Molecules Computing:
Self-Assembled Nanostructures, Molecular Automata,
and Chemical Reaction Networks

Thesis by
David Soloveichik

In Partial Fulfilment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California

2008
(Defended May 5, 2008)

© 2008
David Soloveichik
All Rights Reserved

Contents

Acknowledgements Vi
Abstract vii
1 Introduction 1
1.1 The Promise of Bionanotechnology 1
1.2 The Mathematics of Computer Science ww oo 2
1.3 The Criteriafor SUCCESS o e 3
1.4 TheContributions e e 3
1.4.1 Tile Self-Assembly e e 3
1.4.2 Restriction Enzyme Automata e 4
1.4.3 Chemical Reaction Networks 4
Bibliography e 6
2 Complexity of Self-Assembled Shapes 8
2.1 Abstract e 8
2.2 Introduction L e 8
2.3 TheTile Assembly Model e 9
2.3.1 Guaranteeing Unique Production. o 10
2.4 Arbitrarily Scaled Shapes and Their Complexity 11
2.5 Relating Tile-Complexity and Kolmogorov Complexity 12
2.6 The Programmable Block Construction 13
2.6.1 OVervIeW o e 13
2.6.2 ArchitectureoftheBlocks 14
2.6.21 GrowthBlocks 14
2.6.22 SeedBlock. 71
2.6.3 TheUnpackingProcess. 17
2.6.4 Programming Blocks and the Value of the Scaling Factor. 21
2.6.5 Uniqueness ofthe Terminal Assembly 21
2.7 Generalizations of Shape Complexity i o 22
2.7.1 Optimizing the Main Result (Section2.5) 22
2.7.2 StrengthFunctions e 23
2.7.3 Wang Tiling vs Self-Assembly of Shapes 23
2.7.4 SetsofShapes e 25
2.7.5 Scale Complexity of Shape Functions 26
2.7.6 Other Uses of Programmable Growth 27
2.8 AppendiX e 28
2.8.1 Local Determinism Guarantees Unique ProductionoRybTheorem2.3.1 28
2.8.2 Scale-Equivalence an&" are Equivalence Relations 28

Bibliography e e 29

iv

3 Complexity of Compact Proofreading for Self-Assembled Paerns 31
3.1 ADbStract e 31
3.2 Introduction e 31

3.2.1 The Abstract Tile Assembly Model 33
3.2.2 The Kinetic Tile Assembly Modeland Errors 33
3.2.3 Quarter-Plane Patterns e 34
3.3 Making Self-Assembly Robust e 35
3.4 Compact Proofreading Schemes for Simple Patterns 37
3.5 AlLowerBound e 39
3.6 AppendixX e e e 41
3.6.1 Extension of Chen and Goel's Theorem to Infinite SeadhBary Assemblies . .. 41
3.6.2 AnOverlay ProofreadingScheme 41
Bibliography e 43
Combining Self-Healing and Proofreading in Self-Assemiyl 45
4.1 AbStract 45
4.2 Introduction e e e 45
4.3 Modeling Errors e 48
4.3.1 Erroneous Tile Additions During Growth 48
4.3.2 Wholesale Removalof Tiles 49
4.4 Self-Healing Proofreading Construction 49
45 EXIENSIONS o e e 54
451 RandomWalksinthe # f Regime, 54
4.5.2 Preventing Spurious Nucleation 55
Bibliography e e 56
The Computational Power of Benenson Automata 58
5.1 Abstract e 58
5.2 Introduction e 58
5.3 Formalization of Benenson Automatao 61
5.4 Characterizing the Computational Power of Benensoowata 62
5.5 Simulating Branching Programs and Circuits 63
5.5.1 General BranchingPrograms wi . 63
5.5.2 Fixed-Width Branching Programs« . uue 64
5.5.3 Permutation Branching Programs e e 66
5.5.4 Simulating Circuits L e e 68
5.5.5 Achievingl-Encoded Automatao 68
5.6 Shallow Circuits to Simulate Benenson automata 69
5.7 DISCUSSION o e e 70
Bibliography e 71
Computation with Finite Stochastic Chemical Reaction Neworks 72
6.1 Abstract e 72
6.2 Introduction e 72
6.3 Stochastic Model of Chemical Kinetics 73
6.4 Time/Space-Bounded Algorithms Lo 74
6.5 Unbounded Algorithms e 79
6.6 DISCUSSION e 81
6.7 AppendiX e 81
6.7.1 Clock Analysis e e e e 81
6.7.2 Time/Space-Bounded RM Simulation 82
6.7.3 Time/Space-Bounded CTM Simulation 83
6.7.4 Unbounded RM Simulation e 84
6.7.5 Unbounded CTM Simulation. 84

6.7.6 Decidability of Reachability 85
Bibliography e 85
Robust Stochastic Chemical Reaction Networks 88
7.1 Abstract e 88
7.2 Introduction e 88
7.3 Modeland Definitions e 90
7.4 RobustnessExamples e 91
7.5 Bounded Tau-Leaping. 0 e e 93

7.5.1 TheAlgorithm e 93

7.5.2 UpperBound onthe NumberoflLeaps ou 95
7.6 On the Computational Complexity of the Prediction Peabfor Robust SSA Processes . . . 96
7.7 DISCUSSION . . . o o o o e e 98
7.8 AppendiX e e 98

7.8.1 Proof of Theorem 7.5.1: Upper Bound on the Numberopkea 98

7.8.2 Proving Robustness by Monotonicity 102

7.8.3 Robust Embeddingofa TMinanSCRN 103

7.8.4 Proof of Theorem 7.6.1: Lower Bound on the Computali@omplexity of the Pre-

dictionProblem 105

7.8.5 OnImplementing BTL ona RandomizedT™M 106
Bibliography e e 106
Enzyme-Free Nucleic Acid Logic Circuits 109
8.1 Abstract e 109
8.2 Introduction e 109
8.3 Gate Construction and Verification 110
8.4 CircuitConstruction. L e 110
8.5 Conclusion 114
Bibliography e 114
DNA as a Universal Substrate for Chemical Kinetics 116
9.1 ADbStract e e 116
9.2 Introduction L e 116
9.3 Cascades of Strand Displacement Reactions 117
9.4 Arbitrary Unimolecular Reactions 119
9.5 Arbitrary Bimolecular Reactionso 120
9.6 Systematic Construction e 122
9.7 Example e e 123
9.8 Conclusion 125

Bibliography e 125

Vi

Acknowledgements

| thank Erik Winfree for being an ideal advisor, who inspired, challenged me, and let me have the freedom
to go on my own. He is an exceptional scientist and a good huyearg. Amazingly, everything | found
interesting, he found interesting too. The network of iefz that is my brain is in profound debt to Matthew
Cook for demonstrations of thinking clearly. Erik and Madtk been my role models and | hope will continue
to be my friends.

I thank my collaborator and friend Georg Seelig, who taugatahysics. Paul W.K. Rothemund was my
famed office-mate who taught me to fly RC airplanes and howrmatla boomerang like a man. | thank
Ho-Lin Chen, Rebecca Schulman, Nadine Dabby, Joseph Sehaeéve Zhang, Rizal Hariadi, Jongmin
Kim, Peng Yin, Lulu Qian, and all the members of the Winfreeug, past and present, for making the place
as friendly and engaging as it was, and for wonderful, iaegéble discussions.

I thank Yaser Abu-Mostafa for a wonderful rotation expecersShuki Bruck for inviting me to his stimu-
lating group meetings, Chris Umans for teaching a fasaigatomplexity theory course, and John Doyle for
providing positive feedback on my thesis work.

| thank the ARCS Foundation, NSF, NIH, and the Caltech CN§znm for funding.

My mom and dad, and my grandma, have been my foundation. $aeiifices for my sake are immea-
surable. | cannot be grateful enough to have been born intéamity, to have had my childhood, and to
have them live only a drive away now. | thank my wife’s famibyr their support from the very first time we
met. To thank my wife Esther for everything she has meant tal@emands more than acknowledgment, and
loving her dearly is only the first step. This thesis is deiddo our son Elie.

vii

Abstract

Many endeavors of molecular-level engineering either oglyoiological material such as nucleic acids and
restriction enzymes, or are inspired by biological proesssich as self-assembly or cellular regulatory net-
works. This thesis develops theories on three such topgtfsassembled nanostructures, molecular automata,
and chemical reaction networks. The abstractions and lymadgmethods of the theories presented herein
are based on computer science and include Turing machidesranits. Toward engineering self-assembled
nanostructures, we create a theory of scale-free shapdtch #he complexity of their self-assembly is con-
nected to the shapes’ descriptional complexity. Furtherstdy patterns in terms of whether they can be
self-assembled robustly without an increase in scale toranwdate redundancy. We also describe a new
method of ensuring resilience to more types of error simelbasly. Toward creating molecular automata we
study the computational power of a restriction enzyme-thasgomaton. Toward designing chemical reac-
tion networks, we develop a technique of storing and praegssformation in molecular counts, which is
capable of achieving Turing universal computation. We atsdy the computational complexity of simulat-
ing stochastic chemical reaction networks and formallynemt robustness and simulation efficiency. Lastly,
we describe nucleic acid implementations of Boolean logizuits and arbitrary mass-action kinetics. The
three areas of this thesis are promising realizations oéoudar-level engineering, and the theories presented
here inform the range of possibility or delineate inhereffiidlties in these areas.

Chapter 1

Introduction

A note on the use of “we”: As a matter of style and to emphasize that most of the workepites here was
done in collaboration with others, “we” is used throughd thesis, except in places where the personal
voice of the author is expected.

1.1 The Promise of Bionanotechnology

Can engineers manipulate molecules with the same easehthatan now construct macrolevel objects?
It is widely expected that the enabling technologies wiltdmme practical in this century [8]. Since the
complexity of living things is as yet unparalleled by the emgring feats of man, life may be the ultimate
example and proof of principle. Indeed one may consider tipeesne promise of molecular engineering is
to give science all the tools available to life. Part of thaldnge is also to interact with existing biological
systems and modify their function — for example to cure disef@]. Bionanotechnology is one name of
the emerging field of bioinspired molecular-level engim@grlt is innately multidisciplinary and interrelates
with molecular biology, synthetic biology, nhanotechnalpghemical engineering, computer science, as well
as many other areas. While its boundaries are fuzzy, we darediby the premise that biology has important
contributions for engineering with molecules.

Already one of the key contributions of bionanotechnolagyhie adaptation of nucleic acids for engi-
neering tasks. Rather than solely acting as the carrierradtgeinformation, DNA has been used to construct
nanoscale structures and even mechanical nanomachirje§\{@bmain factors make nucleic acids the de-
sign substrate of choice. First, rational design with nieceids is tremendously simplified by the specificity
and predictability of Watson-Crick base pairing. In geh#ra RNA/DNA 3-D folding problem, akin to the
protein folding problem, remains beyond the grasp of curcemputational methods. However, research
suggests that keeping track of secondary structure onljcfwthases bind to each other) is often sufficient
for understanding interactions between nucleic acids angredicting the 3-D structure of rationally de-
signed complexes. Secondary structure prediction andgjaésicomputationally reasonable [7]. This is in
stark contrast to designing proteins, which requires miodéar more complex 3-space interactions between
constituent amino acids. The second reason for the sucéesgleic acids in bionanotechnology is that
short DNAs and RNAs with arbitrary sequences are cheap tihegize. Companies, such as IDT, specialize
in the synthesis of shork(100 bases) DNA or RNA oligos. Current costs are less than a dp#atbase
for reasonable experimental quantities, with prices steadopping. Longer strands can be manufactured,
replicated, and otherwise manipulated using methods addpim biotechnology. For these reasons DNA is
used as the chemical substrate for most of the work in thsghe

In this thesis | shall focus on three topics falling withietftealm of bionanotechnology: the engineering
of self-assembled nanostructures, the design of moleméahines for biocompatible computation, and the
analysis and design of networks of chemical reactions untel$olutions.

Advances in self-assembly have been arguably the most pemhdevelopments in bionanotechnology.
While we can exercise atomic-level engineering precisiothe sense of positioning individual atoms and
molecules with an atomic force microscope or scanning tumieoscope on a surface [16, 9], this manipula-

2

tion requires vast investments of resources and time. fgignily each object has to be fabricated separately.
In contrast, nature shapes the intrinsic properties of ous to direct their self-organization. The fabrica-
tion of such object occurs with massive parallelism (elge,dlassic example is virus capsid self-assembly).
Engineering self-assembly processes is a potentially gingway to adopt nature’s construction methods.
By positioning complementary domains appropriately on onenore DNA molecules, a number of 3-D
shapes have been constructed, including cubes and octdlBe@6]. These objects assemble in bulk upon
the introduction of their components into solution. Onela more recent advances has been Rothemund’s
DNA “origami.” By designing short strands of DNA to effectily staple a long strand into a rastered form,
he was able to weave smiley faces and other 2D shapes [21].

Designing shapes via above methods requires making evergfrashape out of different components,
up to symmetry. In another important example, Winfree agdpvang tiling theory [28] to control crystal-
lization [29, 30, 22] (see below). Then by designing thevidiial components (tiles) to have the right local
interactions, the global form and pattern of the constdiagsembly can be controlled. Each type of tile may
be reused multiple times in the assembly process, akin to@iloa computer program; consequently the
resulting assembly process is often called algorithmic.

Another area of significant progress in bionanotechnolaag tbeen in molecular computation. In his
ground-breaking experiments, Adleman showed that by engoshathematical information in DNA se-
guences itis possible to solve difficult combinatorial peohs [1, 19]. The original hope of using the massive
parallelism of DNA computation to exceed the power of digitamputers has not realized. However, since
DNA is a biocompatible computational medium it may be pdsditouse DNA computers to imbue cells with
synthetic information processing capability which may megt or modify cellular regulatory networks. For
example, Benenson et al made an automaton in vitro corgistia restriction enzyme and DNA molecules
which tests whether particular RNA molecules are presenbgrand releases an output DNA molecule only
if the combinatorial condition is met [3]. The computatiansists of the enzyme sequentially cutting a DNA
molecule in a manner indirectly determined by the input mRN@&lecules present in solution. Benenson et
al. hope that such a design may form the basis of a “smart’dragable of detecting specific mRNA tran-
scripts that are indicative of cancer or other diseasespatpmlitting a “therapeutic” ssDNA. Automata based
on other kinds of protein—DNA interactions have also bearstracted [2].

Much of natural information processing within a cell seembe in regulatory networks which must re-
spond appropriately to changes in the environment. Sonteediést understood regulatory networks involve
transcription-level activation and inhibition. Some cdexpregulatory networks have been engineered and
incorporated into cells. For example, Elowitz et al. haveated a synthetic oscillator which periodically
changes the color of a cell based on transcriptional regtd§t0]. DNA/RNA transcriptional switches have
been designed to implement bistable dynamic behavior acitlati®n [18, 17]. Engineered networks based
on transcriptional regulation can implement Boolean Gisc(AND, OR, NOT logic gates) in vivo and in
cell-free extracts [15, 20]. If one ignores mechanisti@adgtsuch as protein-protein and protein-DNA inter-
actions, such regulatory networks can be simply expressegsiems of chemical reactions in well-mixed
solutions. These chemical reaction network models arellyss#ficient to explain the observed behavior;
thus we call these efforts chemical reaction network ergging.

1.2 The Mathematics of Computer Science

Computer science has developed a set of theoretical todla parspective on the world that can be applied to
many fields of human endeavor outside of programming comguiteis an unfortunate burden of computer
science to be confused with IT (information technology) bg tayman; it is proper to classify computer
science as a branch of applied mathematics.

The three contributions of computer science most relewarthfs thesis are as follows: First is the formal-
ization of the notion of computation and the recognition ofnputation as a universal phenomenon. Com-
putation is now found everywhere in nature and in matherakdiostractions, and informs many branches of
science from physics to biology. The ubiquity of computatims been popularized for the wider audience
by Wolfram [33]. The second contribution is asymptotic gsal. Although asymptotic analysis is not lim-
ited to computer science, it has taken off there as a conseque making the theory of computation time
insensitive to implementation details. Asymptotic anelys functions is helpful for deriving fundamental

3

distinctions without getting lost in the details. For exdengince an exponential function is fundamentally
larger than a polynomial function, it is not necessary todraut the polynomial exponent in the derivations.
In this thesis asymptotic analysis is used throughout, antpeitation, be it with Turing machines or circuits,
makes up the heart of most of the theories presented. Lasthyputer science brings a degree of mathe-
matical rigor to otherwise fuzzy areas of science. Whenabjare formally defined (or at least formally
definable), it becomes possible to communicate with lessoffidzeing misunderstood. Often the difficult part
of research is isolating what is important from what is navidg to formally define one’s model forces the
fixation on the essential kernel of the problem.

1.3 The Criteria for Success

The work in this thesis is largely theoretical. | propose twiteria for success of the theories developed here.
First | feel the work must develop an elegant theory, althipod§course, elegance is in the eye of the beholder
and it is difficult to describe what makes something posgeSgcond, the work must be meaningful outside
of the artificial world of mathematical abstractions, andsirhave a take-home message for molecular-level
engineering. One form of the message may be expanding theoherof what was previously thought
possible. Another may be in showing that something is infitérémpossible, saving researchers time and
effort. Yet another message may be a way of systematizingyregsting knowledge. | would like to think
that each of these is achieved by one or another theory fiezkkare.

A major inspiration for the manner of this work has been Wéefs tile assembly model [29], which the
next three chapters directly address (see above). In Véisfground-breaking work a computer-theoretic
abstraction called Wang tiling is realized in chemistryeThodel is simple and elegant, and at the same time
leads to a conclusion with significant practical implicagothat, per design instructions, simple crystalliza-
tion processes can be programmed to assemble arbitraritplea structures. Recent work even suggests
how this type of crystal growth may possess certain progeedi life, informing the origin of life debate [24].

1.4 The Contributions
1.4.1 Tile Self-Assembly

Chapters 2, 3, and 4 concern molecular engineering throragirgmming the process of crystallization. The
underlying model is that of Winfree’s tile assembly, whichrhalizes the two-dimensional self-assembly of
square units (tiles) using a physically plausible absiwacbdf crystal growth [29, 30]. A new tile becomes
incorporated into the growing lattice if it binds the prestitig structure strongly enough, with the strength of
the bond between one tile and another being a function ofghee$” (bond types) on the abutting sides. The
usual molecular implementation uses DNA hybridizationedirte the glues, with complementary sequences
matching. At some locations in order to attach to the exgstissembly a tile must bind two neighboring tiles
cooperatively. Winfree showed that this cooperativitpah for surprisingly rich behavior including Turing
universality.

One common goal of the assembly process in theory and expetisito assemble a certain shape. The
natural question to ask is which shapes are easy to buildghrself-assembly and which are hard. Since each
type of tile (defined by its glues) can be mass produced, ksitjdieg each new tile type requires significant
effort, the number of tile types is the natural complexityamere [23]. Previous works have studied only the
construction of certain specific shapes as examples. Int€hapve show that the natural formulation of the
complexity problem is the construction of scale-free slsagleere the scale of the shape does not matter, only
the form. Somewhat paralleling the way that invariance wagpect to the coordinate system turns topology
into an elegant theory, our scale-free formalization afidor a number of compelling results. We prove that
the minimal number of tile types required is a function of K@mogorov complexity of the shape. Thus
the class of shapes that are easy to build are mathematigglligefined. Our result also shows that the very
simple process of crystallization is nonetheless powearfidugh to turn any description of shape into the
actual shape, fulfilling the role of von Neumann'’s universaistructor [27].

In Chapters 3 and 4 we turn to the problem of errors in tile-asffiembly. A relatively high error rate
during assembly has has been one of the main setbacks iicptatiplementation of the theory. As opposed

4

to the shape of the assembly as in the previous chapter, leecensider the pattern produced by assembly:
when tiles are marked with different colors (which may rejerg different functional domains, etc.) the
assembly produces a labeled pattern [30]. Winfree and Batdofirst proposed to introduce redundancy
into the assembly to decrease the error rate akin to a rgpetiode [32]. A single tile in the original
error-prone tile system is replaced with a block of tilessteaarrying the information of the original tile
redundantly. In Chapter 3 we ask whether the redundancyeandtoded without increasing the scale of the
construction. Since scale is of direct concern here, in saaes this chapter takes the opposite approach
of the theory developed in Chapter 2. Nonetheless, in p@ctiinimizing the scale of the assembly is an
important goal for certain molecular fabrication tasks.eThain result of this chapter is the argument that
patterns can be distinguished into two classes when sgaileundesired: it is easy to make certain patterns
robust to errors by embedding redundancy, while for othétepss this is difficult without an exponential
increase in the number of tile types.

There is an additional type of error that has been studietiade to the completed structure [31]. Chunks
of an assembly may be physically ripped off by external meuiad forces, such as shear due to fluid flow
during sample handling. Itis desired that the construdredtire should be self-healing in the sense of being
able to repair itself, or at the very least to not regrow imeotly. Erroneous addition of tiles and assembly
damage have previously been studied separately; howeusting constructions for making a tile system
robust to the two types of error could not be directly comtdinkn Chapter 4 we develop a new method to
make a pattern tile system simultaneously robust to botestyyb error.

1.4.2 Restriction Enzyme Automata

We next consider engineering chemical computers capalibkiofg certain chemical species as inputs and
producing certain other species as output. One long-teahgjthis type of engineeringis to be able to create
biocompatible computers capable of interacting with icgtlular processes and modifying or augmenting the
behavior of a cell in a complex way. In Chapter 5 we study thrematational power of a molecular automaton
recently proposed and implemented in vitro by Benenson R]alin this scheme, a long DNA state molecule
is cut repeatedly by a restriction enzyme in a manner depengb®n the presence of particular short DNA
rule molecules.

How much computation can Benenson automata perform? It wask that a single automaton can
compute the conjunction of inputs (and negated inputs),fgeexample, it was not clear whether a single
Benenson automaton can compute a disjunction of conjurt®urprisingly, we show that a single automa-
ton is more powerful than expected and can compute arbiBagtean functions. We also determine the
class of functions that a Benenson automaton can computiaffi: exactly those functions computable by
log-depth circuits.

1.4.3 Chemical Reaction Networks

A central feature of engineering in solution-based chamistthe difficulty in controlling the targeting and
time of interactions: any two molecules may meet and the imgetill occur at an unknown time. In
biology as well as computer engineering, the resolutiomisfdifficulty often requires space and geometry:
information is stored in a polymer such as DNA, on a tape, atiapcompartments, or in different locations
on a chip. For example the Benenson automaton relies on tiegeat arrangement of information within a
polymer which can then be sequentially extracted by cutiperations. Another example is the classic model
of chemical Turing universal computation: Bennett's DN#spired polymer automaton [5]. Yet clearly some
of the computation occurring within a cell is in the complateractions of concentrations of some species
and does not rely on space and geometry for information gsig.

Consequently, we ask in Chapter 6: what intrinsic limitseeed on computation solely by the nature
of well-mixed chemistry? To answer this, we develop a thécabway of storing and manipulating informa-
tion in the exact molecular counts of some molecules. In oastruction, the tape of a Turing machine is
mapped to the molecular count of a “memory species,” andhbigcular count is manipulated in a way that
corresponds to a Turing machine computation. Our resujtshed, surprisingly, geometry is not necessary
for effective computation and well-mixed chemistry is Tigiuniversal. We show that well-mixed chemistry

5

can perform an a priori unbounded number of computatiorgkstvith an arbitrarily small (non-zero) cumu-
lative error probability. However, geometry seems neagdsa error-free Turing universal computation: we
show that error-free Turing universal computation withrolieal kinetics is impossible. Finally we show that
although information is stored in unary molecular courgguiring volumes that potentially grow exponen-
tially in the number of Turing machine steps, the informatian be manipulated quickly. The time for our
construction to simulate a run of a Turing machine grows golynomially in the number of executed steps.

The behavior of coupled chemical reactions over time is atftlundation of chemistry. Traditionally
such systems are modeled with mass-action kinetics. Hayeurmerous works have shown that in molec-
ular biology, it is often inappropriate to use mass-actianwd to simulate certain intracellular pathways.
Indeed, when key molecular components are present in snoddicmar counts, as they often are, stochastic
effects can physiologically significant. Our construct@Chapter 6 relied on having a single molecule of
certain species. Such systems effectively behave as conisatime Markov processes, as opposed to sys-
tems described by the deterministic and continuous variaif concentration over time. Their simulation
is deemed to be significantly more difficult than large-volugystems susceptible to the mass-action ap-
proximation [14]. Yet simulation of these systems is edaéfir understanding cellular pathways and for
intracellular molecular engineering [14].

In Chapter 7 we consider the computational complexity ofuating a given stochastic chemical reac-
tion network. Gillespie’s stochastic simulation algonitf{SSA) can be used to model stochastic chemical
systems [12]. However, SSA is prohibitively slow for manyhgpations, especially when there are certain
species whose molecular counts are large in addition teethpscies whose molecular counts are small. Re-
cently tau-leaping algorithms have been developed thabeasignificantly faster than SSA, yet at the cost
of certain systematic errors entering the simulation [I8jspite the widespread use of stochastic simulation
algorithms for chemical reactions, the study of their cotappanal complexity is nascent. In fact, the speeds
of different algorithms are generally compared only thivagecific numerical examples.

We attempt to develop a theory of the asymptotic computaticomplexity of a class of stochastic
chemical reactions networks. First we formalize the presipimplicit condition on the reaction network that
guarantees the accuracy of tau-leaping algorithms: rabastto perturbations in reaction propensities. Then
by using the tools of computational complexity theory, weealep closely matching asymptotic upper and
lower bounds on the computational time that may be requoedredicting the behavior of these systems. In
the process, we define a new stochastic simulation algostaroall bounded tau-leaping. The lower bound
on the required computation time is based on the ability etthemical system itself to perform computation
in a manner akin to our construction of Chapter 6.

The major reason mass-action chemical systems are easieritate is because the computation time is
not dependent on the total molecular count but just on cdration (molecular count per volume). Since the
concentration is always bounded (the solution must beedgdabugh to remain well-mixed and not a solid)
the computational complexity of simulating mass actiortays does not scale with the size of the system.
In stark contrast, the computation time of SSA may scalaalilyewith the total molecular count even for
bounded concentrations. Surprisingly, we show that, asgyubounded concentrations, for robust stochastic
chemical systems the required computation time is asynepthytessentially invariant with molecular count.
In this sense simulation of robust stochastic chemicalti@aoetworks approaches the speed of mass action
systems.

In the last two chapters, we consider the design and impl&tien of chemical reaction networks in
practice. We restrict ourselves to the mass-action regiecalse single-molecule experiments were beyond
the capability of the available equipment in our laboratory

As nucleic acid interactions are easily programmable thinosequence design, DNA seemed a natural
choice for the chemical substrate with which to design ieagtetworks. Indeed, in Chapter 8 we show how
DNA hybridization alone can be used to design the simplest ki reaction networks: feedforward circuits.
By maintaining digital abstraction over multiple layers wlgow that such circuits can operate reliably in
vitro. To our knowledge our work is the first to experimentalemonstrate reliable circuits based solely
on hybridization capable of multi-layer cascading. Sing®dgical nucleic acids such as microRNAs can
serve as inputs, several intriguing applications in bioeteiogy and bioengineering may be possible. A
major contribution of this work is the mechanism of attagnimodularity using toehold-mediated branch
migration [34]. Hiding the toehold of an output strand keesactive until intended release.

The last chapter (Chapter 9) asks: How can we implementarpiystems of coupled chemical reactions

6

with realistic chemistry? It is well known that “chemicaltdinary differential equations are capable of
very complex dynamic behavior, including oscillation wiithmit cycles and chaos [11]. Some experimental
chemical systems have even been found to behave in this maYieethere was not a systematic way to
implement an arbitrary system of chemical ODEs in actuafribey. Here, using the method of obtaining
modularity from Chapter 8, we theoretically construct teat cascades with arbitrary unimolecular and
bimolecular kinetics. Individual reactions can be coupttearbitrary ways such that reactants can participate
in multiple reactions simultaneously, reproducing theiréelsdynamic behavior.

Bibliography

[1] L.M. Adleman. Molecular computation of solutions to cbimatorial problems. Science
266(5187):1021-1024, 1994.

[2] R. Bar-Ziv, T. Tlusty, and A. Libchaber. Protein—-DNA cpuottation by stochastic assembly cascade.
Proceedings of the National Academy of Scien86§18):11589, 2002.

[3] Y. Benenson, B. Gil, U. Ben-dor, R. Adar, and E. Shapiron @utonomous molecular computer for
logical control of gene expressioNature 429:423-429, 2004.

[4] S.A. Benner and A.M. Sismour. Synthetic biolodyature Review Genetic6(7):533-543, 2005.

[5] C. H. Bennett. The thermodynamics of computation — aeevinternational Journal of Theoretical
Physics21(12):905-939, 1982.

[6] J. Chen and N.C. Seeman. Synthesis from DNA of a molecitletive connectivity of a cubeNature
350(6319):631-633, 1991.

[7] R.M. Dirks, J.S. Bois, J.M. Schaeffer, E. Winfree, andANPierce. Thermodynamic analysis of inter-
acting nucleic acid strandSIAM Review49(1):65-88, 2007.

[8] K.E. Drexler. Nanosystems: molecular machinery, manufacturing, andpcdation John Wiley &
Sons, Inc., New York, NY, USA, 1992,

[9] D.M. Eigler and E.K. Schweizer. Positioning single a®mith a scanning tunnelling microscope.
Nature 344(6266):524-526, 1990.

[10] M.B. Elowitz and S. Leibler. A synthetic oscillatory tweork of transcriptional regulatorsNature
403(6767):335-8, 2000.

[11] I. R. Epstein and J.A. Pojmarn Introduction to Nonlinear Chemical Dynamics: Osciltats, Waves,
Patterns, and ChaogOxford University Press, 1998.

[12] D.T. Gillespie. Exact stochastic simulation of couptshemical reactionsJournal of Physical Chem-
istry, 81:2340-2361, 1977.

[13] D.T. Gillespie. Approximate accelerated stochadtimsation of chemically reacting systemiournal
of Chemical Physigsl15, 2001.

[14] D.T. Gillespie. Stochastic simulation of chemical &lits. Annual Review of Physical Chemistry
58:35-55, 2007.

[15] J. Hasty, D. McMillen, and J.J. Collins. Engineeredgeircuits.Nature 420(6912):224-230, 2002.

[16] T. Junno, K. Deppert, L. Montelius, and L. Samuelsonnttalled manipulation of nanoparticles with
an atomic force microscopépplied Physics Lettey$6:3627, 1995.

[17] J. Kim. In vitro synthetic transcriptional network®hD thesis, California Institute of Technology, 2006.

[18] J. Kim, K.S. White, and E. Winfree. Construction of arvitro bistable circuit from synthetic transcrip-
tional switchesMolecular Systems Biolog®(68), 2006.

7
[19] R.J. Lipton. DNA solution of hard computational proivis. Science268(5210):542-545, 1995.

[20] V. Noireaux, R. Bar-Ziv, and A. Libchaber. Principlefsoell-free genetic circuit assemblproceedings
of the National Academy of Scienc&80(22):12672-12677, 2003.

[21] P.W.K. Rothemund. Folding DNA to create nanoscale seamd pattern®ature 440(7082):297-302,
2006.

[22] P.W.K. Rothemund, N. Papadakis, and E. Winfree. Alidponic self-assembly of DNA Sierpinski trian-
gles.PL0S Biology2(12):e424, 2004.

[23] P.W.K. Rothemund and E. Winfree. The program-size dewity of self-assembled squares (extended
abstract). IMCM Symposium on Theory of Computipgges 459—-468, 2000.

[24] R. Schulman and E. Winfree. How crystals that sense aspand to their environments could evolve.
Natural Computing (onling)2007.

[25] N.C. Seeman. DNA in a material worl®lature 421(6921):427-31, 2003.

[26] W.M. Shih, J.D. Quispe, and G.F. Joyce. A 1.7-kilobasgle-stranded DNA that folds into a nanoscale
octahedronNature 427(6975):618-621, 2004.

[27] J. von NeumannThe Theory of Self Reproducing Automadtmiversity of Illinois Press, 1966.

[28] H. Wang. Proving theorems by pattern recognitio@dmmunications of the ACN3(4):220-234, 1960.
[29] E. Winfree.Algorithmic Self-Assembly of DNA&RhD thesis, California Institute of Technology, 1998.
[30] E. Winfree. Simulations of computing by self-assemilYMACS: DNA-Based Computers998.

[31] E. Winfree. Self-healing tile sets. In Junghuei Cheatd¢ha Jonoska, and Grzegorz Rozenberg, editors,
Nanotechnology: Science and Computatipages 55—78, Berlin Heidelberg, 2006. Springer-Verlag.

[32] E. Winfree and R. Bekbolatov. Proofreading tile setstoEcorrection for algorithmic self-assembly.
In DNA Computing 9pages 126-144, 2004.

[33] S. Wolfram.A New Kind of ScienceNolfram Media, 2002.

[34] B. Yurke and A.P. Mills. Using DNA to power nanostruadst Genetic Programming and Evolvable
Machines4(2):111-122, 2003.

Chapter 2

Complexity of Self-Assembled Shapes

This chapter was published as: David Soloveichik and Erik Winfree, “Complexity of Self-8embled
Shapes,” SIAM Journal on Computing 36 (6): 1544-1569, 2007.

2.1 Abstract

The connection between self-assembly and computatiorestgthat a shape can be considered the output
of a self-assembly “program,” a set of tiles that fit togetteecreate a shape. It seems plausible that the
size of the smallest self-assembly program that builds peskhad the shape’s descriptional (Kolmogorov)
complexity should be related. We show that when using a nati@a shape that is independent of scale, this is
indeed so: in the Tile Assembly Model, the minimal numberisfidct tile types necessary to self-assemble a
shape, at some scale, can be bounded both above and beloménakthe shape’s Kolmogorov complexity.
As part of the proof, we develop a universal constructor lisg tnodel of self-assembly that can execute an
arbitrary Turing machine program specifying how to grow amh Our result implies, somewhat counter-
intuitively, that self-assembly of a scaled-up version shape often requires fewer tile types. Furthermore,
the independence of scale in self-assembly theory appeatay the same crucial role as the independence
of running time in the theory of computability. This leadsate elegant formulation of languages of shapes
generated by self-assembly. Considering functions fraretbings to shapes, we show that the running-time
complexity, with respect to Turing machines, is polynotyiafuivalent to the scale complexity of the same
function implemented via self-assembly by a finite set eftylpes. Our results also hold for shapes defined
by Wang tiling — where there is no sense of a self-assemblgga®— except that here time complexity
must be measured with respect to non-deterministic Turiaghimes.

2.2 Introduction

Self-assembly is the process by which an organized streicam spontaneously form from simple parts. The
Tile Assembly Model [21, 22], based on Wang tiling [20], falizes the two-dimensional self-assembly of
square units called “tiles” using a physically plausiblstasiction of crystal growth. In this model, a new tile
can adsorb to a growing complex if it binds strongly enouggctof the four sides of a tile has an associated
bond type that interacts with a certain strength with maiglsides of other tiles. The process of self-
assembly is initiated by a single seed tile and proceedsheiaéquential addition of new tiles. Confirming
the physical plausibility and relevance of the abstractgimple self-assembling systems of tiles have been
built out of certain types of DNA molecules [23, 15, 14, 12].1Dhe possibility of using self-assembly for
nanofabrication of complex components such as circuitdbas suggested as a promising application [6].
The view that the “shape” of a self-assembled complex caroheidered the output of a computational
process [2] has inspired recent interest [11, 1, 3, 9, 4]. I&Mhiwas shown through specific examples that
self-assembly can be used to construct interesting shagepaiterns, it was not known in general which
shapes could be self-assembled from a small number of plestyUnderstanding the complexity of shapes
is facilitated by an appropriate definition of shape. In owdel, a tile system generates a particular shape

9

if it produces any scaled version of that shape (Section 2[#h)s definition may be thought to formalize
the idea that a structure can be made up of arbitrarily snedgs, but more importantly this leads to an
elegant theory that is impossible to achieve without igmgprscale. Computationally, it is analogous to
disregarding computation time and is thus more appropaisigenotion of output of aniversalcomputation
process. Using this definition of shape, we show (Section 2.5) thaafor shape, if Ksa(ﬁ) is the minimal
number of distinct tile types necessary to self-assempthen i, (5) log K, (S) is within multiplicative
and additive constants (independent®fof the shape’s Kolmogorov complexity. This theorem is @av
by developing a universal constructor [19] for self-asslymhich uses a program that outputs a fixed size
shape as a list of locations to make a scaled version of thgegt&ection 2.6). This construction, together
with a new proof technique for showing that a tile set prodLecanique assembljocal determinisrjy might

be of independent interest. Our result ties the computati@shape and its self-assembly, and, somewhat
counter-intuitively, implies that it may often require femtile types to self-assemble a larger instance of a
shape than a smaller instance thereof. Another consequérice theorem is that the minimal number of
tile types necessary to self-assemble an arbitrary scafimgshape is uncomputable. Answering the same
guestion about shapes of a fixed size is computable but NPletajf].

The tight correspondence between computation (ignoring)tiand self-assembly (ignoring scale) sug-
gests that complexity measures based on time (for compuojaind on scale (for self-assembly) could also
be related. To establish this result, we consider “prograyief tile sets that will grow a particular member
of a family of shapes, dependent upon input informationgme an initial seed assembly. We show that,
as a function of the length of the input information, the nembf tiles present in the shape (a measure of
its scale) is polynomially related to the time required fanaing machine to produce a representation of the
same shape. Furthermore, we discuss the relationship detveanplexities for Wang tilings (in which the
existence of a tiling rather than its creation by self-addgns of relevance) and for self-assembly, and we
show that while the Kolmogorov complexity is unchanged,gbale complexity for Wang tilings is polyno-
mially related to the time fonon-deterministi@uring machines. These results are presented in Section 2.7

2.3 The Tile Assembly Model

We present a description of the Tile Assembly Model based atvétnund and Winfree [11] and Rothe-
mund [9]. We will be working on & x Z grid of unit square locations. TlrectionsD = {N, E, S, W} are
used to indicate relative positions in the grid. Formaheytare function&xZ — Zx7Z: N(i,j) = (i,j+1),
E(i,7) = (i4+1,5),5(,j) = (i,j—1),andW (i, j) = (i—1, 7). The inverse directions are defined naturally:
N~=Y(i,5) = S(i,4), etc. Let® be a set obond types A tile type @ is a 4-tuple(oy, op, 05, 01) € X4
indicating the associated bond types on the north, eadt),samd west sides. Note that tile types are oriented,
S0 a rotated version of a tile type is considered to be a éiffitile type. A special bond typeull represents
the lack of an interaction and the special tile typepty = (null, null, null, null) represents an empty
space. IfT" is a set of tile types, tle is a pair(@, (i, 7)) € T x Z? indicating that locatiorti, j) contains the
tile typeld. Given the tilet = (@, (7, j)), type(t) =@ andpos(t) = (i, j). Furtherpondp ([0), whereD € D,
is the bond type of the respective siddibfandbondp (t) = bondp(type(t)). A configuration is a set of
non-empty tiles, with types fronil’, such that there is no more than one tile in every locatioy) € Z x Z.
For any configuratiom, we write A(4, j) to indicate the tile at locatiof, j) or the tile (empty, (i, 7)) if
there is no tile inA at this location.

A strength function g : ¥ x ¥ — Z, wherenull € ¥, defines the interactions between adjacent tiles:
we say that a tile; interacts with its neighbor, with strengthl'(¢1,¢2) = ¢(o,0’) whereo is the bond
type of tilet; that is adjacent to the bond typé of tile t,.! Thenull bond has a zero interaction strength

*The production of a shape of a fixed size cannot be considbesduitput of a universal computation process. Whether @&tsal
process will output a given shape is an undecidable questibrereas this can be determined by exhaustive enumeratitreiTile
Assembly Model. Thus it is clear that the connection betwi€éeimogorov complexity and the number of tile types we obtaiour
main result (Section 2.5) cannot be achieved for fixed-ssladges: this would violate the uncomputability of Kolmagocomplexity.

tMore formally,

D(tr,ta) = g(bondp—1(t1),bondp(t2)) if 3D € D s.t.pos(t1) = D(pos(t2));
L52)= 1 0 otherwise.

10

(i.e.,Vo € %, g(null, o) = 0). We say that a strength functiondgagonalif it is non-zero only forg(c, o’)
such thatr = ¢’. Unless otherwise noted, a tile system is assumed to havegamhl strength function.
Our constructions use diagonal strength functions withréimge{0, 1,2}. We say that a bond type has
strength g(o, o). Two tiles arebondedif they interact with a positive strength. For a configuratit, we
use the notatioli 5} (¢) = I'(t, A(D(pos(t)))).* For L € D we definel'{ (t) = >, T (0).

A tile systemT is a quadrupléT’, ¢, g, 7) whereT is a finite set of non-empty tile types, is a special
seed tilé with type(t,) € T, g is a strength function, and is the threshold parameter. Self-assembly is
defined by a relation between configurations. Suppbsad B are two configurations, andis a tile such
that A = B except atpos(t) and A(pos(t)) = null but B(pos(t)) = t. Then we writeA —r B if
I'4(t) > 7. This means that a tile can be added to a configuration iffuheaf its interaction strengths with
its neighbors reaches or exceeds he relation—. is the reflexive transitive closure ef .

Whereas a configuration can be any arrangement of tiles éoatssarily connected), we are interested in
the subclass of configurations that can result from a sekfably process. Formally, the tile system and the
relation—. define the partially ordered seta$semblies Prod(T) = {A s.t. {t;} —% A}, and the set of
terminal assemblies Term(T) = {A € Prod(T) andfiB # A s.t. A —% B}. Atile systemT uniquely
producesA if VB € Prod(T), B —% A (which impliesTerm(T) = {A}).

An assembly sequencd of T is a sequence of pai(s,,, t,) whereAdy = {to} = {ts} andA4,,_1 —T
A, = A,—1 U{t,}. Here we will exclusively consider finite assembly sequencé a finite assembly
sequenceﬁT is implicit, A indicates the last assembly in the sequence.

The tile systems used in our constructions have 2 with the strength function ranging ovéo, 1, 2}.

It is known thatr = 1 systems with strength function ranging o{ér, 1} are rather limited [11, 9]. In our
drawings, the bond type may be illustrated by a combination of shading, various hieg and symbols.
Strength-2 bond types will always contain two dots in thepresentation. All markings must match for two
bond types to be considered identical. For example, thérmamd type of the following tile has strength 2
and the others have strength-1.

N
oW[OE]
gs

The constructions in this paper do not use strength-0 bopelstyother than irmptytiles); thus, there is
no confusion between strength-1 and strength-0 bond types-strength interactions due to mismatches
between adjacent tiles do occur in our constructions.

2.3.1 Guaranteeing Unique Production

When describing tile systems that produce a desired asgemdlwould like an easy method for showing
that this assembly is uniquely produced. While it might bgyeta find an assembly sequence that leads to
a particular assembly, there might be many other assemblyesees that lead elsewhere. Here we present
a property of an assembly sequence that guarantees thassbmlaly it produces is indeed the uniquely
produced assembly of the tile system.

Rothemund [9] describes the deterministic-RC propertyrofssembly that guarantees its unique pro-
duction and that is very easy to check. However, this prggsrsatisfied only by convex (in the sense of
polyaminos) assemblies and thus cannot be directly invaltezh making arbitrary shapésA more general
poly-time test for unique production was also shown by Ratined [9], but it can be difficult to prove that
a particular assembly would satisfy this test. On the otl@dhthe notion of locally deterministic assembly
sequences introduced here is easily checkable and suffiorethe constructions in this paper.

Definition 2.3.1. For an assembly sequenEeNe define the following sets of directions Yar j € Z, letting
t=A(i,j):

“Note thatt # A(pos(t)) is a valid choice. In that cagey} (¢) tells us howt would bind if it were in A,

TWhile having a single seed tile is appropriate to the conifylediscussion of the main part of this paper, it is useful émsider
whole seed assembliggnade up of tiles not necessarily i) when considering tile systems capable of producing maltghapes
(Section 2.7.5).

fAdditionally, assemblies satisfying the deterministic-Rroperty must have no strength-0 interactions betweaghhering non-
empty tiles. However, such interactions are used in ourtooctson.

11
o inputsidesg(t) ={DeDstt=t,andl'3" (t,) > 0},
o propsidesg(t) ={DeDstD e inputsidesg(A(D(pos(t))))},
D termsidesg(t) =D-— inputsidesg(t) - propsidesg(t).

Intuitively, inputsidesare the sides with which the tile initially binds in the pres®f self-assembly; these
sides determine its identitypropsidespropagate information by being the sides to which neighigptiles
bind. termsidesare sides that do neither. Note that by definitgnptytiles have foutermsides

Definition 2.3.2. Afinite assembly sequen&e)fT = (T,1s, g, 7)is calledlocally deterministicif Vi, j € Z,
lettingt = A(4, j),
r4 | (t)<rt

inputsidesg(t

2. Vt' sit.type(t’) € T, pos(t') = pos(t) buttype(t') # type(t),

/
Fg—propsidesg(t) (t) <T

We allow the possibility ok in property (1) in order to account for the seed andbty tiles. Intuitively,
the first property says that when a new tile binds to a growssgembly, it binds “just barely.” The second
property says that nothing can grow from non-propagatidgssexcept “as desired.” We say tfais locally
deterministic if there exists a locally deterministic aabty sequence for it.

Itis clear that ifA'is a locally deterministic assembly sequenc&othenA € T'erm(T). Otherwise, the
empty tile in the position where a new (non-empty) tile can be addetiwould violate the second property.
However, the existence of a locally deterministic assersbfjuence leads to a much stronger conclusion:

Theorem 2.3.1.1f there exists a locally deterministic assembly sequeﬁcxéT thenT uniquely produces
A.

