Conclusion

As increasingly larger circuits are constructed, speed becomes a limiting factor. The circuit without signal
restoration takes2 hours to reach half-activation (Fig. 8.3, inset, left). Thecircuit with signal restoration
has two additional layers and takes 10 hours to achieve half-activation (Fig. 8.3, inset, right). Despite the
slow operation, in both cases a clear difference between offand on states can be distinguished much earlier.
Speeding up the responses of individual gates (e.g., by shortening recognition domains) or changing other
reaction conditions may improve overall circuit performance.

Our success in creating large circuits can be attributed to:adherence to the tenets of digital logic, toehold
sequestering combined with branch migration and strand displacement, reduction of leak reactions by purifi-
cation, and modularity of design. The logic gates developedhere and the principles they are based on can also
be used to construct analog or hybrid circuits [13] and are likely to prove compatible with other approaches
to building molecular automata in vitro and in vivo [16, 6, 12, 3, 2, 8, 1]. Since evidence suggests that our
logic gates can use natural RNA as input, and that they behavecorrectly in the presence of mouse total RNA,
our hybridization-based circuits might be adapted for in situ detection of complex expression patterns or even
in vivo logic processing.
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Chapter 9

DNA as a Universal Substrate for
Chemical Kinetics

Collaborators: Georg Seelig and Erik Winfree.My contribution: I developed the formulation of the goal,
and came up with the construction. The text was written by me and GS.

9.1 Abstract

We show that a DNA-based chemical system can be constructed such that it closely approximates the dy-
namic behavior of an arbitrary system of coupled chemical reactions. Using strand displacement reactions
as a primitive we explicitly construct reaction cascades with effectively unimolecular and bimolecular ki-
netics. Our construction allows for individual reactions to be coupled in arbitrary ways such that reactants
can participate in multiple reactions simultaneously, correctly reproducing the desired dynamical properties.
Thus arbitrary systems of chemical equations can be compiled into chemistry. We illustrate our method on a
chaotic Rössler attractor; simulations of the attractor and of our proposed DNA-based implementation show
good agreement.

9.2 Introduction

Chemical reaction equations and mass action kinetics provide a powerful mathematical language for describ-
ing and analyzing chemical systems. For well over a century,mass action kinetics has been used to model
chemical experiments, in order to predict and explain the evolution of the various species over time, and to
elucidate the dynamical properties of the system under investigation. Chemistry exhibits complex behavior
like oscillations, limit cycles, chaos or pattern formation, all of which can be explained by the corresponding
systems of coupled chemical reactions [4, 7, 2]. While the use of mass action kinetics to describe existing
chemical systems is well established, the inverse problem of experimentally implementing a given set of
chemical reactions is typically much harder, and has not been solved in general. Many systems of coupled
chemical equations appear to not have realizations in knownchemistry.

Here we propose a method for implementing an arbitrary system of coupled chemical reactions using
nucleic acids. We develop an explicit implementation of unimolecular and bimolecular reactions which can
be combined into arbitrarily coupled reaction networks. Ina formal system of chemical reactions such as

A
k1−→ B

A + B
k2−→ C + D

C
k3−→

a species may need to participate in multiple reactions, both as a reactant and/or as a product (speciesA, B
or C) and these reactions need to progress at rates determined bythe rate constants (k1, k2 andk3). This
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imposes onerous constraints on the chemical properties of the species participating in these reactions. For
example, it is likely hard to find a physical implementation of the chemical reaction equations using small
molecules, since small molecules have a limited set of reactivities. Information-bearing biopolymers such as
proteins or nucleic acids provide a more promising physicalsubstrate for implementing arbitrary chemical
reactions. Nucleic acids have the unique advantage that interactions between different single-stranded species
can be programmed since sequence determines reactivity through Watson-Crick base pairing.