Proof. See Appendix 2.8.1. O

2.4 Arbitrarily Scaled Shapes and Their Complexity

In this section, we introduce the model for the output of thké-assembly process used in this paper. £et
be a finite set of locations di x Z. The adjacency grapfi(.S) is the graph orb defined by the adjacency
relation where two locations are considered adjacent i @me directly north/south, or east/west of one
another. We say thét is acoordinated shapeif G(.S) is connected. The coordinated shape of assembly
Alis the setS4 = {pos(t) s.t.t € A}. Note thatS, is a coordinated shape becauseonstitutes a single
connected component.

For any set of locationS, and any € N, we define a-scaling of Sas

5 =A{(0,) st.(li/el, [i/c]) € S}

Geometrically, this represents a “magnification’by a factorc. Note that a scaling of a coordinated shape
is itself a coordinated shape: every nodefS) gets mapped to @&-node connected subgraph Gf S¢)
and the relative connectivity of the subgraphs is the santfeeasonnectivity of the nodes 6#(S). A parallel
argument shows that §°¢ is a coordinated shape, then saoSisWe say that coordinated shapgsand S,
arescale-equivalentf S¢ = S¢ for somec,d € N. Two coordinated shapes aranslation-equivalent if
they can be made identical by translation. We wfite= S, if S§ is translation-equivalent t8§ for some
¢,d € N. Scale-equivalence, translation-equivalence, &ndre equivalence relations (Appendix 2.8.2).
This defines the equivalence classes of coordinated shaples®. The equivalence class containifgs
denotedS and we refer to it as thehapeS. We say thatS is theshape of assemblyd if S, € S. The

*We say “coordinated” to make explicit that a fixed coordinggstem is used. We reserve the unqualified term “shape” fenwh
we ignore scale and translation.

12

view of computation performed by the self-assembly proesgwused here is the production of a shape
as the “output” of the self-assembly process, with the ustdeding that the scale of the shape is irrelevant.
Physically, this view may be appropriate to the extent thtysical object can be constructed from arbitrarily
small pieces. However, the primary reason for this view & there does not seem to be a comprehensive
theory of complexity of coordinated shapes akin to the thea develop here for shapes ignoring scale.
Having defined the notion of shapes, we turn to their desoript complexity. As usual, the Kolmogorov
complexity of a binary string with respect to a universal Turing machitiés Ky (z) = min {|p| s.t.U(p) = z}.
(See the exposition of Li and Vitanyi [13] for an in-depthalission of Kolmogorov complexity.) Let us fix
some “standard” universal machibe We call the Kolmogorov complexity of a coordinated sh&pe be
the size of the smallest program outputting it as a list oatmms*

K(S)=min{|s|] s.t.U(s) = (S)}.
The Kolmogorov complexity of a shapgis:

K(S) = min {|s| s.t.U(s) = (S) for someS € S}

We define theile-complexity of a coordinated shap® and shape, respectively, as:

n S.t. 3 a tile systenil' of n tile types that uniquely produces 3s-

Kyo(S) = min { semblyA andS is the coordinated shape df

K (5*) _ . [ns.t.Jatile systeniT of n tile types that uniquely produces as-
sal2) = M semblyA andS is the shape oft

2.5 Relating Tile-Complexity and Kolmogorov Complexity

The essential result of this paper is the description of éhetionship between the Kolmogorov complexity
of any shape and the number of tile types necessary to safvdde it.

Theorem 2.5.1. There exist constants), by, a1, b; such that for any shapé,
aoK (S) + by < K,,(S)log K, (S) < a1 K(S) + b;. (2.1)

Note that since any tile system oftile types can be described I6y(n log n) bits, the theorem implies
there is a way to construct a tiling system such that asynapibt at least a constant fraction of these bits is
used to “describe” the shape rather than any other aspeut ¢ifing system.

Proof. To see that K (S) + by < K,,(S5)log K ,,(5), realize that there exists a constant size progsgam
that, given a binary description of a tile system, simulidteself-assembly, making arbitrary choices where
multiple tile additions are possible. If the self-assempigcess terminates,, outputs the coordinated
shape of the terminal assembly as the binary encoding ofighefllocations in it. Any tile systerT of

n tile types with any diagonal strength function and any thedd~ can be representédby a stringdr of
4n[log4n| 4 16n bits: For each tile type, the first of which is assumed to bestresl, specify the bond types
on its four sides. There are no more thianbond types. In addition, for each tile ty@lespecify for which of
the 16 subsets. C D, >~ ., g(bondp(@)) > 7. If T is atile system uniquely producing an assembly that
has shapé, thenK(S) < |psadr]|. The left inequality in eq. 2.1 follows with the multiplide¢ constant

ap = 1/4 — ¢ for arbitrarye > 0.

*Note thatK (.S) is within an additive constant dk¢; (x) wherex is some other effective description 6f such as a computable
characteristic function or a matrix. Since our results angtotic, they are independent of the specific representahoice. One
might also consider invoking a two-dimensional computirgchine, but it is not fundamentally different for the samasan.

fNotation (-) indicates some standard binary encoding of the object(#jeibrackets. In the case of coordinated shapes, it means
an explicit binary encoding of the set of locations. Integéuples, or other data structures are similarly given Erapplicit encodings.

¥Note that this representation could also be used in the hasag¢gative bond strengths are allowed so long as the #tréngtion
is diagonal.

13

We prove the right inequality in eq. 2.1 by developing a cartdton (Section 2.6) showing how for any
programs s.t. U(s) = (S), we can build a tile systerT of 151()';“1)‘ + b tile types, wheré is a constant
andp is a string consisting of a fixed progragm, ands (i.e., [p| = |pss| + |s]), that uniquely produces an
assembly whose shapeSs Programps, and constant are both independent ¢f. The right inequality in

eg. 2.1 follows with the multiplicative constamt = 15 + ¢ for arbitrarye > 0. O

Our result can be used to show that the tile-complexity opskas uncomputable:
Corollary 2.5.1. K, of shapes is uncomputable. In other words, the followingleage is undecidable:
L= {(l,n) s.t.l = (S) for someS and K, (S) < n} .

Languagd. should be contrasted with = {(I,n) s.t.l = (S) andK,(S) < n} which is decidable (but
hard to compute in the sense of NP-completeness [1]).

Proof. We essentially parallel the proof that Kolmogorov compigis uncomputable. If. were decidable,
then we could make a program that compukgs (S) and subsequently uses Theorem 2.5.1 to compute an

effective lower bound foi((S). Then we can construct a progranthat givenn outputs some coordinated
shapeS (as a list of locations) such thdf'(S) > n by enumerating shapes and testing with the lower
bound, which we know must eventually exceedBut this results in a contradiction sinpén) is a program

outputtingS € S and sok (S) < |p| + [logn]. But for large enough, |p| + [logn] < n. O

2.6 The Programmable Block Construction

2.6.1 Overview

The uniquely produced terminal assemblyof our tile system logically will consist of square “blocksf

c by c tiles. There will be one block for each location.$h Consider the coordinated shape in Fig. 2.1(a).
An example assemblyl is graphically represented in Fig. 2.1(b), where each sjoapresents a block
containingc? tiles. Self-assembly initiates in theeed blockwhich contains the seed tile, and proceeds
according to the arrows illustrated between blocks. Thikefe is an arrow from one block to another, it
indicates that the growth of the second bloclgtawth blocR is initiated from the first. A terminated arrow
indicates that the block does not initiate the self-assgrabhn adjacent block in that direction — in fact,
the boundary between such blocks consists of strengthefsictions (i.e., mismatches). Fig. 2.1(c) describes
our nomenclature: an arrow comes into a block on its inpu,adrows exit on propagating output sides, and
terminated arrows indicate terminating output sides. Baeldlock has four output sides, which can be either
propagating or terminating. Each growth block has one immat three output sides, which are also either
propagating or terminating. The overall pattern of bondifithe finished target assemhlyis as follows.
Tiles on terminal output sides are not bound to the tiles eretfijacent terminal output side (i.e., there is no
bonding along the dotted lines in Fig. 2.8(a)), but all otheighboring tiles are bound. We will program the
growth such that terminating output sides abut only otheniteating output sides armpty tiles, and input
sides exclusively abut propagating output sides and vicgave

The input/output connections of the blocks form a spanniag tooted at the seed block. During the
progress of the self-assembly of the seed block, a computdtprocess determines the input/output rela-
tionships of the rest of the blocks in the assembly. Thisrimftion is propagated from block to block during
self-assembly (along the arrows in Fig. 2.1(b)) and dessribhe shape of the assembly. By following the
instructions each growth block receives in its input, theckldecides where to start the growth of the next
block and what information to pass to it in turn. The scaliactbrc is set by the size of the seed block. The
computation in the seed block ensures thit large enough that there is enough space to do the necessary
computation within the other blocks.

We present a general construction that represents a Turiivgrsal way of guiding large scale self-
assembly of blocks based on an input progranin the following section, we describe the architecture of
seed and growth blocks on which arbitrary programs can beu¢sd. In Section 2.6.3 we describe how
programp can be encoded using few tile types. In Section 2.6.4 we dsthe programming af that is
required to grow the blocks in the form of a specific shape anthd the scaling factar. In Section 2.6.5
we demonstrate that the target assembig uniquelyproduced.

a) b)

(¢
~

Teminating output side

seed block

=
o
o
D
«Q
g
3

Teminating output side

3pIs indino

Input side

Figure 2.1: Forming a shape out of blocks: a) A coordinategels. b) An assembly composed oty ¢
blocks that grow according to transmitted instructionshsth@t the shape of the final assemblysisArrows
indicate information flow and order of assembly. (Not drawsdale.) The seed block and the circled growth
block are schematically expanded in Fig. 2.2. c) The nonagui describing the types of block sides.

a) b)

output
o g

ut
put

out
no
‘TOSTO™
ndino

wsud
:aseyd puooss

output
...001S01...
‘TOSTO™
ndino

halt = |
i 2= [Ev >
computation 3 = computation
> I | a—
25 T
> o X
< X = < halt
...Q11S01... ...011S01...
nput output

Figure 2.2: Internal structure of a growth block (a) and daledk (b)

2.6.2 Architecture of the Blocks
2.6.2.1 Growth Blocks

There are four types of growth blocks depending upon whexerut side is, which will be labeled by

—, |, or <. The internal structure of agrowth block is schematically illustrated in Fig. 2.2(ah€lother
three types of growth block are rotated versions of thdock. The specific tile types used forfagrowth
block are shown in Fig. 2.3, and a simple example is presenteiy. 2.4. The first part is a Turing machine
simulation, which is based on [18, 11]. The machine simdl&ea universal Turing machine that takes its
input from the propagating output side of the previous blotkis TM has an output alphabéb, 1, 5}3
and an input alphabdt000), (111)} on a two-way tape (with\ used as the blank symbol). The output of
the simulation, as 3-tuples, is propagated until the diafomhe diagonal propagates each member of the
3-tuples crossing it to one of the three output sides, likeisnpseparating the colors of the spectrum. This
allows the single TM simulation to produce three separategs targeted for the three output sides. TKé “
symbol in the output of the TM simulation is propagated like bther symbols. However, it acts in a special
way when it crosses the boundary tiles at the three outpes sifithe block, where it starts a new block. The
output sides that receive th&™ symbol become propagating output sides and the outpus sft do not
receive it become terminating output sides. In this way,Ttesimulation decides which among the three
output sides will become propagating output sides, and wmfiatmation they should contain, by outputting
appropriate tuples. Subsequent blocks will use this infdiom as a program, as discussed in Section 2.6.4.

15

a) Borders and basic info propagating tiles:
Vz € {0,1, A} we add:

north-west: north: north-east:
BT =T 5T BT
B B B B||B B B B
z S B
west: east
B B B B B
z ofla dls s e zlls S
B B B B B ?
input-west: input: input-east:
B T ‘=°
5 B B B B B
B1 z] B1
T
Vertical and horizontal information propagation below thejy y
bottom-right/top-left diagonalvz, y € {0, 1, S, A}*: =
T
and above this diagonatz, y € {0, 1, S, A}: vy
X
b) Tile types for the diagonal:
A A
TM section diagonal: © D)D) Alle A
A A | JDdl,
A B
Initiation of TM diagonal (to bind to the north-east corniég)tand to delay B A
the upward continuation of the diagonal by one (throughstbend): I
g
The prism diagonalyw, =, y, z € {0,1, S, A}3: " A
TYyz Yz
In the row where the Turing machine halts, thesymbol is propagated from |y Al
the left. This initiates the “prism” diagonal with the folling tile:
- -
Termination of the prism diagonal (to bind to the north-waster tile): A
B

¢) TM Simulation tile types:

S

For every symbok in {0, 1, S, \}® the fol- o
lowing tile types propagate the tape contents: | R il

gs gs gs
For every symbok and every state we add dllg o For every symbok and every state we add e o
the following “read” tile types: R R the following “copy” tile type: c

s s qs
If in state q, reading symbok, U writes s, s If in state q, reading symbok, U writes s, !
goes to statg’, and moves the head right, we |e W ¢’ goes to state’, and moves the head left, we |¢’ W €|
add the following “write” tile type: . qs . add the following “write” tile type: . qs .
To startU in stateqy we add the following Y ; ; - 7
. N K q0 If in state g, reading symbok, U halts writ- s
ps(:ﬁ:tt ;{liv%gﬁy t\a’g'?, psl)éllr?'lebsoltr}rewitr;;gi ?’E;he B ing s’ then we add the following “halting” tile [\ g X
block: 51, type: 95 4

Figure 2.3: Growth block tile types. All bond types in which a block type symbol is amit have the block

type symbol 9” to prevent inadvertent incorporation of tiles from a difat block type. We assume that

in bond types above, a single symhole {0,1,5,\} is the same as the tuplétzz). The tile types for

other growth block types are formed by 90, 180, 270 degresionis of the tile types of thé block where

the block type symbol$71, |, <, —} are replaced by a corresponding 90, 180, 270 degree rotatithre
BT E

BT§

lm
lm

symbol: i.e.

(T growth block)= (— growth block). Looking at the border tile types, note that

external 5|des of tiles on output sides of blocks have blgpk symbols compatible with the tiles on an input
side of a block. However, tiles on output sides cannot binithécatiles on an adjacent output side because of
mismatching block type symbols.

16

Teminating output side

BT | AT o7 07 T T T XT T XT T XT BT x
B BB BB BB BB BB BB BB BB BB BB BB BB B
oBlg | X 0 0 A A A A A A A A B
X 0 0 DY X DY X DY Y Y X B
AN AN AR AN A
A A A B
X X p) B
11 11 11 11 L
B A A A B @
B X DY X B ¢ B 9
L1 Sls Sls Sls sls S8 =
B xlox x| BB =
B X X D) B S
2 A AN AN AR A A &
3l B A A A B]
‘5[B Y by X B g °
s 2 AR AN AN AN AN A8 o
ol B A A A B |2 3
ERNE X X X B |8
> A AN AR AN A=
£ B A A A B |<Q
S B Y by X B |2
NP AX AN AN AN AlE
El B A A A B | S J
QB X X X B o
A AR E AR AR AR A A AR AR AR AR A Al D
B A | @01 108 | A A A A A A A B =
B P q 105 X P X B X Y Y Y B Q
A e ele C ele ele ele ele ele [DoD2DiDi] AN AN AN A °
=0
B A 10 | 108 A by A A A A A B D
B Py 0 | 105 | A X X X X X X B s
P ele ele Railarw ele ele ele ele ele ele AN AN AN A > _|
B A 0 | Jg0Xg] A A by A Y by by B =
B X 0 doX X Py P Py X by Y B .
A ele ele ele C ele ele ele ele ele ele [DD.DiD,] Bl A El
B by 0 qo A by A A A A A A c
B X 0 dox Y X Y X P Py P Py D
5 BB BB BB BB BB BB BB BB BB BB BB BB B S
Bl L Al O LSt AT AT QT 2, A, A LAL LAL L BT _J
BT T AT (9] ST AT T AT T AT AT AT ATTAT AT T BT
Propagating output side of adjacent block I
- —

Figure 2.4: A trivial example of & growth block. Here, the TM makes one state transition antshalll
bond types in which a block type symbol is omitted have thelbtgpe symbol 1”. We assume that in bond
types above, a single symhok {0, 1, S, \} is the same as the tupletzz). The natural assembly sequence
to consider is adding tiles row by row from the south side (lck a new row is started by the strength-2
bond).

17
2.6.2.2 Seed Block

The internal structure of the seed block is schematicalyywshin Fig. 2.2(b). It consists of a small square
containing all the information pertaining to the shape tbbi# (the seed frame), a larger square in which this
information is unpacked into usable form, and finally four $ivhulations whose computations determine the
size of the seed block and the information transmitted togtiogvth blocks. For simplicity we first present
a construction without the unpacking process @hapleseed block), and then we explain the unpacking
process separately and show how it can be used to createllticerigtruction. The tile types used for the
simple seed block are presented in Fig. 2.5 and an exampieeis i Fig. 2.6. While growth blocks contain

a single TM simulation that outputs a different string toteatthe three output sides, the seed block contains
four identical TM simulations that output different strings to each of tharfoutput sides. This is possible
because the border tile types transmit information sefelgti the computation in the seed block is performed
using 4-tuples as the alphabet in a manner similar to thethrblecks, but on each side of the seed block
only one of the elements of the 4-tuple traverses the boAdewith growth blocks, if the transmitted symbol

is “S,” the outside edge initiates the assembly of the adjoiningkb The point of having four identical TM
simulations is to ensures that the seed block is squareewalgtowth block uses the length of its input side to
set the length of its output sides (via the diagonal), the §éeck does not have any input sides. (Remember
that it is the seed block that sets the size of all the blocks.)

The initiation of the Turing machine simulations in the sdsack is done by tile types encoding the
programp that guides the block construction. The natural approagtraeide this input is using 4 rows
(one for each TM) of unique tiles encoding one bit per tileillastrated in Figs. 2.5 and 2.6. However, this
method does not result in an asymptotically optimal enagpdin

2.6.3 The Unpacking Process

To encode bits much more effectively we follow Adleman ef2iland encode on the orderloig n/ log logn
bits per tile wheren is the length of the input. This representation is then ukeddnto a one-bit-per-tile
representation used by the TM simulation. Adleman et aléshod require®(n/logn) tiles to encode:
bits, leading to the asymptotically optimal result of Therar2.5.1.

Our way of encoding information is based on Adleman et al. 8} modified to work in ar = 2 tile
system (with strength function ranging oV, 1, 2}) and to fit our construction in its geometry. We express
a lengthn binary string using a concatenation [pf/k] binary substrings of length, padding withOs if
necessary. We chooseék such that it is the least integer satisfying-- < 2%, Clearly,2F < 102%- See
Fig. 2.7 for the tile types used in the unpacking for the ndrih simulation and for a simple unpacking
example (which for the sake of illustration uges- 4).

Let us consider the number of tile types used to encode anaiclripen bit input string for a single TM
simulation (i.e., north). There atdn/k| < 2(@1 = 2[o5 eaTog s | Unique tile types in each seed
row. This implies that there exists a constarguch tha2[n/k] < 105% + h for all n. We need at most
28 4 2F=1 ... 4 4 < 2K+ “extract bit” tile types and®*~! + 28=2 ... + 4 < 2F “copy remainder”
tile types. To initiate the unpacking of new substrings wed® tile types. To keep on copying substrings
that are not yet unpacked we ne2@*) tile types. The quantity of the other tile types is indeperids
n, k. Thus, in total, to unpack the bit input string for a single TM simulation we need no morertha
ety b 28 -2k 42k 4 9(2F) <157 4 O(1) tile types. Since there areTM simulations in the
seed block, we nee@DlOgn + O(1) tile types to encode and unpack théit input string.

If the seed block requires only one propagating output $ften a reduced construction using fewer tile
types can be used: only one side of the seed frame is speeifidaynly one direction of unpacking tiles are
used. A constant number of additional tile types are usedl toufi the remaining three sides of the square.
These additional tile types must perform two functions.strithey must properly extend the diagonal on
either side of the unpacking and TM simulation regions. labsence of the other three unpacking and TM
simulation processes, this requires adding strength-gdtrat allow the diagonal to grow to the next layer.
Second, the rest of the square must be filled in to the coriaet This can be accomplished by adding tiles
that extend one diagonal to the other side of the seed frasieg(the same logic as a construction in [11].)

*We can assume that our universal TM U treats trailisgust as\s

18

a) Borders and half-diagonals:

B wl B |[™T7=
The borders: 2 iB Bl[f zllB B
Vw,z,y,z € {0,1,\}: B wayz || B yl

B -ST- B [wzSz

BT BT B
Corner tile types: £ BB B|E BB E

B B Bl Bl

A A € €
The four half-diagonals to separate the TM simulations anf, elle A le Al e
augment the TM tape with blanks: e e A A

b) Seed frame for program

pi Y aFT | o [Tt
TM seed frame: for every symbpl;: i+l 4o Pl oblipi o ©

o P Di dtl,y

If p; is “U” then the corresponding bond type is strength 2, startiegll simulation
with the head positioned at that point reading

A 160 im o § A
Corners of the seed frame: lgt, = |p|: 0 A imts AP O im
Jimglt A A g0,

We make the north-west corner the seed tile of our tile system

[4)
To fill in the middle: © ©
Q
¢) TM Simulation tile types (north only):
S
For every symbok in {0, 1, S, A}* the fol- o
lowing tile types propagate the tape contents: R
qs qs
For every symbok and every state we add e dllg o
the following “read” tile types: R R
S S
If in state g, reading symbok, U writes s’, s If in state g, reading symbok, U writes s’, s
goes to statg’, and moves the head left, we |¢' W € goes to statg’, and moves the head right, we |e W ¢’
add the following “write” tile type: qs add the following “write” tile type: qs
To startU in statego we add the following ®—=® - ! 8
: 1 qo\ If in state g, reading symbok, U halts writ- wl
“ Sl hich pl he h h : :
o e o v i e ¢ ng " = (i) e e add h oo |5 115
p y! U “halting” tile type, which also starts the border: | _ ¢s

block:

Figure 2.5: Seed block tile types without unpacking. All daypes in which a block type symbol is omitted
have the block type symbot¥” to prevent inadvertent incorporation of tiles from a ditfat block type. We
assume that in bond types above, a single symb®HK0, 1, S, A} is the same as the tupletzax). Note that

as with output sides of growth blocks, the external sidesetidlock border tiles have block type symbols
compatible with the tiles on an input side of a growth blockeThree other TM simulations consist of tile
types that are rotated versions of the north TM simulati@mwsh The halting tile types propagate one of the
members of the tuple on which the TM halts, analogous to thddydile types. The bond types of TM tile
types have a symbol fro®® which indicates which simulation they belong to (omittedad).

19

BT AT AT AT 0T [V AT AT AT BT
B BB BB BB BBHBB BB BB BB B|B B
B A A A o710, 1 0105 A A A B
B A A A q1 010S A A A B
A AN ele ele ele Rqilgiw ele ele ele AN A
B e A\ A 0 qo\ A b e B
B A A 0 qoA A A B
A A A\ ele ele ele ele ele by \ A
B e A 0 o o A e B
B A & 0 § DY B
A A A ts 22 11 0|0 A A A
B d0,? 2 ¢ o P2 B
B § B s 0 (%) (%) 2 B
X S|S0108 U o o oo o0 4 7O
B ? B Pel ol © Q 1 B
B 1 [2) [2) T4 B
L HE 0 o oo oo U 01051,
B ! g X %) %) o °? B
B 2 2] 4] 0 B
A A o]0 11 212 A A A
B A ol o 0 A B
B € €
AN A e : . e A N A
B A A B
B € € B
A AN € e A A
B A -~ o A B
B By A pY 010S | "¢10 A pY A B
B B|B B|B B|B B|B B|B H B|B B|B B|B B|B B
B| AL AL AL 0] 1] AL AL AL B

Figure 2.6: A simple seed block without unpacking showing tlorth TM simulation and the selective
transmission of information through the borders. As shawnly the west side is a propagating output side;
the other three sides are terminating output sides. All kgpéds in which a block type symbol is omitted
have the block type symbot¥.” We assume that in bond types above, a single symt®K0, 1, 5, \} is the
same as the tuplétzzxx). The natural assembly sequence to consider is growing ek fseme first and
then adding tiles row by row from the center (where a new rostasted by the strength-2 bond).

20

a) Unpacking tile types for the north side of the seed frame:

We usen/k coding tiles in the input row, each encoding a binary subgttiv;) i *
of length k. These tiles are interspersed with buffer tiles holding sfbol “«”.
Y0 >i>k/n—1: r o ® o °?

»
2i+2 2i+1f |2i+1 2if

The last tile of the seed row has symb&I™ which indicates the end of the input string.

To initiate the unpacking of new substrings: € {0,1}*~,b € {0,1}:

The following “extract bit” tile types perform the actual pewcking: Vj & e @
{1,...,k =1} ,Voe € {0,1}’ ,b € {0,1}:

The following “copy remainder” tile types pass the remagnbits to the next extrac- |z *
tion:Vj € {2,...,k—1},Vx € {0,1}7:

D D
To copy a single bitin the last step of the unpacking of a sirigsaind after unpacking |, e el
every bit:b € {0, 1}: % b
E3 T
These tile types keep on copying substrings that are noteiaghinpackedvz € * ||z *
{0, 13%: @ x
% U 1 0ox X
Finally, the following tile types propagate the symb®I™, which indicates the end of |« Ullu A A
the input string, and initiate the TM simulation once the arking process finishes: U e U e
b) North unpacking example:
TM simulatior
0 T T 0 0 T 0 T *or] X
e ele ele ele ele ele ele 11 b\
0 1 1 0 0 1 o 01 * U e
0 T T 0 0 T 01 * U
e ele ele ele ele ele 01/01 [k UlUu b\
0 1 1 0 0 o101y * U e
0 T T 0 0 TI0T * U
c ele ele 0|0 101101 *)* U\u A :
0 1 | g1l0g] 0101 * U e output
0 T 10 F[0I01 [¥ U T
& ele 10{10 *Pk 0101j0101 *[* U\U A computation
0 o110 * 0101 * U e -
0 110 * 0101 * U

10{110 * 0101|0101 >*f*+ Ulu A
Q * 0101 * U e
[0 U

3

" seed row

» * $0I0T ¢ * ¢
L 3 22 11 oo A
o0, 0 0t 0ot o 3

terminating output side

seed row
—A—
[
'
-~
==

apis indino

terminating output side

Figure 2.7: The unpacking for the north side of the seed fraag The tile types used. (b) An example
showing the unpacking of the stririg 100101 if £ = 4 for a seed block with up to four propagating output
sides. Note that the unpacking process can be inserted iratadprior to the TM simulation without
modifying other tile types. (inset) Internal structure afesed block with only one propagating output side.

21

Altogether, a seed block with only one propagating outpide sequires onl)l5$ + O(1) tile types. We
will see in the next section that this is sufficient for growny shape.

2.6.4 Programming Blocks and the Value of the Scaling Factor

In order for our tile system to produce some assembly whaseesisS, instructions encoded immust guide
the construction of the blocks by deciding on which side oiolfiblock a new block begins to grow and what
is encoded on the edge of each block. For our purposes, we take,,(s) (i.e., ps, takess as input), where

s is a program that outputs the list of locations in the shéipe,, runss to obtain this list and plans out a
spanning tree over these locations (it can just do a depth-first searchijrsiafrom some arbitrarily chosen
location that will correspond to the seed block he information passed along the arrows in Fig. 2.1(b) is
pgv(t, (4, 7)) which is the concatenation of a program, to be executed within each growth block, and an
encoding of the tree and the locatior{s, j) of the block into which the arrow is heading. When executed,
pab(t, (i, 7)) evaluates to a 3-tuple encodingf (¢, D(i, j)) together with symbol S” for each propagating
output sideD. Thus, each growth block passes (¢, D(i, 7)) to its D' propagating output side as directed
by t. Note that program, in the seed tile must also run long enough to ensurectisdarge enough that the
computation in the growth blocks has enough space to finigihowt running into the sides of the block or
into the diagonal. Nevertheless, the scaling factisrdominated by the building d@fin the seed block, as the
computation in the growth blocks takes omhyiy(|S|).! Since the building of is dominated by the running
time of s, we havec = poly(time(s)).

2.6.5 Uniqueness of the Terminal Assembly

By Theorem 2.3.1 it is enough to demonstrate a locally ddtestic assembly sequence ending in our target
terminal assembly to be assured that this terminal asseishigiquely produced. Consider the assembly
sequenceﬂf in which the assembly is constructbbck by blocksuch that every block is finished before the
next one started and each block is constructed by the nassambly sequence described in the captions to
Figs. 2.4 and 2.6. Itis enough to confirm that in this natusakanbly sequence every tile addition satisfies the
definition of local determinism (Definition 2.3.2). Itis g&e confirm that every tile not adjacent to a terminal
output side of a block indeed satisfies these conditionseiQlttan on a terminal output side of a block (and
onnull tiles) there are ntermsidesevery side is either aimputsideor apropside In our construction, each
new tile binds through either a single strength-2 bond ors$twength-1 bonds (thus condition 1 is satisfied
sincer = 2) such that no other tile type can bind through thiegritsidegcondition 2 is satisfied if the tile
has naermsidey Note that inadvertent binding of a tile type from a diffet®élock type is prevented by the
block type symbols.

Now let's considetermsidesaround the terminal output sides of blocks (Fig. 2.8(a))reH#ock type
symbols come to the rescue again and prevent inadvertedinginLett € A be a tile with atermside(t
can benull). We claim thatvt’ s.t. type(t') € T andpos(t') = pos(t), if I'4 (t') > 0 then

termsides™ (t)

gfpropsidesg(t) (t') < 7 = 2. In other words, ift’ binds on aermsideof ¢, then it cannot bind strongly
enough to violate local determinism, implying we can ignterensides Figure 2.8(a) shows in dotted lines
thetermsideghat could potentially be involved in bonding. Theéeemsidescannot have a strength-2 bond
because symbolS” is not propagated to terminal output sides of blocks. Ttusinding only on a single
termsideof ¢ is not enough. Ca# bind on twotermsidesof t? To do so, it must be in a corner between
two blocks, binding two terminal output sides of differeiddks. But to bind in this way would requiréto
bond to the block type symbol pattérshown in Fig. 2.8(b) (or its rotation), which none of the tijpes in

*We can opt to always choose a leaf, in which case the seed béoglres only one propagating output side. In this case the
multiplicative factora; is 15 + ¢, although the tile set used will depend upon the directiogrofvth from the leaf.

TNote that fewer tham rows are necessary to unpack a string of leng{$ection 2.6.3). Since we can presume thatreads its
entire input and the universal TM needs to read the entiratipppgram to execute it, the number of rows required for tgagcking
process can be ignored with respect to the asymptotics aicdieng factore.

i'[he block type symbol pattern of a tile type consists of theebltype symbols among its four bond types. For instancetilthe

type ”D ;\T has block type symbol patteTn . Tl If two bond types do not have matching block type symbols thieviously they
3
cannot bind.

22

a) ; [%
10T
JI J
JJ 7
b) C) Type oft's
block: seed — T 1
. P ;L . P
—4 et —3 Bt | —3 Bier |— =3 et |1 =1 Gier b
. ; . = — :

Figure 2.8: (a) The target terminal assembly with the dolitezs indicating the edges that hategmsides
with non-null bonds. (b) The block type symbols of adjacéaston twotermsidesof ¢ (west and south in
this case). (c) The block type symbols of adjacent tiles rraside(west side in this case) and arputside
of t. If ¢ is in the seed block o+ growth block, then the north, east, south sides may beghasides If ¢

is in a7 block then the east and south sides may berthetsides|f ¢ is in a| block then the north and east
sides may be thmputsides

our tile system can do. Cahbind on ondermsideand ondnputsideof ¢t? Say theermsideof ¢ thatt’ binds

on is the west side (Fig. 2.8(c)). The tile to the west ofust be on the east terminal output side of a block,
and thus it has symbol” on its east side. S8 must have “~” on the west, and depending on the type of
blockt is in, one of the other block type symbols as shown in Fig.c.8ut again none of the tile types in

our tile system has the necessary block type symbol pattern.

2.7 Generalizations of Shape Complexity

In this work we have established both upper and lower bowrldtmg the descriptional complexity of a shape
to the number of tile types needed to self-assemble the shiisia the standard Tile Assembly Model. The
relationship is dependent upon a particular definition afghthat ignores its size. Disregarding scale in self-
assembly appears to play a similar role as disregarding itintlieeories of computability and decidability.
Those theories earned their universal standing by beingrsiw be identical for all “reasonable” models of
computation. To what extent do our results depend on thé&pkat model of self-assembly? Can one define
a complexity theory for families of shapes in which the abt®écale is the critical resource being measured?
In this section we discuss the generality and limitationswfresult.

2.7.1 Optimizing the Main Result (Section 2.5)

Since the Kolmogorov complexity of a string depends on thigarsal Turing machine chosen, the com-
plexity community adopted a notion of additive equivalenveeere additive constants are ignored. However,
Theorem 2.5.1 includes multiplicative constants as welliclv are not customarily discounted. It might be
possible to use a more clever method of unpacking (Sect@@Yand a seed block construction that reduces

23

the multiplicative constant; of Theorem 2.5.1. Correspondingly, there might be a moreiefft way to
encode any tile system than that described in the proof ahberem, and thereby increage

Recall thats is the program folU producing the target coordinated shapas a list of locations. For
cases where our results are of interest, the scaling factopoly(time(s)) is extremely large, sincgs| is
presumably enormous andmust output every location if. The programs’ that given(s, j) outputs0/1
indicating whethefs contains that location may run much faster thdar large shapes. Can our construction
be adapted to us€ in each block rather tham in the seed block to obtain smaller scale? The problem
with doing this directly is that the scale of the blocks, whiets the maximum allowed running time of
computation in each block, must be set in the seed block. Asualt; there must be some computable time
bound ons’ that is given to the seed block.

For any particular shape, there must be a range of achiepatdeneters: the number of tile types and the
scaling factor. We know that we can obtain scaling fag¢tby using a unique tile type for each location. On
the other extreme is our block construction which allowsaislitain an asymptotically optimal number of
tile types at the expense of an enormous scaling factor.uRrasly there is a gradual tradeoff between the
number of tile types and the scale that can be achieved byge @riile systems. The characterization of this
tradeoff is a topic for future study.

In this vein, an important open problem remains of detemgnower bounds on the scales of shapes
produced by tile systems with an asymptotically optimal bemof tile types. As an initial result of this
kind, consider the following proof that an arbitrarily l@rgcaling factor may need to be used if we stick to
asymptotically optimal tile systems. Consider the cocatid shape that is a rectangle of widttand height
1. Clearly, itis an instance of the following shafea long, thin rectangle that is times as long as it is high.
According to Aggarwal et al. [4], the number of tile typesu@qd to self-assemble a long, thin rectangle that

is n tiles long andk tiles high isQ(Lk/k). This implies that to produce any coordinated instanc af scale
crequiresT| = Q(W) tile types. Now we can define what an asymptotically optintaldystem means

for us by choosing:;, b; and requiring that the number of tile typ@s| satisfy|T'|log |T'| < a1 K (S) + bs.

SinceK (S) = O(logm), it follows through simple algebra that no matter whatb, are, for large enough
m, the scaling factot needs to get arbitrarily large to avoid a contradiction.

2.7.2 Strength Functions

In most previous works on self-assembly, as in this worlergjth functions are restricted with the following
properties: (1) the effect that one tile has on another iskiguthe effect that the other has on the first, i.e.,
g issymmetric g(o,0’) = g(o’,0); (2) the lack of an interaction is normalized to zero, ig€g, null) = 0;

(3) there are no “adverse” interactions counteractingrdtiteractions, i.e.g is non-negative(4) only sides
with matching bond types interact, i.@.is diagonal g(o,0’') = 0if o # o’.

Properties 1 and 2 seem natural enough. Our results areandept of property 3 because the encoding
used for the lower bound of Theorem 2.5.1 is valid for strarighctions taking on negative values. Property
4, which reflects the roots of the Tile Assembly Model in thend/iling model, is essential for the quan-
titative relationship expressed in Theorem 2.5.1: recarkwy Aggarwal et al. [4] shows that permitting
non-diagonal strength functions allows information to beaed more compactly. Indeed, if property 4 is
relaxed then replacing our unpacking process with the nadetfiencoding used in that work and using Ag-
garwal et al.'s lower bound leads to the following form of ®hem 2.5.1: Assuming the maximum threshold
7 is bounded by a constant, there exist constagtsy, a1, by such that for any shapé,

0K (5) + bo < (ng(g))2 < a1 K(3) + by

where K¢ is the tile-complexity when non-diagonal strength funei@re allowed. It is an open question
whether the constant bound ercan be relaxed.

2.7.3 Wang Tiling vs Self-Assembly of Shapes

Suppose one is solely concerned with the existence of a emafign in which all sides match, and not with
the process of assembly. This is the view of classical titimgpry [7]. Since finite tile sets can enforce

24

uncomputable tilings of the plane [8, 16], one might expeetter computational power when the existence,
rather than production, of a tiling is used to specify shapeshis section we develop the notion of shapes
in the Wang tile model [20] and show that results almost idahto the Tile Assembly Model hold. One
conclusion of this analysis is that making a shape “praltyicmnstructible” (i.e., in the sense of the Tile
Assembly Model) does not necessitate an increase in titlgptaxity.

We translate the classic notion of the origin-restrictechgvéiling problent as follows. An(origin-
restricted) Wang tiling systemis a pair(7,t;) whereT is a set of tile types and, is aseed tilewith
type(ts) € T. A configurationA is a valid tiling if all sides match and it contains the seéel tFormally,
Ais avalid tiling if V(i,j) € Z?,D € D, (1) type(A(i,j)) € T, 2)ts € A, (3) bondp(A(i, 7)) =
bondp-1(A(D(i,7))).

Since valid tilings are infinite objects, how can they definédicoordinated shapes? For tile sets contain-
ing theempty tile type, we can define shapes analogously to the Tile Askeltddel. However, we cannot
simply define the coordinated shape of a valid tiling to begéeof locations of non-empty tiles. For one
thing, the set of non-empty tiles can be disconnected, ertilself-assembly where any produced assembly
is a single connected component. So we take the coordinbage:S 4 of a valid tiling A to be the smallest
region of nonempty tiles containing, that can be extended to infinity ynpty tiles. Formally,S 4 is the
coordinated shape of the smallest subsed diiat is a valid tiling containing. If S 4 is finite, then it is the
coordinated shape of valid tiling A.t ShapeS is theshape of a valid tiling A if S, € S.

Produced assemblies of a tile systém ¢, g, 7) are not necessarily valid tilings of Wang tiling system
(T, ts) because the Tile Assembly Model allows mismatching sidesthEr, valid tilings of(T', ¢s) are not
necessarily produced assembliegBft, g, 7). Even if one considers only valid tilings that are connected
components, there might not be any sequence of legal tiléiadlsl that assembles these configurations.
Nonetheless, if a tile system uniquely produces a validgilit, then all valid tilings of the corresponding
Wang tile system agree with and have the same coordinated shapd:as

Lemma 2.7.1. If empty € T and the tile systefT = (7,5, g,7) uniquely produces assemhly such
that A is a valid tiling of the Wang tiling systerfi’, ¢,) then for all valid tilings A": (1) V(i,j) € Z2,
type(A(i, j)) # empty = A'(i, j) = A(i, j), (2) Sar = Sa.

Proof. Consider an assembly sequer}f:ef T ending in assemblyl and letA’ be a valid tiling of(7',).
Suppos&,, is the first tile added in this sequence such that A’(pos(t,,)) # t,. SinceA’ is a valid tiling,

t" must match on all sides, includir’igputsidesA(tn). But this implies that two different tiles can be added
in the same location il which means thatt is not uniquely produced. This implies part (1) of the lemma.
Now, to be a valid tiling, all exposed sides of assemblgnust be null. Thus ifA’ and A agree on all places
whereA is nonempty, thenS 4 = S4 and part (2) of the lemma follows. O

Define thetile-complexity &, of a shapeS in the origin-restricted Wang tiling model as the minimal
number of tile types in a Wang tiling system with the propet a valid tiling exists and there is a coordi-
nated shap# € S such that for every valid tilingd, Sx = S.

Theorem 2.7.1. There exist constants), by, a1, by such that for any shapé,
40K () + by < K1 (S)log Kue(S) < a1 K (S) + by

Proof. (Sketch) The left inequality follows in a manner similar teetproof of Theorem 2.5.1. Suppose
every valid tiling of our Wang tile system has coordinatedsS. Any Wang tiling system of: tile types

can be represented usiiyn logn) bits. Making use of this information as input, we can use astamt-
size program to find, through exhaustive search, the sma#igon containing, surrounded by:ull bond
types in some valid tiling. Thus)(nlogn) bits are enough to compute an instanceSof To prove the
right inequality, our original block construction almosbrks, except that there are mismatches between a
terminal output side of a block and the abutting terminapatiside of the adjacent block or the surrounding
empty tiles (i.e., along the dotted lines in Fig. 2.8(a)). Consayly, the original construction does not yield

a valid tiling. Nonetheless, a minor variant of our constiartovercomes this problem. Instead of relying on

*TheunrestrictedWang tile model does not have a seed tile [20, 5, 18].
TS 4 can be finite only iempty € T because otherwise no configuration containingapty tile can be a valid tiling.

25

mismatching bond type symbols to preventinadvertent bipth terminal output sides of blocks, we can add
an explicit capping layer that covers the terminal outpdgsiwithnull bond types but propagates information
through propagating output sides. This way, the termingbatusides of blocks are covered byl bond
types and match the terminal output sides of the adjacenklalndempty tiles. These modifications can be
made preserving local determinism, which, by Lemma 2.%&fgldishes that the coordinated shape of any
valid tiling is an instance of. O

There may still be differences in the computational powéwken Wang tilings and self-assembly pro-
cesses. For example, consider the smallest Wang tilingsyahd the smallest self-assembly tile system that
produce instances &f. The instance produced by the Wang tiling system might behnsugaller than the
instance produced by self-assembly. Likewise, there niiglsbordinatedshapes that can be produced with
significantly fewer tile types by a Wang tiling system thanauself-assembly system.

Keep in mind that the definition we use for saying when a Walnggtisystem produces a shape was
chosen as a natural parallel to the definition used for sslé@bly, but alternative definitions may highlight
other interesting phenomena specific to Wang tilings. Fang{e, one might partition tiles into two subsets,
“solution” and “substance” tiles, and declare shapes todmnected components of substance tiles within
valid tilings. In such tilings — reminiscent of “vicinal wat’ in chemistry — the solution potentially can
have a significant (even computational) influence thaticstpossible shapes of the substance, and hence the
size of produced shapes needn’t be so large as to containltleernputation required to specify the shape.

2.7.4 Sets of Shapes

Any coordinated shap# can be trivially produced by a self-assembly tile systemyabNang tiling of

|S| tile types. Interesting behavior occurs only when the nunalbéle types is somehow restricted and the
system is forced to perform some non-trivial computatioprioduce a shape. Previously in this paper, we
restricted the number of tile types in the sense that we asi istihe minimal number of tile types that can
produce a given shape. We saw that ignoring scale in thisgetiiows for an elegant theory. In the following
two sections the restriction on the number of tile types @vjoted by the infinity of shapes they must be able
to produce. Here we will see as well that ignoring scale aléov an elegant theory.

Adleman [2] asks “What are the ‘assemblaldi] shapes?’ — (analogous to what are the ‘computable
functions’)?” While this is still an open question for coordted shapes, our definition of a shape ignoring
scale and translation leads to an elegant answer. A set afybstringsL is a language of shapes if it
consists of (standard binary) encodings of lists of logithat are coordinated shapes in some set of shapes:

L=1{(8)s.t.S e SandS e R} for some set of shapd. Note that every instance of every shapdiiis
{< P y y shap

in this language. The language of shapeis recursively enumerable if there exists a Turing machira t
halts upon receivingS) € L, and does not halt otherwise. We say a tile sysieproduces the language of

shapedl if L = {<S> s.t.S € S, for somed e Term(T)}. We may wantL to beuniquely producedn

the sense that thé € T'erm(T) is unique for each shape. Further, to prevent infinite spsrgrowth we
may also requird to satisfy thenon-cancerouproperty:VB € Prod(T), 3A € Term(T) s.t. B —4 A.
The following lemma is valid whether or not these restricti@re made.

Lemma 2.7.2. A language of shapéesis recursively enumerable if and only if it is (uniquely) guzed by a
(non-cancerous) tile system.

Proof. (Sketch) First of all, for any tile systef’ we can make a TM that given a coordinated sh&apes

a list of locations, starts simulating all possible assgnsgiquences oT" and halts iff it finds a terminal
assembly that has shape Therefore, ifL is produced by a tile systent, is recursively enumerable. In
the other direction, if_ is recursively enumerable then there is a proggathat givenn outputs then'”
shape fromL (in some order) without repetitions. Our programmable bloenstruction can be modified to
execute a non-deterministic universal TM in the seed blgckdyving multiple possible state transitions. We
make a program that non-deterministically guessdeeds it top, and proceeds to build the returned shape.
Note that since every computation path terminates, tlasyistem is non-cancerous, and sipemumerates
without repetitions, the language of shapes is uniqueldpced. O

26

Note that the above lemma does not hold for languages of owiedl shapes, defined analogously. Many
simple recursively enumerable languages of coordinataegeshcannot be produced by any tile system. For
example, consider the language of equilateral width-1saegentered 40, 0). No tile system produces
this language. Scale equivalence is crucial because Wwsléobitrary amounts of information to be passed
between different parts of a shape; otherwise, the amounfarination is limited by the width of a shape.

The same lemma can be attained for the Wang tiling model imalbgous manner using the construction
from Section 2.7.3. Let us say a Wang tiling syst€ht,) produces the language of shades L = {(S)
s.t.S € S, for some valid tilingA of (T,t,)}. Analogously to tile systems, we may require thEque
productionproperty that there is exactly one sudhfor each shape. Likewise, corresponding to the non-
cancerous property of tile systems, we may also requirdlthg $ystem to have theon-cancerougroperty
that every valid tiling has a coordinated shape (i.e., isd)niAgain, the following lemma is true whether or
not these restrictions are made.

Lemma 2.7.3. A language of shapéesis recursively enumerable if and only if it is (uniquely) guzed by a
(non-cancerous) Wang tiling system.

2.7.5 Scale Complexity of Shape Functions

Expanding upon the notion of a shape being the output of aeusdal computation process as mentioned in
the Introduction, let us consider tile systems effectivaynputing a function from binary strings to shapes.
The universal “programmable block” constructor preseriteSection 2.6 may be taken as an example of
such a tile set, if the full seed block is considered as amalrseed assembly rather than as part of the tile
set per se. In this case, the remaining tile set is of constaat and will construct an arbitrary algorithmic
shape when presented with a seed assembly containing thamelprogram. The universal constructor
tile set’s efficiency, then, can be measured in terms of tladesof the produced shape. Similarly, other
“programmable” tile sets may produce a limited set of shapespotentially with greater efficiency. (Such
tile sets can be thought to produce a language of shapesai$&ct.4) such that the choice of the produced
shape can be deterministically specified.) For tile systeumysutting shapes in this manner, we can show that
the total number of tiles (not tileype$ in the produced shape is closely connected to the time coiityl

of the corresponding function from binary strings to shajpeerms of Turing machines. The equivalent
connection can be made between non-deterministic Turirghimes and the size of valid tilings in the Wang
tiling model.

Let f be a function from binary strings to shapes. We say that anumachineM computes this
functioniffor all z, f(z) = S < 35 € S s.t. M(z) = (S). The standard notion of time-complexity applies:
f € TIMEpp(t(n)) if there is a TM computing it running in time bounded ty:) wheren is the size
of the input. In Section 2.6.2.2 we saw how binary input captmvided to a tile system via a seed frame
wherein all four sides of a square present the bitstring. useapply this convention hefe Extending the
notion of the seed in self-assembly to the entire seed framdeising this as the input for a computation[17],
we say atile system computésf: [starting with the seed frame encodimghe tile system uniquely produces
an assembly of shapf] iff f(z) = S. We say thaff € TILESsA(t(n)) if there is a tile system computing
it and the size of coordinated shapes produced (in termseofitimber of non-empty locations) for inputs
of sizen is upper bounded by(n). Similar definitions can be made for non-deterministic fignnachines
and Wang tiling systems. We say that a NDTWIicomputesf if: [every computation path oV on input
= ending in an accept state (as opposed to a reject state)tegfjufor someS e S |iff f(z) = S. For
non-deterministic Turing machineg, € TIM Enpra(t(n)) if there is a NDTM computingf such that
every computation path halts aftérn) steps. Extending the notion of the seed for Wang tilings éoetiitire
seed frame as well, we say a Wang tiling system compfii&ésall valid tilings containing the seed frame
have a coordinated shape and this coordinated shape isttesfenall such valid tilings, and it is an instance
of the shapef (x). We say thalf € TILESw(t(n)) if there is a tiling system computing it and the size of
coordinated shapes produced for inputs of size upper bounded b(n).

Theorem 2.7.2. (a) If f € TILESs4(t(n)) thenf € TIM E7p(O(t(n)?))

*Any other similar method would do. For the purposes of thaiss, it does not matter whether we use the one bit per tit@ding
or the encoding requiring unpacking (Section 2.6.3).

27
(b) If f € TIM Erpr(t(n)) thenf € TILESsA(O(t(n)?))
(C) If f S TILESWT(t(TL)) thenf S TIMENDT]\,f(O(t(n)4))
(d) If f S TIMENDTM(t(n)) thenf S TILESWT(O(t(TL)B))

Proof. (Sketch) (a) Lefl be a tile system computinfy such that the total number of tiles used on an input
of sizen is t(n). A Turing machine with a 2-D tape can simulate the self-asdemprocess ofl' with an
input of sizen in O(t(n)?) time: for each of the(n) tile additions, it needs to sear€i(t(n)) locations for
the next addition. This 2-D Turing machine can be simulated begular Turing machine with a quadratic
slowdown’

(b) Let M be a deterministic Turing machine that compuftesd runs in time(n). Instead of simulating
a universal Turing machine in the block construction, wewate a Turing machiné/’ which runs) on
inputz encoded in the seed frame and acts as progrgrim Section 2.6.4. Then the scale of each block is
O(t(n)), which implies that each block consists@ft(n)?) tiles. Now the total number of blocks cannot be
more than the running time @f/ sinceM outputs every location that corresponds to a block. Thusaitad
number of tiles i< (¢(n)?).

(c) A similar argument applies to the Wang tiling system gsa(igh the following exception. A Wang
tiling system can simulate a non-deterministic Turing niaetand still be able to output a unique shape. The
tiling system can be designed such that if a reject stateaished, the tiling cannot be a valid tiling. For
example, the tile representing the reject state can havaatype that no other tile matches. Thus all valid
tilings correspond to accepting computations.

(d) Simulation of Wang tiling systems can, in turn, be doneabyon-deterministic Turing machine as
follows. Suppose every valid tiling of our Wang tile systeasttoordinated shape The simulating NDTM
acts similar to the TM simulating self-assembly above, pktgat every time two or more different tiles can
be added in the same location, it non-deterministicallyosies one. If the NDTM finds a region containing
the seed frame surroundedbyl! bond types, it outputs the shape of the smallest such regideaters an
accept state. Otherwise, at some point no compatible tiiebezadded, and the NDTM enters a reject state.
The running time of accepting computationgiét(n)?) via the same argument as for (b). O

If, as is widely believed, NDTMs can compute some functionsdlynomial time that require exponential
time on a TM, then it follows that there exist functions froimdry strings to shapes that can be computed
much more efficiently by Wang tiling systems than by selfeasisly, where efficiency is defined in terms of
the size of the coordinated shape produced.

The above relationship betwe&i M E and7'I L ES may not be the tightest possible. As an alternative
approach, very small-scale shapes can be created as Wagg by using an NDTM that recognizes tuples
(i, 4, x), rather than one that generates the full shape. This wilnoftield a compact construction. As
a simple example, this approach can be applied to genereiticigs with radiusr at scaleO(n?) where
n = O(log). It remains an open question how efficiently circles can beegated by self-assembly.

2.7.6 Other Uses of Programmable Growth

The programmable block construction is a general way ofiggithe large scale growth of the self-assembly
process and may have applications beyond those explored $eof instance, instead of constructing shapes,
the block construction can be used to simulate other tileegys in a scaled manner using fewer tile types.
It is easy to reprogram it to simulate, using few tile typekarge deterministie: = 1 tile system for which
a short algorithmic description of the tile set exists. Wpeant a slightly extended version of the block
construction can also be used to provide compact tile satsstmulate other = 2 tile systems that have
short algorithmic descriptions.

To self-assemble a circuit, it may be that the shape of thdymed complex is not the correct notion.
Rather one may consider finite patterns, where each locetiashape is “colored” (e.g. resistor, transistor,

*The rectangular region of the 2-D tape previously visitedt®y 2-D head (the arena) is represented row by row on a 1-D tape
separated by special markers. The current position of théh2ad is also represented by a special marker. If the arénaiis, a single
move of the 2-D machines which does not escape the currami aeguires at mosd (m?) steps, while a move that escapes it in the
worst case requires an exit(mi?) steps to increase the arena size. We havé = O(t(n)), and the number of times the arena has
to be expanded is at moSk(¢(n)).

28

wire, etc.). Further, assemblies that can grow arbitrdailge may be related to infinite patterns. What is the
natural way to define the self-assembly complexity of sudtepas? Do our results (Section 2.5) still hold?

2.8 Appendix

2.8.1 Local Determinism Guarantees Unique Production: Prof of Theorem 2.3.1

Lemma 2.8.1.1f Ais a locally deterministic assembly sequenc&othen for every assembly sequerﬁ:‘e
of T and for every tile’ = ¢/, added inA’ the following conditions hold, wherte= A(pos(t')).

() inputsidesg/ (t') = inputsides™ (t),

(i) ¢ =t.
Proof. Suppose’ = ¢/, is the first tile added that fails to satisfy one of the aboveditions. Consider any
D € inputsides™ (t'). Tile tp = A’(D(pos(t'))) must have been added befdfén A’ and soD~! ¢

inputsides™ (tp) = inputsides” (tp). This impliesD & propsides” (t) and so,

inputsides’@ t)n propsides’z(t) = (. (2.2)
Now, VD, Fg/" (t') < T4 (#') becausel/, has no more tiles than and except gtos(t) they all agree. eq. 2.2
implies
A / A /
Finputsidesg/(t’) (t) < FD—PTOpsides‘Y(t) (t) '

Therefore, /
rn L @)y<r4 f (1)

inputsidesA,(t/) — 7 D—propsides?
So by property (2) of Definition 2.3.2, no tile of typé type(t) could have been sufficiently bound here by

inputsides™ (') and thug’ = t. Thereforet’ cannot fail the second condition (ii).
Now, suppose’ fails the first condition (i). Because of property (1) of Défon 2.3.2, this can only

happenifiD e inputsides™ (') — inputsides” (t'). SinceD & inputsides” (t')), t p must have been added
aftert’ in A. So sincetp bindst’, D=! € inputsides” (tp) and soD € propsides” (t). But by eq. 2.2 this
is impossible. Thus we conclud€ C A. O

Lemma 2.8.1 directly implies that if there exists a localsterministic assembly sequen&fa)f T then
VA" € Prod(T), A’ C A. Theorem 2.3.1 immediately follows: If there exists a Ibcdeterministic assem-

bly sequence@ of T thenT uniquely producesl.
Since local determinism is a property of timputsidesclassification of tiles in a terminal assembly,
Lemma 2.8.1 also implies:

Corollary 2.8.1. If there exists a locally deterministic assembly seque«ﬁim T then every assembly se-
guence ending inl is locally deterministic.
2.8.2 Scale-Equivalence and2” are Equivalence Relations

Translation-equivalence s clearly an equivalence mtatiet us writeS, 2 8, if the two coordinated shapes
are translation equivalent.

Lemma 2.8.2.1f S = S¢ andSy = Sk thenS = SdF.
Proof. $(i,j) = So(li/dl, Li/d)) = Sm(LLi/d) /K], |Li/d) /1) = Swm(li/dk], |j/dk]). O

Lemma 2.8.3.1f Sy £ S thensd £ 4.

29

Proof. S§(i,j) = So(li/d], |j/d]) = Si(li/d] + Ai, [j/d] + Aj) = Sy(|Z9AL| [1HAT) = §d(i +
dAi, j + dAj). O

To show that scale equivalence is an equivalence relati@nphly non-trivial property is transitivity.
Supposess = S¢ andS{ = S5’ for somec, ¢, d,d’ € N. (§§)¢ = (8¢')? = S¢'? by Lemma 2.8.2. Thus,
Sd'd — (56)% = (55), and by Lemma 2.8.55% = 55’

To show that 2" is an equivalence relation, again only transitivity is Apial. SupposeS, = S,
andS; = S,. In other words,55 £ S¢ andS¢ £ S5 for somec,’,d,d € N. By Lemma 2.8.3,
(55)4 £ (89)4" and (S)% £ (S5')4. Then by Lemma 2.8.55% £ 594 and s’ £ 55'¢ which implies
Sed” &£ g¢'d by the transitivity of translation equivalence. In othemds Sy = S.

Acknowledgments

We thank Len Adleman, members of his group, Ashish Goel, andiRothemund for fruitful discussions and
suggestions. We also thank Rebecca Schulman and David Zbangeful and entertaining conversations
about descriptional complexity of tile systems, and an gnwus reviewer for a very careful reading of this
paper and helpful comments.

Bibliography

[1] L. Adleman, Q. Cheng, A. Goel, M.-D. Huang, D. Kempe, P.dé.Espanes, and P. W. K. Rothemund.
Combinatorial optimization problems in self-assembly AGM Symposium on Theory of Computing
2002.

[2] L. M. Adleman. Toward a mathematical theory of self-asbéy (extended abstract). Technical report,
University of Southern California, 1999.

[3] L. M. Adleman, Q. Cheng, A. Goel, and M.-D. A. Huang. Rumgitime and program size for self-
assembled squares. ACM Symposium on Theory of Computipgges 740—748, 2001.

[4] G. Aggarwal, M. Goldwasser, M. Kao, and R. T. Schwelleion@lexities for generalized models of
self-assembly. I'Bymposium on Discrete Algorithp04.

[5] R. Berger. The undecidability of the domino problelkhemoirs of the American Mathematical Socjety
66, 1966.

[6] M. Cook, P. W. K. Rothemund, and E. Winfree. Self-asserddircuit patterns. IIDNA-Based Com-
puters 9 pages 91-107, 2004.

[7] B. Grunbaum and G. Shephartilings and PatternsW.H. Freeman and Company, 1986.
[8] W. Hanf. Nonrecursive tilings of the plane The Journal of Symbolic Logi89:283-285, 1974.

[9] P. W. K. RothemundTheory and Experiments in Algorithmic Self-AssemBlyD thesis, University of
Southern California, 2001.

[10] P. W. K. Rothemund, N. Papadakis, and E. Winfree. Algdponic self-assembly of DNA Sierpinski
triangles.PLoS Biology2:e424, 2004.

[11] P. W. K. Rothemund and E. Winfree. The program-size demity of self-assembled squares (extended
abstract). IMCM Symposium on Theory of Computipgges 459—-468, 2000.

[12] T.H. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, JR#if, and N. C. Seeman. Construction, anal-
ysis, ligation, and self-assembly of DNA triple crossovemplexes.Journal of the Americal Chemical
Society 122:1848-1860, 2000.

30

[13] M. Liand P. Vitanyi.An Introduction to Kolmogorov Complexity and Its Appliceits Springer, second
edition, 1997.

[14] C. Mao, T. H. LaBean, J. H. Reif, and N. C. Seeman. Logamahputation using algorithmic self-
assembly of DNA triple-crossover moleculégature 407:493-496, 2000.

[15] C. Mao, W. Sun, and N. C. Seeman. Designed two-dimeasIidNA Holliday junction arrays visual-
ized by atomic force microscopyournal of the Americal Chemical Sociefy21:5437-5443, 1999.

[16] D. Myers. Nonrecursive tilings of the plane The Journal of Symbolic Logi89:286-294, 1974.

[17] J. H. Reif. Local parallel biomolecular computatiom DNA-Based Computers: Il Proceedings of a
DIMACS Workshoppages 217-254, 1997.

[18] R. M. Robinson. Undecidability and nonperiodicity dirtgs of the plane.lnventiones Mathematicae
12:177-209, 1971.

[19] J. von NeumannThe Theory of Self Reproducing Automdthniversity of Illinois Press, 1966.
[20] H. Wang. Proving theorems by pattern recognitionBeéll Systems Technical JourndD:1-42, 1961.
[21] E. Winfree.Algorithmic Self-Assembly of DNA&RhD thesis, California Institute of Technology, 1998.

[22] E. Winfree. Simulations of computing by self-assemfigchnical report, California Institute of Tech-
nology, 1998.

[23] E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman. Desand self-assembly of two dimensional
DNA crystals.Nature 394:539-544,1998.

31

Chapter 3

Complexity of Compact Proofreading
for Self-Assembled Patterns

This chapter was published as:David Soloveichik and Erik Winfree, “Complexity of Compd@toofread-
ing for Self-Assembled Patterns,” Proceedings of DNA Cotimgull, Lecture Notes in Computer Science
3892: 305-324, 2006.

3.1 Abstract

Fault-tolerance is a critical issue for biochemical conagion. Recent theoretical work on algorithmic self-
assembly has shown that error-correcting tile sets areljjesand that they can achieve exponential decrease
in error rates with a small increase in the number of tile $ypad the scale of the construction [24, 4].
Following [17], we consider the issue of applying similahemes to achieve error correction without any
increase in the scale of the assembled pattern. Using a nesfreading transformation, we show that
compact proofreading can be performed for some patterrs avinodest increase in the number of tile
types. Other patterns appear to require an exponential euofliile types. A simple property of existing
proofreading schemes — a strong kind of redundancy — is th@itusuggesting that if general purpose
compact proofreading schemes are to be found, this typelahidancy must be avoided.

3.2 Introduction

The Tile Assembly Model [22, 23] formalizes a generalizegstal growth process by which an organized
structure can spontaneously form from simple parts. Thidehoonsiders the growth of two dimensional
“crystals” made out of square units called tiles. Typicathere are many types of tiles that must compete
to bind to the crystal. A new tile can be added to a growing demj it binds strongly enough. Each of
the four sides of a tile has an associated bond type thatrtewith matching sides of other tiles that have
already been incorporated. The assembly starts from afguzeseed assembly and proceeds by sequential
addition of tiles. Tiles do not get used up since it is assuthede is an unbounded supply of tiles of each
type. This model has been used to theoretically examine bousé self-assembly for massively parallel
DNA computation [21, 26, 16, 13], for creating objects witftogrammable morphogenesis [10, 1, 2, 20],
for patterning of components during nanofabrication of @salar electronic circuits [6], and for studying
self-replication and Darwinian evolution of informatidaring crystals [18, 19]. Fig. 3.1 illustrates two
different patterns and the corresponding tile systemssttlassemble into them. Both patterns are produced
by similar tile systems using only two bond types, four typés, simple Boolean rules and similar seed
assemblies (the L-shaped boundaries).

Confirming the physical plausibility and relevance of thestediction, several self-assembling systems
have been demonstrated using DNA molecules as tiles, imguzbth periodic [25, 15, 12] and algorithmic
patterns [14, 9, 3]. A major stumbling block to making algemiic self-assembly practical is the error rate

32
a) . b)

1 0
1

1

H|H|H|

0,0)
c) . d)

n
0

@
0

1

H|O|O|

/
/
(0,0)

Figure 3.1: (a) A binary counter pattern and (b) a tile systemstructing it. (c) A Sierpinski pattern and (d) a
tile system constructing it. In this formalism, identigdthbeled sides match and tiles cannot be rotated. Tiles
may attach to the growing assembly only if at least two sidag i.e., if two bonds can form. Mismatches
neither help nor hinder assembly. Note that the tile chdiemah site is deterministic for these two tile sets.

inherent in any stochastic biochemical implementationtréht implementations seem to suffer error rates
of 1% to 15% [9, 3]. This means that on average every eighth to hundrddtthat is incorporated does not
correctly bond with its neighbors. Once such a mistake & the erroneous information can be propagated
to tiles that are subsequently attached. Thus, a singlekeistan result in a drastically different pattern being
produced. With this error rate, structures of size larganttoughly100 tiles cannot be assembled reliably.

There are generally two ways to improve the error-robustnéthe assembly process. First, the physics
of the process can be modified to achieve a lower probabiliti@incorporation of incorrect tiles into the
growing complex. The second method, which we pursue hete Lise some logical properties of the tiles to
perform error correction.

Proofreading tile set$or algorithmic self-assembly were introduced by Winfree &8ekobolatov [24].
The essential idea was to make use of a redundant encodinfpahiation distributed acrosstiles, making
isolated errors impossible: to continue growth, errorstrappear in multiples of. Thanks to the reversible
nature of crystallization, growth from erroneous tiledlstand the erroneous tiles subsequently dissociate,
allowing another chance for correct growth. Using this ajppgh, a large class of tile sets can be transformed
into more robust tile sets that assemble according to the $agic.

However (a) the proofreading tile sets produce assembli@mes larger than the original tile sets, in-
volving k2 times as many tiles; and (b) the improvement in error rateésidt scale well withk in simulation.
Chen and Goel [4] developethaked proofreading tile setisat generalize the proofreading construction in a

33

way that further inhibits growth on crystal facets. They @able to prove, with respect to a reversible model
of algorithmic self-assembly, that error rates decreag®antially withk, and thus to make atv x N
pattern required only = Q(log V). This provides a solution for (b), although the question pfiraality
remains open. Reif et al. [17] raised the question of whethere compact proofreading schemes could
be developed, and showed how to transform the two tiles betsrsin Fig. 3.1 to obtain lower error rates
without any sacrifice in scale. However, Reif et al. did notega general construction that works for any
original tile set, and did not analyze how the number of ¥jeeis would scale if the construction were to
be generalized to obtain greater degrees of proofreadings,Tquestion (a) concerning whether this can be
improved in general and at what cost remained open.

The question of compactness is particularly important wsadfiassembly is used for molecular fabrica-
tion tasks, in which case the scale of the final pattern is i@&atliand critical importance. Furthermore, the
guestion of scale is a fundamental issue for the theory afréilgmic self-assembly. In the error-free case,
disregarding scale can drastically change the minimal rasrobtile types required to produce a given shape
(Chapter 2); some shapes can be assembled from few tile &y@esmall scale, while other shapes caiy
be assembled from few tile types at a large scale. Examini@gtver proofreading can be performed without
sacrificing scale is both of practical significance and céeddl to important theoretical distinctions.

If it is the case that some patterns can’t be assembled witletoor rates at the original scale using a
concise tile set, while for other patterns compact proafiregacan be done effectively, then we would be
justified in calling the former intrinsically fragile, antie latter intrinsically robust. Any such distinctions
should be independent of any particular proofreading sehelmdeed, we here show that this is true (in a
certain sense), and we give a combinatorial criterion tisingdjuishes fragile patterns from robust patterns.
As examples, we show that the two patterns discussed in Ralifsawork on compact proofreading [17] and
shown in Fig. 3.1 are fundamentally different, in that (ith wide class of potential proofreading schemes
considered here) the cost of obtaining reliable assemlilygasame scale becomes dramatically different as
lower error rates are required.

3.2.1 The Abstract Tile Assembly Model

This section informally summarizes the abstract Tile AdsignModel (aTAM). See [8], Chapter 2 for a
formal treatment. Self-assembly occurs o a Z grid of unit square locations, on which unit-squéites
may be placed under specific conditions. Each tilethsd typeson its north, east, south, and west sides.
A finite set oftile types defines the set of possible tiles that can be placed on theTldtypes are oriented
and therefore a rotated version of a tile type is considevdzbta different tile type. A single tile type may
be used an arbitrary number of times.cAnfiguration is a set of tiles such that there is at most one tile in
every location(i, j) € Z x Z. Two adjacent tiledbond if their abutting sides have matching bond types.
Further, each bond type forms bonds of a specific strenglleddés interaction strength. In this paper the
three possible strengths of bonds &bel, 2}. A new tile can be added to an empty spot in a configuration if
and only if the sum of its interaction strengths with its fdigrs reaches or exceeds some parametéhe

tile systems shown in this paper use-= 2, i.e., at least a single strong (strengjhor two weak (strengthh)
bonds are needed to secure a tile in place.

For the purposes of this paper, a tile system consists ofta et of tile type§” with specific interaction
strengths associated with each bond type, and a start coatfiju Whereas a configuration can be any
arrangement of tiles, we are interested in the subclassrdifgroations that can result from a self-assembly
process. Thus, aassemblyis a configuration that can result from the start configuraltip a sequence of
additions of tiles according to the above rules at 1 or~ = 2 (i.e., it is connected). A-stableassembly is
one that cannot be split into two parts without breaking lsomith a total strength of at least Deterministic
tile systems are those whose assemblies can incorporatesét tile type at any location at any time.

3.2.2 The Kinetic Tile Assembly Model and Errors

The kinetic Tile Assembly Model (kTAM) augments the abstraéite Assembly Model with a stochastic

model of self-assembly dynamics, allowing calculationmberates and the duration of self-assembly. Fol-
lowing [23, 24] we make the following assumptions. Firsg ttoncentration of each tile type in solution is
held constant throughout the self-assembly process, andahcentrations of all tile types are equal. We

34

assume that for every tile association reaction there isr@sponding dissociation reaction (and no others).
We further assume that the rate of additifor{ard rate f) of any tile type at any position of the perimeter
of the growing assembly is the same. Specificafly= ke~ % wherek; is a constant that sets the time
scale, and~,,. is the logarithm of the concentration of each tile type irusioh. The rate that a tile falls off
the growing assemblydverse rater,) depends exponentially on the number of bonds that mustdieshr
Specifically,r, = kre~“:c whereb is the total interaction strength with which the tile is attad to the
assembly, andr,,,. is the unit bond free energy, which may depend, for exampléemperature.

We assume the following concernirfigandr;. Following [23] we letf ~ r, for a+ = 2 system since it
provides the optimal operating environment [23]. Furtiex,assumg (and therefore,) can be arbitrarily
chosen in our model by changing,,. andG .., for example by changing tile concentrations and tempegatu
(In practice, there are limits to how much these paramet@rde changed.) Howevér; is assumed to be a
physical constant not under our control.

In the KTAM, ther = 2 tile addition requirement imposed by the abstract Tile Adsly Model is
satisfied only with a certain probability: assumifige o sor; > f, if a tile is added that bonds only
with strength 1, it falls off very quickly as it should in th&aM with = = 2. Tiles attached with strength 2
stick much longer, allowing an opportunity for other tilesattach to them. Once a tile is bonded with total
strength3, it is very unlikely to dissociate (unless surroundinggtifall off first).

Following [4], the fundamental kind of error we consideréderaninsufficient attachment At threshold
7 = 2, an insufficient attachment occurs when a tile attaches stiingthl, but before falling off, another
tile attaches next to it, resulting in a 2-stable assembigceinsufficient attachments are the only kind of
error we analyze in this paper, we’'ll use “error” and “institnt attachment” interchangeably.

Chen and Goel [4] make use of a simplification of the KTAM thagptaires the essential behavior while
being more tractable for rigorous proofs. Under the coadgiwheref = r,, the self-assembly process is
dominated by tiles being added with exaclyponds and tiles falling off via exactly bonds. Thdocking
kTAM model assumes that these are the only possible siilglevents. That isy;, = 0 for b > 3, and tiles
never attach via a single strengthsond. Additionally, insufficient attachments are modelethie locking
kTAM as atomic events, in which two tiles are added simultarsty at any position in which an insufficient
attachment can occur. Specifically, any particular pail@fypes that can create an insufficient attachmentin
the kTAM is added at a ratg.,,. = O(e—3C=<). (This is asymptotically the rate that insufficient attaemts
occur in KTAM [4].) Thus the total rate of insufficient attanknts at a particular location @ f.,.., where
Q is the number of different ways (with different tile typebpat an insufficient attachment can occur there.
We don’t absorl®) into theO(-) notation because we will be considering tile sets with angasing number
of tile types that can cause errors. Note thatan be bounded by the square of the total number of tile
types. These insufficient attachments are the sole caugeoo$ eluring growth. Growth during which no
insufficient attachments occur we call (reversibie} 2 growth.

3.2.3 Quarter-Plane Patterns

The output of the self-assembly process is usually consitier be either the shape of the uniquely produced
terminal assembly [10, 1, 2] (also see Chapter 2) or the magimduced if we focus on the locations of
certain types of tiles [24, 4, 17, 6]. Here we will focus onfsesembling ofjuarter-plane patterns. A
guarter-plane pattern (or jupiattern for short) P is an assignment of symbols from a finite alphabet of
“colors” to points on the quarter plangt x Z™ by convention). A deterministic tile system can be thought
to construct a pattern in the sense that there is some funta necessarily a bijection) mapping tile types
to colors such that tiles in any produced assembly correstlp to corresponding colors of the pattern. As
the assembly grows, a larger and larger portion of the pagets filled. There are patterns that cannot be
deterministically constructed by any tile system (e.gcamputable ones), but for the purposes of this paper

*Another error, with respect to the aTAM, that can occur indhginal KTAM is when a tile attached by strength 3 (or mod)sf
off. Why do we feel comfortable neglecting this error in tbeking KTAM, especially since as a function G, bothrs and f.,.,- are
both O(e~3%:¢)? One reason is that in practice the dissociation of tiled teethe assembly with strengthdoes not seem to cause
the problems that insufficient attachments induce, in s that we have simulated and examined: no incorrect tieganediately
introduced, often the correct tile will quickly arrive top@r the hole, and if an incorrect tile fills the hole, furttgmowth may be
impossible, usually allowing time for the incorrect tilefadl off. A second reason is that as the number of tile typessases (i.e., with
more complex patterns or more complex proofreading schei@gs - becomes arbitrarily large, while; stays constant. Nonetheless,
a more satisfying treatment would not make these approiomsmand would address the original kTAM directly.

35

a) b)

N1 o n3 N4 N1 2 =Y
WA &4 W4 oe 4

output w3 el output w3 el
s h]e s M]2 o o0
gwse§—> gwse.é'—} 5 T o0
input "2 2 input "2 ¢ o K
w1 ey w1 e

S1 2 S3 S4 S1 2 3 S4

Figure 3.2: Winfree and Bekbolatov (a) and Chen and Goel (@fpeading transformations usirdgx 4
blocks. Each tile type is replaced witl? tile types that fit together to form the block as shown. Sttieng
2 bonds are indicated with 2 dots. Strength 0 bonds are itetioaith a cross. All unlabeled (internal)
bond types are unique (within the block and between blockkg placement of weak and strong bonds is
dependent upon the orientation of growth, which in this éage the north-east, since for quarter-plane tile
systems the input is always received from the west and salgh.s

we consider patterns constructible from deterministicgifstems where all bond strengths hesd the seed
assembly (defining the boundary conditions) is an infinithape that is eventually periodic, with its corner
on the origin. See Fig. 3.1 for two examples. Such tile systesitl call quarter-plane tile systemsand
the patterns produced by them tbenstructible quarter-plane patterns. These systems include a wide
variety of patterns, including the Sierpinski pattern, bieary counter pattern, the Hadamard pattern [6],
and patterns containing the space-time history of arlyittald block cellular automata and Turing machines.
Note that by including the infinite seed assembly we are awgithe issue of nucleation, which requires
distinct error-correcting techniques [18].

3.3 Making Self-Assembly Robust

The kinetic Tile Assembly Model predicts that for any quefitane tile system, arbitrarily small error rates
can be achieved by increasiidg,,. and G,., but at the cost of decreasing the overall rate of assembly.
Specifically, the worst case analysis (which assumes thet afly single error, assembly can be continued
by valid 7 = 2 growth) predicts that the relationship between per til@rerates and the rate of assembly

r (layers per second) approximately satisfies: €2 [23]. This is rather unsatisfactory since, for example,
decreasing the error rate by a factor of 10 necessitatesrgjalown self-assembly by a factor of 100.

Rather than talking about the relationship between thelpesrror rate and the total rate of self-assembly,
following [4] one can ask how long it takes to produce the ecr’V x N initial portion of the pattern with
high probability. To produce this initial portion correctlith high probability, we need the per-tile error rate
to bes = O(NN—2) to ensure that no mistake occurs. This implies that O(N —*) for worst case tile sets.
This informal argument suggests that the time to producétbeN square i€2(N*). This is unsatisfactory,
because the same assembly can be grown inci7€) in the aTAM augmented with rates [1], and thus the
cost of errors appears to be considerable.

Despite this pessimistic argument, certain kinds of tilstems can achieve better error rate/rate of as-
sembly tradeoffs. Indeed, the reversibility of the seeambly process can help. Some tile systems have the
property that upon encountering an error, unless many m@tkes are made, the self-assembly process
stalls. Stalling gives time for the incorrectly incorpadtiles to be eventually replaced by the correct ones
in a random walk process, so long as not too many incorrest ibve been added.

Exploiting this observation, several schemes have begmogeal for converting arbitrary quarter-plane
tile systems into tile systems producing@led-upversion of the same pattern, resulting in better robustness
to error. The initial proposal due to Winfree and Bekbolai@4] suggests replacing each tile type of the
original tile system with? tile types, with unique internal strengthbonds (Fig. 3.2(a)). Such proofreading
assemblies have the property that for a block corresporidiagingle tile in the old system to get completed,
either no mistakes, or at leastmistakes must occur. However, this scheme suffers fromrbiglgm that the

Figure 3.3: The Winfree and Bekbolatov proofreading schismsasceptible to single facet nucleation errors.
If an insufficient attachment results in the t&ttiles shown, then subsequent= 2 growth (&) can continue
indefinitely to the right. Thus many incorrect tiles can bdexdifollowing a single facet nucleation error even
if the block thatF is in does not get completed. The dotted lines indicate hbackndaries (fod x 4 blocks).
Note that most of the incorrect tiles are attached with gjiteB; therefore, they do not easily fall off, except
at the left and the right sides.

self-assembly process after a single insufficient attactiicen still result in a large number of incorrect tiles
that must later be removed, spanning the length of the adge@tnsider the situation depicted in Fig. 3.3.
If the insufficient attachment illustrated occurs (The fitsts added with interaction strength but before
it dissociates, a tile attaches to it on the right with intéien strengti2), the incorrect information can be
propagated indefinitely to the edge of the assembly by suieseq = 2 tile additions.

Currently the only scheme that provably achieves a guagdriével of proofreading is due to Chen and
Goel [4] using the locking KTAM model. Their proofreadindisene, callednaked proofreadings similar
to the Winfree and Bekbolatov system, but additionally colstthe order of self-assembly within each block
by using strength-0 and strength-2 bonds, making sure thiatoe many incorrect tiles can be added by
7 = 2 growth after an insufficient attachment. In particular, strength-0 bonds ensure that unless most of
the block gets completed, self-assembly stalls. Fig. 3 &fbws theirt x 4 construction; see their paper for
the general construction for arbitrary block siz&hey can attain a polynomial decrease in the error rate with
only a logarithmic increase ih. Specifically the formal results they obtain are the follogyi ¢

Theorem 3.3.1(Theorem 4.2 of [4]) For any constanp < 1, the N x N block initial portion of the pattern
is produced correctly with probability at leagtin time O (N poly(log(NN)) by thek x k snaked proofreading
tile system wheré = 6(log V), using the locking KTAM with appropriaté,,. andGs..

To obtain this result, assembly conditioris,{. andG..) need be adjusted only slightly asincreases.

The above construction requires increasing the scale gfrtiuced pattern, even if only logarithmically
in the size of the total desired size of the self-assemblédnpa Reif et al. [17] pointed this out as a potential
problem and proposed schemes for decreasing the effeativeate while preserving the scale of the pattern.
However, they rely on certain specific properties of the ingbtile system, and do not provide a general
construction that can be extended to arbitrary levels afrerorrection. Further, their constructions suffer
from the same problem as the original Winfree and Bekbolatomofreading system. In the next section
we argue that the snaked proofreading construction can dyetedi to achieve same-scale proofreading for
sufficiently “simple” patterns.

*Note that, unlike the original proofreading transformatithe snake proofreading transformation does not resaltjmarter-plane
tile system as it uses both strong and weak bonds.

t[4] also guarantees that the assembly is stable for a longdiiter it is complete, a concern we ignore in this paper. Kedfk,
they also provide Theorem 4.1, which guarantees reliatsleraly of anV x N square in timeD) (N1 +8/k),

fChen and Goel only prove their result for the case when thialihi seed assembly has arms that span exaétlglocks. We need
to cover the case when an infinite L seed assembly is used. gendix 3.6.1 for a proof that their results can be extendeuah tinfinite
seed assembly.

81t is hard to say whether the snaked proofreading constnudsi asymptotically optimal. While the best possible agslgriime in
a model where concentrations are held constant with chgnyjitis linear in NV, we assume tha.,,. andG,. are free to change as
long as the relationshi = r2 is maintained. Of course while decreasifig.. andGs. speeds up the assembly process, the rate of
errors is increased; thus, the optimal tradeoff is not alevio

37
3.4 Compact Proofreading Schemes for Simple Patterns

In this section we argue that a wide variety of sufficientlyrigle” patterns can be produced with arbitrarily
small effective error rates without increasing the scaleadffassembly, at the cost of slightly increasing the
number of tile types and the time of self-assembly. Based @hd® al.'s nomenclature [17], we call these
proofreading schema®mpacto indicate that the scale of the pattern is not allowed tagka

The following definition illustrates our goal:

Definition 3.4.1. Letp < 1 be a constant (e.g., 0.99). A sequence of deterministisygeemg Ty, To, ...}
is acompact proofreading scheme for patternP if:

(1: correctness) Ty produces the full infinite patter® under the aTAM.
(2: conciseness)T v haspoly(log N) tile types.

(3: robustness) Ty produces the corredV x N initial portion of patternP (without scaling) with proba-
bility at leastp in time O (N poly(log NV)) in the locking KTAM for somé&'s. andG ..

If you want to construct the initialvV x N portion of patternP with probability at leasty in time
O(N poly(log N)) you pick tile systeniI'y and the correspondingGs. andG,,.. The same tile system
might be used for manyv (i.e., the sequence of tile systems may have repetitionisg. SEcond condition
indicates that we don’t want this tile system to have too mideytypes. For constructible quarter-plane
patterns, a constant number of tile types suffices to créatefinite pattern in the absence of errors. If the
second condition is satisfied then the error correctioffits@ccomplished with a polylogarithmic number
of additional tiles, which is comparable to the cost of exorrection in other models studied in computer
science. While one can imagine different versions of theselitions, the stated version gives the proof-
reading condition that can be obtained by adapting the shpkmofreading construction, as argued below.
Finally, note that the tile systen{I';, T5, ...} do not have to be quarter-plane tile systems, and therefore
our theorems will apply to a wide range of potential proodiieg schemes.

For which patterns do there exist compact proofreadingreels@ Given a pattern and a quarter-plane tile
systemT producing it, consider any assemblyBf For a givenk, imagine splitting the assembly inkox k
disjoint blocks starting at the origin. We’'ll use the tebhock to refer to aligned blocks, arstjuareto refer
to blocks without the restriction that they be aligned t@ger multiples of: with respect to the origin. Each
complete block containg? tiles; two blocks at different locations are consideredieajant if they consist
of the same arrangement of tile types. If there is some paiyal@) (k) such that repeating this process for
all assemblies and all yields at most) (k) different (completed) block types, then we say tliategments
into poly (k) k x k block types! Patterns produced by such tile systems are the “simple&est for which,
we will argue, there exist compact proofreading schemeggwe such pattern®bust to indicate this.

On the other hand, there are patterns for which it is easyathse no quarter-plane tile system producing
them segments inteoly (k) & x k block types. For example these include patterns which b8\ different
types ofk x k squares of colors§ We'll prove negative results about such patterns, whichesmfragile in
the next sectiof.

Definition 3.4.2. A patternP is calledrobust if it is constructible by a quarter-plane tile systéithat
segments intpoly(k) differentk x k block types. A patter® is calledfragile if every quarter-plane tile
system segments ired*) differentk x k block types.

*We use disjoint blocks aligned with the origin for simpljcih what follows. It is inessential that we define segmeatatn terms
of blocks rather than squares: A tile system segmentsgintg (k) differentk x k block types if and only if it produces assemblies
that containpoly (k) different types of non-aligne#l x k squares. This is also true for other shapes than squaremaas they have
sufficient extent. See Appendix 3.6.2 for an example, the-sidiagonals.

TIn what follows, we will consider both the number of blocks $guares) in an assembly, in which case we mean blocks (aresju
of tile types, as well as the number of blocks (or squares)pattgern, which which case we mean block (or squares) of €olBince
each tile type has a color, the latter is less than or equaktéormer for patterns produced by quarter-plane tile syste

fAnalogous to the uncomputability of topological entropy dellular automata [11], it is in general undecidable whethtile set
produces a robust or fragile pattern, due to the undecitlabil the Halting Problem: a tile system that simulates aversal Turing
machine may either produce a pattern that is eventuallpgier{if the Turing machine halts), or else it may continugtoduce ever
more complicated subpatterns. The former patterns (tleaee@ntually periodic) are formally robust, although ordy Very largek
does this become apparent, while the latter patterns agiefra

38

abedy abedy abcd; abedy
output s 0 -
S
T) T | < [X J =
X ?1? 2? ? 0k
2 ? 2 2
» 7 7 7 §° 3
2
=V 7 ?_F?. o oo e
=] ? ? 2 2 | c
gr— 2 72 7| — - o e
z 22 12 bo ml S g 5
2 | 2 2 2 3 S
7 7 7 7
w72 17 P? n =
=
0 p q r 8 g
input opary opary opary opary

Figure 3.4: Compact proofreading transformations udingd blocks. Strength 2 bonds are indicated with 2
dots. Strength 0 bonds are indicated with a cross. Questwkaindicate arbitrary bond types. All unlabeled
(internal) bond types are unique (within the block and betwblocks.) This construction is equivalent
to “compressing” thek x k block on the left to a single tile and then applying the snagembfreading
construction, remembering to paint the resulting tileswlite original colors.

The natural way to use Chen and Goel’s construction to impignsompact proofreading for robust
patterns is as follows. For ank, for each of thepoly(k) k x k block types described above, create
unique tile types with bond strengths according to the sthakeofreading blocks and colors according to the
original pattern. The internal bond types are unique to éasisformed: x k block type and do not depend
upon the internal bond types in the origirkak & block type. External bond types in the transformed block
redundantly encode the full tuple of external bond typebkéndriginal block. (This transformation fordax 4
block is illustrated in Fig. 3.4.) The L-shaped seed assgmhist also be revised to use the new compound
bond types. The above set of tile types together with thid assembly yields a new tile systeRik).

It is easy to check that under aTAMI(k) correctly produces the pattern. At the corner between two
existing blocks, only a tile that matches all the borderstité both blocks can attach. Any other internal
tile must bind correctly since at least one side must matclorad iype unique to the block. Since the
original block assembled deterministically from its westlaouth sides, the transformed block also grows
deterministically in the same direction. In fadf(k) is locally deterministic [20], which makes a formal
proof easy. Furthermore, for any particular choicé&o€hen and Goel's Theorem 4.1 applies directly to our
compact proofreading tile sets, but with multiplicativenstants that increase with But we also claim the
following, whereM = [N/k] is the size of our target assembly in units of blocks:

Lemma 3.4.1. If a patternP is robust then: For any constapt < 1, the M x M block initial portion of
the pattern is produced correctly with probability at leasin time O(M poly(log M)) by someT(k) (as
defined above) where= 6(log M), using the locking kTAM with appropriat&,,. andG ..

Proof. Recall, as long as a particular location remains susceptibsufficient attachments at that location
constitute a Poisson process with ret®(e—3¢=<). Here@ can be upper bounded by the total number of
different blocks since that is the maximum number of diffgitle types that can be added as an insufficient
attachment at any location. Thus, the maximum rate of irgefft attachments at any locationgi€,.) =
Q(k)O(e=3%s<), whereQ(k) = poly(k) since the pattern is robust.

The difference between the proof of Chen and Goel [4] and wieateed is that Chen and Goel assumed
that@(k) was a constant. Thus, whereas they were able to inckeadtout increasing the rate of insuffi-
cient attachmentg, we are not so fortunate. To remedy this situation, we muost down growth slightly in
order to sufficiently decrease the rate of insufficient &maents, but not so fast as to change the asymptotic
form of the results.

Informally, note that Chen and Goel's bound on the probighdf successfully completing the square
within a certain time (scaled relative f9 depends only on the ratig' f; the absolute time scale does not mat-
ter, nor does it matter whetheiis the result of many or a few possible erroneous block typess, we can
slow downf by a polynomial ink without affecting the completion time asymptotics@fM poly(log M),
sincek = O(log M). Doesg decrease enough? So long as it decreases faster relafiveéocan compensate
for the polynomial increase in insufficient attachments.Wilesee that a factor of)(k)? is sufficient.

39

Formally, assuming the maximum rate of insufficient attaehta is anyj(G,.) = O(e~3%¢) indepen-
dent of k, and the forward (=reverse) rate is afifG..) = Q(e2CG=<), for any M, Chen and Goel give
a valuek for k andG,, for G,. such that with high probability the assembly completesaaily in time
t = O(M poly(log M)). We, of course, havg(G..) = O(Q(k)e 3“=<) and f(Gs.) = Q(e™). Now
let us defingj(Gy.) = ¢(Gue +InQ(K)) - Q(k)? and f(Gye) = f(Gse + InQ(k)) - Q(K)%. Observe that
G(Gse) = O(e=3%) and f(G4.) = O(e~2C+). This means that if the maximum rate of insufficient at-
tachments and the forward rate were th@sad f, then Chen and Goel's proof gives valieandG.,. such
that with high probability the assembly completes corgeictltime ¢t = O(M poly(log M)). But now note
that if we setGs. = G + In Q(l%), then the actual maximum rate of insufficient attachmentktha for-
ward rate are both exactly a factor@’(l%)2 slower thanj and f. Thus our system is simply overall slower
by a factor on(lE)Q. This means that our system would finish correctly with thmedigh probability as
achieved by Chen and Goel by tiri&tQ(k)?). But this is stillO(M poly(log M)) sincek = 6(log M) and

Q(k) = poly(k). 0
Theorem 3.4.1.1f a patternP is robust then there exists a compact proofreading schem fo

Proof. Let us use the sequen€® 5 = T(k)} n wherek for eachN is from Lemma 3.4.1. Each of these tile
systems can produce the whole pattern correctly under aT®tescorrectness condition of Definition 3.4.1
is satisfied. Sinc&(M poly(log M)) = O(N poly(log N)), Lemma 3.4.1 implies that the sequence satisfies
the robustness condition. Further, becaliseegments intpoly(k) differentk x k block types and =
O(log M) impliesk = O(log N), Tn = T(k) has onlypoly(k)k* = poly(log N) tile types, satisfying the
conciseness condition. O

For some patterns, Chen and Goel's theorem can be appliectlgi(without requiring Lemma 3.4.1).
These include patterns whose quarter-plane tile systegnses# into a constant number/ofk & block types.
Furthermore, consider the Sierpinski pattern (Fig. 3)1(dhe Sierpinski pattern is a fractal that has the
following property: split the pattern into blocks of sizex k for any k that is a power o®, starting at the
origin. For any suclt there are exactlg different types of blocks in the pattern. If you consideralssembly
produced by the Sierpinski tile system in Fig. 3.1(d), theme= exactlyt differentk x k blocks of tiles (the
difference is due to the fact there are now two types of blauktao types of white tiles.) We can let the
sequence of tile systems for the compact proofreading seffienthe Sierpinski pattern consist only®{k)
for k that are a power df. Note that because of the restriction ignve may have to use a block size larger
than that which results from Chen and Goel's theorem. Budesindoes not have to be more than twice as
large, Definition 3.4.1 is still satisfied.