In our DNA implementation, we assign each formal species (e.g.,A, B, C, D) to a set of DNA molecules.
In some instances it may be possible to map a formal species toa single oligonucleotide but more generally
a single formal species will correspond to several DNA species in order to reproduce the correct kinetics.
Effective interactions between the species are mediated byan additional set of DNA complexes. Since the
underlying chemistry involves aqueous-phase nucleic acidhybridization and strand exchange reactions, arbi-
trarily large rate constants and concentrations cannot be attained. However, any system of coupled chemical
reactions can be scaled to use smaller rate constants and concentrations without affecting the kinetics except
by a scaling factor (see Section 9.7). While our constructions are purely theoretical at this point, they are
based on realistic assumptions and provide a roadmap for future experiments.

In the next section we describe strand displacement reactions which will serve as the basic building block
for our construction. In the following section we show how toimplement arbitrary unimolecular reactions,
and then extend our construction to cover bimolecular reactions. In the final section we give a demonstration
of our approach on a system due to Willamowski and Rössler [9] with 3 species and7 reactions exhibiting
chaotic concentration fluctuations. Numerical simulations of the original formal system and our DNA-based
chemical reactions using realistic rate constants and concentrations are in good agreement.

9.3 Cascades of Strand Displacement Reactions

Single-stranded nucleic acids with complementary sequences hybridize to form an inert double-helical molecule.
Although hybridization reactions involve multiple elementary steps, for short oligonucleotides the kinetics is
approximately a second-order process [1, 6]. However, hybridization between two complementary strands
is insufficient to implement systems of coupled bimolecularreactions. For instance, the double-stranded
product is inert, and thus incapable of acting as a reactant in another reaction.

Strand displacement reactions provide for a more promisingprimitive. The basic principle is illustrated
in Fig. 9.1(b). Although a strand displacement reaction involves multiple elementary steps, likely including
a random walk process, it is well modeled as a second-order process for a wide range of reaction condi-
tions [5, 10]. The effective rate constant of the second-order process is governed by the degree of sequence
complementarity between the toeholds on the single-stranded species and on the partially double-stranded
species.

We have recently used strand displacement cascades to construct DNA-based logic circuits (Chapter 8).
Here we use some of the nomenclature and ideas from that work.Fig. 9.2 shows a two-stage strand displace-
ment cascade where an input single-stranded nucleic acid species (strand) initiates a strand displacement
cascade between two complexes (gates) leading to the release of an output strand. In strand displacement
cascades, a strand is functionally inactive before its release from a gate and becomes active upon becoming
completely single-stranded. For example, intermediate strando cannot react with translator gatet before it
is released from gateg because its toehold domain3, which is required for initiating the reaction witht, is
double-stranded. Similarly, outputBs cannot initiate a downstream strand displacement cascade until it is
released from translator gatet because its toehold domain4 is double-stranded. However, upon the addi-
tion of freeAs, intermediate strando is released through strand displacement, which then causesthe release
of outputBs.∗ The release of strandBs makes it capable of initiating other strand displacement cascades
in turn. Multiple outputs can be produced by attaching two outputs to translator gatet and extending the
intermediate strando (as is shown in Fig. 9.3).

An input or output strand has two regions: a recognition region which can participate in a strand dis-
placement reaction, and a history region which cannot. The sequence of the history region (e.g., domain 7 on
strandBs) is determined by the translator gate from which the strand was released. All strands with the same

∗The binding of a toehold domain to its complement is transient unless a strand displacement reaction can be initiated (inpractice
toehold domains are 2-10 nt long). Thus the3 domain of inputAs does not block the3∗ domain of translator gatet.
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Figure 9.1: Hybridization and strand displacement reactions.a) Hybridization reaction. Two complementary
strandsA andB react with each other to form a double helixC. The hybridization reaction proceeds through a
set of partially hybridized intermediates. Nevertheless,the overall reaction kinetics is well approximated as a

bimolecular reactionA+B
k−→C. The3′ end of each strand is indicated by an arrow.b) Strand displacement.