It would be interesting to identify constructible quarpdane patterns that have at lea$tdifferentk x k
block types for allk and for some constant> 1.

3.5 A Lower Bound

In this section we will show that we cannot make compact pesafing schemes for fragile patterns using
known methods.

First of all, note that although the definition of fragile fgaihs quantifies over all quarter-plane tile sys-
tems, it can be very easy to prove that a pattern is fragilegusie following lemma.

Lemma 3.5.1. If a patternP has2(*) different types of x k squares of colors then it is fragile.

Proof. If a pattern containg®2(*) different types of x k squares of colors, then any tile system producing it
contains at least®(*) different types of: x k squares, and therefore comparably many block types. (I

The scheme described in the previous section does not wodurter-plane tile systems that segment
into 2(*) k x k block types (i.e., fragile patterns). This is becausekfer 8(log N), T(k) would then have
poly(N) tile types, violating the second condition (concisene$gpmpact proofreading schemes (Defini-
tion 3.4.1)F However, it is unclear whether other methods exist to makepaxt proofreading schemes for

*Further, we believe Lemma 3.4.1 does not hold if the numbélaifk types increases exponentially, rather than polyatynin
k. This is an open question.

40

patterns produced by such tile systems. While we cannotraite this possibility entirely, we can show that
a variety of schemes will not work.

Existing attempts at making self-assembly robust throwghliinatorial means ([24, 4, 17]) are based on
creating redundancy in the produced assembly. Specifid¢alywing only a few tiles allows one to figure
out a lot more of the surrounding tiles. Intuitively, thigltadancy allows the tile system to “detect” when an
incorrect tile has been incorporated and stall. We will arthat if a pattern is sufficiently complex, then only
if there are many possible tile types can a few tiles uniqdelgrmine a large portion of the pattern. Since
the definition of compact proofreading schemes (Definitigh13 limits the number of tile types, we will be
able to argue that for complex patterns there do not exispemtproofreading schemes that rely on this type
of redundancy.

Definition 3.5.1. An assembly is (k, d)-redundant if there exists a decision procedure that, for @y k
(completed) square of tiles iA, querying at mostl relative locations in the assembly for its tile type, can
determine the types of all tiles in that square.

The proofreading schemes of [24] and [4], using a block &ize k, are (k, 3)-redundant: even if the
square is not aligned with the blocks, it is enough to askliertypes of the tiles in the upper-left, lower-
left, and lower-right corners of the square. Because aktih a block are unique, and because the tile
system is deterministic, these three tiles allow you to &guut all four blocks that the square may intersect.
A proofreading construction that generalizes Reif et §L3 2-way and 3-way overlay tile sets toway
overlays is shown in Appendix 3.6.2 to bk, 3)-redundant as well. This construction is not based on block
transformations; the fact that its power is nonethelesgdurby Theorem 3.5.1, below, illustrates the strength
of our lower bound.

Lemma 3.5.2.If a tile systenil producesk, d)-redundant assemblies in which more tish different types
of (completed): x k squares appear, then it must have at le28t @ tile types.

Proof. Letm be the number of tile types &. If an assembly produced bW is (k, d)-redundant, then it has

no more thann? types of squares of sizex k because the decision procedure’s decision tree is of depth a
mostd and of fan-out at most.. But we assumed th&F makes assemblies that ha¥# different types of

k x k squares. Thusp? > 2¢% which can only happen i, > 2¢+/4, O

Lemma 3.5 lets us limit the types of compact proofreading@stds that such complex patterns may have.

Theorem 3.5.1.1f a pattern is fragile then there does not exist a compacofreading schemé&T';, Ts, .. .}
such thatT' 5 produces assemblies that ai€(log N'), d)-redundant (for any constai.

Proof. Any tile system producing this pattern mak&'d*) different types oft x k (completed) squares
of tiles. Supposeél'y produces assemblies which g€ log N, d)-redundant, for constants, d. Take

k = ¢'log N and note that for largé, Ty makes at leas2°* k x k squares for some constant Apply
Lemma 3.5.2 to conclude thaty has at leaste*/? = N’/ tile types, which violates the second condition
of Definition 3.4.1. O

Even though both the Sierpinski pattern and the counteeetFig. 3.1) are infinite binary patterns that
can be constructed by very similar tile systems, they arg diferent with respect to error correction. We
saw that the Sierpinski pattern has compact proofreadimgrses. However, because the counter must count
through every binary number, for artythere are2* rows that have different initial patterns of black and
white squares. This implies that there are exponentiallgyr{a %) different squares. By Theorem 3.5.1
this implies that the counter pattern does not have compacifigading schemes that uge(log V), d)-
redundant assemblies. That is, no existing proofreadihgree can be adapted for making compact binary
counters arbitrarily reliable.

This theorem suggests that in order to find universal compemdfreading schemes we must find a
method of making self-assembly more error-robust withoaitimg it too redundant. However, we conjecture
that there are inherent trade-offs between robustnessamiseness (small number of tile types), raising the
possibility that there do not exist compact proofreadintgesees for patterns having an exponential number
of k x k squares.

41
3.6 Appendix

3.6.1 Extension of Chen and Goel’'s Theorem to Infinite Seed Badary Assemblies

The following argument uses terms and concepts from [4].

First, suppose we desire to build &8N + N?) x (N + N?) block initial portion of the pattern starting
with the L seed assembly having arms that Are- N2 blocks long. The extrav? blocks will serve as a
buffer region. Chen and Goel's [4] Theorem 4.2 then gives és=a 0(log (N + N?)) = f(log N) and
G s.t. with high probability no block error occurs in thi&7 + N2) x (N + N?) block region in time
O(N? poly(log N)) that it takes to finish it. Further, with high probability tivétial N x N block portion
of the pattern is completed in timigs = O(N poly(log V)).

Now, let's suppose we use thisand G, with an infinite L seed assembly, and we’ll be interested in
just the N x N block initial portion of the pattern. The only way the infmiseed assembly can affect us
is if a block error outside théN + N?) x (N + N?) block region propagates to tié x N initial region
before it completes. For this to occur, at ledét tiles must be added sequentially, at least one per block
through the buffer region, to propagate the error. The exggigame for this to happen &2/ f with standard
deviation N/ f (i.e., it is a gamma distribution with shape parameYérand rate parametef). However,
the propagated error can only cause a problem if it reached'tkx N rectangle before timey. Since
ty = O(N poly(log N)), this becomes less and less likely/dsncreases by Chebyshev’s inequality. Small
N are handled by increasirigandG,. appropriately, which does not affect the asymptotic resdihus we
have ak = 0(log N) andG,. such that with high probability (i.e% p) the initial N x N block portion of
the pattern is completed correctly in timi& N poly(log N)), even if we use an infinite L seed assembly.

3.6.2 An Overlay Proofreading Scheme

In this appendix we give an example showing that our lowemidaan the complexity of same-scale proof-
reading schemes also applies to proofreading schemegéadvebased on block transformations. Here, we
consider a-way overlay scheme (suggested by Paul Rothemund and Mak)@wat generalizes the 2-way
and 3-way overlay schemes introduced by Reif et al. [17]. ddrestruction is shown in Fig. 3.5.

Consider the assembly grown using some original tile seif) &g. 3.5a. When the shaded titewas
added, it attached to the tilesandb to its west and to its south. Since we consider only detesticnjuarter-
plane tile sets, the tile type at a particular location isracfion of the tile types to its south and to its west,
e.g.,.z = f(a,b) = fa. Therefore, it is possible to reconstruct the same pattéttrowt keeping track of
bond types, explicitly transmitting only information alidile types.

The 1-overlay tile set, derived from the original tile sstai deterministic tile set for doing exactly that.
As shown in Fig. 3.5, for each triple of neighboring tites, andz that appears in the assembly produced
by the original tile set (in the relative positions showna))(create a new tilér, z, b, a), colored the same
asz, that “inputs” the original tile types of its west and its slouneighbors, and “outputs” tile type to
both its north and its east neighbor. With an appropriatelgaded L-shaped boundary, the new tile set will
produce exactly the same pattern as the original tile setottput of the tile at locatiofi, j) in the 1-overlay
assembly is the tile type &t, j) in the original assembly. Supposing the original tile’Bétas|T| tile types,
the new tile set contains at mggt|? tile types, and possibly fewer if not all pairs of inputs$ appear in the
pattern.

Redundancy is achieved inkaway overlay tile set by encoding not just one original thef &£ adjacent
tiles along the diagonal growth front. Specifically, eadd ith the k-way overlay assembly will output the
k-tuple of original tile types that appear in the same locaitiothe original assembly and locations to the east
and south. For example, in Fig. 3.5c, the output of the til& gt) in the 4-overlay assembly is the 4-tuple
abed containing the tile types at locatiofs j), (i + 1,5 — 1), (i + 2,7 — 2), and(i + 3,7 — 3). Each new
tile is colored according to the first tile type in its outpuple. The new tile set consists of all such tiles that
appear in the:-overlay assembly. The new tile set contains at mdgt|**! tiles, since there are at most

*In addition, the L-shaped boundary must be properly re-d¢ddearry the boundary information in the form the new tileguire.
This is easy to do if the pattern is consistent with a largerdtiyetical assembly that extenkdiles beyond the quarter-plane region,
since then tuples on the boundary encode for tile types sntthffer zone. Otherwise a few extra tile types will be neagssut as this
does not change the nature of our arguments, we ignore ttsis dere.

fNote that the exact (minimal) set of such tiles is in genenmlomputable, since the original tile set could be Turingersial, and

42

a) b) c)
original 1-overlay 4-overlay
9 4 a X 7
%
1 a 88 x 2 ? aa X %CJ}" 3@,}"
6 5 ? b i %
5 5 b y Z
s
7 b 33 yo23 2 bbb %' K%
12 4 ? c ol %%
4 51 c z z
10 ¢ 1313 z 35 2 ez Ool"g 0/;@/}-»
12 5 ? d 1%
5 d
n4d 3 2 d 0@%—-»
11 ? 4

x=fap y=foc z=fcd

Figure 3.5: The construction fdr-way overlay proofreading tile setg¢a) An original quarter-plane tile set
T, containing|T| tile types. Numbers indicate bond types. Letters name taeytpes. For example, the
tile x = (4,8,5,2). (b) The 1l-overlay transformation of the original tile set. Theegtion marks indicate
that there may be several different new tile types that dutpar b; (c) The 4-overlay transformation of the
original tile set

|T|* input k-tuples, and the two inputs to a given tile will always agreg a 1 indices. This is exponential
in k, but for some patterns — e.g., robust patterns, as we wilksemly a polynomial number of tile types
will be necessary. Note that growth with the new tile setilsdterministic, since the tuple output by a tile
is a function of the two input tuples.

In what sense is th&-overlay tile set guaranteed to be proofreading? Considgpath site where a
tile is about to be added. Unless the two ingttuples agree at alk — 1 overlapping positions, there will
be no tile that matches both inputs. Thus, every time thdeastiadded without a mismatch, it provides a
guarantee that — 1 parallel computations are carrying the same informatiocglly. Note that the fact that
site (i, j) in the original assembly contains tile typés encoded irk locations in thek-overlay assembly.

It is reasonable to conjecture that it is impossible forkdtbcations to have incorrect information, unless at
leastk insufficient attachments have occurred.

Unfortunately, like the original proofreading tile sets[@#l] and the 2-way and 3-way overlay tile sets
described in [17], thé-way overlay tile sets do not protect against facet nuaeatirrors, and therefore
we do not expect error rates to decrease substantiallywviitVe do not see an obvious way to correct this
deficiency.

Nonetheless, as a demonstration of the general appligabilour lower bound, we will show thaven
if the k-way overlay tile sets reduced errors sufficiently, for flagatterns the:-way overlay tile sets will
contain an exponential number of tile types and are thusgilide, whereas for robust patterns thavay
overlay tile sets will contain a polynomial number of tilgpgs and are thus feasible.

First we show that alk-overlay tile sets arék, 3)-redundant, regardless of the original tile set. To
determine all tile types in the x k square with lower left coordinatg, j), we need only know the tiles at
(i,j—1),(i—k,j+k—1),and(i + k — 1, j — k). The outputs of these tiles encode for the entire diagonal
from (i — k,j + k — 1) to (i + 2k — 2,5 — 2k + 1) in the original assembly. Deterministic growth from
this diagonal results in a triangle of tiles with upper rigbtner at(i + 2k — 1,5 + k — 1), in the original
assembly. Thus all tile types are known for the input and wttptuples of overlay tiles in thé x &k square
of interest.

Theorem 3.5.1 tells us that fragile patterns cannot havereatproofreading schemes that é¢log N), d)-
redundant for any constadt Thereforek-overlay tile sets can’t work as compact proofreading sasefar
fragile patterns; they must have an exponential numbetefytpes. This is what we wanted to show.

Alternatively, we could have directly bounded the numbeiletypes ink-overlay tile sets for fragile and

thus predicting whether a particular original tile appearthe assembly is equivalent to the Halting Problem. Howebe new tile set
is well defined and in many cases can be easily computed.

43

robust patterns. For robust patterns, witliy(k) k& x k squares of tile types, clearly there are glsby (k)
size+4 diagonals. Since each tile in ttieoverlay tile set contains two inputs encoding skzeiagonals,
there can be at mogbly(k)? = poly(k) tile types altogether. Thus, (although probably not sgitisf the
robustness criterion of Definition 3.4.2)overlay tile sets are at least concise for robust patt€Znaversely,
concisek-overlay tile sets, havingoly(k) tile types by construction, have a comparable number of/size
diagonals in the original assembly. Consider now the oalgassembly. Since growth is deterministic, the
diagonal determines the upper right half df a k& square, and thus there ar€y (k) tops andoly(k) sides;
taking these as inputs to other squares, we see that thepelaté)? = poly(k) k x k squares. In this loose
sensek-overlay tile sets are neither more nor less concise thah snaked proofreading, for robust patterns.
On the other hand, for a fragile pattern, requirif*) k& x k squares of tiles in any tile system that
produces it, we can see that there will also be at [288t size diagonals of tiles. Specifically, if(k)
is the number of such squares, abdk) is the number of such diagonals, th&fk) < D(2k) because
deterministic growth from a siz2k diagonal results in the completion of a triangular regiontaming a
k x k square.S(k) being at least exponential therefore implies the saméXgr). Conversely, a pattern
generated by a tile system witf?(*) size4 diagonals obviously also has at least that manyk squares as
well. Thus, our notions of fragile and robust patterns apptabe sufficiently general.

Acknowledgments

We thank Ho-Lin Chen, Ashish Goel, Paul Rothemund, MatthewokZ and NataSa Jonoska for discussions
that greatly contributed to this work. This work was suppditty NSF NANO Grant No. 0432193.

Bibliography

[1] L. M. Adleman, Q. Cheng, A. Goel, and M.-D. A. Huang. Rumgitime and program size for self-
assembled squares. ACM Symposium on Theory of Computing (ST@pes 740-748, 2001.

[2] G. Aggarwal, M. Goldwasser, M. Kao, and R. T. Schwelleion@lexities for generalized models of
self-assembly. I'Bymposium on Discrete Algorithms (SOD@gges 880-889, 2004.

[3] R. D. Barish, P. W. K. Rothemund, and E. Winfree. Two cotational primitives for algorithmic
self-assembly: Copying and countinganoLetters(to appear).

[4] H.-L. Chen and A. Goel. Error free self-assembly usingeprone tiles. In Ferretti et al. [7], pages
62-75.

[5] J. Chen and J. Reif, editorBNA Computing 9volume LNCS 2943. Springer-Verlag, 2004.

[6] M. Cook, P. W. K. Rothemund, and E. Winfree. Self-asseadtircuit patterns. In Chen and Reif [5],
pages 91-107.

[7] C. Ferretti, G. Mauri, and C. Zandron, editorBNA Computing 10volume LNCS 3384. Springer-
Verlag, 2005.

[8] P. W. K. RothemundTheory and Experiments in Algorithmic Self-AssemBlyD thesis, University of
Southern California, 2001.

[9] P. W. K. Rothemund, N. Papakakis, and E. Winfree. Aldoriic self-assembly of DNA Sierpinski
triangles.PLoS Biology2:e424, 2004.

[10] P. W. K. Rothemund and E. Winfree. The program-size demify of self-assembled squares. ACM
Symposium on Theory of Computing (STOQf2ges 459-468, 2000.

[11] L. Hurd, J. Kari, and K. Culik. The topological entropfeellular automata is uncomputablérgodic
Theory Dynamical Systenk2:255-265, 1992.

44

[12] T.H. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, JR#if, and N. C. Seeman. Construction, anal-
ysis, ligation, and self-assembly of DNA triple crossovemplexes.Journal of the Americal Chemical
Society 122:1848-1860, 2000.

[13] M. G. Lagoudakis and T. H. LaBean. 2-D DNA self-assenmtfoly satisfiability. In E. Winfree and
D. K. Gifford, editors,DNA Based Computers, Yolume 54 ofDIMACS pages 141-154. American
Mathematical Society, 2000.

[14] C. Mao, T. H. LaBean, J. H. Reif, and N. C. Seeman. Logaahputation using algorithmic self-
assembly of DNA triple-crossover moleculééature 407:493-496, 2000.

[15] C. Mao, W. Sun, and N. C. Seeman. Designed two-dimeas@NA holliday junction arrays visualized
by atomic force microscopylournal of the Americal Chemical Sociefy21:5437-5443, 1999.

[16] J. Reif. Local parallel biomolecular computing. In Hulitin and D. H. Wood, editord)NA Based
Computers Il volume 48 o DIMACS pages 217-254. American Mathematical Society, 1999.

[17] J. H. Reif, S. Sahu, and P. Yin. Compact error-resil@mhputational DNA tiling assemblies. In Ferretti
et al. [7], pages 293-307.

[18] R. Schulman and E. Winfree. Programmable control ofleaton for algorithmic self-assembly. In
Ferretti et al. [7], pages 319-328.

[19] R. Schulman and E. Winfree. Self-replication and etioluof DNA crystals. In M. S. Capcarrere, A. A.
Freitas, P. J. Bentley, C. G. Johnson, and J. Timmis, edifaigances in Artificial Life: 8th European
Conference (ECAL.Volume LNCS 3630, pages 734-743. Springer-Verlag, 2005.

[20] D. Soloveichik and E. Winfree. Complexity of self-asgded shapes, 2005. Extended abstract; preprint
of the full paper is ¢s.CC/0412096 on arXiv.org.

[21] E. Winfree. On the computational power of DNA annealarg ligation. In R. J. Lipton and E. B.
Baum, editorsPNA Based Computergolume 27 oDIMACS pages 199-221. American Mathematical
Society, 1996.

[22] E. Winfree.Algorithmic Self-Assembly of DNA&RhD thesis, California Institute of Technology, 1998.
[23] E. Winfree. Simulations of computing by self-assemflgchnical report, Caltech, 1998.

[24] E. Winfree and R. Bekbolatov. Proofreading tile setsroEcorrection for algorithmic self-assembly.
In Chen and Reif [5], pages 126-144.

[25] E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman. Desand self-assembly of two dimensional
DNA crystals.Naturg 394:539-544, 1998.

[26] E.Winfree, X. Yang, and N. C. Seeman. Universal comjiortavia self-assembly of DNA: Some theory
and experiments. In L. F. Landweber and E. B. Baum, edik&) Based Computers, Volume 44 of
DIMACS pages 191-213. American Mathematical Society, 1998.

45

Chapter 4

Combining Self-Healing and
Proofreading in Self-Assembly

Collaborators: Matthew Cook and Erik WinfreeMy contribution: | invented the construction with some
discussion with MC. | developed the proofs and wrote the ¢éhe paper.

This chapter was published asDavid Soloveichik, Matthew Cook, Erik Winfree, “Combinisg!f-Healing
and Proofreading in Self-Assembly,” Natural Computingy-{ime July 2007).

4.1 Abstract

Molecular self-assembly is a promising approach to bottgniabrication of complex structures. A major
impediment to the practical use of self-assembly to creamepdex structures is the high rate of error under
existing experimental conditions. Recent theoreticalvgor algorithmic self-assembly has shown that under
a realistic model of tile addition and detachment, errarecting tile sets are possible that can recover from
the attachment of incorrect tiles during the assembly m®cé\n orthogonal type of error correction was
recently considered as well: whether damage to a complétectisre can be repaired. It was shown that
such self-healing tile sets are possible. However, thessdts are not robust to the incorporation of incorrect
tiles. It remained an open question whether it is possibleréate tile sets that can simultaneously resist
wholesale removal of tiles and the incorporation of incormes. Here we present a method for converting
a tile set producing a pattern on the quarter-plane int@aét that makes the same pattern (at a larger scale)
but is able to withstand both of these types of errors.

4.2 Introduction

The Tile Assembly Model [21, 22] formalizes a generalizegstal growth process by which an organized
structure can spontaneously form from simple parts. It e the foundation for theoretically examining
how to use self-assembly for massively parallel DNA compoma[20, 26, 15, 12], for creating objects
with programmable morphogenesis [10, 1, 2] (also see Ch&pidfor patterning of components during
nanofabrication of molecular electronic circuits [6], &odstudying self-replication and Darwinian evolution
of information-bearing crystals [16, 17]. In addition tagtheoretical work, several self-assembling systems
have been implemented experimentally using DNA molecuedies, including both periodic [25, 14, 11]
and algorithmic patterns [13, 9, 3].

The Tile Assembly Model considers the growth of two dimenald'crystals” made out of square units
called tiles. Typically, there are many types of tiles thaistrcompete to bind to the crystal. A new tile can be
added to a growing complex if it binds strongly enough. Eddhefour sides of a tile has an associated bond
type that interacts with abutting sides of other tiles thatehalready been incorporated. If the two abutting
sides have different bond types then their interactiomgtieis0. Otherwise, the bond type determines the
interaction strength. For tile systems shown in this pageleast a single strong bond (streng)hor two

46
a) . b)

1 0
1

1

H|H|H|

0,0)
c) . d)

n
0

@
0

1

H|O|O|

/
/
(0,0)

Figure 4.1: (a) A binary counter pattern and (b) a tile systemstructing it. (c) A Sierpinski pattern and (d)
a tile system constructing it. The L-shaped boundary (greed in (a) and (b) as the x and y axes) is the
seed. We assume it is exactly as large as the portion of tiherpate are trying to build. In this formalism,
identically-labeled sides match and tiles cannot be rdta#dl bond types are weak (strength; thus, tiles
may attach to the growing assembly only if at least two sidaschm Note that the tile choice at each site
is deterministic for these two tile sets if the assembly @agng north-east. Growth in the south-west and
north-west directions is not deterministic for the coungéerd south-west growth is not deterministic for the
Sierpinski.

weak bonds (strength each) need to be formed for a tile to attach. This is caledr-freetile addition.
The assembly process starts from a specified seed assendijyaoeeds by sequential addition of tiles. An
assemblys an arrangement of tiles that can result by this processs @b not get used up since it is assumed
there is an unbounded supply of tiles of each type. If evégytype is “colored” a certain way, then the self-
assembly process can produce a pattern. Fig. 4.1 illustratedifferent patterns and the corresponding tile
systems that self-assemble into them. Patterns, like thiesegrow from an L-shaped boundary are called
guarter-planepatterns; while more complex growth paths are possibleimvitie Tile Assembly Model, we
do not consider them here, because quarter-plane patterasrizh class (including universal computation)
and we feel that their study is sufficient for identifying th&sential principles.

A major stumbling block to making algorithmic self-asseyniactical is the error rate inherentin current
implementations. While the abstract model supposes taatdditions are error-free and permanent, in reality
tile additions are error prone and tiles can dissociate faognowing complex. Further, huge chunks of the
structure may be physically ripped off by external mechalrfiorces, such as shear due to fluid flow during
sample handling. Erroneous addition of tiles and wholesateoval of tiles have been examined separately

a) b)
n "2 Bge M
4 p ey
ny n2
output 3 e output o0
2" |8 oo! Loo R MY
g""se-g—> oo oo gwse§_>""2 se 2
= [X =
input 2 & @ €2 input
Precursor tile Precursor tile w1 e
S1 2
1 ey
S1 2 S3

Figure 4.2: (a) Chen and Goel's snaked proofreading tramsftions usingt x 4 blocks (i.e. .k = 4), and (b)
Winfree’s self-healing transformations for quarter-m@dite systems. Each tile type is replaced with the tile
types that fit together to form the block as shown. Strong bdsttength 2) are indicated with 2 dots. Null
bonds (strength 0) bonds are indicated with a cross. Allhaléd (internal) bond types are unique (within
the block and between blocks.) The placement of weak andgtronds is dependent upon the orientation
of growth, which is to the north-east for quarter-planegistems.

in the literature, so let us review them in turn.

Recent experimental demonstrations of algorithmic se$eanbly exhibit error rates df% to 15%: on
average every eighth to hundredth tile that is incorpordtess not correctly bond with its neighbors [9, 3].
Once such a mistake occurs, the erroneous information cgrdpagated to tiles that are subsequently
attached. Thus, a single mistake can result in a drastidéflyrent pattern being produced. With this error
rate, structures of size larger than roughly tiles cannot be assembled reliably.

While the physics of the self-assembly process could plysbidmodified to achieve a lower probabil-
ity of the incorporation of incorrect tiles into the growiegmplex, it is also possible to use some logical
properties of the tiles to perform error correction [24]. this vein, Chen and Goel [4] developsdaked
proofreadingtile sets that make use of redundant encoding of informati@thieve robustness to error (see
Fig. 4.2(a)). Each tile type of the original tile system iplezed byk? tile types that form a block correspond-
ing to the original tile and is colored the same. If growthuwscowithout error, the same pattern is produced,
albeit at ak times larger scale. However, an error leads to an assemldgewjrowth cannot be continued
without further errors. Since further errors are unlikayhiappen in just the right time and place, growth
around erroneous tiles stalls and the erroneous tiles deet@alsubsequently dissociate, allowing another
chance for correct growth. Using this approach, a larges@étile sets can be transformed into more robust
tile sets that assemble according to the same logic at arlscgkek. Chen and Goel were able to prove, with
respect to a reversible model of algorithmic self-assentbét error rates decrease exponentially vkitand
thus making anV x N initial portion of the pattern, which requires an error rate< 1/N?, can be done in
time O(Npoly(log(N)) using onlyk = Q(log N).

Extensive damage to the completed parts of the structurecesasidered in [23]. Damage caused by
external destructive physical processes is modeled bylgimoving some number of tiles from the growing
(or completed) structure. Because the assembly model @loystals to grow in any direction, tiles may
begin to fill in holes in the structure from a different diriect than the direction of their original growth.
While forward growth was deterministic, most of the time kaard and sideways growth is not (unless the
computation being performed is reversible in some sensej.ekample, both the binary counter and the
Sierpinski pattern do not have deterministic backward ghov&elf-healingtile sets were developed that
perfectly heal such damage to the self-assembled objexttpasg that only error-free tile additions occur
(see Fig. 4.2(b)). Each tile in the original tile set is reyeld with9 tiles as shown in the figure, and thus
the pattern is produced at a fixed scale-up factd.0fThe key idea of the construction is that it guarantees
that the regrowth occurs from the same direction as origjmaith by the placement of null bonds (strength
0) that prevent backward growth and strong bonds (streppgthat allow the assembly process to proceed
correctly in the forward direction.

*Allowing self-assembly to start from a preexisting seedratary as in this paper, rather than from a single seed tile §3],
actually permits the use of a simpler transformation thatlpces a scale-up factor of just

48

In summary we have two types of errors: (1) tile additiong thalate the rule that a tile may only be
added if it binds strongly enough, and (2) the removal oktiespite them being strongly bonded. With
existing techniques, each of these types of errors can bieotled separately, but not when they can occur
in the same assembly process. Further, simply applyingrthkes! proofreading transformation followed by
the self-healing transformation, or vice versa, does notigde a solution (see the beginning of Section 4.4).
In this paper we describe a new construction that has the paovable properties as snaked proofreading
for the first type of error, but is also able to heal damagedsavehere tiles have been removed from the
assembly, even when errors in tile addition are allowed.

We assume the reader is familiar with the formal details effile Assembly Model (see Chapter 2 for a
long version, or Chapter 3 for a short summary). In the nestice we review the model of the dynamics of
self-assembly that allows us to speak more precisely aheutte of incorrect tile additions and to show that
our construction is robust to such errors. Further, wed@fy more precisely the kind of damage we allow
to our assemblies in studying the self-healing propertthénfinal section, we introduce our construction and
prove that it is robust to both types of error. Our proof teghe provides an alternative way of analyzing the
error correction process in that all analysis pertains dividual blocks.

4.3 Modeling Errors

4.3.1 Erroneous Tile Additions During Growth

To be able to discuss whether or not a tile set is robust toneoas tile additions, we need a model of
the process of incorporation of erroneous tiles into thevgrg structure. In physical realizations of self-
assembly, the growth process involves tiles dynamicaléching and detaching from the assembly. An error
occurs if a tile that is held on with total strength less tRasoes not fall off quickly enough and becomes
effectively locked in place when another tile attaches sihett both tiles are now held on to the rest of
the structure with strength at least We term this event amsufficient attachmentThus to determine the
effective rate of insufficient attachments we need to sthdydynamics of tile attachments and detachments.

Following [22, 24, 18] let us define the kinetic Tile Assembypdel (kTAM) as follows. The concentra-
tion of each tile type in solution is held constant througttba self-assembly process, and the concentrations
of all tile types are equal. We assume that for every tile @asion reaction there is a corresponding disso-
ciation reaction. We further assume that the rate of add{firward rate f) of any tile type at any position
of the perimeter of the growing assembly is the same. Spaltyfi¢ = ke~ wherek, is a constant that
sets the time scale, ardd,, . is the logarithm of the concentration of each tile type iruoh. The rate that a
tile falls off the growing assemblyédverse rate,) depends exponentially on the number of bonds that must
be broken. Specifically,, = ke ~"C+< whereb is the total interaction strength with which the tile is atted
to the assembly, and,. is the unit bond free energy, which may depend, for exampl¢éemperature

We assume the following concernirfgandr,. As in [22], we letf = r since then the tile addition
requirement imposed by the abstract Tile Assembly Modehtssfed with high probability, yet forward
growth can still occut. In Section 4.5.1 we discuss how clogeandr, have to be for our proof to work
out, but for the purposes of the rest of the paper we asgume ;. We assum¢ (and therefore;) can be
arbitrarily chosen in our model by changing,. andG,., for example by changing tile concentrations and
temperature. (In practice, there are limits to how muchedhmsameters can be changed.) Howekgris
assumed to be a physical constant not under our control.

Following [4, 18] we make use of a simplification of the kTAMaticaptures the essential behavior while
being more tractable for rigorous proofs. Under the coadgiwheref = r,, the self-assembly process is
dominated by tiles being added with exaclyponds and tiles falling off via exactly bonds. Thdocking
kTAM model assumes that these are the only possible siilglevents. That isy, = 0 for b > 3, and tiles

*This formulation ignores the initiation free energy of higimation, which is non-negligible. See [22] for detailshaiw this free
energy can be treated, yielding a model that is formally tidah but with slightly altered physical meanings 6%, andk.

TAssumingf = r2, sincer; >> f, if atile is added that bonds only with strength 1, it fall§\ary quickly as it should to obey the
aTAM. Tiles attached with strength 2 stick much longer,wif@ an opportunity for other tiles to attach to them. Oncieais bonded
with total strengths, it is very unlikely to dissociate (unless surroundinggifall off first). Requiringf > r2 ensures that on average,
crystals grow, and for fixeds, choosingf ~ r2 minimizes the probability of an insufficient attachment. Wi# encounter additional
reasons for choosing ~ r» later.

49

never attach via a single weak (strendgjhbond. Additionally, insufficient attachments are moddtethe
locking KTAM as atomic events, in which two tiles are addeddianeously at any position in which an
insufficient attachment can occur. Specifically, any paléicpair of tile types that can create an insufficient
attachmentin the KTAM is added at a rgte, = O(e~3%¢). (This is asymptotically the rate that insufficient
attachments occur in the KTAM [4].) Thus the total rate ofiifisient attachments at a particular location is
Q ferr» Where@ is the number of different ways (with different tile typelat an insufficient attachment can
occur there. These insufficient attachments are the sokeazierrors during growth.

If a tile set is robust to insufficient attachments, then we setG,. andG,,,. such that the assembly
grows quickly enough, yet the assembly will itself corrée errors caused by insufficient attachments.

4.3.2 Wholesale Removal of Tiles

Let us now consider how to model the event when (potentialigd) portions of the completed pattern are
physically ripped off the assembly despite being stronglyded to it. We simply suppose that any number
of tiles can be spontaneously removed from the assembly istmat event. However, we assume the L-
shaped boundary tiles cannot get removed. If the assemibledise becomes disconnected after the event,
we assume that the part of the assembly containing the Leshiagundary remains.

The reason we suppose that the L-shaped boundary cannatgehdd is that to make the boundary self-
healing requires a different self-healing transformatian the one shown in Fig. 4.2 (see [23]), and we wish
to keep our argument as simple as possible. It remains anquastion whether the self-healing/proofreading
construction presented in this paper can be extended teeetite boundary after damage, and whether the
techniques used here can be extended to a wider class oétddtat perform complex growth to create
shapes and patterns (see Chapter 2). We expect an affirrantiveer.

4.4 Self-Healing Proofreading Construction

First, let us return to the following issue raised in the ddiuction: Why can’t we simply apply the snaked
proofreading transformation followed by the self-healingnsformation, or vice versa, to produce a tile
set robust to both insufficient attachments and wholesateval of tiles? There are two difficulties. The
first is of a technical nature: both transformations showRi@ 4.2 only are defined if precursor tiles have
weak bonds on all four sides, yet they result in tile sets #tsd involve both strong and null bonds. Thus
the two transformations can't be composed. Sufficientlyegain(though more complicated) self-healing
transformations do exist [23], but although more generafiplicable proofreading transformations have
been proposed [24], there are as yet none with provably geddnmance. Even supposing this technicality
can be overcome, there is no guarantee that the tile setingsfrom composing both transformations will
retain both robustness properties. One problem is that ritemia which order the transformations are
applied, the blocks produced by the last transformatiorsensitive to even one insufficient attachment after
wholesale removal of tiles. Fig. 4.3 illustrates two inemtrstructures that can form and become locked in
(according to the locking KTAM). Therefore, we choose to bame the ideas from the snaked proofreading
and self-healing constructions, and do not simply comploséransformations directly.

Our self-healing proofreading construction is illustchie Fig. 4.4.

Suppose we are trying to assembleldin< N initial portion of the given pattern such that it assembles
quickly and correctly with some fixed high probability (1i€9%) from the starting L-shaped boundary or
from any subassembly that may be formed by removing tilas tiee target assembly. We have the following
result:

Theorem 4.4.1. Fix any constant > 0, and consider anyV. There is ak = O(log N) such that using
the self-healing proofreading construction with blockesizand an L-shaped boundary blocks long, with
an appropriate choice of7,,. and G., the following holds in the locking KTAM model. Startinghadiny
subassembly afl ;y containing the L-shaped boundary, with probability at leds- ¢, the initial N x N
block portion of the patteral ;y completes correctly in tim@(N poly (log N)).

*We use the standard asymptotic notation defined as follgifzs) = O(g(z)) means that that there is> 0 such thatf(z) <
¢ - g(x) for large enoughe. Similarly, f(x) = Q(g(x)) means that there is > 0 such thatf(z) > c - g(z) for large enoughc. We
write f(z) = ©(g(x)) if f(z) = O(g(x)) andf(x) = Q(g(x)).

50

a) b)
S s SS /. /s, /.
S S S S S S s 0SS S S S
S S S S S S S S LSS S S S S S S S S S S S s
S S S S S S S S S S s S S S S S S S S S S S S S S s
P A A AVl I/////// rS LSS Ll L LIS 7 7 7
np n3 ng4
/S []
LSS ¢ “
00 /S
® s
o /s
/S
S
S
S
V94
7y

Figure 4.3: (a) The self-healing and (b) the snaked prodfrggblocks are sensitive to a few insufficient
attachments in the backward growth direction. Considercs® where in the original tile set, backward
growth is not deterministic. The structures shown can foftera single insufficient attachment and may
be incorrect since they involve backward growth. Every ohhe tiles is attached with strength at ledst
and thus cannot dissociate in the locking KTAM. The stripexha show a part of the remaining (correct)
assembly after wholesale removal of tiles. The grayed ta4,tivhich need not be present, show the entire
block for reference. There are other structures that can fbat cause similar problems.

As a special case, the subassembly we start out with may @shé L-shaped boundary. Then the
assembly process we are talking about is the regular casé&deoed by Chen and Goel which starts out from
this boundary. However, we also consider the case wherestesriblyA y was damaged by the removal of
some tiles. Note that the assumption is that this damagesekated event rather than occurring continuously
at some rate. If wholesale damage events occur less frdytiesn the time required to complete thex N
square, then a reasonable probability of success can esidfélowever, if damage occurs at an intermediate
time during assembly — when many incorrect tiles are stiigeint before being replaced by correct growth
— then we need a stronger theorem that states that such aatiditions are also allowed. As this requires
technical language defining just how much incorrect growtaliowable, we defer this discussion until the
end of the proof of the stated theorem.

Proof. (of Theorem 4.4.1) First we need to make some terms preciben We will prove a number of
lemmas about the assembly process, and finally with theirielwill prove the theorem. In the following,
when we saylockwe will mean the squark x k region which should become filled by a block in the ideal
error-free assembly. We say a tile in an assembindsrrectif it is not the same tile type as in the ideal
error-free assembly we are trying to produce. Of the dioest{ north, east, south, westwe will call the
directions west and south tlieput directions, and east and north thetputdirections (because the growth
direction is north-east and thus information must pass fiteenwest and south toward north and east). We
say that a block or a region beconasanif all incorrect tiles detach (correct tiles may remain.)

Now refer to Fig. 4.4(b) where rectanglds F, S, W are defined. We define the following in relation to
a particular block in a growing assembly:

e StateDOOM: The block enters this state when an input rectamgler S touches an output rectangle
N or E or if any of the rectangles touches the “spine” of the blocliked with wavy patterns in the
figure). We will see that unless DOOM occurs, all of the regtasare easy to clean. If DOOM occurs,
this can no longer be guaranteed and indeed the block carnaakh incorrect tiles.

e EventlA: This event occurs whenever an insufficient attachment éragpjin the block or its input
blocks.

e StateCLEAN This state occurs when the block becomes clean, togethbrtié abutting output
rectangles of its input blocks. We will demonstrate thagaét CLEAN, many IA events are required
to enter the DOOM state.

e StateCOMPLETE The block enters this state when it and its input blocks detegorrectly. We will
see that once a block enters this state the correct strustlmeked in and we can move on to other

=55

:
=, DOOMIEDOD
I o I 32
HiRENEREE
R IR0

R £

]
HEE
HEE
NN
=N
Sl

input
indino

b)

,,,,,,,,,,,,,,,,,,,,,,,

Ik "

k/2

Figure 4.4: (a) The self-healing proofreading transfoioret for block sizek = 8. (b) Schematic of the
self-healing proofreading block fdr divisible by 4. Tiles in thek x k block are not explicitly drawn; just
the pattern of null bonds (Xs) and strong bonds (double}dots indicated, and all other bonds are weak.
For discussing the growth process in the presence of etttgsstate of the assembly is characterized by
N;, E;, S;, andW;, which are the smallest non-negative integers such thafotlmving statements hold:
RectangleN (E) contains all incorrect tiles connected to the north (esisi® of the block. (We say that a
tile is connected to a side of a block if there is a path of cotetbtiles (abutting with matching bond types)
within the block from the given tile to the given side.) Rewe S (1) contains all incorrect tiles connected
to an input side of the block that are incorrect with respet¢hée west (south) side of the precursor tile. (An
incorrect tile must be incorrect with respect to at least ohthe input sides of the precursor tile.) Wavy
patterns indicate tiles forming the block “spine”.

52

.o |
|
I
|
I
|
.o I
|
I
| . . o o
. . . o |
|
I
|
I
|
I
|
| l
| E w |
|
I
: | kr2
I
|
I
|
I
|
I
|
I
|
I
|
I
|
e . . :
oo x—x >4 B’ __

Figure 4.5: (a,b) Illustration for the proof of Lemma 4.4(8) lllustration for the proof of lemma 4.4.4. In
(a)—(b) the thick black lines indicate where the incorrdestdefining the rectangles shown may be bonded
to the rest of the assembly (and conversely the dashed lésaie where they may not be bonded to the
rest of the assembly). In (c) the thick black lines indicateve the correct tiles are bonded to the rest of the
assembly.

ki2

blocks in our argument.
Lemma 4.4.1. If a block is COMPLETE then no tile from the block can detach.

Proof. By inspection: except for the most south-west tile, evelgy iti a completed block is attached by
strength at least. Assuming both input blocks are completed, the most sowstvile is also attached by
strength at least. O

Lemma 4.4.2.If a block is CLEAN then (a) at least one 1A is needed to get aariect tile in the block, (b)
at leastk /4 IA events are needed to enter DOOM, assuming no DOOM occiusiimput blocks first.

Proof. Part (a) follows immediately. Unless a DOOM occurs in ouchlor its input blocks, each insufficient
attachmentinside our block increases on&/ef Fs, S1, So, W1, W5 by at mos® or one of Ny, F; by at most
1. An insufficient attachment in the west or south input bloak increases, or Ws, respectively by2 (if
the incorrect tiles extend into the input blocks). Thus,rbhenber of IAs must be at leadf; + E; + (N2 +
Ey + 51 + S + Wy + Wa)/2. At least one of the following inequalities must hold for D®IQo occur:
N1+ Ny > k/2—1,E1 + FEy > k/2—1,W2 > k/?—l, Sy > k/2—1,W1 + Ny > k/2, orS|+FEy > k/?
Part (b) easily follows. O

Lemma 4.4.3. The expected time for a block to enter CLEANDiS:®/ f), assuming (1) no IA occurs, and
(2) no DOOM occurs in this block or its input blocks.

Proof. Letus first show that the output rectangles of the input lBdx@come clean in expected tid¢k> / f).
Let's consider rectangl®& sinceN can be treated identically. Since no DOOM occurs in this klee can
safely assume that these incorrect tiles are surroundeith®y eorrect tiles or empty space on the north and
west, and thus cannot bind to them. Then the largest indmtreicture is illustrated in Fig. 4.5(a). Recall that
we are assuming that the forward rgtés equal to the reverse rate (see Section 4.3.1). Thus the leftmost
two rows can fall off via a 1-D random walk with expected tif@ék?/ f) (see Section 4.5.1). Once the two
rows fall off, they cannot attach again except via anothsufiicient attachment. Since there &¢k) pairs
of rows, the total expected time for rectangVeto fall off is O(k?®/ f).

Once the output rectangles of the input blocks become ctady correct (or empty) tiles abut our block
on the west and south sides. Let’s consider the tiles defi@ognglell (rectangleS can be treated sim-
ilarly). Since these tiles are incorrect with respect to $bath side of the block, they cannot be attached

53

to anything on the south side of the rectangle. Further tlagyat be attached to anything inside the block
along the east or north sides of the rectangle since thee tiles would be part of the rectangle. Since we
are assuming that no DOOM occurs, the rectangle cannoteétesnd bind the north output border of the
block either. Further, the rectangle cannot reach the colofistrength-2 bonds on its right because other-
wise a block error would occur (a spine tile would be covengthie rectangle). Thus the rectangléis as
illustrated in Fig. 4.5(b). Th&/; x W, top rectangle can fall off via 1-D random walks as beforeeAfhat,
again by the same argument, the rest of rectaiglean fall off in timeO (k3 / f). O

Lemma 4.4.4.The expected time for a block whose input blocks are COMPLtB Eater COMPLETE itself
is O(k3/f), assuming (1) no 1A occurs, and (2) no DOOM occurs.

Proof. First the block enters CLEAN in expected timEk3/ f) using Lemma 4.4.3 (note that no DOOM
can occur in the input blocks because they are completed)LeByma 4.4.2(a) the block remains free of
incorrect tiles. Then let us consider how long it takes to plate the cleaned block whose input blocks are
complete, assuming no insufficient attachments occur. i@enthe south-west quarter of the block shown in
Fig. 4.5(c). Once each row or column completes it is held bgnsjth at leass and thus cannot dissociate.
Each row or column completes via a 1-D random walk with exge:¢imeO(k?/ f). Since there ar® (k)
row/columns, the total expected time to complete the sgstamen isO(k3/ f). The remaining areas of the
block can be completed using a similar argument in tinié* /) as well, after the spine of the block (wavy
pattern in Fig. 4.4) completes in tinte(k/ f). O

Now using these lemmas we can finish the proof of Theorem 4T4hé argument will proceed as follows.
First, we set~ %+ low enough as a function of the block sizeo that insufficient attachments are sufficiently
rare that a block has a high probability of entering CLEAN @MPLETE before an IA occurs. This will
ensure that, assuming no DOOM occurs anywhere, the assewilgletes in time(poly(k)N/e). Then
we will setk large enough as a function 6f ande to ensure that no block enters the DOOM state during the
entire assembly process. We will see thateed not be more than logarithmicNve.

Recall that as long as a particular location remains sudtepive model insufficient attachments at that
location as a Poisson process with rétg)e —3%:<) where(Q is the number of different tile types that can be
added via an insufficient attachment the€gcan be bounded by the total number of different (made up of
different tiles) blocks, and since this is the number oftijjges in the original tile system, it does not change
with k& and can be absorbed into the constant. Thus for any blocldigtiébution of the time until an 1A
occurs can be upper bounded by an exponential random \eawidthl expected time;, = Q(1/(k2e=3Cs<))
since there are no more thah? locations where an insufficient attachment can occur (irbtbek and its
input blocks). Lett, = O(k*/f) be the worst case expected time for Lemmas 4.4.3 and 4.4et &iv
possible assemblies, blocks and configurations of tiletoickis). We will want that,. < (1/2)t,,. Recalling
that f = r, = O(e~2%¢) (Section 4.3.1), we can guarantee that this inequalitytisfaad if we sete=%s-
low enough:e=%< = O(1/k°). However, setting ~“+< too low slows down the rate of assembly more than
necessary, and thus for the following we assumedh&t- = ©(1/k°). Then,t, = O(k'?3).

We wanted to have. < (1/2)t;, in order to show that thé&V x N blocks are likely, with probability
at leastl — /2, to assemble correctly in tim@(poly (k) N/c) assuming no DOOM occurs anywhere. This
can be argued as follows. Consider any block whose inpukblace COMPLETE. Lemma 4.4.4 lets us
bound the time until the block itself COMPLETES assuming As br DOOM occur. But what if 1As
can occur? The probability that COMPLETE occurs within tifig given that an IA doesn’t happen in
this time is at leasl/2 by Lemma 4.4.4 and the Markov inequalityThe probability that an 1A doesn’t
happen in this time is at lea$fe since2t. < t;,. Thus the probability that COMPLETE occurs within
time 2¢. is at least(1/2)(1/e) = 1/(2¢). If it doesn't (i.e., an IA occurs or it simply doesn't finistthe
probability that a COMPLETE will occur in the ne&t. interval is again at leadt/(2¢). Thus the expected
time until COMPLETE occurs is at mo&e2t. = 4et.. Recall that once a block completes, it can't fall
apart (Lemma 4.4.1). Thus, the current situation is eqeivab irreversible, error-free self-assembly of tiles,
where each tile represents a block in our system. In irré@lerassembly, the time to assembleldrx N tile
square from an L boundary is on the ordedtimes the expected time for a single tile to attach [1]. Thus,

*The Markov inequality states that for any non-negative camdariableX', Pr[X > a] < E[X]/a where E[X] is the expected
value of X.

54

the expected total time to complete tNex N block assembly ig;.: = O(N -4et.) = O(Nt.) assuming no
DOOM occurs anywhere. Therefore, the probability thatietlonger than,,,., = t;,¢(2/¢) = O(Nk!3/¢)
to complete the assembly or to get a DOOM somewhere is at4ridstagain by the Markov inequality.

Next we bound the probability that DOOM occurred anywheré¢hia assembly in time,, ... We'll
show that by an appropriate choice of= ©(log (N/e)), the probability of this happening is no more
thane/2. Again focus on a particular block; but this time the two ibplocks may not be completed. Let
us make the worst case assumption that the block remainsnpieted for the duration of assembly, ..
and thus susceptible to DOOM. We want such a block to be witbgdOM for the entire time. Recall
that the expected time until an IA is bounded@y = Q(1/(k*e=3%:¢)). Thus even with the worst case
assumption that the block is never completed, the expecatetbar of IAs for this block in timé,, . is at
mostq = O(tark?e~3%<). Recalling that=%s = O(1/k?), we haveg = O(N/e). The probability that
there will be more thapN?(4/¢) is at most /(4N ?) by the Markov inequality. After each IA occurs, with
probability at leastl /(2¢) there will be a CLEAN but no IA within timet¢. (using the same argument as
we followed in the previous paragraph for COMPLETE). Thuthwirobability at least /(2¢), a CLEAN
will occur between two IAs. So the probability that among norenthang N2 (4 /<) 1As, a run ofk /4 occur
in a row without intervening CLEANSs can be upper-boundeghy, = ¢N?(4/¢)(1 — 1/(2¢))*/%. Since
for DOOM to occurk/4 IAs must occur without intervening CLEANS (Lemma 4.4.2(lthe probability of
DOOM in this block during the entire assembly time is uppeurated byp,...,, if no more thangN2(4/¢)
IAs occur. If we can somehow guarantee that, < e/(4N?), then the probability that DOOM occurs in
this block during the entire assembly timg, . is at most/(4N?) + ¢/(4N?) = ¢/(2N?). Since there are
N? blocks, the probability that DOOM will occur even in one oéth during the entire assembly timg,..
is at most:/2.

Now all that is left is to guarantee that,,, = ¢N?(4/e)(1 — 1/(2¢))*/* < £/(4N?). Solving fork, we
get:k > O(1)log (16 N*q/e?) = O(log (N /e)).

Recall that the total assembly timg.. = O((N/e)k'3(Q(k))?). Usingk = O(log (N/¢)), we get that
tmaz = O(N - poly(log N')), for any fixede. O

Note that Theorem 4.4.1 can be strengthened to allow incitites in the starting subassembly, as long
as there is no DOOM in any of the blocks. Thus we can cover tbe icavhich the assembly process does not
entirely complete before the wholesale removal of tilesuoscHowever, if this removal occurs periodically
and large enough portions of the assembly are taken out maehit may be that the assembly is never given
a chance to complete. In any case DOOM will eventually pievai

4.5 Extensions
45.1 Random Walks in ther, # f Regime

Our proofs require thaf = ro exactly. This can’t be achieved exactly in practice, whielgbthe question,

is it a necessary requirement for our construction and pinad can it be relaxed somewhat? We believe it
can be only slightly relaxed, due to the competing pressofreseding large patches of incorrect growth to
be quickly removed, and at the same time needing correctthrmaproceed quickly.

In the proofs of Lemmas 4.4.3 and 4.4.4, we model the congpietnd dissociation of a chain of sequen-
tially added/removed tiles as a continuous time 1-D randatkywhere the rate with which a tile is added
at the end isf and the rate as which the last tile is removed.is Specifically, we rely on the fact that the
expected time for the entire chain to complete (allowing fasvard growth) and the expected time for the
chain to fall off (allowing errors to be quickly undone), dreth fast (polynomial in the block size and
therefore logarithmic in the size of the target assenijy

In order to compute the expected time until the entire chagompleted (or equivalently falls off) we can
use the following argument. In the discrete time 1-D randaatkwf lengtha = O(k), the expected number
of steps to reach a predetermined end (with the other endj eiaflective barrier) i§)(a?) if the forward
and backward transition probabilities are equal [7]. Incase, ifro = f, the two transition probabilities are
indeed equal. Further, since the expected time to take epéasst/(r» + f) = 1/(2f), the expected time to

55

reach the predetermined end$a?/f) = O(k?/ f).*
However, what happens if the forward ratedoes not equal the reverse rat& In the discrete time
biased 1-D random walk of lengih(with a reflecting barrier on the favored end), the expeciedlver of

steps to complete in the unfavored directiorbisy, a) = #(1 +7) K}“_‘—l)a - 1} — a/~ wherev is the

difference between the transition probability in the faagand the unfavored directioh& his expected time
is monotonic increasing iy and exponentially increasing in So if v is not decreased as we attempt to
build larger and larger portions of patterns requiring éariglock sizes, then the average number of steps in
this random walk grows exponentially with= O(k), which would not allow us to obtain Theorem 4.4.1.
Thus, as the block size increases, we neednd f to be closer to each other. As a functionofand
thus ultimately of V) how fast does the difference need to decrease in order feoreim 4.4.1 to still hold?
Let us assume that,. and thusrs is set as required by our proof, but we didn’t get,. quite right such
that the actual forward ratg is slightly smaller than. This would normally mean that crystals would be
thermodynamically driven to shrink, but since some tileiidids form multiple bonds, locking the tile in,
assembly is still ratcheted forward. The rate of insuffiti@itachments can only be smaller and thus still
ferr = O(e™3%¢). Thus as long as we can still prove Lemmas 4.4.3 and 4.4.4 wédvbe done. Observe
thaty = :jjf‘ is the difference between the transition probabilitieshie favored and unfavored directions
in the corresponding discrete time 1-D random walk. Assgntivaty decreases at least as fastlds, the
expected number of steps of the discrete time Markov pracessmplete in the unfavored direction is no

more thanS(1,a) = 1(a* + a) [(Z—f}) - 1} —a® = O(a?), sincelim, . o (Z—f}) = ¢2. This implies
that the expected time for the continuous-time Markov psede complete in the unfavored direction is still
O(k?/f), as required for Lemmas 4.4.3 and 4.4.4, as long decreases at least as fast as a function in
O(1/k).

A thermodynamic argument based on a more realistic KTAM rhotgy requirey to decrease slightly
faster, however. In the full KTAM [22], in which every reamti has a reverse reaction and an equilibrium-
satisfying detailed balance can be defined, growth of blizksased forward if the free energy of adding
an entirek x k block is favorable. This free energy may be calculated\as-,,,. — AbGs., WhereAn is
the number of tiles added, axb is the total strength of all new bonds. In our constructiattiag a block
entailsAn = k2 andAb = 2k2 + 2. Thus, favorable growth requires tl*%t— <24 % Now, since neatly

v = :zjr; = tanh (9me2C:e) the favorable growth condition requires that< tanh(G../k?). Since
the proof of Theorem 4.4.1 required that“:c = ©(1/k%), Gs. = O(log k) and thus the favorable growth
condition reduces to = O(tanh(log k/k?)). This is slightly more strict thay = O(1/k) derived in the

locking KTAM above.

4.5.2 Preventing Spurious Nucleation

The blocks produced by our construction have large regionghich tiles are connected to each other via
strong (strength 2) bonds (i.e., the “spine” of the blockyyvpattern in Figure 4.4). When the constituent
tiles are placed in solution, there is a danger that theyspiintaneously nucleate and growth will proceed
disconnected from the seed L-shaped boundary. Furthentlgnmay proceed by the aggregation of the
separately-nucleated fragments. In other words, our masimptions that only the assembly containing
the L-shaped boundary will grow, and that it will grow by dieitjle additions, may be violated in practice for
such tile sets. Can we avoid large regions of strongly botitk=din our construction? We believe “zig-zag”
boundaries [16] can be adopted to replace the spine, althdetgils remain to be worked out. Rather than a
fixed-width spine, this spine would need to be thicker to beevamd more robust to spurious nucleation.

*At the reflecting barrier the expected time to take a stepisetas large since only the forward direction is possiblewelicer, this
does not affect the asymptotic results.

tSee [7] for the general form of the expected duration of 1-&wite time random walks, from which the above expression is
derived.

56

Acknowledgments:

We thank Ho-Lin Chen and Ashish Goel for insightful convéirses and suggestions. This work was sup-
ported by NSF Grant No. 0523761.

Bibliography

[1] Leonard M. Adleman, Qi Cheng, Ashish Goel, and Ming-DehHdlang. Running time and program
size for self-assembled squares AGM Symposium on Theory of Computing (STQ@yes 740748,
2001.

[2] Gagan Aggarwal, Qi Cheng, Michael H. Goldwasser, Mirapy Kao, Pablo Moisset de Espanés, and
Robert T. Schweller. Complexities for generalized modéketf-assemblySIAM Journal on Comput-
ing, 34:1493-1515, 2005.

[3] Robert D. Barish, Paul W. K. Rothemund, and Erik Winfrélavo computational primitives for algo-
rithmic self-assembly: Copying and countinganoLetters5:2586-2592, 2005.

[4] Ho-Lin Chen and Ashish Goel. Error free self-assemblyng®rror prone tiles. In Ferretti et al. [8],
pages 62-75.

[5] Junghuei Chen and John Reif, editoBNA Computing 9volume LNCS 2943. Springer-Verlag, 2004.

[6] Matthew Cook, Paul Wilhelm Karl Rothemund, and Erik Wied. Self-assembled circuit patterns. In
Chen and Reif [5], pages 91-107.

[7]1 W. Feller. An introduction to probability theory and its applicatiangol. 1. Wiley, 1968.

[8] Claudio Ferretti, Giancarlo Mauri, and Claudio Zandreditors. DNA Computing 10volume LNCS
3384. Springer-Verlag, 2005.

[9] Paul W. K. Rothemund, Nick Papakakis, and Erik Winfredgdakithmic self-assembly of DNA Sier-
pinski triangles PLoS Biology2:e424, 2004.

[10] Paul W. K. Rothemund and Erik Winfree. The program-siamplexity of self-assembled squares. In
ACM Symposium on Theory of Computing (STQ@pes 459-468, 2000.

[11] Thomas H. LaBean, Hao Yan, Jens Kopatsch, Furong Lilg,\&mfree, John H. Reif, and Nadrian C.
Seeman. Construction, analysis, ligation, and self-akseaf DNA triple crossover complexedour-
nal of the Americal Chemical Societ}22:1848-1860, 2000.

[12] Michail G. Lagoudakis and Thomas H. LaBean. 2-D DNA seembly for satisfiability. In Erik
Winfree and David K. Gifford, editord)NA Based Computers, Volume 54 ofDIMACS pages 141—
154. American Mathematical Society, 2000.

[13] Chengde Mao, Thomas H. LaBean, John H. Reif, and Na@igdeeman. Logical computation using
algorithmic self-assembly of DNA triple-crossover molesiNature 407:493-496, 2000.

[14] Chengde Mao, Weigiong Sun, and Nadrian C. Seeman. Begdigvo-dimensional DNA holliday junc-
tion arrays visualized by atomic force microscajgurnal of the Americal Chemical Society1:5437—
5443, 1999.

[15] John Reif. Local parallel biomolecular computing. lafdey Rubin and David Harlan Wood, editors,
DNA Based Computers |Ivolume 48 ofDIMACS pages 217-254. American Mathematical Society,
1999.

[16] Rebecca Schulman and Erik Winfree. Programmable obwii nucleation for algorithmic self-
assembly. In Ferretti et al. [8], pages 319-328. Extendsttadi in DNA Computing 10; preprint
of the full paper is cond-mat/0607317 on arXiv.org.

57

[17] Rebecca Schulman and Erik Winfree. Self-replicatiod avolution of DNA crystals. In Mathieu S.
Capcarrere, Alex A. Freitas, Peter J. Bentley, Colin G. $ohnand Jon Timmis, editorddvances
in Artificial Life: 8th European Conference (ECALYolume LNCS 3630, pages 734—-743. Springer-
Verlag, 2005.

[18] David Soloveichik and Erik Winfree. Complexity of corqt proofreading for self-assembled patterns.
In DNA Computing 11Springer-Verlag, 2005.

[19] David Soloveichik and Erik Winfree. Complexity of selfsembled shapes, 2005. Extended abstract in
DNA Computing 10; preprint of the full paper is ¢s.CC/0418@® arXiv.org.

[20] Erik Winfree. On the computational power of DNA annegliand ligation. In Richard J. Lipton
and Eric B. Baum, editor§)NA Based Computersolume 27 ofDIMACS pages 199-221. American
Mathematical Society, 1996.

[21] Erik Winfree. Algorithmic Self-Assembly of DNRhD thesis, California Institute of Technology, 1998.
[22] Erik Winfree. Simulations of computing by self-assdyiTechnical report, Caltech, 1998.

[23] Erik Winfree. Self-healing tile sets. In Junghuei Ch&latasha Jonoska, and Grzegorz Rozenberg,
editors,Nanotechnology: Science and Computatipages 55—78. Springer-Verlag, 2006.

[24] Erik Winfree and Renat Bekbolatov. Proofreading tiktss Error-correction for algorithmic self-
assembly. In Chen and Reif [5], pages 126-144.

[25] Erik Winfree, Furong Liu, Lisa A. Wenzler, and Nadrian 8eeman. Design and self-assembly of two
dimensional DNA crystalsNature 394:539-544, 1998.

[26] Erik Winfree, Xiaoping Yang, and Nadrian C. Seeman. Jénsal computation via self-assembly of
DNA: Some theory and experiments. In Laura F. Landweber aidBE Baum, editorsDNA Based
Computers IJ volume 44 o DIMACS pages 191-213. American Mathematical Society, 1998.

58

Chapter 5

The Computational Power of Benenson
Automata

This chapter was published as:David Soloveichik and Erik Winfree, “The Computational Ravof Be-
nenson Automata,” Theoretical Computer Science, 244(2%9)297, 2005.

5.1 Abstract

The development of autonomous molecular computers capmdbigaking independent decisions in vivo
regarding local drug administration may revolutionize matlscience. Recently Benenson et al. [4] have
envisioned one form such a “smart drug” may take by impleingrain in vitro scheme, in which a long
DNA state molecule is cut repeatedly by a restriction enzymee manner dependent upon the presence of
particular short DNA “rule molecules.” To analyze the pdiainof their scheme in terms of the kinds of
computations it can perform, we study an abstraction asgyithiat a certain class of restriction enzymes is
available and reactions occur without error. We also disd¢wsv our molecular algorithms could perform
with known restriction enzymes. By exhibiting a way to siatel arbitrary circuits, we show that these
“Benenson automata” are capable of computing arbitraryi@oofunctions. Further, we show that they are
able to compute efficiently exactly those functions combpletdy log-depth circuits. Computationally, we
formalize a new variant of limited width branching prograwith a molecular implementation.

5.2 Introduction

The goal of creating a molecular “smart drug” capable of mgkndependent decisions in vivo regarding
local drug administration has excited many researchefls R€cently, Benenson et al. [4] (based on [5, 3])
have envisioned what such an automaton may look like, amaftegba partial implementation of the design
in vitro. They made a system consisting of an enzyme and af€eN& molecules which tests whether
particular RNA molecules are present in high concentradiuth other particular RNA molecules are present
in low concentrations, and releases an output DNA moleculdgh concentration only if the condition is
met. The actual computation process consists of the enzuttiaga special DNA molecule in a manner
ultimately determined by the concentrations of input mRNAl@cules present in solution. The authors
suggest that such a design, or a similar one, can be useckt dehcentrations of specific MRNA transcripts
that are indicative of cancer or other diseases, and thatitpeit can take the form of a “therapeutic” ssSDNA.
The key computational element in the scheme is an enzymeutaDNA in a controlled manner. Nature
provides many biologically realizable methods of cuttinhAdthat can be adapted for computing. For
instance, bacteria have evolved methods to cut the DNA efdimg viruses (phages) with numerous enzymes
called restriction enzymes. Most restriction enzymes outbie-stranded DNA exclusively at sites where a
specific sequence, called the recognition site, is founaneSestriction enzymes leave a so-called “sticky
end overhang” which is a region of single-stranded DNA atehd of a double-stranded DNA molecule.

59

a)
D=9 S=4
~ A A
cut af_tg[9_l_)§1_ses
------------- [- \'
GGATG
CCTAC i
recogniton cut atter 13 bases
b)
TGGIC ... state molecul
+ f before cut
556 peC”
\GGP:(N i
"CC g \e:
SPtigs . W
c\ﬁggé\)‘\e'l
oot . state molecul
after cut
c)

Figure 5.1: (a)Fokl recognition and cut sites on a generic DNA substrate. ThamatersD and.S will be
used to characterize restriction enzymes in this papés.called the cutting range artithe sticky end size.
(b) Example of a cutting rule application. (c) lllustratiohthe output loop. Cutting far enough opens the
loop. (In (a),(b),(c) the top strand is-5'3".)

Sticky ends are important because if there is another DNAeoud¢ with a complementary sticky end, the
two molecules can bind to each other forming a longer dosbded DNA strand.

Benenson et al. use type IIS restriction enzymes, which aubk-stranded DNA at a specific distance
away from their recognition sites in a particular directidd]. These enzymes were first considered in
molecular computation by Rothemund [6] in an non-autonosrsonulation of a Turing machine. For an
example of a type IIS restriction enzyme, consiéfekl which is known to cut in the manner shown in
Fig. 5.1(a). Note that aftefokl cuts, the DNA molecule is left with a sticky end overhang obdses.
The automaton of Benenson et al. is based on a series ottestrenzyme cuts of a longtate molecule
Each cut is initiated by the binding of @utting rule moleculgo the state molecule via matching sticky
ends (Fig. 5.1(b)). Cutting rule molecules have an embedsdction enzyme recognition site at a certain
distance from their sticky end. The number of base pairs &etvthe restriction enzyme recognition site
and the sticky end on the cut rule molecule determines thebeumf bases that are cut away from the
state molecule after the rule molecule attaches. Sinceetipgesice of the sticky end on the state molecule
determines which rule molecule attaches, it determines inany bases are cut off the state molecule in
the presence of some set of rule molecules. Fig. 5.1(b}rifitess how TGGC can encode the “cut 7 bases”
operation when the appropriate cutting rule molecule isgmé After each cut, a new sticky end is revealed
which encodes the location of the next cut, and the processaatinue.

Benenson et al. [4] describe how any set of RNA or DNA molesgkn act as input to their automaton.

60

In particular, each input species converts some rule mtdedhat are initially inactive into active form, and
inactivates others that are initially active. The net effsfanultiple pre-processing steps is that the presence
of input molecules in either high or low concentration detigres which rule molecules will be available.
Note that input is provided all at once, at the beginning ef¢bmputation; the activated rule molecules are
used by the automaton as needed during the course of the tatiopu

A single-stranded loop is attached to the end of the state Diecule (Fig. 5.1(c)). The loop is held
closed by the remaining double-stranded part of the stateaule — the so-calledgtem If the state molecule
is cut close enough to the loop, the loop is opened and reledssuming the loop has a chemical function
only when open (e.g., it is translated to create a proteirffectvely acts as antisense DNA), this results
in the production of the “theraputic” molecule in an inpwpegndent manner. If the system worked without
error, and supposing that the input RNA molecules are efihesent in high concentration or not at all, the
output DNA molecule should be released if and only if a set HAR is present that results in a set of rule
molecules that cut the state DNA molecule sufficiently fas.atcommodate the possibility of error, which
we ignore here, Benenson et al. implement two possible ¢tgithat compete between each other, with the
one produced in largest quantities “winning.”

We are interested in the class of computations that can bkeimgmted using the approach developed
by Benenson et al. [4]. One possibility of performing conxgtemputations using this scheme is to use the
output DNA molecule of one Benenson automaton as an inputriother, allowing feed-forward circuits
to be implemented. However, we would like to study the corafiomal power of a system with a single
state molecule. Showing how to compute complex functiotis asingle Benenson automaton examines the
computational power of the basic unit of computation, an#esat clear how one can compute even more
complex functions with many state molecules.

In the first part of this paper, we formalize the computatiggracess implemented by Benenson et al.
using a system with a single state molecule. As part of ourattton, we are going to ignore concentration
dependence and other analog operations such as thoseifgvphobabilistic competition between various
reactions, and will focus on a binary model in which a react®either possible or nét.We treat the state
molecule and the set of possible cutting rule molecules a®gram specifying what computation is to be
performed, while the input determines which rule molecalesactive. Each rule molecule depends upon
a specific input RNA species which either activates or dealtes it, or it may be always active. We’'ll say
that a Benenson automaton outpuit§ at some point at least a total gfbases has been cut off, where
represents the point in the state string cutting beyond hwbjmens the loop. Otherwise, we say it outputs
a 0. Our constructions will cut the state molecule to leave eonsbn al output, and some length of stem
otherwise!

Like circuits, Benenson automata are best studied as a nidorm computing model. But while the
computational power of circuits is well characterized, toenputational power of Benenson automata has
not been studied. For example, while it was shown [4] how glsiBenenson automaton can compute a
conjunction of inputs (and negated inputs), it was not cleav a single Benenson automaton can compute
a disjunction of conjunctions. While [5] and [3] show how fenautomata can be simulated by a similar
schemé, a different input method is used. Here, we show that a Bereasitomaton can simulate an
arbitrary circuit, implying that it is capable of doing atriairy non-uniform computation.

Lastly we study the cost of implementing more complex corapais (e.g., more complex diagnostic
tests) using Benenson automata. While increasing theHeofgthe state molecule is relatively easy and
incurs approximately linear cost, increasing the size efdficky ends or the range at which the restriction
enzyme cuts requires discovering or creating new enzymegyries with very large cutting ranges that
leave large sticky ends may not exist in nature, and whileessutcess has been achieved in creating new
restriction enzymes [8, 7], engineering new restrictionyenes suitable for Benenson automata will require

*We'll consider non-deterministic computation in which ra¢inan one cutting rule molecule can attach and cut. Howenéke [1]
we will not assign probabilities to the various reactiond #re output.

TEven with a stem remaining, the loop may still open at a aentaie (the “stem” must be long enough to keep the loop locked
closed — see [4]). Nevertheless, our constructions can lekfie to assure a longer remaining stem dha@utput at the cost of using
a few additional unique sticky ends (see Discussion).

*In contrast to [4], [5, 3, 1] treat the state molecule as amtigtring for a uniform computation, while the set of rule emiles
is always the same and specifies the finite state machine ¢atigouto be performed. It is interesting to note the diffae in the
computational power of these two approaches. To implemé&&M with K symbols andV states, a type IIS restriction enzyme with
cutting rangeV and sticky end siz& (log K N) is sufficient and probably necessary.

61

further technological advances.

Let us consider a family of Boolean functiof$, }, wheren = 1,2,... and f,, : {0,1}" — {0,1}.
We show that any{ f,,} can be computed by a family of Benenson automata such thatzbef the sticky
ends grows only logarithmically with and the range of enzyme cutting stays constant. (This i®goak
to noting that any{ f,,} can be computed by a family of circuits using constant fdfaimout, but it is
non-trivial to prove.) If we restrict the length of the stat®lecule to bepoly(n), then the families of
functions computable by these Benenson automata are eiawsie computable b (log(n)) depth circuits.
These results are asymptotically optimal, since sticky lendths must grow akgn in order to read all
the input bits. We'll also show that allowing the sticky eridesto grow faster tha(logn) does not
increase computational power, and that allowing logarithcatting range cannot increase it significantly.
Finally, we'll define non-deterministic computation andye that function families cannot be computed
more efficiently using non-deterministic Benenson aut@ntian deterministic ones.

Independent of the relevance of our formalization to bialabcomputation, Benenson automata capture
a model of string cutting with input-dependent cutting sjl@nd may be of interest as such.

5.3 Formalization of Benenson Automata

We consider Benenson automata over a fixed alpiébEbr biological plausibility, one may want to consider
¥ ={A,T,C,G}. However, our constructions assume only fdt> 3. If so desired, all our results can be
adapted to a binary alphabet by utilizing two bits to repnésesingle symbol, which entails changes in the
constants used in the theorems.

Let N be the set of non-negative integdfs 1, ...}. For any stringr € X, |o] is the length or. For
j € Nsuch thatj < |o|, we'll use the notatiorr[j] to indicate the string that is left over after the figst
symbols ofo are stripped off.

A Benenson automaton is parameterized by four numbersniesean is the number of inputs that the
automaton is sensitive to. Further, paraméteorresponds to the sticky end siZe to the maximum cutting
range of the restriction enzyme (see Fig. 5.1(a)), &nd the length of the computational portion of the
state molecule. A particular Benenson automaton is defigesppecifying a state string and a selection of
input-dependent cutting rulé® as follows.

Definition 5.3.1. A Benenson automatas a tuplet(S, D, L, 3, n, o0, R) wheren, S, D, L € N, X is a finite
alphabeto € X! is a state string an® C {0,...,n} x {0,1} x ¥% x {1, ..., D} is a rule set using sticky
ends of lengtht and maximum cutting distande. Each rule(s, b, w, d) specifies an input, a binary value
b, a sticky endv, and a cutting distance.

Interpreted as a DNA state molecutd;] represents the remaining portion of the molecule gfieitial
bases have been cut off. The fissymbols ofo ;] represent the single-stranded sticky end overhang. This
revealed sticky end and the value of an input bit, determine where the next cut will be made by the
application of some cutting rulg, b, w, d) which is applicable ift; = b and cuts at a distaneck

Definition 5.3.2. Given a Benenson automat¢f, D, L, >, n, 0, R), for a binary inputz = zy25...z,,, a
rule (i,b,w,d) € R appliesto o[j], wherej € N s.t.|o[j]| > S + d, if z; = b andw is the initial S symbol
portion ofo[j]. We writeo[j] —, o[j + d] iff there exists a rulgi, b,w, d) € R that applies tas[j]. Further,
— is the reflexive transitive closure e#,,.

Our definition of Benenson automata (as well as the biocharimgplementation) allows for conflicting
cutting rules. For example, if the rule set contains rle$, w, 4) and(2, 1,w, 6), then eithert or 6 bases
may be cut off if the sticky end is revealed and; = 0,22 = 1. An important class of Benenson automata
are those in which it is impossible for conflicting cuttindesito apply simultaneously:

Definition 5.3.3. A Benenson automatdss, D, L, ¥, n, o, R) is said to bedeterministidf V= € {0,1}" and
j € Ns.t.o —Z o[j], there exists at most oné € N such that[j] —, o[j].

While in computer science non-determinism often seemsd@ase computational power, we'll see this
is not the case with Benenson automata. On the other hanrimepting deterministic Benenson automata

62

may be advantageous because (assuming error-free op¢edith state molecule is cut up in the same way
and thus there is no need for a combinatorially large numbstate molecules.

Cutting the state string far enough indicates autput. We'll think of Benenson automata computing
Boolean functions as follows:

Definition 5.3.4. For p € N, we say that a Benenson automatéh D, L, X, n, o, R) non-deterministically
computesa Boolean functiory : {0,1}" — {0, 1} at positionp if Vz € {0,1}", f(z) = 1 & (35 € N,

p < j <|o|st.oc—% a[j]). We'll say simply that the Benenson automaton-deterministically computes
f if such ap exists.

Definition 5.3.5. For p € N, we say that a Benenson automateh D, L, ¥, n, o, R) computesa Boolean
functionf : {0,1}" — {0, 1} at positionp if the automaton is deterministic ane: € {0,1}", f(z) = 1 &
(37 eN,p<j<|o|st.o—%o[j]). We'll say simply that the Benenson automatomputesf if such ap
exists.

Other reasonable output conventions have the same corngmatapower. For example, the following
lemma shows that Benenson automata cutting to exasjymbols to output @ and never cutting to exactly
p symbols to indicate &, can be easily modified to output according to our convention

Lemma 5.3.1. If for a deterministic Benenson automato$y D, L, ¥, n, o, R) and f : {0,1}" — {0,1},
dpeN,p<LstVze{0,1}", 0 = o[p] & f(x) = 1, then there is a Benenson automatéh D, p +
S, %, n,o’, R) that computed.

An identical lemma also holds for non-deterministic congpioin. The lemmai is trivially proven by taking
o’ to be the firsp + S symbols ofs. All our constructions of Section 5.5 will produce Benensmitomata
requiring Lemma 5.3.1 to satisfy our definition of computBmplean functions (Definition 5.3.5).

Note that interpreted as a DNA state molecule, the lengthefémaining state string mingsrepresents
the remaining double-stranded stem holding the output tboged. Thus, as mentioned in the Introduction,
automata from our constructions (like any automata prodbgethe above lemma) leave no stem only on a
1 output, allowing the loop to open.

In a biochemical implementation, it may seem that in ordechiange the input (say from being all
zeros to all ones) it may be necessary to activate or indetavaule molecule for every cutting rule .
However, for certain Benenson automata much smaller clsameged be made. Consider the example of an
automaton whose rule set contains the rle$), w, d) and(1, 1,w, d). This pair of rules is really a single
input-independentrule to cdtbases if sticky end is found no matter what the input is; thus, the cutting rule
molecule for it can be always active in solution. The follogidefinition quantifies the maximum “amount
of effort” needed the change the input for a given Benenstonaaton.

Definition 5.3.6. For s € N, a Benenson automatdi$, D, L, >, n,0, R) is said to bes-encodedf for
every input biti, 1 < i < n, there are at most sticky endsv € ¥ such that3(i,b,w,d) € R but
(i,1 —b,w,d) € R.

An s-encoded automaton has at mesticky ends “reading” any given input bit. In order to charige
input, in a biochemical implementation of a deterministiencoded Benenson automaton, it is enough to
activate or inactivate at mostpairs of rule molecules per changed bit.

5.4 Characterizing the Computational Power of Benenson Autmata

In Section 5.5 we show that to compute function families g8enenson automata, only logarithmic scaling
of the restriction enzyme sticky end size, and no scalindhefrhaximum cutting distance is needed. This
result holds no matter what the complexity of the functiomifs is. Further, if the family of functions
is computable by log-depth circuitghen a state string of only polynomial size is required. d@fllour
constructions use deterministic Benenson automata.

*For the purposes of this paper, circuits are feed-forwaricamsist of AND, OR, and NOT gates with fan-in boundedbyFor
an introduction to circuit complexity see for example [9].

63
Theorem 5.4.1.

(@) Any functionf : {0,1}" — {0,1} can be computed by a Benenson automaton with sticky end size
S = O(logn) and maximum cutting distande = O(1).

(b) Families of functions computable B(log n) depth circuits can be computed by Benenson automata
with sticky end siz&& = O(logn), maximum cutting distanc® = O(1), and state string length

L = poly(n).

The constants implicit in both statements are rather sm@ti.this and in the following discussions
we assume that the alphabet sjz is a constant.) Note that the sticky end size cannot be snthbe
O(logn) since there must be at least a different sticky end for eaphtibit (otherwise the input isn’t
completely “read”). Thus, in computing arbitrary Booleamétions, we cannot do better than= O(logn)
andD = O(1).

Further, in Section 5.6 we prove that our computation of f@siof functions computable by log-depth
circuits is optimal, and neither allowing non-determinisar larger sticky ends adds computational power:

Theorem 5.4.2. Families of functions computable, possibly non-deterstically, by Benenson automata
with D = O(1), L = poly(n) can be computed b9 (log n)-depth circuits.

Corollary 5.4.1. Benenson automata with = O(logn), D = O(1), L = poly(n) can compute the same
class of families of functions &3(log n)-depth circuits.

So if we consider only Benenson automata with= O(logn), D = O(1), L = poly(n) efficient,
then Benenson automata can compute a family of non-unifamotions efficiently if and only if it can be
computed by a circuit of logarithmic depth. In Section 5.&’llvalso show that relaxing this notion of
efficiency to include logarithmic cutting range does not@ase the computational power significantly.

5.5 Simulating Branching Programs and Circuits

Benenson automata are closely related to the computatiwodél known as branching programs. (For a
review of branching programs see [12].) In the next sectiershow how arbitrary branching programs can
be simulated. In the following two sections, we show howrietsd classes of branching programs (fixed-
width and permutation branching programs) can be simulageBenenson automata withh = O(logn)
andD = O(1). Since fixed-width permutation branching programs aré miverful enough to compute
arbitrary Boolean functions (Section 5.5.4), Theorem1{a).follows. Further, in Section 5.5.4 we’ll also
see that fixed-width permutation branching programgdfj(n) size can simulat®(logn) depth circuits,
implying Theorem 5.4.1(b).

5.5.1 General Branching Programs

A branching program is a directed acyclic graph with thrgeesyof nodes: variable, accept and reject (e.g.,
Fig. 5.2(a)). The variable nodes are labeled with an inprialée z; (1 < i < n) and have two outgoing
edges, one labelgdand the othet, that lead to other (variable, accept, or reject) nodes. advept and
reject nodes have no outgoing edges. One variable node withaoming edges is designated the start
node. The process of computation consists of starting astdré node and at every nodg, following the
outgoing edge whose label matches the value ofithéit of the input. If an accept node is reached, we
say that the branching program accepts the inpudtherwise, a reject node is reached, and we say that the
branching program rejects the inputThe functionf : {0,1}" — {0, 1} computed by a branching program
is f(z) = 1if z is accepted an@ otherwise.

Because a branching program is a directed acyclic graphawénclex the nodes in such a way that we
can never go from a node with a higher index to a node with ad@mne (as shown in Fig. 5.2(a)). We can
ensure that the first node is the start node and that therdyisooe accept node (convert all other accept
nodes into variable nodes with all outgoing edges to thigjiconode). Let be the total number of nodes
in the given branching program. To each node with index {1,..., H} we associate a unique string

64

o4 € ¥* of lengthS = [log|s;(H)]. Let the state string be the concatenation of these segments in order:
o1...0m. Thus, the sizd of the state string i$/.S. For every variable nodelabeledz;, definevar(q) = i.
Further, for every variable nodg gotog(q) € {q+ 1,..., H} is the node targeted by tlieoutgoing edge
andgotoi(q) € {¢+1,..., H} is the node targeted by tHeoutgoing edge of. Using this notation, the rule
set of our automaton consists of the following cutting rulEsr every variable nodg there are two rules:
(var(q), 0,04, (gotoo(q) —q)S) and(var(q), 1,04, (goto1(q) —q)S). Depending on the branching program,
the cutting distance may have to be as largéfas- 1)S if gotoy(1) = H or goto,(1) = H.

By construction, for any remaining portion of the statesiti, - - - o - - - oy, we have that, - - -0y - - -0 —»
oy ---og iff the branching program goes to nogé from ¢ on inputz in one step. This implies that
o1---0q--0qg —5 o04---og iff the branching program eventually goes from the startentml nodeg
on inputz. Thus, this Benenson automaton cuts to the beginning ofeifp@ent corresponding to the accept
node iff the branching program accepts the inpuThus, employing Lemma 5.3.1 (i.e., shortening the state
string) we have a Benenson automaton computing the fungtiommputed by the branching program. As
there is exactly one outgoing edge from any variable nodedch value of the read input bit, it follows that
the resultant automaton is deterministic. See Fig. 5.2farban example of a branching program and the
corresponding Benenson automaton. Thus we have the folgpl@mma:

Lemma 5.5.1. For any functionf : {0,1}" — {0,1} computed by a branching program &f nodes and
any alphabet s.t. |3| > 2, there is a deterministic Benenson automaténD, L, 3, n, o, R) with sticky
end sizeS = [logy (H)], maximum cutting distancP = (H — 1)S, and state string lengti, < HS

computingf.

Note that all three complexity parametefs 0, andL) of Benenson automata needed to simulate general
branching programs using the above construction scale thvittsize of the branching program. Thus, for
families of functions for which the size of branching pragsacomputing them increases very fast with
new restriction enzymes must be developed that scale siynil@onsequently, this is not enough to prove
Theorem 5.4.1(a).

5.5.2 Fixed-Width Branching Programs

In this section, we demonstrate a sufficiently powerful $adg of branching programs whose simulation
is possible by Benenson automata such that only the siné the state string scales with the size of the
branching program, whil§ = O(logn) andD = O(1).

In the general case discussed in Section 5.5.1, our cuttinger had to be large because we had no
restriction on the connectivity of the branching progrard aray have needed to jump far. Further, we used a
different sticky end for each node because there may be niffi@setht “connectivity patterns.” Restricting the
connectivity of a branching program in a particular way pgsraptimizing the construction to significantly
decreas& andD. In fact, both will loose their dependence on the size of ttambhing program. In the final
construction, the sticky end sizéwill depend only on the size of the inpatand the cutting range will be a
constant.

A width J, length K branching program consists &f layers ofJ nodes each (e.g., Fig. 5.2(c)). The
total number of nodes if = K.J. We will think of J as a constant since for our purposes< 5 will be
enough. Nodes in each layer have outgoing edges only to tttdayer, and every node in the last layer is
either accepting or rejecting. We can ensure that the firdé mothe first layer is the start node and that the
last layer has a single accept node. (Otherwise, the bragginogram can be trivially modified.) It turns out
that width5 branching programs are sufficiently powerful to simulatg @rcuit (Section 5.5.4). Further, the
results of Section 5.6 ensure that we have not restrictednouaiel of computation too much; more general
Benenson automata cannot compute more efficiently.

Given a widthJ branching programs, we index nodes consecutively from &agdr: thejth node in
layerk obtains index; = (k—1)J + j. We use the same cutting rules as before, and constructtieessting
identically to the previous section, but with the followidiference. Instead of using a unique segment for
each node in the branching program as we did in the previ@i®eewe leto, = o, iff var(q) = var(¢'),
gotoo(q) —q = gotoo(q') — ¢’ andgotor (q¢) —q = goto1(q") —¢'. In other words, we allow the segments to be
the same if their cutting rules have the same behavior. Tdgs dot change the behavior of the automaton but
allows us to use fewer unique segments, thereby decreSisiagr a widthJ branching progranyotog(¢) —q

65

q= 1 2 3 4 5 6 7 8 9 g= 123 456 789
b) d)
0, [0, [0; [0, [O5 | 05 | O;7 | Og | Og 0,]0,] 03[0,4[05 G5[0] O5[g
[=
S = [log|x 9]
= W, | 6] Gl G, | @)y | Glg) Q) | GOy | Gy
_v_l
e Segments: All segments, , . . ., og are unique. S = [logx 4]
e Cutting rules: e Segments:
012(3,0,0'1,53),(3,1,0'1,3) w1 = 01 = 05 = 07 = 08 = 09
o2 :(1,0,02,5),(1,1,02,39) wae = o9
031 (2,0,03,45),(2,1, 03, 5) w3 = 03 = O¢
04 : (170704723)7 (17 1,04, S) Wy = 04

o5 :(1,0,05,35), (1,1, 05,45)

o6 : (3,0,06,35), (3,1, 06, 295)

o7 :(4,0,07,25),(4,1,07,5) e Cutting rules:
wiy (3,0,11}1,45),(3,1,11}1,35)
wa : (2,0, ws,45), (2,1, w2, 3S5)
w3 (1,0,11}3,25), (17 1,w3,35)
wyg : (4,0,w4,4S5), (4,1, w4,5S5)

Figure 5.2: (a) An example of a general branching programmafds over 4 inputs and (b) the corresponding
Benenson automaton. (c) An example of a width 3 branchingrara of 9 nodes over 4 inputs and (d) the
corresponding Benenson automaton. Note that some nodemacessible but these will be a small fraction
for large programs. In both examples,- - - 09 — oy iff the branching program accepis

andgoto; (q) — g range froml to 2J — 1. So we need no more thar{2J — 1)? different segments, which
implies that at most we neel = [logs(n(2J — 1)?)]. (The segments corresponding to the accept and
reject nodes can be anything as long as we cannot go fromct nejde to the accept node. We can choose a
segment such thabtoy(q) — g, goto1(q) — ¢ > J.) Note that the resultant automator(2s/ — 1)2-encoded
asgotop(q) — g andgoto, (q) — ¢ range froml to 2.J — 1. Further, the maximum cutting distance needs to be
at mostD = (2J — 1)S since in the worst case we need to go from the first node of a taytee last node
of the next layer. See Fig. 5.2(c,d) for an example of how alfwédth branching program can be converted
to a Benenson automaton.

As a result of the above optimizations for fixed-width braingtprograms, the sticky end sizeand the
maximum cutting distanc® loose their dependence on the length of the branching pmogfa Assuming
the width J is fixed, this means that the choice of the restriction enzigniedependent of the size of the
branching program and is dependent only on the number of bifan.

Lemma 5.5.2. For any functionf : {0,1}" — {0, 1} computed by a branching program of widthand
length K, and any alphabet s.t. || > 2, there is a(2J — 1)?-encoded deterministic Benenson automaton
(S, D, L, %, n, 0, R) with sticky end sizé = [logy;(n(2J—1)?)], maximum cutting distande = (2J-1)5,

and state string lengtfh < K.JS computingf.

66

The constructions described above rely on being able to eskijpe segments in a single cut. It seems
that the cutting range must be at least logarithmia jrsince the size of the segments is logarithmiain
to be able to read all the input variables. However, in thiofdhg we describe the construction in which
the maximum cutting distanc® is dependent only on the width and no longer om, and is thus shorter
than the segments. As before, we will still have that o1 - -0y ---og —% o, --- oy iff the branching
program eventually goes from the start node to n@d& inputz. However, while previously following a
single arrow on the branching program corresponded to thkcagion of a single cutting rule, now it will
involve the application of many. We’'ll separate the cuttinkgs into two logical typessegmentutting rules
andskip cutting rules. If previously the applicable cutting ruleneved(gotoo(q) — q) or (gotor(q) — q)
entire segments, now the corresponding segment cuttis@rnly removesgotoy(q) — q) or (gotoi(q) — q)
symbols from the beginning of the current segmentHow can the cutting of symbols from the beginning
of a segment result in the eventual cuttingdoéntire segments? This is accomplished by the skip cutting
rules as follows (see also Fig. 5.3).

A new symbol. € ¥ marks the beginning of each segment, while the rest of themerguses symbols
in ¥ — {+}. A skip cutting rule is always applicable if the first symbdltbe revealed sticky end is not
while segment cutting rules are only applicable if the figghbol of the revealed sticky end is All skip
cutting rules cut exactlyp symbols. We use segments of length= D - k + 1 for some integek > 1.
After the application of some segment cutting rule rema¥astial symbols of the state string, exactly &
applications of skip cutting rules follow because afferk - D + d = d - m symbols have been removed,
it follows that d entire segments (each of length) have been cut off and a new segment cutting rule is
applicable. No segment cutting rule is applicable befoeathince this is the first time the first symbol of the
revealed sticky end is

Formally, we use segments of the fowp = v7,v, wherer,,v € (¥ — {¢})* andv is an arbitrary
string such thajo,| = D - k 4 1 for some integek > 1. The stringsr, are chosen such thay = 7 iff
var(q) = var(q"), gotog(q) — q = gotoo(q') — ¢', andgotor(q) — g = goto1(q') — ¢'. For each variable
nodegq, the segment cutting rules ar@iar(q), 0, t74, (gotoo(q) — q)) and(var(q), 1, t74, (goto1(q) — q)).
Since we have at most(2.J — 1)? uniquer,s and we also need to read theve need the sticky end to be of
sizeS = 1+ [logjs|_; (n(2J — 1)*)]. In the worst case, as before, we hgweo, /1 (¢) —¢ = 2J — 1 and so
the maximum cutting distance needs tolbe= 2.J — 1 so that we can skipJ — 1 segments. Since the skip
cutting rules should be independent of the input, for every ©° s.t. the first symbol of; is not., we can
use the following two rules(1,0,w, D) and(1, 1,w, D). Note that since for both segment and skip cutting
rules, there is at most one cutting rule applicable at ang tiamd because a segment cutting rule cannot
be applicable at the same time as a skip cutting rule, itWalthat our construction yields a deterministic
Benenson automaton.