Functional sub-domains are numbered and the star indicatescomplementarity. The reaction between input
strandA and gateg is initiated at the toe-hold (green, sub-domain1∗). The reaction then proceeds through
multiple short-lived intermediates and leads to the release of an output strandB and the formation of a
chemically inert double-stranded waste product. Kinetically, the overall reaction is well approximated as

being bimolecular, i.e.,A+ g
k−→B, where we omit the inert waste product. The value of the rate constantk

depends on reaction conditions (salt, temperature), length and sequence composition of the toe-hold as well
as the degree of complementarity between the toe-holds on the strand and gate.
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Figure 9.2: Two-stage strand displacement cascade. Functional domains are numbered and all toehold do-
mains are indicated in color. Input or output strands with identical recognition regions react equivalently and
are therefore grouped into the same species. For example,As is any strand with recognition domain 1-2-3,
andBs is any strand with recognition domain 4-5-6, irrespective of their history domains. The two-stage
cascade shown producesBs with history domain 7. Note that the sequences of the recognition regions of
input and output strandsAs andBs (domains 1-2-3 and 4-5-6) are completely unrelated to one another and
therefore such a two-stage strand displacement cascade canlink any input with any output species.a) Input
strandAs binds to gateg and by a strand displacement reaction releases the intermediate strando. b) The
intermediate strando binds translator gatet and by a strand displacement reaction releases the outputBs.

recognition region react equivalently and we do not distinguish between them. For example, any strand with
recognition domain 1-2-3 is calledAs and any strand with recognition domain 4-5-6 is calledBs. Since there
are no sequence constraints (i.e., complementarity or equality) between the recognition region of the input
strandAs and the output strandBs (similarly for multiple outputs as in Fig. 9.3), arbitrary chains of such
two-step cascades can be linked together. This is possible for two-step cascades as shown; however, a one-
step cascade would force a part of the recognition region of the output strand to have sequence equality with
the input strand (see “full translator” in Chapter 8). We call the second gate a translator gate to emphasize its
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Figure 9.3: Molecular implementation of the unimolecular reactionA→B + C. Orange boxes highlight
the DNA speciesAs, Bs, andCs that correspond to the formal speciesA, B, andC. The sequences of the
recognition regions of input and output strandsAs, Bs, andCs (domains 1-2-3, 4-5-6, and 7-8-9, respec-
tively) are completely unrelated to one another. The regimefor desired unimolecular kinetics (concentrations
of g, t and rate constantsq1, q2) is described in the text.a) Input strandAs binds to gateg and by a strand
displacement reaction releases the intermediate strando. b) The intermediateo binds translator gatet and by
a strand displacement reaction releases the outputsBs andCs.

role in translating the input to the appropriate output.
In the design of systems of coupled two-step cascades, nucleic acid sequences need to be constructed to

avoid unintended interactions. For instance, we can first design all recognition regions to have maximally
independent sequences, and then for every translator gate,design maximally independent history regions of
its output strands.∗ Then a gate can react with only one recognition domain (g-type gates) or intermediate
strand (translator gates), ensuring the specificity of interactions.

9.4 Arbitrary Unimolecular Reactions

As a first step we will implement the basic monomolecular reaction A
k→B, such thatA andB are single-

stranded nucleic acid species with completely independentrecognition regions. As we will show, the appro-
priate monomolecular kinetics can be obtained as a limitingcase of the reaction kinetics for a two-step strand
displacement cascade:

A
k−→B ⇒

{

As + g
q1−→ o

o + t
q2−→ Bs

We use the notationAs andBs to mean the implementation of formal speciesA andB by DNA strands with
recognition regions unique forA andB, respectively. We now discuss the conditions required to make the
implementation valid. First, we will work in a regime where the concentrations[g] and[t] are in large excess
of [As] and[o] so that they remain effectively constant at initial values[g]0 and[t]0 respectively. Then the
two-step strand displacement cascade becomes equivalent to a pair of monomolecular reactions:

As
q1[g]0−→ o

o
q2[t]0−→ Bs

By varying the toehold strength of gateg which determines rate constantq1, or the initial concentration
[g]0, we setq1[g]0 equal to the formal rate constantk and attaind[As]/dt = −k[As] as desired. To also

∗In addition, all sequences must have minimal secondary structure, such as hairpin loops, because it can inhibit desiredinteractions.
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ensure thatd[Bs]/dt = k[As], we makeq2[t]0 large enough that intermediate strand[o] settles to its quasi-
steady-state valueq1[g]0[As]/(q2[t]0) on a much faster time scale than that on which[As] changes. Then
d[Bs]/dt = q2[t]0[o] ≈ q1[g]0[As] = k[As] as desired. To make the quasi-steady-state approximation hold
in this example, we can increase the relative toehold strength of gatet compared to gateg, or use a much
larger initial concentration[t]0 than[g]0.

While experimentally, it may be useful to vary the degree of toehold complementarity affectingq1 or
concentration of gates[g]0 to tune the effective rate constant, for simplicity throughout this paper we con-
trol reaction kinetics by tuning toehold strengths, while treating all gates as being present at the same high
concentrationξ. Thus we setq1 equal tok/ξ.

The same scheme can be extended to more complex unimolecularreactions. Reactions with more than
one product species (e.g.,A→B + C or A→ 2B) including catalytic (e.g.,A→A + B) and autocatalytic
reactions (e.g.,A→ 2A) can be constructed using a translator gatet that releases multiple strands as in
Fig. 9.3. Removing the translator gate altogether allows for unimolecular decay reactions (e.g.,A→). Frac-
tional product stoichiometry (e.g.,A→(1/3)B + C) can be realized using a mixture of translator gates with
some fraction having incomplete output strands. For example, reactionA→(1/3)B +C can be implemented
if 2/3 of translator gatest in Fig. 9.3 are missing the 7-8 domains.∗

Arbitrary sets of unimolecular reactions can be coupled together by reusing the same recognition region
in multiple reactions. Each reaction corresponds to a distinct two-step strand displacement cascade. For
example, the system

A
k1−→ B + C

B
k2−→ 2B

can be implemented with gate-mediated reactions

A
k1−→B + C ⇒

{

As + g1
k1/ξ−→ o1

o1 + t1 −→ Bs + Cs

B
k2−→ 2B ⇒

{

Bs + g2
k2/ξ−→ o2

o2 + t2 −→ 2Bs

where unlabeled rate constants are much larger thank1/ξ andk2/ξ and initial concentrations[ti]0, [gi]0 = ξ
are high enough to remain effectively constant. The expressions for the DNA gate-mediated reactions in
terms of formal rate constants are obtained from the above analysis. As described in the previous section,
the different two-step strand displacement cascades do nothave significant undesired interactions. Thus each
reaction proceeds without interference from the others except through the desired coupling of input and output
strands.

9.5 Arbitrary Bimolecular Reactions

Consider the basic bimolecular reactionA + B
k→C. Since a reaction between an input strand and a gate

can be viewed as being bimolecular, it provides a possible implementation of this reaction. As before,A is
mapped to strandAs, but nowB would have to be mapped to a gate. To emphasize that a gate is mapped to
a formal speciesB we call the gateBg. As in the case of unimolecular reactions, we can use the translator
gatet to ensure sequence independence between recognition regions of As and Cs. The corresponding

∗Fractional product stoichiometries are equivalent to multiple reactions in which the same reactants produce different products,

where the products are in integer stoichiometries. E.g. thetwo reactionsA
2k/3
−→ C andA

k/3
−→B + C are kinetically equivalent to a

single reactionA
k

−→(1/3)B + C. Conversely, all reactions with the same reactants but different products can always be combined
into one reaction with possibly fractional product stoichiometries.



121

gate-mediated reactions therefore are:

A + B
k−→C ⇒

{

As + Bg
k−→ o

o + t −→ Cs

We set the unlabeled rate constant to be very large and the initial concentration of the translator gate[t]0 = ξ
to be big enough to remain effectively constant. Then using the quasi-steady-state approximation for the
intermediate strando as in Section 9.4 we obtain the desired effective bimolecular reaction ratek[As][Bg].