With the above trick (of course after applying Lemma 5.3a8) have the following lemma for fixed-width
branching programs:

Lemma 5.5.3. For any functionf : {0,1}" — {0,1} computed by a branching program of widthand
length K, and any alphabet s.t.|3| > 3, there is a(2J — 1)?-encoded deterministic Benenson automaton
(S, D, L, %, n, 0, R) with sticky end siz& = 1 + [logs,_, (n(2J — 1)*)], maximum cutting distanc® =

2J — 1, and state string length < K.J.S computingf.

Lemma 5.5.3 together with Barrington’s theorem (Lemma3j).is enough to prove both parts of Theo-
rem 5.4.1. However, we first optimize our construction evethier to obtain better constants.

5.5.3 Permutation Branching Programs

We can obtain better constants if we restrict the branchiognam even more. Again, in the next section
we'll see that, even with this restriction, branching p@gs can simulate circuits.

First, we need a notation for the context of layered brarginrograms. For nodg in layer & let
gotog(k, j) = j' if the j'th node in layek + 1 is targeted by thé outgoing edge of this nodepto, (k, j) is
defined analogously. A width permutation branching program is a widthbranching program such that for
all layersk, the sequenceptog(k, 1),. .., gotog(k, J) andgotoy (k, 1), ..., goto(k, J) are permutations of
1,...,J. Further, there is exactly one accept node in the last laker ¢an no longer be trivially assumed).
It turns out that widtls permutation branching programs are still sufficiently pdwido simulate any circuit

67

d=
—
12345
I
l l |
Gq 0q+1 0q+2
segmeri cutting ru
l l
—
d=2 o'q+1 o'q+2
skipicutting rul
l |
R
> 0q+1 0q+2
skipicutting rul
l
—_—
5 Og2
skipicutting rul
|
—_—
> 0—q+2
skipicutting rul
l
5 Og2

segmenl cutting ru

Figure 5.3: An example of a segment cutting rule applicatiod the subsequent application of skip cutting
rules. In this caseD = 5, k = 2, and the size of the segmentsiis= D - k + 1 = 11. The sticky end
size isS = 8; the black horizontal lines above the state string showtilckysend in each step. The grayed
squares comprisg;, 7,41, andr,4» that, together with a bit of input, determine which segmertticg rule

is applicable. The empty white squares comprise

(Section 5.5.4). In Section 5.6, we’'ll confirm that we havénestricted our model of computation too much:
efficient Benenson automata cannot simulate anything masegul than permutation branching programs.

For permutation branching programs we can use fewer uniggeesices for the,s than for general
fixed width branching programs. It is easy to see that foryepermutation branching program, there is
another permutation branching program of the same widthlemgth that accepts the same inputs as the
original program but for all layers, gotoy(k,-) is the identity permutation (i.egotog(k,7) = 7). In this
case, sincgotog(q) — ¢ is always.J, we need at most(2J — 1) uniquer,s. Thus, sticky ends of size
S =1+ [logx_; (n(2J —1))] are sufficient and our automaton(/ — 1)-encoded. This leads to the
following lemma:

Lemma 5.5.4. For any functionf : {0,1}" — {0,1} computed by a permutation branching program of
width J and length/i’, and any alphabeE s.t.|X| > 3, there is a(2.J — 1)-encoded deterministic Benenson
automaton(s, D, L, %, n, 0, R) with sticky end size§ = 1 + [logjy_; (n(2J —1))], maximum cutting
distanceD = 2J — 1, and state string length < K.J.S computingf.

68

2) b) reading segmer
0 skip segments
o~ %20 _____

ONO |

- [5E°8 I | I I |
O . j
layerk layerk+1 layerk layerk+1

Figure 5.4: lllustration of the construction achievingncoded automata. (a) The portion of the branching
program being simulated. In this case the width of the bramgcprogram is/ = 3. (b) The relevant portion

of the Benenson automaton. Note that each skip illustrayetthds dashed lines consists of many cuts like
those illustrated in Fig. 5.3.

5.5.4 Simulating Circuits

While it may seem that fixed-width permutation branchinggpaons are a very weak model of computation,
it turns out that to simulate circuits, widthpermutation branching programs is all we need:

Lemma 5.5.5(Barrington [2]) A functionf : {0,1}" — {0,1} computed by a circuit of deptfi can be
computed by a lengt#” width 5 permutation branching program.

Corollary 5.5.1 (of Lemmas 5.5.4 and 5.5.5for any functionf : {0,1}" — {0,1} computed by a cir-
cuit of depthC, and any alphabeE s.t.|X| > 3, there is a9-encoded deterministic Benenson automaton
(S,D, L,%,n,0,R) with sticky end sizé& = 1 + [log|s;_; (9n)], maximum cutting distanc® = 9, and
state string lengttl, = 455 computingf.

This provides an alternative proof of Theorem 5.4.1 andispfor instance, that a Benenson automaton
using the restriction enzynifeokl can do arbitrary 3-bit computation. Any increase in thelgstiend size,
exponentially increases the number of inputs that can bdledn If an enzyme is discovered that cats
bases away lik€okl but leaves siz& sticky ends, then it can do all-bit computation.

LettingC' = O(logn), this proves Theorem 5.4.1(b). Theorem 5.4.1(a), of cotieflews trivially since
the complexity of the circuit (deptf) enters only in the length of the state string.

5.5.5 Achievingl-Encoded Automata

If it is essential that the Benenson automaton kencoded, the scheme from Section 5.5.3 can be adapted
at the expense of slightly increasing the maximum cuttimgeaD and the length of the state stridg The
modification actually decreases the size of the sticky ends.

We provide a sketch of the construction; the details areéedhaver from the previous sections. The main
idea is to use a pair of segments = 7, ando, = c7;, wherer,, 7, € (X — {:})*, for each node of the
permutation branching program, rather than a single seyasebefore (see Fig. 5.4). The first segment of
the pairo, (thereading segmetreads the corresponding variable and skips eifesegments ife; = 0
or goes to the next segmentif = 1. Thus, the segment cutting rules for this segment &g, 17, 2.J)
and(i, 1,74, 1). Segment, (theskip segmetencodes an input-independent ski¢foto: (q) — ¢) — 1
segments to go to the correct reading segment. Thus, fokihsegment we can use the following segment
cutting rules:(1, 0, ¢7,, 2(goto1(q) —q) — 1) and(1, 1, t7;, 2(goto1 (¢) — q) — 1). We need at most+2.J — 1
unique segment types:to read all the variables, ar2d/ — 1 to be able to skig(goto1(¢) — q¢) — 1 segments
for all the values of goto; (¢) — q) which ranges froni to 2J — 1. The maximum number of segments to
skipis2(2J — 1) — 1 = 4J — 3. Note that there is at most one reading segment per inpuhbitteus the
construction isl-encoded.

69

Lemma 5.5.6. For any functionf : {0,1}" — {0,1} computed by a permutation branching program of
width J and lengthX’, and any alphabet s.t.|X| > 3, there isl-encoded deterministic Benenson automaton
(S,D,L,¥,n,0,R)with S = 1 + [log|s;_ (n +2J — 1)], D = 4J — 3,andL < 2KJ.S computingf.

This implies, for instance, thatencoded Benenson automata using restriction enBakleean simulate
any width3 permutation branching program oV inputs.

Corollary 5.5.2 (of Lemmas 5.5.6 and 5.5.5for any functionf : {0,1}" — {0,1} computed by a cir-
cuit of depthC, and any alphabeE s.t.|X| > 3, there is al-encoded deterministic Benenson automaton
(S,D,L,%,n,0,R)with S =1+ [log|s;_1 (n +9)], D = 17,and L = 4€10S computingf.

This implies, for example, that if a DNA restriction enzynmande found that leaves sticky ends of size
4 like Fokl but cuts17 bases away, then this enzyme can dd &lbit computation withl-encoded Benenson
automata.

5.6 Shallow Circuits to Simulate Benenson automata

We'll now show that our constructions from the previous secare asymptotically optimal.

Lemma 5.6.1. A functionf : {0,1}" — {0, 1} computed, possibly non-deterministically, by a Benensen a
tomaton(S, D, L, %, n, o, R) can be computed by@(log (L/D) log D + D) depth,O(D4P” L) size circuit.

To see that this lemma implies Theorem 5.4.2, tBke: O(1), S = O(logn), andL = poly(n). Further,
this Lemma implies that allowing non-determinism does notéase the computational power of Benenson
automata. Likewise, note that sticky end sizaloes not affect the complexity of the circuit simulating a
Benenson automaton. This implies that increasing theystcid size to be larger thafi(logn) does not
increase computational power.

Finally, Lemma 5.6.1 implies that Benenson automata usiagimum cutting distanc® = O(logn),
and state string length = poly(n) cannot be much more powerful than Benenson automataiwithO(1),
andL = poly(n) . Specifically,ve > 0, functions computable by Benenson automata liitt= O(log n),
andL = poly(n) are computable b (log' *° n) depth,poly(n) size circuits.

Let us be given a Benenson automatéihD, L, 3, n, o, R) computing, possibly non-deterministically,
a Boolean functiory at positionp. Observe that in order to check if, for a given input, theeskdting can
be cut to or beyong, it is enough to check if it can be cut toor the following D symbols. The idea of our
construction is that we split the state string into segmehftsength D and compute for all cut locations in
every segment where the possible cuts in the next segmebeddor the given input). Then this information
can be composed using a binary tree of matrix multiplicatitmreveal all possible cuts in thHe symbols
following p starting with the full state string. Making the segmentsrgdrdhanD allows the possibility that
a cut entirely bypasses a segment, thereby fouling the csitiqpo and making them longer thdm makes
the construction less efficient (i.e., results in a deepeui). This proof is similar to the argument that
poly-length fixed-width branching programs can be simulddg log-depth circuits (e.g., [2]), in which the
construction computes a binary tree of compositions of pgations rather than matrix multiplications.

For convenience let us assumeés divisible by D (say@ = p/D) and that|oc| > p + D. Forq and
¢ €N, q<q <Q,define aD x D binary matrixT, . (z) in which theh!” bit (0 indexed) of thejth row
(0 indexed) isl iff o[gD + j| —% o[¢’D + h]. Observe thaly, ,(z) x Ty 4+ (x) = Ty 4 (x) where in the
matrix multiplication+ is logical OR and is logical AND. Thereforef(z) = 1 iff there is at least on¢ in
the0t" row of 71 () = Th2(z) x Toz(x) x --- x Tg_1,o(x). If pis not divisible byD or |o| < p + D,
we can let the first or last of these matrices be smaller asssace

We can create a shallow binary tree computing the profiugt For clarity of exposition, let us assume
that) — 1 is a power of 2. Our circuit consists of gadgelis (1 < ¢ < @ — 1), gadgets3, and gadget’
(see Fig. 5.5). The input and output lines of gaddetepresent a matrig;, , () for a range of segments
to ¢’ as shown in Fig. 5.5. To compute the initial series of masiieach gadget, needs only to know at
most2D bits of inputz on whichT, .11 (x) may depend (a segment of lengthcan read at mosb input
bits). Each gadget,, can be a selector circuit that uses the relevant input bielect one o222 possible
hardwired outputs (different for each,). These gadgetd, have depthO(D) and sizeO(D?47). The

L O N]

L O N]

2D bits of 2D bits of
input input input input input input

Figure 5.5: Circuit outline for simulating a Benenson austom. TheT™ lines represent a bundle of at most
D? wires. Input lines represent a bundle of at m2Bt wires (a different subset for each gadget, possibly
overlapping).

output of gadgeB is the product of its first input matrix by the second input nixatvhere+ is logical OR
and- is logical AND. GadgetB can be made of deptf(log D) and sizeO(D?). GadgetC outputsl iff
there is at least onkin the0* row of its input matrix.

5.7 Discussion

This work generalizes the non-uniform model of computabased on the work of Benenson et al. [4] and
characterizes its computational power. We consideredetish enzymes with variable reach and sticky end
size, and studied how the complexity of the possible contfmutacales with these parameters. In particular,
we showed that Benenson automata can simulate arbitrauitsiand that polynomial length Benenson au-
tomata with constant cutting range are equivalent to fixétthwbranching programs and therefore equivalent
to log-depth circuits. We achieve these asymptotic resutts good constants, suggesting that the insights
and constructions developed here may have applications.

There may be ways to reduce the constants in our results avief. Although the fixed-width permu-
tation branching programs produced via Barrington’s theohave the same variable read by every node in a
layer, this fact is not used in our constructions. Explgjiirmay achieve smaller sticky end size or maximum
cutting distance.

As mentioned in the Introduction, in a biochemical implemagion of our constructions the last possible
cutin the case thagt(z) = 0 may have to be sufficiently far away from the output loop tospreits erroneous
opening. By using a few extra unique sticky ends we can aeltf@s with our constructions. For example, by
adding one more unique sticky end corresponding to thetrsjates and making sure the accept state is last,
we can ensure that in the constructions simulating geneaalching programs and fixed-width branching
programs the last possible cut in the cg$e) = 0 is at least the length of a segment away §, D) from

71

the last cut in the casg(z) = 1.

Some Benenson automata may pose practical problems fdingx future restriction enzymes not
discussed in this paper. For example, a cutting rule with 1 would require a single base adjacent to a
nick to be cleaved off each strand, which may not be biochalhgiplausible for certain restriction enzymes
(a ligation enzyme may have to be used). Such issues mustrisideoed carefully for an experimental
implementation.

The major problem with directly implementing our constiontis the potential of an error during the at-
tachment of the rule molecule and during cuts. While a pcatinplementation of a Benenson automaton [4]
has to work reliably despite high error rates, our formaigradoes not take the possibility of erroneous cut-
ting into account. Further work is needed to formalize andrabterize effective error-robust computation
with Benenson automata. Similarly, while it is easiest tmigtthe binary model in which a reaction either oc-
curs or not, a model of analog concentration comparisonshatgr match some types of tests implemented
by Benenson et al.

Acknowledgments

We thank Georg Seelig for first bringing Benenson et al.'skator our attention. Further, we thank two
anonymous reviewers for very detailed reading of this pawet useful suggestions. This research was
supported by NIH training grant MH19138-15.

Bibliography

[1] R. Adar, Y. Benenson, G. Linshiz, A. Rosner, N. Tishbyddh Shapiro. Stochastic computing with
biomolecular automataroceedings of the National Academy of Scient84:9960-9965, 2004.

[2] D. A. Barrington. Bounded-width polynomial-sized brdning programs recognize exactly those lan-
guages in NC. Journal of Computer Systems Scier@#:150-164, 1988.

[3] Y. Benenson, R. Adar, T. Paz-Elizur, Z. Livneh, and E. @ha DNA molecule provides a computing
machine with both data and fueProceedings of the National Academy of Scient€€:2191-2196,
2003.

[4] Y. Benenson, B. Gil, U. Ben-dor, R. Adar, and E. Shapiron @utonomous molecular computer for
logical control of gene expressioNature 429:423-429, 2004.

[5] V. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livheimd E. Shapiro. Programmable and au-
tonomous computing machine made of biomoleculsture 414:430-434, 2001.

[6] P.W. K. Rothemund. A DNA and restriction enzyme impleraion of turing machines. IDNA-Based
Computersvolume 27 ofProceedings of a DIMACS Workshggages 75-119, 1995.

[7] T.Inui, H. Ikeda, and Y. Nakamura. The design of an aiiificestriction enzyme having simultaneous
DNA cleavage activityNucleic Acids Symposium Seridg:141-142, 2000.

[8] M. Komiyama. DNA manipulation using artificial restrioh enzymes.Tanpakushitsu Kakusan Kgso
50:81-86, 2005. (in Japanese).

[9] C. H. PapadimitriouElements of the theory of computatid®rentice-Hall, 1997.

[10] M. N. Stojanovic, T. E. Mitchell, and D. Stefanovic. Dgaibozyme-based logic gatedournal of the
American Chemical Societ§24:3555-3561, 2002.

[11] H. Sugisakiand S. Kanazawa. New restriction endorasee from Flavobacterium okeanokoites (Fokl)
and Micrococcus luteus (Mlul)Gene 16:73-78, 1981.

[12] I. Wegener.Branching Programs and Binary Decision DiagramSociety for Industrial and Applied
Mathematics, 2000.

72

Chapter 6

Computation with Finite Stochastic
Chemical Reaction Networks

Collaborators: Matthew Cook, Erik Winfree, and Jehoshua Brudily contribution: MC, EW, and |
proved basic Turing-universality. | developed the faststarction, and wrote the text of the paper.
This chapter was published as:David Soloveichik, Matt Cook, Erik Winfree, and Shuki Bru¢icompu-
tation with Finite Stochastic Chemical Reaction Netwdrkigtural Computing (on-line Feb 2008).

6.1 Abstract

A highly desired part of the synthetic biology toolbox is anleedded chemical microcontroller, capable of
autonomously following a logic program specified by a setnstructions, and interacting with its cellular
environment. Strategies for incorporating logic in aguedoemistry have focused primarily on implement-
ing components, such as logic gates, that are composedngier Icircuits, with each logic gate in the circuit
corresponding to one or more molecular species. With thiadigm, designing and producing new molec-
ular species is necessary to perform larger computatiomsal#&rnative approach begins by noticing that
chemical systems on the small scale are fundamentallyadésand stochastic. In particular, the exact molec-
ular counts of each molecular species present, is an iigaihsavailable form of information. This might
appear to be a very weak form of information, perhaps quifécdit for computations to utilize. Indeed,
it has been shown that error-free Turing universal comjurtas impossible in this setting. Nevertheless,
we show a design of a chemical computer that achieves fagediatile Turing universal computation using
molecular counts. Our scheme uses only a small number @frdift molecular species to do computation
of arbitrary complexity. The total probability of error dfé computation can be made arbitrarily small (but
not zero) by adjusting the initial molecular counts of certpecies. While physical implementations would
be difficult, these results demonstrate that molecular tocan be a useful form of information for small
molecular systems such as those operating within cellm@r@enments.

6.2 Introduction

Many ways to perform computation in a chemical system haea lexplored in the literature, both as the-
oretical proposals and as practical implementations. Tbgt rommon and, at present, successful attempts
involve simulating Boolean circuits [36, 8, 34, 32]. In sumdises, information is generally encoded in the
high or low concentrations of various signaling molecufgisce each binary variable used during the compu-
tation requires its own signaling molecule, this makestangdarge circuits onerous. Computation has also
been suggested via a Turing machine (TM) simulation on arpety[5, 30], via cellular automaton simula-
tion in self-assembly [31], or via compartmentalizatiomudlecules into membrane compartments [6, 29].
These approaches rely on the geometrical arrangement oéé $bt of parts to encode information. This
allows unbounded computation to be performed by molecyktess containing only a limited set of types

73

of enzyme and basic information-carrying molecular congms. It had been widely assumed, but never
proven, that these two paradigms encompassed all ways tordputation in chemistry: either the spatial
arrangement and geometric structure of molecules is usdgtiasan arbitrary amount of information can be
stored and manipulated, allowing Turing universal comfiortaor a finite number of molecular species react
in a well-mixed solution, so that each Boolean signal isiedrby the concentration of a dedicated species,
and only finite circuit computations can be performed.

Here we show that this assumption is incorrect: well-mixaddistochastic chemical reaction networks
with a fixed number of species can perform Turing universedmatation with an arbitrarily low error prob-
ability. This result illuminates the computational powérstochastic chemical kinetics: error-free Turing
universal computation is provably impossible, but onceramy-zero probability of error is allowed, no mat-
ter how small, stochastic chemical reaction networks becouring universal. This dichotomy implies that
the question of whether a stochastic chemical systeneventually reach a certain state is always decidable,
the question of whether this likely to occur is uncomputable in general.

To achieve Turing-universality, a system must not requpgari knowledge of how long the computation
will be, or how much information will need to be stored. Fostance, a system that maintains some fixed
error probability per computational step cannot be Turingyersal because, after sufficiently many steps,
the total error probability will become large enough to iidate the computation. We avoid this problem
by devising a reaction scheme in which the probability obgraccording to stochastic chemical kinetics, is
reduced at each step indefinitely. While the chance of emonat be eliminated, it does not grow arbitrarily
large with the length of the computation, and can in fact bderaxbitrarily small without modifying any of
the reactions but simply by increasing the initial molecalaunt of an “accuracy” species.

We view stochastic chemical kinetics as a model of compurtati which information is stored and pro-
cessed in the integer counts of molecules in a well-mixeatgwi, as discussed in [22] and [2] (see Section 6.6
for a comparison with our results). This type of informatgtarage is effectively unary and thus it may seem
inappropriate for fast computation. It is thus surprisihgttour construction achieves computation speed
only polynomially slower than that achievable by physicalgesses making use of spatial and geometrical
structure. The total molecular count necessarily scalpsmantially with the memory requirements of the
entire computation. This is unavoidable if the memory regmients are allowed to grow while the number of
species is bounded. However, for many problems of interestony requirements may be small. Further, our
scheme may be appropriate for certain problems naturatigeiged as manipulation of molecular “counts,”
and may allow the implementation of such algorithms morediy than previously proposed. Likewise,
engineering exquisite sensitivity of a cell to the envir@mnmay effectively require determining the exact
intracellular molecular counts of the detectable specigsally, it is possible that some natural processes
can be better understood in terms of manipulating moleadants as opposed to the prevailing regulatory
circuits view.

The exponential trend in the complexity of engineered bémeital systems suggests that reaction net-
works on the scale of our construction may soon become fleasithe state of the art in synthetic biology
progressed from the coupling of 2—-3 genes in 2000 [9], tortip@émentation of over 100 deoxyribonuclease
logic gates in vitro in 2006 [23]. Our construction is sufictly simple that significant aspects of it may be
implemented with the technology of synthetic biology of trear future.

6.3 Stochastic Model of Chemical Kinetics

The stochastic chemical reaction network (SCRN) model ehabal kinetics describes interactions involv-
ing integer number of molecules as Markov jump processes326L1, 15]. It is used in domains where the
traditional model of deterministic continuous mass aclioretics is invalid due to small molecular counts.
When all molecular counts are large the model scales to tiss aion law [20, 12]. Small molecular counts
are prevalentin biology: for example, over 80% of the genékeéE. colichromosome are expressed at fewer
than a hundred copies per cell, with some key control fagioesent in quantities under a dozen [17, 21].
Experimental observations and computer simulations henBroned that stochastic effects can be physiolog-
ically significant [25, 10, 37]. Consequently, the stocltastodel is widely employed for modeling cellular
processes (e.g., [3]) and is included in numerous softwackages [35, 39, 19, 1]. The algorithms used for
modeling stochastic kinetics are usually based on Gilesgilgorithm [14, 13, 16].

74

Consider a solution containingspecies. Its state is a vectoe N? (whereN = {0, 1, 2, .. .}) specifying
the integral molecular counts of the species. A reactidma tuple(l, r, k) € NP x N? x RT which specifies
the stoichiometry of the reactants and products, and tleec@mtstant:.. We use capital letters to refer to

the various species and standard chemical notation toideszireaction (e.g4 + C LAy 2B). We
write #, X to indicate the number of molecules of speclkée statez, omitting the subscript when the state
is obvious. ASCRNC is a finite set of reactions. In statea reactiona is possible if there are enough
reactant moleculesvi,z; — 1; > 0. The result of reactiom occurring in statez is to move the system
into statez — 1 4+ r. Given a fixed volume and current state, the propensity of a unimolecular reaction
a X, Fois p(z,a) = k#,X;. The propensity of a bimolecular reaction: X; + X; BLI
whereX; # X; is p(z,a) = k%. The propensity of a bimolecular reaction: 2.X; ks
p(z,a) = %w Sometimes the model is extended to higher-order reacfg8jsbut the merit
of this is a matter of some controversy. We follow Gillespia athers and allow unary and bimolecular
reactions only. The propensity function determines thetkis of the system as follows. If the system is in
statez, no further reactions are possiblévifc € C, p(z,«) = 0. Otherwise, the time until the next reaction
occurs is an exponential random variable with fate_ . p(z, o). The probability that next reaction will be
a particular, e, is p(z, neet)/ D oece P(Z,).

While the model may be used to describe elementary chenaiaeations, it is often used to specify higher-
level processes such as phosphorylation cascades, iimstgrand genetic regulatory cascades, where com-
plex multistep processes are approximated as single-stepions. Molecules carrying mass and energy are
assumed to be in abundant supply and are not modeled elypli€his is the sense in which we use the
model here because we allow reactions violating the coasiervof energy and mass. While we will not
find “atomic” reactions satisfying our proposed SCRNs, a&oeable approximation may be attained with
complex organic molecules, assuming an implicit sourcenefrgy and raw materials. The existence of a
formal SCRN with the given properties strongly suggestsetkistence of a real chemical system with the
same properties. Thus, in order to implement various coatjouts in real chemistry, first we should be able
to write down a set of chemical reactions (a SCRN), and thahdiset of physical molecular species that
behave accordingly. This approach is compatible with thopbphy of synthetic biology [32, 34]. Here
we focus on the first step, reaction network design, and exgomputation in SCRNs assuming arbitrary
reactions can be used, and that they behave according tbakie enodel of stochastic kinetics.

6.4 Time/Space-Bounded Algorithms

There is arich literature on abstract models of computdtiabmake use of integer counts, primarily because
these are among the simplest Turing universal machinesiknilinsky'’s register machine (RM) [27] is the
prototypical example. A RM is a finite state machine augmeénti¢h fixed number of registers that can each
hold an arbitrary non-negative integer. Anc(i,r, j) instruction specifies that when in stateincrement
registerr by 1, and move to statg. A dec(i,r, j, k) instruction specifies that when in statedecrement
registerr by 1 if it is nonzero and move to stafe otherwise, move to state There are two special states:
start and halt. Computation initiates in the start staté Wit input count encoded in an input register, and
the computation stops if the halt state is reached. The tigjpluen taken to be encoded in the register values
(e.g., the final value of the input register). While it mayrsegbat a RM is a very weak model of computation,
it is known that even two-register RMs are Turing universaiven any RM, our task is to come up with a
SCRN that performs the same computation step by step. TH&NSE€then said to simulate the RM.

For a given RM, we may construct a simple SCRN that simulategh high probability as follows. We
use a set of state specigS; }, one for each stateof the RM, and set of register specigl/, .}, one for each
register. At any time there will be exactly one molecule ahsspecies; corresponding to the current state
i, and none of the other speciég, for j # i. The molecular count ai/,. represents the value of register
For everyinc(i, r, j) instruction we add a#nc reactionS; — S; + M,.. For everydec(i, r, j, k) instruction
we add two reactiongec;: S; + M, — S; anddeca: S; — Si. We must ensure that a nonzero register
decrements with high probability, which is the only souréesiwor in this simulation. The probability of
error per step is = ko /(k1/v + k2) in the worst case that the register holds the valugherek; is the rate
constant folec; andk, is the rate constant fafecy. To decrease the error, we can increaselecreasé.,

75

A B

Rxn Catalysts

Rxn Logical function

C, — C_4 | AF
(incy C' +.8; — Sj+ M, +C inc(i,r,j) Cio1 — O A
(decy) S; + M, — S, o : :
(decy) C1 + S; — Sk + C) decli, T, j, k) C3 — Cy A*

Cy — C3 A

Cy — C4 A*

C1 - C2 A

Figure 6.1: (A) Bounded RM simulation. Speci€s(#C = 1) acts as a dummy catalyst to ensure that
all reactions are bimolecular, simplifying the analysisofv the simulation scales with the volume. Initial
molecular counts are: ifis the start state theftsS; = 1, #5; = 0for j # i, and#M,. is the initial value
of registerr. (B) Clock module for the RM and CTM simulations. Intuitiyethe clock module maintains
the average concentration ©f at approximatel;(#A*)l/(#A)l_l. Initial molecular counts are#C; = 1,
#Cy = - = #C;_1 = 0. For the RM simulation#A* = 1 and#A4 = O(1/e'/(~1). In the RM
simulation, A* acts as a dummy catalyst to ensure that all reactions in thek chodule are bimolecular
and thus scale equivalently with the volume. This ensurasttie error probability is independent of the
volume. For the bounded CTM simulation, we ygel* = O((£)1/!) and#A4 = O(()"/(!~Y) (see
Section 6.7.3). Because constructions of Section 6.5 m’nlh'rrecdiffering random walk lengths, we allow
different values of.

or decrease the volume

Decreasing the volume or changing the rate constants tofynth@i error rate is problematic. Changing
the volume may be impossible (e.g., the volume is that of B.cé&lurther, a major assumption essential
to maintain well-mixedness and justify the given kinetisghat the solution is dilute. Thiénite density
constraintimplies that the solution volume cannot be arbitrarily draat in fact must be at least proportional
to the maximum molecular count attained during computatfeurther, since developing new chemistry to
perform larger computation is undesirable, improving thererate of the chemical implementation of an
RM without adjusting rate constants is essential.

In every construction to follow, the error probability istdemined not by the volume or rate constants,
but by the initial molecular count of an “accuracy speciesiich is easily changed. In fact, we use exclu-
sively bimolecular reactiorisand all rate constants are fixed at some arbitrary valuéJsing exclusively
bimolecular reactions simplifies the analysis of how theespaf the simulation scales with the volume and
ensures that the error probability is independent of thamel. Further, working with the added restriction
that all rate constants are equal forces us to design rokbstvior that does not depend on the precise value
of the rate constants.

We modify our first attempt at simulating an RM to allow theitdyy decrease of error rates by increasing
the initial molecular count of the accuracy speciesIn the new constructionjec, is modified to take a
molecule of a new speci&s; as reactant (see Fig 6.1(a)), so that decreasing the g#eulecular count
of C is essentially equivalent to decreasing the rate constatiteooriginal reaction. While we cannot
arbitrarily decreasgtC, (at the bottom it is eithet or 0), we can decrease the “average value#af’; .

Fig 6.1(b) shows a “clock module” that maintains the averemae of#C; at approximately(1/#A)~1,
wherel is the length of the random walk in the clock module (see Lerbriia in the Appendix). Thus, to
obtain error probability per stepwe use#A = ©(1/¢Y/(~1)) while keeping all rate constants fixéd.

How do we measure the speed of our simulation? We can makéntinéation faster by decreasing the
volume, finding a physical implementation with larger ratmstants, or by increasing the error rate. Of

*All unimolecular reactions can be turned into bimolecukaations by adding a dummy catalyst.

fThe asymptotic notation we use throughout this paper cambleratood as follows. We writé(z,y, ...) = O(g(z, vy, .. .))
if 3¢ > 0 such thatf(z,y,...) < c¢- g(z,vy,...) for all allowed values ofz,y,.... The allowed range of the parameters will be
given either explicitly, or implicitly (e.g., probabilés must be in the rang®, 1]). Similarly, we write f(z,y,...) = Q(g(z,y,...))
if 3¢ > 0 such thatf(z,y,...) > ¢- g(z,y,...) for all allowed values ofc,y, We sayf(z,y,...) = O(g(z,v,...)) if both
F@,y,..) = Olg(z,y,...) andf(z,y,...) = Ag(x,y,...).

76

course, there are limits to each of these: the volume may th@ &g operating in a cell), the chemistry is
what's available, and, of course, the error cannot be iser@o much or else computation is unreliable. As
a function of the relevant parameters, the speed of the RMlation is as given by the following theorem,
whose proof is given in Section 6.7.2.

Theorem 6.4.1(Bounded computation: RM simulatianjor any RM, there is an SCRN such that for any
non-zero error probability), any input, and any bound on the number of RM steffeere is an initial amount
of the accuracy specied that allows simulation of the RM with cumulative error prdiilgy at mostd in

expected timé)(%), wherev is the volume, and is the rate constant.

The major effort of the rest of this section is in speedinghg domputation. The first problem is that
while we are simulating an RM without much of a slowdown, tHd Bomputation itself is very slow, at
least when compared to a Turing machine (TM). For most algms¢ steps of a TM correspond 1(2?)
steps of a RM [27}. Thus, the first question is whether we can simulate a TM istdahe much slower
RM? We achieve this in our next construction where we sinewatabstract machine called a clockwise TM
(CTM)[28] which is only quadratically slower than a regulavl (Lemma 6.7.9).

Our second question is whether it is possible to speed up etatipn by increasing the molecular counts
of some species. After all, in bulk chemistry reactions casfzed up equivalently by decreasing the volume
or increasing the amount of reactants. However, storingrinétion in the exact molecular counts imposes
a constraint since increasing the molecular counts to sppeatle simulation would affect the information
content. This issue is especially important if the volumetitside of our control (e.g., the volume is that of
a cell).

A more essential reason for desiring a speed-up with incrgasolecular counts is the previously stated
finite density constraint that the solution volume shouldabkeast proportional to the maximum molecular
count attained in the computation. Since information staémemolecular counts is unary, we require molec-
ular counts exponential in the number of bits stored. Canngei® that the speed increases with molecular
counts enough to compensate for the volume that necessargyincrease as more information is stored?

We will show that the CTM can be simulated in such a mannerititaeasing the molecular counts of
some species does not interfere with the logic of computatial yet yields a speed-up. To get a sense of the
speed-up possible, consider the reacttor- Y — Y + ... (i.e.,Y is acting catalytically with products that
don’t concern us here) with both reactants initially havinglecular counts:. This reaction completes (i.e.,
every molecule ofX is used up) in expected time that scales vmitrasO(“%) (Lemma 6.7.5); intuitively,
even though mor&’ must be converted for larget, this is an exponential decay processXobccurring at
rateO(#Y) = O(m). Thus by increasing: we can speed it up almost linearly. By ensuring that all ieast
in a step of the simulation are of this form, or complete jssjaickly, we guarantee that by increasingve
can make the computation proceed faster. The almost lipegdsup also adequately compensates for the
volume increasing due to the finite density constraint.

For the purposes of this paper, a TM is a finite state machigmanted with a two-way infinite tape, with
a single head pointing at the current bit on the tape. A TMirtdion combines reading, writing, changing the
state, and moving the head. Specifically, the instruaijgw, j, &, z;, 2, D) specifies that if starting in state
first read the current bit and change to either statté is 0 or statek ifitis 1, overwrite the current bit with;
or z; respectively, and finally move the head left or right alongytidipe as indicated by the directién It is
well known that a TM can be simulated by an “enhanced” RM iedintime if the operations of multiplication
by a constant and division by a constant with remainder csmla& done as one-step operations. To do this,
the content of the TM tape is represented in the binary exparaf two register values (one for the bits
to the left of the head and one for the bits to the right, with-larder bits representing tape symbols near
the TM head, and high-order bits representing symbols fanfthe head). Simulating the motion of the
head involves division and multiplication by the numbereéb@sfor a binary TM) of the respective registers
because these operations correspond to shifting the gitsar left. In a SCRN, multiplication bg can be
done by a reaction akin t&/ — 2M’ catalyzed by a species of comparable number of moleculashvilas
the fast kinetics of theX + Y — Y + ... reaction above. However, performing division quickly egbu

*By the (extended) Church-Turing thesis, a TM, unlike a RMthis best we can do, if we care only about super-polynomial
distinctions in computing speed.

77

seems difficult in a SCRN.To avoid division, we use a variant of a TM defined as followsCAM is a
TM-like automaton with a finite circular tape and instruatoof the formop(i, j, k, z;, z1,). The instruction
specifies behavior like a TM, except that the head always solakwise along the tape. Any TM with a
two-way infinite tape using at most,, space and,,, time can easily be converted to a clockwise TM using
no more thars.; = 2s;,, space and.; = O(tyn i) time (Lemma 6.7.9). The instructiam(i, 7, k, z;, zi)
corresponds to: if starting in statgfirst read the most significant digit and change to eithdegtd it is 0 or
statek if it is 1, erase the most significant digit, shift all digits left vialtiplying by the number base, and
finally write a new least significant digit with the valugif the most significant digit was or z;, if it was 1.
Thus, instead of dividing to shift bits right, the circulape allows arbitrary head movement using only the
left bit shift operation (which corresponds to multipliioat).

The reactions simulating a CTM are shown in Fig. 6.2. Tapdemis are encoded in the base-3 digit
expansion off: M using digitl to represent binar§ and digit2 to represent binary. This base-3 encoding
ensures that reading the most significant bit is fast enosegh lfelow). To read the most significant digit of
M, itis compared with a known threshold quantit{” by the reaction\/ +7T — ... (such that eithef” or
M will be in sufficient excess, see below). We subdivide the CSt&ps into microsteps for the purposes of
our construction; there are four microsteps for a CTM stdpe durrent state and microstate is indicated by
which of the state speci€s; .} is present, with indicating the state CTM finite control ande {1,2,3,4}
indicating which of the four corresponding microstates weia. The division into microsteps is necessary
to prevent potentially conflicting reactions from occugisimultaneously as they are catalyzed by different
state species and thus can occur only in different micrest€pnflicting reactions are separated by at least
two microsteps, since during the transition between twarosieps there is a time when both state species
are present. A self-catalysis chain reaction is used to rfrome one microstep to the next. The transition is
initiated by a reaction of a state species with a clock md&€l to form the state species corresponding to
the next microstep.

Now with m = 3%¢~! Lemmas 6.7.5-6.7.7 guarantee that all reactions in a st&paexcluding state
transition initiation reactions) complete in expectedeti@(”lljfjI ™) = O(35<). Specifically, Lemma 6.7.5
ensures that the memory operation reactions having a giatées as a catalyst complete in the required
time. Lemma 6.7.7 does the same for the self-catalytic stamsition reactions. Finally, ensuring that either
M or T is in excess of the other by (m) allows us to use Lemma 6.7.6 to prove that the reading of the
most significant bit occurs quickly enough. The separatiog &/ or #7 is established by using values of
#M expressed in base 3 using just the digits 1 and 2. Then thehibickvalue#T as shown in Fig. 6.2 is
©(3*t) larger than the largest possiblg-digit value of #M starting with1 (base3) and©(3%t) smaller
than the smallest possible;-digit value of# M starting with2 (base3), implying that eitherT" or M will
be in sufficient excess.

The only source of error is if not all reactions in a microsfiefish before a state transition initiation
reaction occurs. This error is controlled in an analogousmeato the RM simulation: state transition
initiation reactions work on the same principle as the dedaiecs reaction of the RM simulation. We adjust
#A so that all reactions in a microstep have a chance to finisbrbédahe system transitions to the next
microstep (see Section 6.7.3).

Since as a function of,;, the reactions constituting a microstep in the CTM simalafinish in expected
time O(5<), by increasings.; via padding of the CTM tape with extra bits we can decreasemaptially
the amount of time we need to allocate for each microsteps @ponential speed-up is only slightly damp-
ened by the increase in the number of CTM steps correspotalmgingle step of the TM (making the worst
case assumption that the padded bits must be traversed iyrséye of the TM, Lemma 6.7.9).

In total we obtain the following result (see Section 6.7I183hows that we can simulate a TM with only
a polynomial slowdown, and that computation can be sped uipdrgasing the molecular count of some
species through a “padding parametar”

Theorem 6.4.2(Bounded computation: TM simulationjor any TM, there is an SCRN such that for any
non-zero error probabilityy, any amount of padding\, any input, any bound on the number of TM steps
tym, and any bound on TM space usagg,, there is an initial amount of the accuracy specitthat allows

*For example, the naive approach of dividigg\/ by 2 by doing M + M — M’ takes©(1) time (independent oft M) as a
function of the initial amount of: M. Note that the expected time for the last two remainiig to react is a constant. Thus, if this
were a step of our TM simulation we would not attain the dessgeed-up with increasing molecular count.

78

A Rxn Catalysts Logical function
Cy—C+1 A* State transition initiation reaction
T] .
* ?A : i1 Sﬂ State (i,4) — (i, 1) transition
i,4 i1 i1
’ ’ State (i,1) — (7,2) transition
é 7 Si1 — Sia 56,2 @1 =62
-% * ?‘,2 : &3 g State (i,2) — (i,3) transition
[i,2 i3 i,3
3 [=1Ir r State (i,3) — (j,4) transition if high
) ate (¢ — ransition if hi
ok S S ’ Js g
* T+ SL’S : SJA S@ order bit is 0
i,3 j,4 j,4
L= du M State (i,3) — (k,4) transition if high
I y +S S ate (2, — 5 ransition 1 19,
me 5:4 Sz order bit is 1
i,3 4 4
MY — M Sia Restore memory
T S;
T]3.; :: %:* M é’Q Compare memory to threshold
D* — D Sl 2
’ Restore D and B
g B* — B < Sl',QS
© T =TT j.4 O Sk 4
5 ’ ’ Rest d threshold
%,_ M — M S,4 0r S estore memory and thresho
> D — K+ D* Sj,4
S
D — Ky + D* Sk
é Kyt M - K2 * 6’4 Zero out high order bit
2 1 — 1K
K +M—0 0
. / * .
g : E? 111))]]5, j; g* :SS:JA Write new low order bit (z;, z, € {0,1})
k k.4
M — 3MT Sj4or S Shift digits left
B Initial molecular counts Base 3 representation
o as—1 as—2 [Enanan ananian
#M = (b1 +1) -3+ (ba+1)-37 " +... 4+ 4t
cH B+)30+ SEESSE &
#T =2-3"142.3573 20200..0
#D =#S; | =3"" 10000..0
#B =1 0000O0...1
—_

Figure 6.2: Bounded CTM simulation: reactions and initiablecular counts. (A) Reactions for
op(i, j, k, zj, z;). The clock module is the same as for the RM simulation (Fi@)(B)). Here() indicates
“nothing.” (B) Lettings = s, initial molecular counts for binary inpwbs ... b,. Input is padded with
zeros to be exactly bits long. Here is the start state of the CTM. All species not shown stat at

79

7/2,5/2
Vst t8) tun) \where

simulation of the TM with cumulative error probability at 8td in expected imé (55—~

v is the volume, and is the rate constant.

Under realistic conditions relating, s;,,, andt,,, this theorem implies that the SCRN simulates the
TM in polynomial time, specifically)(t9,). The finite density constraint introduced earlier requihes the
solution volume be proportional to the maximum moleculamdattained in the course of the computation.
This constraint limits the speed of the simulation: thera isiinimum volume to implement a particular
computation, and if the volume is larger than necessaryijrite density constraint bounds. In most cases,
the total molecular count will be dominated By*~+2 (see Section 6.7.3). Thus the maximum allowed
padding satisfieg?s:= T4 = ©(v), yielding total expected computation tir@{%). This implies
that althoughA cannot be used to speed up computation arbitrarily, it camskd to minimize the effect of
having a volume much larger than necessary since incretsnglume decreases the speed of computation
poly-logarithmically only. Alternatively, if we can dease the volume as long as the maximum density is
bounded by some constant, then the best speed is obtainedevid padding and the smallaspossible:

v = O(3%m), Then the total computation time @(S%_ftf;). Since we can always enswg, < tu,, we

experience at most a polynomial (6th-order) slowdown decenpared with a regular error-free TM.

6.5 Unbounded Algorithms

The above simulations are not Turing universal becauseititey a fixed probability of error per step of the
computation. Since the probability of correct computatiencreases exponentially with the number of steps,
only finite computation may be performed reliably. Additdly the TM simulation has the property that
the tape size must be specified a priori. We now prove that d f&@&RN can be Turing universal with an
arbitrarily small probability of error over an unlimited mier of steps. In the course of a computation that is
not a priori bounded, in addition to stirring faster and atieg energy and raw materials, the volume needs to
grow at least linearly with the total molecular count to ntain finite density. Therefore, in this section our
model is that the volume dynamically changes linearly wiith total molecular count as the system evolves
over time. We desire that the total error probability ovdvitaarily long computation does not exce&dnd
can be set by increasing the initial molecular counts of teaigacy specied.

We now sketch how to modify our constructions to allow Turingversal computation. Consider the
RM simulation first. We can achieve a bounded total probigtuli error over an unbounded number of steps
by sufficiently decreasing the probability of error in eachsequent error-prone step. Omlye steps when
the register is non-zero are error-prone. Furtheteif, occurs then either the register value was zero and no
error was possible, or an error has just occurred and thex@ ieed to decrease the error further. Therefore
it is sufficient to decrease the probability of error aftectedec; step by producingl as a product oflec; .

If the clock Markov chain length i = 3, then adding a single molecule df as a product of evergec;
reaction is enough: the total probability of error obtairveal Lemma 6.7.4 is()(Z;fA:io 1/#A?); since
this sum converges, the error probability over all time carbbunded by any desiréd> 0 by making the
initial number ofAs, i, sufficiently large. Usindg = 3 is best because> 3 unnecessarily slows down the
simulation. The total expected computation time is toEn(1/6 + ¢)%(1/8 + t + so)/k), wheresy is the
sum of the initial register counts (see Section 6.7.4).

A similar approach can be taken with respect to the TM sintatThe added difficulty is that the tape
size must no longer be fixed, but must grow as needed. Thisecaahieved if the SCRN triples the molecular
count of the state specied/, T\, D, and P whenever the tape needs to increase by an extra bit. However,
simply increasing# A by 1 per microstep without changing A* as in the RM construction does not work
since the volume may triple in a CTM step. Then the clock waxgderience an exponentially increasing
expected time. To solve this problem, in Section 6.7.5 wavghat if the SCRN triples the amount gdf and
A* whenever extending the tape and increagesby an appropriate amour®(3°<t), on every step then
it achieves a bounded error probability over all time anddgehe running time claimed in Theorem 6.5.1
below. The clock Markov chain of length= 5 is used. All the extra operations can be implemented by
reactions similar to the types of reactions already impleiing the CTM simulation (Fig. 6.2). For example,
tripling A can be done by reactions akinso— A andA" — 3 A catalyzed by different state species in two

80

non-consequitive microsteps.

Theorem 6.5.1(Turing universal computation)For any TM, there is an SCRN such that for any non-zero
error probability 6, and any bound,,,, on the size of the input, there is an initial amount of the aacy
speciesd that allows simulation of the TM on inputs of size at mgst, with cumulative error probability

at mosty over an unbounded number of steps and allowing unboundextspmge. Moreover, in the model
where the volume grows dynamically in proportion with th@ltenolecular countt,,, steps of the TM com-
plete in expected time (conditional on the computationdpearrect) ofO((1/5+ 8¢mo+timStm) temStm/ k)
wheres,,, is the space used by the TM, ahds the rate constant.

For sy & tyy, this gives a polynomial time (12th-order) simulation of TMEhis slowdown relative to
Theorem 6.4.2 is due to our method of slowing down the cloclkdtiice errors.

Can SCRNs achieve Turing universal computation withoutr@rrCan we ask for a guarantee that the
system will eventually output a correct answer with probgbil?" Some simple computations are indeed
possible with this strong guarantee, but it turns out thageneral computations this is impossible. Intu-
itively, when storing information in molecular counts, tegstem can never be sure it has detected all the
molecules present, and thus must decide to produce an @itpoine point without being certain. Formally,

a theorem due to Karp and Miller [18] when adapted to the SCBMNext (see Section 6.7.6) rules out the
possibility of error-free Turing universal computatiotogjether if the state of the TM head can be determined
by the presence or absence (or threshold quantities) @inesppecies (i.e., state species in our constructions).
Here recall that in computer science a question is callealdble if there is an algorithm (equivalently TM)
that solves it in all cases. (Recall a state of a SCRN is a veétmolecular counts of each of the species.
Below operatoe> indicates element-wise comparison.)

Theorem 6.5.2. For any SCRN, given two statesandy, the question of whether any stagé > y is
reachable fronx is decidable.

How does this theorem imply that error-free Turing univecgamputation is impossible? Since all the
constructions in this paper rely on probabilities we needute out more clever constructions. First recall
that a question is undecidable if one can prove that therdeam algorithm that solves it correctly in all
cases; the classic undecidable problem is the Halting enobdetermine whether or not a given TM will
eventually halt [33]. Now suppose by way of contradictioatthomeone claims to have an errorless way of
simulating any TM in a SCRN. Say it is claimed that if the TMtsahen the state species corresponding to
the halt state is produced with non-zero probability (teisieaker than requiring probability, while if the
TM never halts then the halt state species cannot be proddlednote that by asking whether a state with
a molecule of the halting species is reachable from theairstate, we can determine whether the TM halts:
if such a state is reachable then there must be a finite seguémeactions leading to it, implying that the
probability of producing a halt state species is greaten thatherwise, if such a state is not reachable, the
halt state species can never be produced. This is equitalasking whether we can reach ayly> y from
the initial state of the SCRN, whesgeis the all zero vector with a one in the position of the haltipgcies
— a question that we know is always computable, thanks to KagMiller. Thus if an errorless way of
simulating TMs existed, we would violate the undecidapitif the halting problem.

Finally note that our Turing-universality results implyaththe their long-term behavior of SCRNs is
unknowable in a probabilistic sense. Specifically, our ltssmply that the question of whether a given
SCRN, starting with a given initial state produces a molecule of a given species with high or low podiha
is in general undecidable. This can be shown using a simitarmaent: if the question were decidable the
halting problem could be solved by encoding a TM using ourstmction, and asking whether the SCRN
eventually produces a molecule of the halting state species

*A slight modification of the clock module is necessary to rtainthe desired behavior. Because of the need of interigedia
species (e.gA") for tripling # A and# A*, the clock reactions need to be catalyzed by the appropritgiemediate species in addition
to A andA*.

fSince a reaction might simply not be chosen for an arbiyrdoig time (although the odds of this happening decreaseremp
tially), we can't insist on a zero probability of error at afived time.

81
6.6 Discussion

We show that computation on molecular counts in the SCRN hmfdgochastic chemical kinetics can be
fast, in the sense of being only polynomially slower than a, &ld accurate, in the sense that the cumulative
error probability can be made arbitrarily small. Since timeudated TM can be universal [33], a single set of
species and chemical reactions can perform any computdiidrcan be performed on any computer. The
error probability can be manipulated by changing the mdéatount of an accuracy species, rather than
changing the underlying chemistry. Further, we show thatmatation that is not a priori bounded in terms
of time and space usage can be performed assuming that tihraeoff the solution expands to accommodate
the increase in the total molecular count. In other words ISE&e Turing universal.

The Turing-universality of SCRNs implies that the questiddrwhether given a start state the system is
likely to produce a molecule of a given species is in general undelgdThis is contrasted with questions of
possibility rather than probability: whether a certain ewllecouldbe produced is always decidable.

Our results may imply certain bounds on the speed of stoictsstulation algorithms (such as variants
of 7-leaping [16]), suggesting an area of further study. Theiiion is as follows: it is well known by the
time hierarchy theorem [33] that certain TMs cannot be éffety sped up (it is impossible to build a TM that
has the same input/output relationship but computes mugtarja This is believed to be true even allowing
some probability of error [4]. Since a TM can be encoded in@RB, if the behavior of the SCRN could be
simulated very quickly, then the behavior of the TM wouldoate determined quickly, which would raise a
contradiction.

Our results were optimized for clarity rather than perfong® In certain cases our running time bounds
can probably be significantly improved (e.g., in a numbedaées we bound additive termi¥z +), where
x > 1andy > 1, by multiplicative terms(xy)). Also the roles of a number of species can be performed by
a single species (e.g4* andC in the RM simulation).

A number of previous works have attempted to achieve Tuuvinigersality with chemical kinetics. How-
ever, most proposed schemes require increasing the vafiatglecular species (rather than only increasing
molecular counts) to perform larger computation (e.g.] {2dich shows finite circuit computation and not
Turing universal computation despite its title). Liekemsld&ernando [22] have considered computation in
stochastic chemistry in which computation is performed ahertular counts. Specifically, they discuss how
SCRNs can simulate RMs. However, they rely on the manipnadif rate constants to attain the desired
error probability per step. Further, they do not achieveniiuniversal computation, as the prior knowledge
of the length of the computation is required to set the ratestamts appropriately to obtained a desired total
error probability. While writing this manuscript, the wook Angluin et al. [2] in distributed computing and
multi-agent systems came to our attention. Based on thealamfation between their field and our field,
one concludes that their results imply that stochastic étemeaction networks can simulate a TM with
a polynomial slowdown (a result akin to our Theorem 6.4.20mPared to our result, their method allows
attaining a better polynomial (lower degree), and muchebetependence on the allowed error probability
(e.g., to decrease the error by a factorl6f we have to slow down the system by a factorl6%/2, while
an implementation based on their results only has to slowndoya factor polynomial inog 10). However,
because we focus on molecular interactions rather thanhdéryt of distributed computing, and measure
physical time for reaction kinetics rather than just the bemof interactions, our results take into account
the solution volume and the consequences of the finite decwitstraint (Section 6.4). Further, while they
consider only finite algorithms, we demonstrate Turingvarsality by discussing a way of simulating algo-
rithms unbounded in time and space use (Section 6.5). Firmall construction is simpler in the sense that
it requires far fewer reactions. The relative simplicitycafr system makes implementing Turing universal
chemical reactions a plausible and important goal for sstithbiology.

6.7 Appendix
6.7.1 Clock Analysis

The following three lemmas refer to the Markov chain in FiR.6Me usep;(t) to indicate the probability of
being in state at timet. CDF stands for cumulative distribution function.

82
r r r
VRN
/ / / /

Figure 6.3: Continous-time Markov chain for Lemmas 6.7.Z-& States = 1,...,[indicate the identity
of the currently present clock speci€s, . . ., C;. Transition to stat® represents reactiadecs for the RM
simulation or the state transition initiation reaction o {CTM simulation.

Lemma 6.7.1. Suppose the process starts in stat@henvt, pi(t) < (1 — po(t))u wherey = 1/(1+ % +
(F)2 4+ (F)').

Proof. Consider the Markov chain restricted to states . , . We can prove that the invariangg 1 (¢)/p;i(t) >
r/f (fori = 1,...,1 — 1) is maintained at all times through the following argumehetting ¢;(t) =
pit1(t)/pi(t), we can showlg; (t)/dt > 0 wheng;(t) = r/f andVi', ¢ (t) > r/f, which implies that
for noi cang;(t) fall below r/f if it starts above. This is done by showing thét (¢)/dt = p;1(t)f +
pi—1(t)r — (r+ f)pi(t) < 0sinceg;(t) = r/f andg;—1(t) > r/ f, anddp;1(t)/dt = pi2(t) f + pi(t)r —
(r + f)piy1(t) > 0sincee;(t) = r/f andg;11(t) > r/f (thep,—1 or thep;,o terms are zero for the
boundary cases).

Now p; () = ¢i—1(t)di—2(t) - - - d1(t)p1 (). Thus)_, pi(t) = 1impliespi(t) = 1/(1 + ¢1 + d2dh1 +
e Gro1Pi—a 1) < 1/(1 4 7+ (%)2 +t (?)l‘l). This is a bound on the probability of being in
statel given that we haven't reached stéte the full chain of Fig. 6.3. Thus multiplying by — po(¢) gives
us the desired result. O

Lemma 6.7.2. Suppose for somewe havevt, p1 (t) < (1—po(t))p. LetT be arandom variable describing
the time until absorption at state ThenPr[T < t] < 1 —e~* for A = fu (i.e., our CDF is bounded by the
CDF for an exponential random variable with rale= f).

Proof. The result follows from the fact thalp(¢)/dt = p1(t) f < (1 — po(t))pf. O

Lemma 6.7.3. Starting at staté, the expected time to absorb at statis O((?)lfl/f) assuming sufficiently
larger/f.
2pq((a/P)' =(a/P)' ")

(1—-2p)*
ip, wherep = # is the probability of transitioning to a state to the left ang: 1 — p is the probability

Proof. The expected number of transitions to reach siagtarting in staté is d; =

of transitioning to the state to the right. This express®nbtained by solving the recurrence relatibn=
L
pd;—1 + qd;y1 + 1 (0 > 7 > [) with boundary conditiondy = 0,d; = d;—1 + 1. Thusd; < Zpala/p).

(1-2p)2 —
fﬁ%’?gi This implies that for-/ f larger than some constadf, = O((?)l‘l). Since the expected duration
of any transition is no more thaly f, the desired bound is obtained. O

By the above lemmas, the time for the clock to “tick” can beeefiively thought of as an exponential
random variable with raté = f/(1 + % + (5)> +--- + (5)'7") = 6(#). Lemma 6.7.2 shows
that the CDF of the tick is bounded by the CDF of this exporamnéindom variable. Further, Lemma 6.7.3
shows that the expected time for the tick is bounded by (tlderoof) expected time of this exponential
random variable. Note that Lemma 6.7.2 is true no matter lomg the clock has already been running (a

“memoryless” property). For our clock construction (Figl@®)), we set by changing# A and# A* which

define the forward and reverse rajeandr. Specifically, we have = G(L#Tﬁ)-

6.7.2 Time/Space-Bounded RM Simulation

Lemma 6.7.4. For the finite RM simulation, the probability of error per ptis O((1/#A)'~1). Further, the
expected time per step is bounded®y#A4) " 1v/k).

83

Proof. Consider the point in time when the RM simulation enters gestawhich it should decrement a
non-empty register. If the time untilec, occurs were an exponential random variable with pateen the
probability of error per step would be boundedX¥(k/v + X). (We are making the worst case assumption
that there is exactly one register molecule; otherwisegther is even smaller.) The time untlécs is not
exponentially distributed, but by Section 6.7.1, it can berded by an exponential random variable with
rate\ = O(v#jﬁ) (#A* = 1 for the RM construction). Note that the clock may have beeming for a
while since the lasfec operation (while the RM performs.c operations for example); however, this amount
of time is irrelevant by the memoryless property establtisineSection 6.7.1. Thus the probability of error
per step is bounded by/(k/v + \) = O((1/#A)!~1). The expected time per RM step is bounded by the
expected time fodec, which isO((#A)!~tv/k) by Section 6.7.1. O

The above lemma implies that we can ygd = O((¢/5)"/(~1) resulting in the expected time for the
whole computation o@() and the total probability of error being boundeddy

6.7.3 Time/Space-Bounded CTM Simulation

In the following lemmas, we say a reactioompletely finishewhen it happens enough times that one of the
reactants is used up.

Lemma 6.7.5. Starting with®(m) molecules ofX and ©(m) molecules oft", the expected time for the
reactionX +Y — Y to completely finish i®(;%- log m). The variance of the completion time((2-)?).

Proof. When there are molecules ofX remaining, the Waiting time until next reaction is an expuied ran-
dom variable with rat®(kqm/v) and therefore mea@ (). Each waiting time is independent. Thus the

total expected time |§:@(m) O(ggm) = O(55; logm).” The variance of each waiting time 3((>)?).
Thus the total variance 5, O(m) O((52)*) = O((75)?)- L

km

Lemma 6.7.6. Starting with©(m) molecules ofX and©(m) molecules ot” such thatA = #Y — #X =
Q(m) the expected time for the reactioh + Y — () to completely finish i€)(% logm). The variance of
the completion time i©((%)?).

Proof. This case can be proven by reducing to Lemma 6.7.5 with Irdfi@ounts#Y’ = A and# X’ =
#X. O

Lemma 6.7.7. Starting with© (m) molecules ofX and1 molecule ofY", the expected time for the reaction
X +Y — 2Y to completely finish i€)(7% logm). The variance of the completion timeGg(72-)?).

Proof. Consider splitting the process into two halves, with the fai@t bringing the amount ok to half

its initial value and the second part using up the remaintlee time-reverse of the first part, as well as the
second part, can both be bounded by processes covered byd ériirb. (Assume thag X is fixed at its
minimal value for part one, and assug#@” is fixed at its minimal value for part two. The variance canyonl
decrease.) O

Lemma 6.7.8. Some\ = @(%) attains error at most per microstep of the CTM simulation.

Proof. Using the above lemmas witlh = 3%~!, by Chebyshev’s inequaliywith probability at least
1 — ¢/2 all reactions finish before some time = ©(% (log(m) 4+ 1/1/¢)) = O(;Tifflj’;). Now we set\

such that the probability that the clock ticks before tinzies smaller tharz /2 (for a total probability of error
¢). Since the time until the clock ticks is bounded by the CDRmExponential random variable with rate

(Sec 6.7.1), itis enough that< ;= and so we can choose sorhe= O(< o km) O

vlogm

*Asm — oo, the difference betweel 7" | (1/q) andlog m approaches the Euler-Mascheroni constant.
TChebyshev's inequality states that for a random varia¥levith expected valug: and finite variances2, for anyd > 0,
Pr[|X — u| > do] < 1/d>.

84

Lemma 6.7.9. Any TM with a two-way infinite tape using at mest, space and,,, time can be converted
to a CTM usings.; = 2sy,, space and.; = O(t,Stn) time. If A extra bits of padding on the CTM tape is
used, thert.; = O(tym (st + A)) time is required.

Proof. (sketch, see [28]) Two bits of the CTM are used to represeiit af bthe TM tape. The extra bit is
used to store a TM head position marker. To move in the doraorresponding to moving the CTM head
clockwise (the easy direction) is trivial. To move in the opjpe direction, we use the temporary marker to
record the current head position and then move each tapeobytolokwise by one position. Thus, a single
TM operation in the worst case correspond€Xa) CTM operations. O

In order to simulate,,, steps of a TM that uses,,, bits of space on a CTM usind bits of padding
requirest,; = O(tym(sem + A)) CTM steps and a circular tape of sizg = 2s;, + A (Lemma 6.7.9).
Recall thatin our CTM simulation, there are four microstepsesponding to a single CTM operation, which
is asymptotically stillO(t.:). Thus, in order for the total error to be at mdstwe need the error per CTM
microstep to be = O(. Setting the parameters of the clock modueA; # A*) to attain the

L . : . 5/243/2
largest\ satisfying Lemma 6.7.8, the expected time per microstep(is;=<5) = O(%).

This can be done, for example, by settifigl*' = @(%:) and#A'™! = @(#). Since there are total

. . 7/2 5/2
O(tim (sim + A)) CTM microsteps, the total expected timedg ™ 2) i),

How large is the total molecular count? If we keggonstant while increasing the complexity of the
computation being performed, and settifigl* and# A as suggested above, we have that the total molecular
count is©(m + #A) wherem = 32%=T2_ Now m increases at least exponentially with, + A, while
#A increases at most polynomially. Further,increases at least quadratically with, (for any reasonable
algorithm2st= > t,,,) while #A increases at most as a polynomial of degi®€) 2 < 2. Thusm will
dominate.

o)
tim (Stm+A)

6.7.4 Unbounded RM Simulation

After i deco steps, we havétA = iy + ¢ whereig is the initial number ofds. The error probability for the
next step i0(1/#A?) = O(1/(ip + i)?) by Lemma 6.7.4 wheh = 3. The total probability of error over
an unbounded number of stepgI$) ;- 1/(io + 7)?). To make sure this is smaller thanve start out with

io = ©(1/0) molecules ofA.*

Now what is the total expected time forsteps? By Lemma 6.7.4 the expected time for the next step
afteri decy steps isO(#A%v/k) = O((ig + i)*v/k). Since each step at most increases the total molecular
count by1, aftert total stepsv is not larger tharO(ip + ¢ + so), Wheres, is the sum of the initial values
of all the registers. Thus the expected time for ttiestep is bounded b§)((iq + i)?(ig + t + s0)/k) =
O((1/5 +1)%(1/6 +t + s0)/k) and so the expected total time fiosteps isO(¢(1/6 +)%(1/5 +t + s0) / k).

6.7.5 Unbounded CTM Simulation

We want to follow a similar strategy as in the RM simulatior¢8on 6.7.4) and want the error probability
on theith CTM step to be bounded by = 1/(©(1/5) + i)? such that the total error probability after
arbitrarily many steps is bounded by By Lemma 6.7.8, we can attain per-step error probabilei(tg
the union bound over the 4 microsteps in a step) bounded by thhen we choose a small enough=

6(’“83/235“) = O(——), wheres,, is the current CTM tape size. Recall thais set by# A and

VSt v(1/6+1)3 sct
#A* such that\ = @(%—Aﬂ) (Section 6.7.1). It is not hard to see that we can achieve ésireti\

using clock Markov chain length= 5, and appropriatgtA = O((ig + #)3%*) and#A* = O(3%), for
appropriatéy, = O(1/0 + scto), Wheres.q is the initial size of the tape. These valuestofl and#A* can
be attained if the SCRN triples the amounthfand A* whenever extending the tape and increagesby
an appropriate amoui(3°<t) on every step.

How fast is the simulation with these parameters? From &edi7.1 we know that the expected

time per microstep i$(1/\) = O(W%W). Since the total molecular count is asymptotically

“If i > 1/5 +1,thens > [>° Ldx > 3720 %2

o—1 x2 z=ig

85

O(#A) = O((1/5 + scto + 1)3°<), this expected time i©((1/5 + s.o + 4)°/k). However, unlike in
the bounded time/space simulations and the unbounded RMation, this expected time is conditional on
all the previous microsteps being correct because if a rsiepis incorrectd and A* may increase by an
incorrect amount (for example reactions tripliggd akin to A — A" and A" — 3 A can driveA arbitrarily
high if the catalyst state species for both reactions amnenusly present simultaneously). Nonetheless,
the expected duration of a microstep conditional on ther@isimulation being correct is at most a factor
of 1/(1 — ¢) larger than this. Since we can assumewill always be bounded above by a constant less
than one, the expected duration of a microstep conditionahe entire simulation being correct is still
O((1/8+ seto +1)° /k). By Lemma 6.7.9, this yields total expected time to simulatesteps of a TM using

at mosts,,,, space and with initial input of siz€,,,¢ is O((1/3 + Stmo + temStm) temSem /) @assuming the
entire simulation is correct.

6.7.6 Decidability of Reachability

We reduce the reachability question in SCRNs to the reatityadpiestion in Vector Addition Systems (VAS),

a model of asynchronous parallel processes developed by &@t Miller [18]. In the VAS model, we
consider walks throughadimensional integer lattice, where each step must be onérifeaset of vectors in
NP, and each point in the walk must have no negative coordinktissknown that the following reachability
guestion is decidable: given pointsandy, is there a walk that reaches some paiht> y from x [18]?
The correspondence between VASs and SCRNs is straightfdffa First consider chemical reactions in
which no species occurs both as a reactant and as a proguctgactions that have no catalysts). When
such a reactiom: = (1, r, k) occurs, the state of the SCRN changes by addition of the vedte- r. Thus
the trajectory of states is a walk throuljii wherein each step is any of a finite number of reactions, stibje
to the constraint requiring that the number of moleculesaathespecies remain non-negative. Karp and
Miller’s decidability results for VASs then directly implghat our reachability question of whether we ever
enter a state greater than or equal to some target stateidabkscfor catalyst-free SCRNs. The restriction to
catalyst-free reactions is easily lifted: each catalyg@ation can be replaced by two new reactions involving
a new molecular species after which all reachability qoestinot involving the new species) are identical
for the catalyst-free and the catalyst-containing network

Acknowledgments

We thank G. Zavattaro for pointing out an error in an earlension of this manuscript. This work is supported
in part by the “Alpha Project” at the Center for Genomic Expentation and Computation, an NIH Center
of Excellence (Grant No. P50 HG02370), as well as NSF Grant 0&23761 and NIMH Training Grant
MH19138-15.

Bibliography

[1] D. Adalsteinsson, D. McMillen, and T. C. Elston. Biochiead network stochastic simulator (BioNetS):
software for stochastic modeling of biochemical netwoB®IC Bioinformatics5, 2004.

[2] D. Angluin, J. Aspnes, and D. Eisenstat. Fast computabip population protocols with a leader.
Technical report, Yale University, 2006. (Extended alzdtra appear, DISC 2006.).

[3] A. P. Arkin, J. Ross, and H. H. McAdams. Stochastic kioethalysis of a developmental pathway
bifurcation in phage-l Escherichia coleenetics149:1633—-1648, 1998.

[4] B. Barak. A probabilistic-time hierarchy theorem folightly non-uniform’ algorithms. IrProceedings
of the International Workshop on Randomization and Contmrnia2002.

*This follows from the fact thae[X' |A] < (1/ Pr[A]) E[X] for random variableX and eventd4, and that the expected microstep
duration conditional on the previous and current micrasteging correct is the same as the expected microstep ducatiwlitional on
the entire simulation being correct.

86

[5] C. H. Bennett. The thermodynamics of computation — aeevinternational Journal of Theoretical
Physics21(12):905-939, 1982.

[6] G. Berry and G. Boudol. The chemical abstract machineP?rbceedings of the 17th ACM SIGPLAN-
SIGACT Annual Symposium on Principles of Programming Laggs pages 81-94, 1990.

[7] M. Cook. Networks of RelationsPhD thesis, California Institute of Technology, 2005.

[8] A. P. de Silva and N. D. McClenaghan. Molecular-scaladagtes.Chemistry — A European Journal
10(3):574-586, 2004.

[9] M. B. Elowitz and S. Leibler. A synthetic oscillatory medrk of transcriptional regulatorsNature
403:335-338, 2000.

[10] M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swabtochastic gene expression in a single cell.
Science297:1183-1185, 2002.

[11] P. Erdi and J. TothMathematical Models of Chemical Reactions : Theory and ikppbns of Deter-
ministic and Stochastic ModelManchester University Press, 1989.

[12] S. N. Ethier and T. G. KurtzMarkov Processes: Characterization and Convergentghn Wiley &
Sons, 1986.

[13] M. Gibson and J. Bruck. Efficient exact stochastic simtioh of chemical systems with many species
and many channeldournal of Physical Chemistry,A04:1876-1889, 2000.

[14] D. T. Gillespie. Exact stochastic simulation of couptdhemical reactionslournal of Physical Chem-
istry, 81:2340-2361, 1977.

[15] D. T. Gillespie. A rigorous derivation of the chemicahster equationPhysica A 188:404-425, 1992.

[16] D. T. Gillespie. Stochastic simulation of chemical &fits. Annual Review of Physical Chemistry
58:35-55, 2007.

[17] P. Guptasarma. Does replication-induced transoniptegulate synthesis of the myriad low copy num-
ber proteins of Escherichia colBioessays17:987-997, 1995.

[18] R. M. Karp and R. E. Miller. Parallel program schemafaurnal of Computer and System Sciences
3(4):147-195, 1969.

[19] A. M. Kierzek. STOCKS: STOChastic kinetic simulationfsbiochemical systems with Gillespie algo-
rithm. Bioinformatics 18:470-481, 2002.

[20] T. G. Kurtz. The relationship between stochastic aneeinistic models for chemical reactioriBhe
Journal of Chemical Physi¢c8§7:2976—-2978, 1972.

[21] B. Levin. Genes VIl Oxford University Press, 1999.

[22] A. M. L. Liekens and C. T. Fernando. Turing complete bata particle computers. IProceedings of
Unconventional Computing Conferen@906.

[23] J. Macdonald, Y. Li, M. Sutovic, H. Lederman, K. PendM, Lu, B. L. Andrews, D. Stefanovic, and
M. N. Stojanovic. Medium scale integration of molecularitbgates in an automatoriNano Letters
6:2598-2603, 2006.

[24] M. O. Magnasco. Chemical kinetics is Turing universthysical Review Letterg8:1190-1193, 1997.

[25] H. H. McAdams and A. P. Arkin. Stochastic mechanisms @me expression.Proceedings of the
National Academy of Scienceé®}:814-819, 1997.

[26] D. A. McQuarrie. Stochastic approach to chemical kirgetlournal of Applied Probability4:413-478,
1967.

87

[27] M. L. Minsky. Recursive unsolvability of Post's Probteof ‘tag’ and other topics in theory of Turing
machinesAnnals of Math74:437-455, 1961.

[28] T. Neary and D. Woods. A small fast universal Turing maeh Technical report, National University
of Maynooth, 2005.

[29] G. Paun and G. Rozenberg. A guide to membrane compufingoretical Computer Scienc287:73—
100, 2002.

[30] P. W. Rothemund. A DNA and restriction enzyme implenagion of Turing machines. IDNA-Based
Computerspages 75-120, 1996.

[31] P. W. Rothemund, N. Papadakis, and E. Winfree. Algarmithself-assembly of DNA Sierpinski trian-
gles.PL0S Biology2:e424, 2004.

[32] G. Seelig, D. Soloveichik, D. Y. Zhang, and E. WinfreenzZigme-free nucleic acid logic circuitSci-
ence 314:1585-1588, 2006.

[33] M. Sipser.Introduction to the Theory of ComputatioRWS Publishing, 1997.
[34] D. Sprinzak and M. B. Elowitz. Reconstruction of gendtircuits. Nature 438:443-448, 2005.

[35] Stochastic simulation implementations. Systems d@jgl Workbench: http://sbw.
sour cef orge. net; BioSpice: http://biospice.lDbl.gov; Stochastirator: http:
/I opnsrchi o. nol sci.org; STOCKS: http://ww.sysbi o. pl/stocks; BioNetS:
http://x.amat h. unc. edu: 16080/ Bi oNet S; SimBiology package for MATLAB:
htt p: // ww. mat hwor ks. con? pr oduct s/ si nbi ol ogy/i ndex. htn .

[36] M. N. Stojanovic, T. E. Mitchell, and D. Stefanovic. Dgaibozyme-based logic gatedournal of the
American Chemical Societ§24:3555-3561, 2002.

[37] G. M. Suel, J. Garcia-Ojalvo, L. M. Liberman, and M. BoRilitz. An excitable gene regulatory circuit
induces transient cellular differentiatioNature 440:545-550, 2006.

[38] N.van KampenStochastic Processes in Physics and Chemigilsevier, revised edition edition, 1997.

[39] K. Vasudeva and U. S. Bhalla. Adaptive stochastic-aeteistic chemical kinetic simulationsBioin-
formatics 20:78-84, 2004.

88

Chapter 7

Robust Stochastic Chemical Reaction
Networks

7.1 Abstract

The behavior of some stochastic chemical reaction netwisrksgely unaffected by slight inaccuracies in
reaction rates. We formalize the robustness of state pilitieshto reaction rate deviations, and describe a
formal connection between robustness and efficiency oflsition. Without robustness guarantees, stochas-
tic simulation seems to require computational time prapodl to the total number of reaction events. Even
if the concentration (molecular count per volume) staysiolaadl, the number of reaction events can be linear
in the duration of simulated time and total molecular codvit. show that the behavior of robust systems can
be predicted such that the computational work scales lipeath the duration of simulated time and con-
centration, and only polylogarithmically in the total molgar count. Thus our asymptotic analysis captures
the dramatic speed-up when molecular counts are large femesghat for bounded concentrations the com-
putation time is essentially invariant with molecular couRinally, by noticing that even robust stochastic
chemical reaction networks are capable of embedding conmalmputational problems, we argue that the
linear dependence on simulated time and concentratiortiimalp

7.2 Introduction

The stochastic chemical reaction network (SCRN) model ehubal kinetics is used in chemistry, physics,
and computational biology. It describes interactions ivivg integer number of molecules as Markov jump
processes[26, 33, 9, 14], and is used in domains where tigdreal model of deterministic continuous mass
action kinetics is invalid due to small molecular counts.a8molecular counts are prevalent in biology: for
example, over 80% of the genes in tBecoli chromosome are expressed at fewer than a hundred copies
per cell, with some key control factors present in quardtitiader a dozen [18, 23]. Indeed, experimental
observations and computer simulations have confirmed thelastic effects can be physiologically signifi-
cant[25, 8, 32]. Consequently, the stochastic model is hiel@ployed for modeling cellular processes (e.g.,
[5]) and is included in numerous software packages [34, 21, The stochastic model becomes equivalent
to the classical law of mass action when the molecular ccafral participating species are large [22, 10].
Gillespie’s stochastic simulation algorithm (SSA) can Isedito model the behavior of SCRNs [13].
However, simulation of systems of interest often requirearfeasible amount of computational time. Some
work has focused on optimizing simulation of large SCRNsr{yndifferent species and reaction channels)
with few reaction occurrences. For example, one can imphermeks to improve the speed of deciding
which reaction occurs next among the many possible choi&gs (12]). However, for the purposes of this

*Some stochastic simulation implementations on the webte8ys Biology Workbenchht t p: / / sbw. sour cef or ge. net ;
BioSpice: http://bi ospi ce. | bl . gov; Stochastirator: htt p: // opnsrcbi o. npl sci . org; STOCKS: http://ww.
sysbhi o. pl / st ocks; BioNetS:ht t p: / / x. amat h. unc. edu: 16080/ Bi oNet S; SimBiology package for MATLABht t p:
/[www. mat hwor ks. com pr oduct s/ si nbi ol ogy/i ndex. ht m

89

paper we suppose that the number of species and reacti@iatigely small, and that it is fundamentally the
number of reaction occurrences in a given interval of tina¢ fliesents the difficulty. Because SSA simulates
every single reaction event, simulation is slow when the lpeinof reaction events is large.

On the face of it, simulation should be possible without &xy modeling every reaction occurrence.
In the mass action limit, fast simulation is achieved usingnerical ODE solvers. The complexity of the
simulation does not scale at all with the actual number aftiea occurrences but with overall simulation time
and the concentration of the species. If the volume getetarghout a significant increase in concentration,
mass action ODE solvers achieve a profound difference inpetation time compared to SSAMoreover
maximum concentration is essentially always bounded, uxexthe model is only valid for solutions dilute
enough to be well mixed, and ultimately because of the fingasity of matter. However, mass action
simulation can only be applied if molecular countabthe species are large. Even one species that maintains
a low molecular count and interacts with other species mtswhe use of mass action ODE solvers.

Another reason why it seems that it should be possible tolaimatochastic chemical systems quickly, is
that for many systems the behavior of interest does not deprerially upon details of events. For example
biochemical networks tend to be robust to variations in eotr@tions and kinetic parameters [27, 3]. If these
systems are robust to many kinds of perturbations, inctuslioppiness in simulation, can we take advantage
of this to speed up simulation? For example, can we apprdecspteed of ODES but allow molecular counts
of some species to be small? Indeed, tau-leaping algoritergs [15, 29, 7], see [17] for a review) are based
on the idea that if we allow reaction propensities to remaimstant for some amount of time but therefore
deviate slightly from their correct values, we don’t havesiplicitly simulate every reaction that occurs in
this period of time (and can thus “leap” by amount of time

In this paper we formally define robustness of the probatitiat the system is in a certain state at a certain
time to perturbations in reaction propensities. We alswigea method for proving that certain simple
systems are robust. We then describe a new approximateastackimulation algorithm called bounded
tau-leaping (BTL), which naturally follows from our defiiwih of robustness. In contrast to Gillespie’s and
others’ versions of tau-leaping, in each step of our alporithe leap time, rather than being a function of
the current state, is a random variable. This algorithm nadljuavoids some pitfalls of tau-leaping: the
concentrations cannot become negative, and the algorithfasto SSA when necessary, in a way that there
is always at least one reaction per leap. However, in thesaglsen there are “opposing reactions” (canceling
or partially cancelling each other) other forms of tau-iegpmay be significantly faster (e.qg., [28]).

BTL seems more amenable to theoretical analysis than @idlisssersions [15, 16, 7], and may thus act as
a stand-in for approximate simulation algorithms in arialiytvestigations. In this paper we use the language
and tools of computational complexity theory to formallydy how the number of leaps that BTL takes
varies with the maximum molecular count, time span of the simulatiofy and volumél/. In line with the
basic computational complexity paradigm, our analysissigrgtotic and worst-case. “Asymptotic” means
that we do not evaluate the exact number of leaps but ratbkrbthe functional form of the dependence of
their number onmn, t, andV. This is easier to derive and allows for making fundamernidirtttions (e.g., an
exponential function is fundamentally larger than a polyied function) without getting lost in the details.
“Worst-case” means that we will not study the behavior of algiorithm on any particular chemical system
but rather upper bound the number of leaps our algorithnstaldependent of the chemical system. This
will allow us to know that no matter what the system we arenigytio simulate, it will not be worse than our
bound.

In this computational complexity paradigm, we show thakeied robustness helps. We prove an upper
bound on the number of steps our algorithm takes that is ilifngaic in m, and linear int and total concen-
trationC' = m/V. This can be contrasted with the exact SSA algorithm whiclthe worst case, takes a
number of steps that is linear in, ¢, andC'. Since a logarithmic dependence is much smaller than arlinea
one, BTL is provably “closer” to the speed of ODE solvers wii@ve no dependence on'

Finally we ask whether it is possible to improve upon BTL, @ @e exhaust the speed gains that can
be obtained by using robustness? In the last section of therpee connect this question to a widely held
conjecture in computer science. Assuming the conjectuteies we prove that there are robust systems

*As an illustrative example, a prokaryotic cell and a eukticyoell have similar concentrations of proteins but vastifferent
volumes.

fIndeed, the total molecular count can be extremely large compared to its logarithm. For exapdplogadro’s numbes 6x 1023
while its logs, is only 79.

90

whose behavior cannot be predicted in fewer computatiagepbshan the number of leaps that BTL makes,
ignoring multiplicative constant factors and powerd@fm. We believe other versions of tau-leaping have
similar worst-case complexities as our algorithm, but prgequivalent results for them remains open.

7.3 Model and Definitions

A Stochastic Chemical Reaction Netwd8CRN)S specifies a set aV speciesS; (i € {1,...,N})andM
reactionsR; (j € {1,...,M}). Thestateof S is a vectorz € N¥ indicating the integral molecular counts
of the species.A reactionR; specifies a reactants’ stoichiometry veotbie NV, a products’ stoichiometry
vectorp; € NV, and a real-valued rate constant> 0. We describe reaction stoichiometry using a standard
chemical “arrow” notation; for example, if there are thrpeses, the reactioR;: S; + S2 — S1 + 253 has
reactants vectof; = (—1, —1,0) and products vectqs; = (1,0, 2). A reactionR; is possiblein state if
there are enough reactant moleculgg) x; — r;; > 0. Then if reactionR; occurs (or “fires”) in state’, the
state changes t8+ v;, wherev; € Z" is the state change vector for reactiin defined as’; = p; — r;
We follow Gillespie and others and allow unaty; (— ...) and bimolecularZS; — ...orS; + S;y — ...,

1 # i") reactions only. Sometimes the model is extended to higher reactions [33], but the merit of this
is a matter of some controversy.

Let us fix an SCRNS. Given a starting state; and a fixed volumé’, we can define a continuous-time
Markov process we call aBSA procedsC of S according to the following stochastic kinetics. Given a
current stater, the propensity function; of reactionR; is defined so that; (Z)d¢ is the probability that
oneR; reaction will occur in the next infinitesimal tlme intervalt + dt). If R is a unimolecular reaction
S; — ... then the propensity is proportional to the number of moleswif S; currently present since each
is equally likely to react in the next time instant; specilfy;aaj (&) = k;x; for some reaction rate constant

. If R; is a bimolecular reactiof; + S — ..., wherei # i/, then the reaction propensity is proportional
to x;x;, Which is the number of ways of choosmg a moleculé&paind a molecule of;., since each pair is
equally likely to react in the next time instant. Furtheg firobability that a particular pair reacts in the next
time instant is inversely proportional to the volume, résglin the propensity function; () = k; =, If
R; is a bimolecular reactionS; — ... then the number of ways of choosing two molecuIeS‘,dfo react is
@ and the propensity function is (7') = kj%v_l)

Since the propensity functiom; of reactionR; is defined so thai;(Z)dt is the probability that oné?;
reaction will occur in the next infinitesimal time interval ¢ + dt), state transitions in the SSA process are
equivalently described as follows: If the system is in sigteo further reactions are possibl&if a; (Z) = 0.
Otherwise, the time until the next reaction occurs is an egptial random variable with rae;; «; (). The
probability that next reaction will be a particul&- is o« (Z)/ 3_; o (Z).

We are interested in predicting the behavior of SSA procedsthile there are potentially many different
guestions that we could be trying to answer, for simplicigyadefine therediction problenas follows. Given
an SSA process, a timet, a stater, ands > 0, predict whetherC is in # at timet, such that the probability
that the prediction is incorrect is at mast In other words we are interested in algorithmically getiega
values of a Bernoulli random variablé¢z, t) such that the probability thdt %, ¢) = 1 whenC is not inZ at
time ¢ plus the probability thaf (#,¢) = 0 whenC is in ¥ at timet is at most). We assumé is some small
positive constant. We can easily extend the predictionlprotio a set of statels rather than a single target
stateZ by asking to predict whether the process is in any of the stat€ at time¢. Sincel’ is meant to
capture some qualitative feature of the SSA process théigesest to us, it is called anutcome

By decreasing the volum¥ (which speeds up all bimolecular reactions), increasjng allowing for
more molecules (up to some bound we are increasing the number of reaction occurrences teahay
need to consider. Thus for a fixed SCRN, one can try to uppendthe computational complexity of the
prediction problem as a function &f, ¢, andm. Given a molecular count bound, we define théounded-

*N={0,1,2,...}andZz = {...,—1,0,1,...}.

Tt is exactly the stochastic process simulated by GillésyBéochastic Simulation Algorithm (SSA) [13].

fWe phrase the prediction problem in terms appropriate fanalation algorithm. An alternative formulation would lreetproblem
of estimating the probability that the SSA process i% @t timet. To be able to solve this problem using a simulation algoritiee can
at most require that with probability at leakt the estimate is withi, of the true probability for some constardis, 62 > 0. This can
be attained by running the simulation algorithm a constantlver of times.

91

count prediction probleras before, but allowing an arbitrary answer if the molecatamt exceeds: within
time ¢. SupposeP is a bounded-count prediction problem with molecular cduwindm, error bounds,
about timet and an SSA process in which the volumelis We then sayP is a (m,t, C, §)-prediction
problemwhereC' = m/V is a bound on the maximum concentratiofixing some smalb, we study how
the computational complexity of solvirigz, t, C, §)-prediction problems may scale with increasingt, and

C. If the (m,t, C, §)-prediction problem is regarding an outcoineonsisting of multiple states, we require
the problem of deciding whether a particular state i ito be easily solvable. Specifically we require it to
be solvable in time at most polylogarithmiciimn.

It has been observed that permitting propensities to degiaihtly from their correct values, allows for
much faster simulation, especially if the molecular cowftsome species are large. This idea forms the
basis of approximate stochastic simulation algorithmé ssctau-leaping [15]. As opposed to the exact SSA
process described above, consider letting the propensittibn vary stochastically. Specifically, we define
new propensity functions; (7, t) = £;(t)a;(¥) where{¢;(t)} are random variables indexed by reaction and
time. The value of;(t) describes the deviation from the correct propensity oftiead?; at timet, and
should be close td. For any SSA procesB we can define a new stochastic process callpdréurbation
of P through the choice of the distributions §§;(¢)}. Note that the new process may not be Markov, and
may not possess Poisson transition probabilities. If tieeed) < p < 1 such that’j, ¢, (1 — p) < &;(t) <
(1 + p), then we call the new procesgeerturbation There may be systems exhibiting behavior such that
any slight inexactness in the calculation of propensitigisidy gets amplified and results in qualitatively
different behavior. However, for some processeg,if a small constant, the-perturbation may be a good
approximation of the SSA process.

We now define our notion of robustness. Intuitively, we wémgt prediction problem to not be affected
even if reaction propensities vary slightly. Formally, vegy &an SSA process is (p, d)-robustwith respect
to stateZ at timet if for any p-deviating procesg based orC, the probability of being inZ at timet is
within plus or minusj of the corresponding probability fét. This definition can be extended to an outcome
T" similar to the definition on the prediction problem. Finalg say an SSA processis (p, §)-robust with
respect to a prediction problefor bounded-count prediction problefR)if C is (p, §)-robust with respect to
the same state (or outcome) as specifie® jmt the same time as specifiedfm

For simplicity, we often use asymptotic notation. The riomD(1) is used to denote an unspecified
positive constant. This constant is potentially differewgry time the expressian(1) appears.

7.4 Robustness Examples

In this section we elucidate our notion of robustness by idensg some examples. In general, the question
of whether a given SSA process(js, ¢)-robust for a particular outcome seems a difficult one. Thdlem

is especially hard because we have to consider every pegsjidrturbation — thus we may not even be able
to give an approximate characterization of robustnessrbylgsition with SSA. However, we can characterize
the robustness of certain (simple) systems.

For an SSA process grperturbatiorC, and outcoméd’, let F'(C, t) be the probability of being i at
time t. Consider the SCRN shown in Fig. 7.1(a). We start With molecules ofS; and.S; each, and are
interested in the outconieof having at least 50 molecules ofS,. The dashed line with circles shovisfor
the correct SSA process (All plots of F' are estimated from0* SSA runs.) The two dashed lines without
circles showF for two “extremal” p-perturbationsC** with constant;(t) = 1+ p, andC— with constant
&i(t) = 1 — p. What can we say about othgiperturbations, particularly where tige(t) have much more
complicated distributions? It turns out that for this SCRiNI &, we can prove that any-perturbation falls
within the bounds set by the two extremaperturbationg —* andCt#. ThusF for any p-perturbation falls
within the dashed lines. Formallg,is monotonic with respect tb using the definition of monotonicity in
Appendix 7.8.2. This is easily proven by Lemma 7.8.5 becavsey species is a reactant in at most one
reaction. Then by Lemma 7.8.8% (C—*,t) < F'(C,t) < F'(C*?,t) for any p-perturbatiorC.

To see how the robustness of this system can be quantified osirdefinition of(p, §)-robustness, first
consider two time points = 4.5 andt = 6. At ¢t = 4.5, the probability that the correct SSA procéss

*Maximum concentratiorC' is a more natural measure of complexity compared’ tbecause similar ten. and¢, computational
complexity increases &S increases.

92

k1 k1
a) S1 — Sy b) S1+ Sy — 25,
kg k2
So+S3 = Sy S1+ 53 = 253
o | . o |
= - < FSOOCETEBO0008000 2
- o
%3 o d/ & vvvvvvvvvvvv
— S 5 v v
> 24 Cre.C e N ’
o b 8 v
g o E v
% o] 2
E 9 [g 9 v
g ° s ° ~
2 T @ CtP--seweprove
7] ! % v A
© k4 L -
o < | | o T | ’ 63/
% o :) % S o
5 L 5 v /e Cp
2 g > Py C
3 Lo = S
% S ; 9’ g 3 K
o Do L £ v, d coooooskoooo
S8 7 s /,00000
g —{ GORCOS0EBORCEE0EGORCE0E0NR0E0E0EER Y - ~ g 4 000 000000360
T T T T T T T T T T T T T T T
0 1 2 3 4 5 6 7 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Time

Figure 7.1: Examples of SCRNs exhibiting contrasting degref robustness. The SSA procésaind
outcomel" are defined for the two systems by: (a) Rate constahtsi= 1, ks = 0.001; start state:
2o = (300,0,300,0); outcomel: =, > 150. (b) Rate constantsk; = 0.01, ko = 0.01; start state:
75 = (300,10, 10); outcomel: x; > 160. Plots showF (-, ¢) for an SSA process qi-perturbation esti-
mated from10? SSA runs. (Dashed line with circles) Original SSA proa@sfDashed lines without circles)
The two extremap-perturbationsC+* with constant;(t) = 1+p, andC " with constant; (t) = 1—p. For
SCRN (b) we also plof™*' (-, t) for a p-perturbation with constart (t) = 1 + p, &(t) = 1 — p (triangles),
or constant; (t) = 1 — p, &(t) = 1 + p (diamonds). Perturbation parameter 0.1 throughout.

has produced at lea$50 molecules ofSy is slightly more thar0.5. The corresponding probability for
perturbations o can be no larger than abo95 and no smaller than abo0tl. ThusC is (p, d)-robust
with respect to outcomE at timet = 4.5 for p = 0.1 and¢d approximately).45, but not for smallep. On
the other hand at= 6, the dashed lines are essentially on top of each othertirgsiri a tinyd. In factd is
small for all times less than approximatély or greater than approximatelyb.