Having said that, this naive implementation has severe shortcomings. Since strandAs must directly bind
gateBg, their sequences are not independent. GateBg can react only with inputAs and cannot participate
in reactions with other strand species. Further, it is not always possible to uniquely assign reactants to a gate
or a strand. One such example is the following system:

A
k1−→ B

A + B
k2−→ C

If we combine the implementation of monomolecular reactions developed in the previous section with the
proposed bimolecular scheme, in the resulting system speciesB is mapped to two different forms, a strand
Bs and a gateBg2:

A
k1−→B ⇒

{

As + g1
k1/ξ−→ o1 (i)

o1 + t1 −→ Bs (ii)

A + B
k2−→C ⇒

{

As + Bg2
k2−→ o2 (iii)

o2 + t2 −→ Cs (iv)

The concentrations of strand formBs and gate formBg2 are entirely independent, and therefore the DNA
reactions do not implement the desired formal chemical system.

However, if the two forms ofB could be interchanged into one another on a time scale that isfast
compared to the other reactions in the system, the correct behavior can be restored. We can link the two
speciesBs andBg2 through a fast reversible reaction

Bs
k+

−⇀↽−
k−

Bg2

such that the two species achieve pseudoequilibrium. Then the formal speciesB exists in two different forms:
B = {Bs, Bg2} and the total concentration ofB is [B] = [Bs] + [Bg2]. Let f(Bg2) = [Bg2]/[B] be the
fraction ofB in gate formBg2. Under the pseudoequilibrium assumption,f(Bg2) = (k+ + k−)/k+ is a
constant. Since the second formal reaction can only use the gate formBg2 as a reactant, and not all ofB,
we scale the rate constant of reaction (iii) by1/f(Bg2) so that the new rate constant isk2/f(Bg2). Then

the effective rate of the implementation ofA + B
k2−→C is (k2/f(Bg2))[As][Bg2] = k2[A][B] as desired.

We can easily extend this idea to create a pseudoequilibriumbetween strandBs and gatesBgi for multiple
reactionsi.

We realize the above reaction establishing pseudoequlibrium betweenBs andBg2 via a linker gate shown
in Fig. 9.4 (top). The mechanism corresponds to the following DNA reactions:

Bs
k+

−⇀↽−
k−

Bg2 ⇒ Bs + l
q+

−⇀↽−
q−

Bg2 + b

For the correct first-order kineticsBs
k+

−⇀↽−
k−

Bg, the linker gatel and the buffer strandb must be in excess,

such that their concentrations remain effectively constant. Thenk+ = q+[b]0 andk− = q−[l]0 where[b]0
and[l]0 are the initial concentrations of the buffer and linker strands respectively. For simplicity we will use
[b0] = [l]0 = ξ andq+ = q−.
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Figure 9.4: Molecular implementation of the bimolecular reactionA + B→C. Orange boxes highlight the
DNA speciesAs, Bs, andCs that correspond to the formal speciesA, B, andC. The sequences of the recog-
nition regions of input and output strandsAs, Bs, andCs (domains 1-2-3, 4-5-6, and 7-8-9, respectively)
are completely unrelated to one another. The regime for desired bimolecular kinetics (concentrations ofl, b,
t and rate constantsq+, q−, q1, q2) is described in the text.a) Input strandBs reversibly binds to the linker
gatel forming the activated gateBg, i.e.,B + l ⇋ Bg + b. b) Input strandAs binds to the activated gate
complexBg and irreversibly releases intermediate strando through strand displacement.c) The intermediate
strando binds translator gatet and by a strand displacement reaction releases the outputCs.

Lastly, we need to confirm the absence of unintended cross-reactions when implementing multiple cou-
pled bimolecular reactions. As in the simple strand displacement cascades described in Section 9.3, gates
can only react with specific recognition domains or intermediate strands. The exception to this rule is the
reaction of gateBg with the buffer strandb. Gate formBg can react with any strand with accessible domains
. . . 3-4. Because without loss of generality we can assume that thereis only one formal reactionA + B→
(see footnote on page 120), and domains3 and4 are unique toBs andAs respectively, nothing other than
the correct buffer strand can react here.

9.6 Systematic Construction

In this section we take the ideas developed above and describe a systematic algorithm for compiling arbitrary
unimolecular and bimolecular reactions into DNA gate-mediated chemistry. This algorithm is used in the
next section to implement a Rössler attractor chaotic chemical system.

Without loss of generality we assume that every reaction hasa unique combination of reactants (see
footnote on page 120). Leti index reactions andXj ∈ {A, B, C, . . .} index species. Letf(Xjs) be the
fraction ofXj in strand formXjs. Similarly letf(Xjgi) be the fraction ofXj in gate formXjgi.

Consider any unimolecular formal reactioni. Write the reaction asX1
k→α2 · X2 + · · · + αn · Xn,

whereα ≤ 1. We implement this reaction by a two-step strand displacement cascade (Fig. 9.3), modeled by
the DNA gate reactions below (where we omit inert waste products, and combine all strands with the same
recognition domains into a single species).

X1s + gi
k′

−→ oi

oi + ti −→ α2 ·X2s + · · ·+ αn ·Xns.

Product fractionsαj are set by preparing translator gateti with αj fraction of complete and1−αj incomplete
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output strands forXjs as discussed in Section 9.4. Unlabeled rate constants as well as the initial concen-
trations[gi]0 = [ti]0 = ξ are as high as possible. Rate constantk′ is set to k

ξf(X1s) by varying the degree
of complementarity of the toehold on gategi with the toehold on strandX1s. Note that by following the
argument of Section 9.4, and using the fact that[X1] = [X1s]/f(X1s), the effective rate of this reaction is
k′[X1s]ξ = k[X1] as desired.

Consider any bimolecular formal reactioni. Write the reaction asX1 + X2
k→α3 ·X3 + · · ·+ αn ·Xn,

whereα ≤ 1. We implement this reaction by a linker gate mechanism combined with the two-step strand
displacement cascade (Fig. 9.4) and is modeled by the DNA gate reactions below (where we again omit inert
waste products, and combine all strands with the same recognition domains into a single species).

X1s + li −⇀↽− X1gi + bi

X2s + X1gi
k′−→ oi

oi + ti −→ α3 ·X3s + · · ·+ αn ·Xns

Product fractionsαj are set by preparing translator gateti with αj fraction of complete and1−αj incomplete
output strands forXjs as discussed in Section 9.4. Unlabeled rate constants are ashigh as possible, with
the forward and reverse rates of the first reaction being equal. Rate constantk′ is set to k

f(X2s)f(X1gi)
by

varying the degree of complementarity of the toehold onX1gi with the toehold on strandX2s. The initial
concentrations[li]0 = [bi]0 = [ti]0 = ξ are as high as possible. Note that by following the argument of
Section 9.5, and using the facts that[X2] = [X2s]/f(X2s) and[X1] = [X1gi]/f(X1gi) the effective rate of
this reaction isk′[X2s][X1gi] = k[X1][X2] as desired.

With the above construction, determiningf(Xjs) andf(Xjgi) is easy: for everyi, j, f(Xjs) = f(Xjgi) =
1/(m + 1) wherem is the number of bimolecular reactions in whichXj appears as the first reactant.

The sequences of the DNA components can be designed as follows. First, for every speciesXj, design an
independent recognition region. Then, for each formal reaction, design independent history regions for every
output of that reaction. At this point all auxiliary DNA species are fully specified. Significant unintended in-
teractions between auxiliary species participating in different formal reactions cannot occur by the arguments
in Sections 9.3 and 9.5. The system is initiated by adding appropriate starting amounts of the formal species
in single-stranded form with arbitrary history domains.

9.7 Example

We illustrate our method of using DNA-based chemistry to implement arbitrary formal systems of coupled
chemical equations on the chaotic system due to Willamowskyand Rössler [9]. We start with the following
formal reactions, where the rate constants are from Ref. [3]:

1 : A
30−→ 2A

2 : 2A
0.5−→ A

3 : B + A
1−→ 2B

4 : B
10−→

5 : A + C
1−→

6 : C
16.5−→ 2C

7 : 2C
0.5−→ C

The strange attractor for the concentrations ofA, B, andC is in the range of about0–40.
First we scale this system into a regime realistic for DNA-based chemistry which constrains reaction rates

and concentrations. Second order rate constants for stranddisplacement reactions can be approximately in
the range0–106/M/s, with their value determined by the degree of toehold complementarity [10]. Typical
experimental concentrations are on the order of0–10−3M . Similar to experimental implementations of
other dynamical chemical systems, a flow reactor may be used to replenish the stock of unreacted gates and
remove waste to maintain the appropriate reaction conditions [2]. This may make it possible to use lower
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Figure 9.5: Rössler attractor example.(a) The formal chemical reaction system to be implemented.(b)
Reactions modeling our DNA implementation. Each bracket implements the formal reaction with the number
indicated. Herek1 throughk7 are the original rate constants for reactions1 through7 as in (a). Multiplicative
factorsfA = 1/f(As) = 1/f(Ag2) = 1/f(Ag5) = 3, fB = 1/f(Bs) = 1/f(Bg3) = 2, fC = 1/f(Cs) =
1/f(Cg7) = 2. We use initial concentration of the gates and buffer strands ξ = 10−4. Unlabeled rate
constants are105. (c) Plot of the log-concentrations ofA (solid), B (dashed),C (dotted) for the original
system (red), as well as their modeled concentrations (black). (d) Longer time plot showing also the log-
concentrations ofgi (blue, decreasing) andbi (blue, increasing).(e,f) Trajectories of the original system and
DNA implementation in the 3-dimensional phase-space (first5 hours).
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gate concentrations.

Clearly, by scaling all rate constants by the same factor we simply speed up or slow down the system
without affecting the dynamical behavior. We can scale the concentrations at which the chaotic system
operates by scaling the bimolecular rate constants differently from the unimolecular ones. In general if
[Xj ](t) are solutions to differential equations arising from a set of unimolecular and bimolecular reactions,
thenα[Xj ](t) are solutions to the differential equations arising from the same set of reactions but in which
we divide all bimolecular rate constants byα. We first slow down the system by multiplying all rate constants
by 10−3, and then use concentration scaling factorα = 10−8, obtaining the rate constants in Fig. 9.5(a).

Applying our construction yields a DNA implementation governed by the equations in Fig. 9.5(b). Sim-
ulations confirm (Fig. 9.5(c, d)) that the DNA implementation behaves very close to the formal system (a)
until the depletion of linker gatesli and the buildup of buffer strandsbi sufficiently alters the effective rate
constants to destroy the chaotic behavior at around8 hours (see (d)).

9.8 Conclusion

We have proposed a method for approximating an arbitrary system of coupled unimolecular and bimolecular
chemical reactions using DNA-based chemistry. Our construction takes advantage of cascades of strand
displacement reactions (Chapter 8), and elementary techniques of approximation in chemical kinetics. Each
formal species occurring in the system of chemical reactions is represented as a set of strands and gates. The
multiform representation is necessary because it is not always possible to find a single DNA species that
is capable of participating in all reactions involving a given formal species. However, the different forms
are constructed to be in equilibrium with each other and thusparticipate in kinetics as if they were a single
species, up to a scaling of rate constants.

While we have taken care to provide a systematic algorithm for compiling a set of chemical reactions into
DNA, in practice it may often be possible and preferable to reduce the complexity by optimizing the con-
struction for the particular system of interest. For example, in many cases complete sequence independence
between strands may not be necessary, possibly allowing oneto eliminate some translator gates. Similarly,
pseudoequilibrium linkage is unnecessary if mapping a species directly to a strand or gate does not cause
problems.
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