What information did we need to be able to meas{rg))-robustness? Processés” andC** are
simply C scaled in time. Thus knowing how' (C, t) varies witht allows one to quantifyp, §)-robustness
at the various timest'™' (C, ¢) can be estimated from multiple SSA runsés in Fig. 7.1. IntuitivelyC is
(p,§)-robust for smalls at all timest when F'(C, t) does not change quickly with(see Appendix 7.8.2).
For systems that are not monotonic, knowing hBW(C, t) varies with time may not help with evaluating
(p, 9)-robustness.

For a contrasting example, consider the SCRN in Fig. 7.1{i8. start with300 molecules ofSy, 10
molecules ofSs, and 10 molecules ofS3;, and we are interested in the outcome of having at |&668t
molecules ofS;. SincesS; is a reactant in both reactions, Lemma 7.8.5 cannot be useéhct, the fig-
ure shows twaq-perturbations (triangles and diamonds) that clearly gsdeom the boundaries set by the
dashed lines. The triangles shawfor the p-perturbation where the first reaction is maximally sped g a
the second reaction is maximally slowed down. (Vice versdtie diamonds.) For characterization of the
robustness of this system vija, ¢)-robustness, consider the time point= 2.5. The probability of hav-
ing at leasti60 molecules ofS; in the correct SSA processis around).5. However, this probability for
p-perturbations o€ can deviate by at least approximatély upward and downward as seen by the fwo
perturbations (triangles and diamonds). Thus at this teesystem is nafp, §)-robust foré approximately
0.4. What about othep-deviations? It turns out that for this particular systehg two p-perturbations cor-
responding to the triangles and diamonds bo#rid the same way that—* andC** boundedF in the first
example (exercise left to the reader). Nonetheless, foergéystems that are not monotonic it is not clear

93

how one can find such boundipgperturbation and in fact they likely would not exist.

Of course, there are other types of SSA process that areksoeither of the above examples: e.g.,
systems that are robust at many times but not monotonic. r@eways of evaluating robustness of such
systems remains an important open problem.

Finally, it is important to note that quantifying the robousss of SSA processes, even monotonic ones,
seems to require computing many SSA runs. This is self-tiafpavhen in practice one wants to show that
the given SSA process {9, ¢)-robust in order to justify the use of an approximate simatatlgorithm to
quickly simulate it. In these cases, we have to congider)-robustness a theoretical notion only.

7.5 Bounded Tau-Leaping
7.5.1 The Algorithm

We argued in the Introduction that sloppiness can allow &stdr simulation. In this section we give a
new approximate stochastic simulation algorithm caliednded tau-leapin@BTL) that simulates exactly a
certainp-perturbation rather than the original SSA process. Camneseity, the algorithm solves the prediction
problem with allowed errof for (p, 0)-robust SSA processes.

The algorithm is a variant of existing tau-leaping algarith[17]. However, while other tau-leaping al-
gorithms have an implicit notion of robustness, BTL is folimaompatible with our explicit definition. As
we'll see below, our algorithm also has certain other acagesé over many previous tau-leaping implementa-
tions: it naturally disallows negative concentrationg) arems easier to formally analyze. In fact obtaining
a result similar to Theorem 7.5.1 is an open question forrdtheleaping variants.

BTL has overall form typical of tau-leaping algorithms. Rait than simulating every reaction occur-
rence explicitly as per the SSA, BTL divides the simulatiotoileaps which group multiple reaction events.
The propensities of all of the reactions are assumed to bd thx®ughout the leap. This is obviously an
approximation since each reaction event affects mole@alants and therefore the propensities. However,
this approximation is useful because simulating the systéimthe assumption that propensities are fixed
turns out to be much easier. Instead of having to draw randemmahles for each reaction occurrence, the
number of random variables drawn to determine how manyigeefitings occurred in a leap is independent
of the number of reaction firings. Thus we effectively “leag/er all of the reactions within a leap in few
computational steps. If molecular counts do not change bghmaithin a leap then the fixed propensities are
close to their correct SSA values and the approximationdglgo

Our definition of ap-perturbation allows us to formally define “good.” We wantgoarantee that the
approximate SSA process that tau-leaping actually siresilet ap-perturbation of the exact SSA process.
We can achieve this as follows. ifis the state on which the leap started, throughout the leapithulated
reaction propensities are fixed at their SSA propensities:oa;(z). For any statg/ within the leap we
want the correct SSA propensities(y) to satisfy the followingp-perturbation constrain{f0 < p < 1):

(1 =p)a;(y) < a;(Z) < (1+ p)a;(y). As soon as we reach a statdor which this constraint is violated,
we start a new leap at which will use simulated reaction propensities fixed:aty/). This ensures that at
any time in the simulation, there is sorfie— p) < £;(t) < (1 + p) such that multiplying the correct SSA
propensity of reactio®; by &;(¢) yields the propensity aR; that the simulation algorithm is actually using.
Therefore, we actually simulategaperturbation, and fofp, ¢)-robust SSA processes, the algorithm can be
used to provably solve the prediction problem with edror

Can we implement this simulation quickly, and, as promisiedjttle computation per leap? Note that in
order to limit the maximum propensity deviation in a leap, wezd to make the leap duration be a random
variable dependent upon the stochastic events in the Iba.dvaluate:; () after each reaction occurrence
in a leap to verify the satisfaction of theperturbation constraint, we do not save time over SSA. Hewe
we can avoid this by using a stricter constraint we call {hg }-perturbation constrain(0 < ¢;; < 1),
defined as follows. If the leap starts in statereactionR; is allowed to change the molecular count of
speciesS; by at most plus or minus;;z; within a leap. Again, as soon as we reach a siatenere this
constraint is violated, we start a new leapyat

For anyp, we can find a set of;; } bounds such that satisfying tke; ; }-perturbation constraint satisfies
the p-perturbation constraint. For simplicity, suppose we $let;a equal to some global. The maximum

94

0. Initialize with timet = ¢y and the system’s staté= xg.

1. With the system in staté at time¢, evaluate all the propensities, and determine firing bounds
b; for all possible reactions, whete is the smallest positive integer such thiat;;| > ¢,;z; for
somes;.

2. Generate violating times ~ Gammal(b;, a;) for all possible reactions.

3. Find the first-violating reaction and set the step sizehtotime of the first violation: lej* =
argmin, {7;} andr = 7;-.

4. Determine the number of times each possible reactionroetin intervalr: for j # j*, n; ~
Binomial(b; — 1,7/7;); for j*, nj = b;»

5. Effectthe leap by replacing— ¢ + 7 andZ « ¥ + Zj Uin;.

6. RecordZ,t) as desired. Return to Step 1, or else end the simulation.

Figure 7.2: The bounded tau-leaping (BTL) algorithm. Thgoathm is given the SCRN, the initial state
%o, the volumeV, and a set of perturbation bounfls;;} > 0. If the state at a specific timg is desired,
the algorithm checks if + 7 > t; in step (3), and if so uses = ¢y — 7, and treats all reactions as not
first-violating in step (4). Gamnta, \) is a gamma distribution with shape parametend rate parameter
A. Binomial(n, p) is a binomial distribution with number of triatlsand success probabiligy

change of any species; is plus or minusMex;, whereM is the number of reactions in the SCRN. We
want to find are > 0 such that if the changes to all species stay within e bounds, then no reaction
violates thep-perturbation constraint. Let us consider the most difficalse first which is a bimolecular
reactionR;: 25; — The algorithm simulates its propensity @8z) = k;x;(z; — 1)/V throughout
the leap. Ifz; < 2, thena,;(¥) = 0, and as long ad/e < 1, y; < 2 anda;(y) = 0, satisfying thep-
perturbation constraint faR;. Otherwise, suppose; > 2. At statey within the leap, the SSA propensity
isa;(y) = kjyi(yi — 1))V < k;j(1 + Me)z;((1 + Me)z; — 1)/V. So the left half of they-perturbation
constraini; (@) < (1+p)a;(y) is satisfied if(1 — p) (1 + Me)x; (1 + Me)x; — 1) < x;(z; — 1). Similarly,
a;(y) = kjyz(yl - 1)/V > k;j(1 — Me)z,;((1 — Me)z; — 1)/V and the right half of the-perturbation
constraint; () < (1 + p)a; (y) is satisfied if(1 + p)(1 — Me)z;((1 — Me)x; — 1) > a;(x; — 1). These

inequalities are satisfied far, > 2 whene < ﬁ(l 1/ 1er/g) (which also ensures thatfe < 1). It turns
out this setting ot also works for other reaction typés—md thus for any we know how smalk needs to
be such that satisfying the correspond{ag }-perturbation constraint ensures that we are exactly sitimgj
somep-perturbation’*

Simulating a leap such that it satisfies {fag; } -perturbation constraint is easy and only requires drawing
M gamma and// — 1 binomial random variables. Suppose the leap starts in gtaft®r each reactiof;,
let b; be the number of time®; needs to fire to cause a violation of the;;} bounds for some species.
Thusb; is the smallest positive integer such thigw;;| > ¢;;2; for someS;. To determiner, the duration of
the leap, we do the following. First we determine when eaelstien ?; would occurb; times, by drawing
from a gamma distribution with shape paraméteand rate parameteur7 This generates a timg for each
reaction. The leap ends as soon as some reagtjapccursb; times; thus to determine the duration of the

*Consider a unimolecular reactidd;: S; — Using the same reasoning, theperturbation constraint faR; is satisfied if
(1=p)(1+Me)x; < z;and(1+p)(1—Me)z; > z;. Forany value of;, settinge as stated fulfills these inequalities. Similarly, for a
bimolecular reactiom;: S; + Sy — .. ., the inequalities arél — p)(1+ Me)2z;zy < wizy and(1+p)(1— Me)2z,2y > zimy0.
Again for anyz;, z;/, settinge as stated fulfills these inequalities.

TThroughout the paper we assume that or {ei;} are fixed and most of our asymptotic results do not show degreredon these
parameters. Nonetheless, we can observe that for a fixed S@&Ffr small enough, e can be within the rang®(1)p < e < O(1)p
and thus scales linearly with. Therefore, in asymptotic results, the dependence and p can be interchanged. Specifically, the
dependence explored in Appendix 7.8.1 can be equally wplessed as a dependencepon

#Being given bounds in the form dk;; } rather tharp allows some flexibility on the part of the user to assign lesponsibility
for a violation to a reaction that is expected to be fast cargpéo a reaction that is expected to be slow, thereby patnsipeeding up
the simulation, while still preserving theperturbation constraint. We do not explore this posgjbflirther.

95

leapT we take the minimum of the;s. At this point we know that the first-violating reactié)- — the one
with the minimumr;- — occurredb;- times. But we also need to know how many times the other i@ati
occur. Consider any other reactidt) (j # j*). Given that theéb;th occurrence of reactioR; would have
happened at time; had the leap not ended, we need to distribute the dtherl occurrences to determine
how many happen before timre The number of occurrences at times given by the binomial distribution
with number of trialsh,;(#) — 1 and success probability/7;. This enables us to define BTL as shown in
Fig. 7.2.

The algorithm is called “bounded” tau-leaping because tndations of reaction propensities within
a leap are always bounded accordingptoThis is in contrast with other tau-leaping algorithms, lsas
Gillespie’s [7], in which the deviations in reaction progéies are small with high probability, but not always,
and in fact can get arbitrarily high if the simulation is loegough. This allows BTL to satisfy our definition
of a p-perturbation, and permits easier analysis of the behafithre algorithm (see next section).

As any algorithm exactly simulating @perturbation would, BTL naturally avoids negative cortcan
tions. Negative counts can occur only if an impossible ieadhappens — in some staiéreactionR?;
fires for whicha; (Z) = 0. But since in g-perturbation propensity deviations are multiplicativestatez,
a’(Z,t) = &;(t)a;(¥) = 0 and soR}; cannot occur.

On the negative side, in certain cases the BTL algorithm ak@ tmany more leaps than Gillespie’s tau-
leaping [15, 16, 7] and other versions. Consider the caseaxhere are two fast reactions that partially undo
each others’ effect (for example the reactions may be resesEeach other). While both reactions may be
occurring very rapidly, their propensities may be very &mfe.g., [28]). Gillespie’s tau-leaping will attempt
to leap to a point where the molecular counts have changeagbnaccording to thaveragedoehavior of
these reactions. However, our algorithm considers eactioeaseparately and leaps to the point where the
first reaction violates the bound on the change in a specig®ianbsence of the other reactions. (Of course,
the increased number of leaps that our algorithm takestseisugreater accuracy, but this accuracy may be
excessive).

7.5.2 Upper Bound on the Number of Leaps

Suppose we fix some SCRN of interest, and run BTL on diffeneitial states, volumes, and lengths of
simulated time. How does varying these parameters chamgaumber of leaps taken by BTL? In this
section, we prove that no matter what the SCRN is, we can upperd the number of leaps as a function of
the total simulated timé, the volumeV/, and the maximum total molecular countencountered during the
simulation. For simplicity we assume that all the are equal to some global

Theorem 7.5.1.For any SCRNS with M species, any such tha) < ¢ < 1/(12M), and anyd > 0, there
are constants, cs, c3 > 0 such that for any bounds on timend total molecular count, for any volume
V and any starting state, aftes logm + co t (C' + c3) leaps where” = m/V, either the bound on time or
the bound on total molecular count will be exceeded with ability at leastl — 6.

Proof. The proofis presented in Appendix 7.8.1. O

Note that the upper bound arimplies that the algorithm is exactly simulating somperturbation (see
previous section).

Intuitively, a key to the argument is that the propensity aéaction decreasing a particular species is
linear to the amount of that species (since the species mpsia as a reactant). This allows us to bound
the decrease of any species if a leap is short. Actually th@ies that a short leap probably increases the
amount of some species by a lot (some species must causeationiol if not by a decrease it must be by
an increase). This allows us to argue that if we have a lotraf leaps we exceed our time bounand if we
have a lot of short leaps we exceed our bound on total molecatatm. In fact because the effect of leaps
is multiplicative, logarithmically many short leaps areagh to exceedh.

Itis informative to compare this result with exact SSA, whiic the worst case tak&¥(1) m¢ (C+0(1))
steps, since each reaction occurrence corresponds to ast8fAnd the maximum reaction propensity is
kjm?/V or k;m. Sincem can be very large, the speed improvement can be profound.

*Alternatively, the theorem and proof can be easily changegsé min/maxe;; } values where appropriate.

96

We believe, although it remains to be proven, that otheliorsf tau-leaping (see e.g., [17] for a review)
achieve the same asymptotic worst case number of leaps atgouithm.

How much computation is required per each leap? Each leapvewarithmetic operations on the molec-
ular counts of the species, as well as drawing from a gammaéiaodnial distributions. Since there are fast
algorithms for obtaining instances of gamma and binomiadlcen variables (e.g., [2, 20]), we do not expect
a leap of BTL to require much more computation than other fooiftau-leaping, and should not be a major
contributor to the total running time. Precise bounds apeddent on the model of computation. (In the next
section we state reasonable asymptotic bounds on the catigrutime per leap for a randomized Turing
machine implementation of BTL.)

7.6 On the Computational Complexity of the Prediction Probem for
Robust SSA Processes

What is the computational complexity inherent in the pradicproblem for robust SSA processes, and how
close does BTL come to the optimum computation time? In otoldre able to consider these questions
formally, we specify our model of computation as being rand®d Turing machines. Then in terms of
maximum total molecular count, log m computation time is required to simply read in the initiatstof
the SSA process and target state of the prediction problemsay that computation time polylogarithmic
in m is efficient inm. What about the length of simulated tim@nd maximum concentratiati? We have
shown that the number of leaps that BTL takes scales at muesrly witht andC. However, for some
systems there are analytic shortcuts to determining thiegiitity of being inI" at timet. For instance the
“exponential decay” SCRN consisting of the single react¥gn— S; is easily solvable analytically [24].
The calculation of the probability of being in any given stat any given timeé (among other questions) can
be solved in time that grows minimally withandC'. In this section we prove that despite such examples,
for any algorithm solving prediction problems for robustt§8ocesses, there are prediction problems about
such processes that cannot be solved faster than lineamdC, assuming a widely believed conjecture in
computational complexity theory. We prove this result foy algorithm that is efficient inn. We finally
argue, with certain caveats regarding implementing BTL daring machine, that as an algorithm for solving
prediction problems for robust SSA processes, BTL is asgtigatlly optimal among algorithms efficient in
m because its computation time scales linearly wigmdC'.

In order to prove formal lower bounds on the computationahglexity of the prediction problem, we
must be specific about our computation model. We use the atdmdodel of computation which captures
stochastic behavior: randomized Turing machines (TM). Admamized TM is a non-deterministic TM
allowing multiple possible transitions at a point in a cortgtion. The actual transition taken is uniform over
the choices. (See for example [30] for equivalent forméilires.) We say a given TM on a given input runs
in computational time,,,, if there is no set of random choices that makes the machinnger.

We want to show that for some SCRNSs, there is no method ofrepltrie prediction problem fast, no
matter how clever we are. We also want these stochastic ggeseo be robust despite having difficult
prediction problems. We use the following two ideas. Fiestnethod based on [4] shows that predicting
the output of given randomized TMs can be done by solving diptien problem for certain robust SSA
processes, similar to the construction of Chapter 6. Secancpen conjecture, but one that is widely
believed in computational complexity theory, bounds hovckiy the output of randomized TMs can be
determined.

Computational complexity theory concerns measuring h@xctmputational resources required to solve
a given problem scale with input size(in bits). The two most prevalent efficiency measures are tmd
space — the number of TM steps and the length of the TM tapdresto perform the computation. Let
us say a Boolean functiofi(x) is probabilistically computabléy a TM M in time ¢(|z|) and space(|z|)
if M (x) runs in timet(|x|) using space at most|z|), and with probability at least/3 outputsf(z).! It is
widely believed that the followinghierarchy conjecturés true:

*Arbitrary finite number of states and tapes. Without losseasfegality, we can assume a binary alphabet.

fAny other constant probability bounded away frdnf2 will do just as well: to achieve a larger constant probapitif being
correct, we can repeat the computation a constant numbiene$ and take majority vote.

1f we do not allow any chance of error and do not restrict spaage, the equivalent statement is proven as the (detstimjni

97

Conjecture 7.6.1((Probabilistic, Space-Limited) Time Hierarchyjor anya < 1, and polynomialé(n) and
s(n) such thatt(n)* and s(n) are at least linear, there are Boolean functions that can kbabilistically
computed within time and space bounds bout{d$ and s(n), but not in timeO(1)¢(n)®, even allowing
unrestricted space usage.

Intuitively, we take a Boolean function that requirds) time and embed it in a chemical system in
such a way that solving the prediction problem is equivatenprobabilistically computing the function.
The conjecture implies that we cannot solve the predictimblem fast enough to allow us to solve the
computational problem faster thafn). Further, since the resulting SSA process is robust, thdtriesver-
bounds the computational complexity of the prediction peobfor robust processes. Note that we need a
time hierarchy conjecture that restricts the space usad¢adis about probabilistic computation because it
is impossible to embed a TM computation in an SCRN such thabinputation is error free (see Chapter 6)
and such embedding seems to require more time as the spaeeinsa@ases.

The following theorem lower-bounds the computational ctaxipy of the prediction problem. The bound
holds even if we restrict ourselves to robust processebolt/s that this computational complexity is at least
linearint andC, as long as the dependencemiis at most polylogarithmic. It leaves the possibility tHaeite
are algorithms for solving the prediction problem that liegeomputation time more than polylogarithmic
in m but less than linear inor C. Let the prediction problem be specified by giving the SSAcpes (via
the initial state and volume), the target timjend the target outconiéin some standard encoding such that
whether a state belongsTocan be computed in time polylogarithmicsim.

Theorem 7.6.1. Fix any perturbation boung > 0 andd > 0. Assuming the hierarchy conjecture (Conjec-
ture 7.6.1), there is an SCR&8 such that for any prediction algorithrd and constants, co, 5,1, > 0,
there is an SSA processof S and a(m, ¢, C, 1/3)-prediction problenP of C such thatC is (p, ¢)-robust
with respect tdP, and.A cannot solveP in computational time; (logm)? 7 (C' + ¢2)7 if n < 1 ory < 1.

Proof. The proofis presented in Appendix 7.8.4. O

With the above theorem demarcating a boundary of what istgesshe natural question is how close to
optimal does BTL come? In the previous section, we have dé@wn upper bound on the number of leaps that
our algorithm takes. However, we need to address how thézdddounded-tau leaping algorithm presented
in Section 7.5.1 can be implemented on a randomized TM wHiolvs only finite precision arithmetic and
a restricted model of randomness generation. We have tondsatound-off error and approximate gamma
and binomial random number generators, whose effect onriteapility of outcome is difficult to track
formally. Further, the computational complexity of thegemtions is a function of the bits of precision and
is complicated to rigorously bound.

As shown in Appendix 7.8.5, BTL on a randomized TM runs intotanputation time

0(1)((log(m))°™ +1) ¢ (C + O(1)) (7.1)

where, in each leap, polylogarithmic timesmis required for arithmetic manipulation of molecular cajnt
and/ captures the extra computation time required for the realbmr operations and drawing from the
gamma and binomial distributiond. is potentially a function ofn, V, ¢, and the bits of precision used.
Assuming efficient methods for drawing the random variaghlés likely very small compared to the total
number of leaps. Further, as we discuss in Appendix 7.8snaimg round-off errors and deviations due
to approximate random number generation do not cause pngbler any fixedd; < ¢, the randomized
TM implementation solves then, ¢, C, ¢)-prediction problem fox p, 4,)-robust processes. So in as far as
lin (eq. 7.1) can be neglected, and further assuming we camegrrors introduced due to finite precision
arithmetic and approximate random number generation, dexntau leaping is asymptotically optimal up to
multiplicative constants and powerslog m among algorithms efficient im.

Assuming the hierarchy conjecture and with the caveatsebwe have matching asymptotic upper and
lower bounds irnt andC for solving the prediction problem for robust SSA processt®mwvever, non-robust
systems may require much more computation time to solve tbdigiion problem since BTL may not be
used. This may mean that there are ways to imbed computatinari-robust SSA processes that is more
efficient than the method of [4] that is used in the proof of Gifeen 7.6.1.

time hierarchy theorem [30]. Also see [6, 11] for progresprioving the probabilistic version with unrestricted spasage.

98
7.7 Discussion

The behavior of many stochastic chemical reaction netwdoks not depend crucially on getting the reaction
propensities exactly right, prompting our definitiorpeperturbations antp, ¢)-robustness. A-perturbation

of an SSA process is a stochastic process with stochastiataes of the reaction propensities from their
correct SSA values. These deviations are multiplicativet lrounded betweeh — p and1 + p. If we are
concerned with how likely the SSA process is in a given stategiven time, therip, ¢)-robustness captures
how far these probabilities may deviate fop-perturbation.

We formally showed that predicting the behavior of robusiceisses does not require simulation of ev-
ery reaction event. Specifically, we described a new appraté simulation algorithm called bounded tau-
leaping (BTL) that simulates a certairperturbation as opposed to the exact SSA process. Theaayooir
the algorithm in making predictions about the state of thetesy at given times is guaranteed fpy¢)-robust
processes. We further proved an upper bound on the numbeas bof BTL that helps explain the savings
over SSA. The bound is a function of the desired length of kbed timet, volumeV/, and maximum molec-
ular count encountered. This bound scales linearly withandC = m/V, but only logarithmically with
m, while the total number of reactions (and therefore SSAsjteyay scale linearly with, C', andm. When
total concentration is limited, but the total molecular obis large, this represents a profound improvement
over SSA. We also argue that asymptotically as a functiareofdC' our algorithm is optimal in as far as no
algorithm can achieve sublinear dependence of the numbderp$ ort or C'. This result is proven based
on a widely believed assumption in computational compyetkieory. Unlike Gillespie’s tau-leaping [7], our
algorithm seems better suited to theoretical analysis.sWihile we believe other versions of tau-leaping
have similar worst-case running times, the results anals¢mthose we obtain for BTL remain to be proved.

Our results can also be seen to address the following questfoconcerned solely with a particular
outcome rather than with the entire process trajectorypcemalways find certain shortcuts to determine the
probability of the outcome without performing a full simtitm? Since our lower bound on computation
time scales linearly with, it could be interpreted to mean that, except in problentifigeases, there is no
shorter route to predicting the outcomes of stochastic atedmrocesses than via simulation. This negative
result holds even restricting to the class of robust SSAgsses.

While the notion of robustness is a useful theoretical cocsthow practical is our definition in deciding
whether a given system is suitable to approximate simulatia BTL or not? We prove that for the class
of monotonic SSA processes, robustness is guaranteedtahe#l when in the SSA process the outcome
probability is stable over an interval of time determineddoyHowever, it is not clear how this stability can
be determined without SSA simulation. Even worse, few systef interest are monotonic. Consequently,
it is compelling to develop techniques to establish robessrfor more general classes of systems. A related
question is whether it is possible to connect our notion bfisiness to previously studied notions in mass
action stability analysis [19, 31].

7.8 Appendix
7.8.1 Proof of Theorem 7.5.1: Upper Bound on the Number of Legas

In this section we prove Theorem 7.5.1 from the text, whichargpounds the number of leaps BTL takes as
a function ofm, ¢, andC:

Theorem. For any SCRNS with M species, any such that) < ¢ < 1/(12M), and anys > 0, there are
constants:, co, c3 > 0 such that for any bounds on tindeand total molecular countr, for any volumé/
and any starting state, aftes logm + co t (C' + ¢3) leaps where” = m/V, either the bound on time or the
bound on total molecular count will be exceeded with proligtat leastl — 6.

We prove a more detailed bound than stated in the theoreneatiweh explicitly shows the dependence
on e hidden in the constants. Also since we introduce the asytieptsults only the end of the argument,
the interested reader may easily investigate the depeadétice constants on other parameters of the SCRN
such asV, M, v;;, andk;. We also show an approach to probabilitphat occurs exponentially fast as the
bound increases: if the bound above evaluates then the probability that the algorithm does not exceed
ortinn leaps is at moste 9,

99

Our argument starts with a couple of lemmas. Looking withgirgle leap, the first lemma bounds the
decrease in the molecular count of a species due to a givetiaeas a function of time. The argument is
essentially that for a reaction to decrease the moleculamtoof a species, that species must be a reactant,
and therefore the propensity of the reaction is proportitmés molecular count. Thus we see a similarity
to an exponential decay process and use this to bound theadecrNote that a similar result does not hold
for theincreasein the molecular count of a species, since the moleculartagiithe increasing species need
not be in the propensity functiohThen the second lemma uses the upper bound on how fast aspanie
decrease (the first lemma), together with the fact that irap B me reaction must change some species by
a relatively large amount, to classify leaps into those #ititer (1) take a long time or (2) increase some
species significantly without decreasing any other spdmigauch. Finally we show that this implies that if
there are too many leaps we either violate the time boundeatotial molecular count bound.

For the following, valueg andg will be free parameters to be determined later. It helpsittktbf them
as0 < f <« g < 1. How long does it take for a reaction to decreasby gth fraction of the violation bound
ex;? The number of occurrences Bf to decrease; by gex; or more is at leasjex;/ |v;;|. The following
lemma bounds the time required for these many occurrendegpjoen.

Lemma 7.8.1. Take anyf andg (0 < f, ¢ < 1), any reactionR; and species$; such that;; < 0, any state
Z, and anye. Assuming that the propensity 8 is fixed ata, (%), with probability at leastl — f/g, fewer
thangez;/ |v;;| occurrences oR; happenintimefe/(|v;;| k;) if R; is unimolecular, or timefe/(|v;5| k,C)
if R; is bimolecular.

Proof. For reactionR; to decrease the amount 6f, it must be thatS; is a reactant, and thus is a factor

in the propensity function. Suppog®; is unimolecular. Them; = k;z; and the expected number of

occurrences of?; in time flu»t-z\k- is ajfly,‘?‘k_ < f% The desired result then follows from Markov’s
ij|Rj ij 1 ©J

inequality. If R; is bimolecular withS; # S; being the other reactant then = k; “7:; alternativelya; =

%

kjw if R; is bimolecular with identical reactants. In general for bletular reactions; < k;z;C.

So the expected number of occurrencesofin time f—— iSa; f——~ < fr=%. The desired result
|V1]|kjc J ‘V‘L]‘k]c |sz|

follows as before. O

Let time 7 be the minimum over all reaction®; and.S; such thatv;; < 0 of 1/(|v;| k;) if R; is
unimolecular, orl/(|v;;| k;C) if R; is bimolecular. We can think of setting the units of time for our
argument. The above lemma implies that with probabilityesistl — f/g no reaction decreases by
gex; or more within timefe7. The following lemma defines typical leaps; they are of twpety. long or
Si-increasing. Recall is the number of reaction channels aNds the number of species.

Lemma 7.8.2. (Typical leaps). For anyf andg (0 < f,g < 1), and for anye, with probability at least
1 — NM f /g one of the following is true of a leap:

1. (long leap)r > fe7

2. (Si-increasing leapy < fe7, and the leap increases some spedest least asr; — x; + [ex; | —
gMex;, while no species;, decreases as much as +— x;; — gMex; .

Proof. By the union bound over th&/ reaction channels and th€ species, Lemma 7.8.1 implies that the
probability thatsomereaction decreases the amountsomespeciesS; by gex; or more in timefe7 is at
most N M f/g. Now suppose this unlucky event does not happen. Then ifedye fime isr < fe7, no
decrease is enough to cause a violation of the deviationdswamnd thus it must be that some reaction
increases some specifsby more tharex;. (SinceR; must occur an integer number of times, it actually
must increasé; by [sz;] or more.) Since no reaction decreasedy gex; or more, we can be sure théi
increases at least Hyz; | — gMex;. O

Lemma 7.8.3. For any species;, a leap decreaseS; at most as;; — x; — M |ex;| — 2.

*If a reaction is converting a populous species to a rare dreerate of the increase of the rare species can be propdrtmna
times its molecular count. The rate of decrease, howeveiwiays proportional to the molecular count of the decrepsipecies, or
proportional toC' times the molecular count of the decreasing species (ase€'lbelow).

100

Proof. At mostM reactions may be decreasifg A reaction can decreasg by as much asex; | without
causing a violation of the deviation bounds. The last readiring that causes the violation of the deviation
bounds ending the leap uses up at ndosiolecules ofS; (since reactions are at most bimolecular). O

Note that a similar lemma does not hold for Gillespie’s taaging algorithms [15, 16, 7] because the
number of reaction firings in a leap can be only bounded pritistally. With some small probability a
leap can result in “catastrophic” changes to some molecwlants. Since with enough time such events are
certain to occur, the asymptotic analysis must considenti@onsequently, asymptotic results analogous to
those we derive in this section remain to be proved for tapiteg algorithms other than BTL.

Our goal now is to use the above two lemmas to argue that if we hdot of leaps, we would either
violate the molecular count bound (due to mafyyincreasing leaps for the sant), or violate the time
bound (due to long leaps). Letbe the total number of leaps. By Hoeffding’s inequality,hwitrobability
at leastl — 2e=2"(NM£/9)* (j.e., exponentially approachirigwith n), the total number of atypical steps is
bounded as:

[# of atypical leapsk 2nNM f/g. (7.2)

Further, in order not to violate the time boutydhe number of long steps can be bounded as:
[# of long leapsI< t/(feT). (7.3)

How can we bound the number of the other leagisificreasing, for some speciés)? Our argument
will be that having too many of such leaps results in an exeesscrease of a certain species, thus violating
the bound on the total molecular count. We start by choosingj; dor which there is the largest number of
Si-increasing steps. Since there &fespecies, there must be a specegor which

[# of S;-increasing leaps} % Z [# of S;/-increasing leaps] (7.4)
S,1#8S;

At this point, it helps to develop an alternative bit of naiatlabeling the different kinds of leaps with
respect to the above-chosen spediew indicate how much:; may change in the leap. Since our goal will
be to argue that the molecular count$f must be large, we would like to lower-bound the increasg;in
and upper-bound the decrease. An atypical leap or a longwWedpbel | |”. By Lemma 7.8.3 these leaps
decreasé; at mostasz; — x; — M |ex; | — 2. An S;-increasing leap we label". Finally, an.S; -increasing
leap forS;: # S; we label “|”. By Lemma 7.8.2] leaps increas§; at leastasz; — z; + [ex;] — gMeux;,
while | leaps decreas§; by lesshanx; — x; — gMex;.

We would like to express these operations purely in a midagive way so that they become commuta-
tive, allowing for bounding their total effect ory independent of the order in which these leaps occurred but
solely as a function of the number of each type. Further, thiéipficative representation of the leap effects is
important because we want to bound the number of leaps thgadally in the maximum molecular count.
Note that| | leaps cause a problem because of the subtractive constamtaed| leaps cause a problem
because ifr; drops to0 multiplicative increases are futile. Nonetheless, forshke of argument suppose
we knew that throughout the simulatian > 3. Then assuming < 1/(12M), we can bound the largest
decrease due told leap multiplicatively as:; — (1/4) z,. Further, we lower-bound the increase due fo a
leap ast; — (1+ (1 — gM)e)z;. Then the lower bound on the final molecular counpand therefore the
total molecular count is

3(1+ (1—gM)e)™ (1 — gMe)™ (1/4)""" < m. (7.5)

This implies an upper bound on the numberfdéaps, that together with eqns. 7.2—7.4 provides an upper
bound on the total number of leaps, as we’ll see below.

However,z; might dip below3 (including at the start of the simulation). We can adjust effective
number of{ leaps to compensate for these dips. We say a leap is in a digt#ris ate; < 3. Observe that
the first leap in a dip starts af < 3 while the leap after a dip starts af > 3. Thus, unless we end in a
dip, cutting out the leaps in the dips can only decrease auedound on the finat;. We’ll make an even
looser bound and modify (7.5) simply by removing the conttitn of the | leaps that are in dips.How

*We know we cannot end in a dip if the resulting bound evalut&sor more. Thus technically we assume > 3 for the bound

101

many? leaps can be in dips? First let us ensyre 1/(3M). Then since 4 leap decreases by less than
gMex; < x;/3, and the decrease amount must be an integéfdeap cannot bring:; below 3 starting at
x; > 3. Thus if we start at;; > 3 a || leap must occur before we dip bel®dwy Thus the largest number
of dips isn!! + 1 (addingl since we may start the simulation bel@jv Let n; andnfll be the number of
and| | leaps in thelth dip (we don't care aboutleaps in a dip since they must leavgeunchanged). Then
nl < 2nlt +3andy", nl < 3,20kt + 37,3 < 20l 4 3(ntt 4 1) = 5ntl 4 3. Therefore, the adjusted
bound (7.5) becomes(1 + (1 — gM)e)' =57 =3(1 — gMe)™ (1/4)""" < m. For simplicity, we use the
weaker bound

3(14 (1 — gM)e)™ (1 — gMe)™ (1/4)' 13 < . (7.6)

In order to argue that this bounds the numbef déaps, we need to make sure théeaps and the |
leaps don’t cancel out the effect of théeaps. By inequality 7.4 we know that < Nn'. If we can choose
g to be a small enough constant such that more thiajhleaps are required to cancel the effect df lrap
we would be certain the bound increases exponentially witiwithout caring about leaps. Specifically,
we choose g small enough such thdl + (1 — gM)e)(1 — gMe)N > 1 + /2. For example we can let
g = (1 —(9/10)"/V).* Note thatg depends only on constan® and A/ and is independent af The
bound then becomeX1 + £/2)"' (1/4)6n"'+3,

Thus finally we have the following system of inequalitiesttfi@ satisfied with probability exponentially
approaching asn — oo:

n=n4+nt+ntt (7.7)

ntt <t/(fe7) +2nNMf/g (7.8)
nt < Nn! (7.9)
3(1+¢e/2)" (1/4) '+ < . (7.10)

Solving forn we obtairi

_ hlog(im/3) + (12h +)t/ (f<7) + 6h
"= (1— 24hNMf/q)

if (1—24hf/g) > 0whereh = (N +1)/log(1+¢/2) (also recally = - (1 — (9/10)*/Y)). To ensure this
we letf < ¢g/(48hN M). Then with probability exponentially approachihg@sn increases,

n < 2log(m/3) + 96(12h + 1)th/(geT) + 12h.

Asymptotically ass — 0,m — oo,t — oo with the system of chemical equations being fixed, we
haveg = O(1), h < O(1)/e, and write the above as < O(1)(1/¢)logm + O(1)(1/e)3t/7. Recall our
unit of time 7 was defined to be the minimum over all reactiddsand species; such thaty;; < 0 of
1/(|vi;] k;) if R; is unimolecular, ol /(|v;;| k;C) if R; is bimolecular. No matter what' is, we can say
7>1/(0(1)C 4 O(1)). Thus we can write the above as

n < O(1)(1/¢)logm + O(1)(1/e)*(C + O(1)).

For anyd, we can find appropriate constants such that the above bewadisfied with probability at least
1-0.

This bound on the number of leaps has been optimized for &itypbf proof rather than tightness. A
more sophisticated analysis can likely significantly dasesthe numerical constants. Further, we believe the
cubic dependence aiye in the time term is excessive.

to be always valid.

*Sinceg < 1/(3M), make the simplificatior{l + (1 — gM)e) > (1 + 2¢/3) and solve forg. The solution is minimized when
e=1

fLogarithms are base-2.

#The cubic dependence dnfc in the time term is due to having to decrease the probabifitgroatypical step as decreases.
It may be possible to reduce the cubic dependence to a limeaby moving up the boundary between a dip and the multipleat

regime as a function of rather than fixing it aB. The goal is to replace the constant bgsg4)O ()t +0(1) term with a(1 —

102
7.8.2 Proving Robustness by Monotonicity

In this section we develop a technique that can be used t@phewobustness of certain SSA processes. We
use these results to prove the robustness of the exampleiini®&.4 as well as of the construction of [4]
simulating a Turing machine in Appendix 7.8.3.

Sincep-perturbations are not Markovian, it is difficult to think@lt them. Can we use a property of the
original SSA process that would allow us to prove robustmagsout referring top-perturbations at all?

Some systems have the property that every reaction can only the system “closer” to the outcome
of interest (or at least “no futher”). Formally, we say an S@Acess isnonotonicfor outcomel if for all
reachable stateg, i such that there is a reaction takifigo ¢/, and for all¢, the probability of reachind’
within time ¢ starting aty is at least the probability of reachifmgwithin time ¢ starting at?. Note that by this
definitionT" must be absorbing. Intuitively, perturbation of propersiin monotonic systems only change
how fast the system approaches the outcome. Indeed, we gad bt deviations in the outcome probability
of any p-perturbation at any time by two specifieperturbations, which are the maximally slowed down and
sped up versions of the original process. This implies thaaonic SSA processes are robust at all times
t when the outcome probability does not change quickly withnd thus slowing down or speeding up the
SSA process does not significantly affect the probabilitthefoutcome.

For an SSA process prperturbatior® and set of statels, defineF'™ (C, t) to be the probability of being in
I attimet. For SSA process, letC~ be thep-perturbation defined by the constant deviatigy(g) = 1—p.
Similarly, letC** be thep-perturbation defined by the constant deviatigfg) = 1 + .

Lemma 7.8.4.1f an SSA processis monotonic for outcomi, then for any-perturbationC of C, FT (C~*. 1) <
FY(C,t) < FY(C*tr,t).

Proof. If an SSA process is monotonic, allowing extra “spontanétnasisitions (as long as they are legal
according to the SSA process) cannot induce a delay in aegtériWe can decompose a perturbation with
&;(t) > 1asthe SSA process combined with some extra probabilityeafi@n occurrence in the next interval
dt. Thus, for a perturbatiod of a monotonic SSA processin which &(t) > 1, we haveF™ (C,t) <
FT(C,t). By a similar argument, i€ has¢;(t) < 1, thenF"(C,t) < F'(C,t). NowC~* andC** are
themselves monotonic SSA processéscaled in time). Then by the above bounds, for arperturbation

C of C we haveF" (C—*,t) < FT'(C,t) < FT(C*7,t). O

SinceC—* andCt* are simply the original SSA proceésscaled in time by a factor af/(1 + p) and
1/(1 — p), respectively, we can write the bound of the above lemm&a&, t/(1 + p)) < F'(C,t) <
FY'(C,t/(1 - p)). Rephrasing Lemma 7.8.4:

Corollary 7.8.1. If an SSA process is monotonic for outcome then it is(p, d)-robust with respect td' at
timet whered = FY(C*t*.t) — FY'(C~*,t) = FY(C,t/(1 —p)) — FY(C,t/(1+ p)).

For many SSA processes, it may not be obvious whether thesnan®tonic. We would like a simple
“syntactic” property of the SCRN that guarantees monotgnand can be easily checked. The following
lemma makes it easy to prove monotonicity in some simplescase

Lemma 7.8.5. LetC be an SSA process atilan outcome of SCRH. If every species is a reactant in at
most one reaction i&%, and there is a sefn; } such that outcomg occurs as soon as every reacti®y has
fired at leastr; times, therC is monotonic with respect 0.

Proof. The restriction ori” allows us phrase everything in terms of counting reactiauaences. For every
reactionR;, defineF;(n, t) to be the probability thaR; has fired at least times within timet. Now suppose
we induce some reaction to fire by fiat. The only way this camabse somé;(n,t) is if it decreases the
count of a reactant aR; or makes it more likely that some reacti®) (j’ # ;) will decrease the count of a
reactant ofR?;. Either possibility is avoided if the SCRN has the propehigttany species is a reactant in at
most one reaction. Sinde! (C,t) = [I; Fj(n;,), this quantity cannot decrease as well, and monotonicity
follows. O

O(1)e)OMn 't +0(1) term. Then the effect of 4| leap would scale witls, as does the effect of anleap.

103
7.8.3 Robust Embedding of a TM in an SCRN

Since we are trying to bound how the complexity of the prediicproblem scales with increasing bounds
ont andC but not with different SCRNs, we need a method of embeddintyldrifan SCRN in which the
SCRN is independent of the input length. Among such metheaitable ([4], Chapter 6), asymptotically the
most efficient and therefore best for our purposes is thetagi®on of Angluin et al. This result is stated in
the language of distributed multi-agent systems rather thalecular systems; the system is a well-mixed set
of “agents” that randomly collide and exchange informatigach agent has a finite state. Agents correspond
to molecules (the system preserves a constant moleculat egustates of agents correspond to the species,
and interactions between agents correspond to reactiavtsiaim both molecules are potentially transformed.
Now for the details of the SCRN implementation of Angluint®focol. Suppose we construct an SCRN
corresponding to the Angluin et al. system as follows: Ageates correspond to species (i.e., for every
agent state there is a unique species). For every pair of specieS;, , Si,, (i1 < i2) we add reaction
Si, +Si, — Si, + S, if the population protocol transition function specifigs, i2) — (is,44). Note that
we allow null reactions of the forrfi;, +.5;, — S;, + S;, including fori; = i,. For every reactiom;, we’ll

use rate constait; = 1. The sum of all reaction propensitieshs= m(;"v_l) since every molecule can react
with any other moleculé. The time until next reaction is an exponential random vaeialith rate\. Note
that the transition probabilities between SCRN statestesame as the transition probabilities between the
corresponding configurations in the population protoaatsiin the SCRN every two molecules are equally
likely to react next. Thus the SSA process is just a contistimoe version of the population protocol process
(where unit “time” expires between transitions). Thereftre SCRN can simulate a TM in the same way as
the population protocol.

But first we need to see how does time measured in the numbateséctions correspond to the real-

valued time in the language of SCRNs?

Lemma 7.8.6. If the time between population protocol interactions is apanential random variable with
rate A\, then for any positive constantsc;, ¢ such that; < 1 < ¢o, there isNy such that for allN > Ny,
N interactions occur between timgN /X andc, N/ with probability at leastt — N—¢.

Proof. The Chernoff bound for the left tail of a gamma random vagabivith shape parametéy and rate
NisPr[T < #] < (3)NeV=Afort < N/A. ThusPr[T < ¢;N/A] < (ere! =)V, Sincecie! = < 1 when

c1 # 1,Pr[T < ey N/A] < N—<for large enoughV. An identical argument applies to the right tail Chernoff
boundPr[T" > t] < (3£)NeN—*fort > N/A. O

The following lemma reiterates that an arbitrary compotai problem can be embedded in a chemical
system, and also shows that the chemical computation istelbth respect to the outcome of the computa-
tion. For a given TM and agent count, let 2, andz}, be SCRN states corresponding to the TM halting
with a0 and1 output respectively.

Lemma 7.8.7. Fix a perturbation bouncg > 0, § > 0, and a randomized TN/ with a Boolean output.
There is an SCRN implementing Angluin et al’s populatiastquol, such that if\/(x) halts in no more
thant,,, steps using no more than,, time, then starting with the encodingefand usingm = O(1)2%m
molecules, at any time > t.s, = O(1)Vityy, log4(m)/m the SSA process is i}, with probability that is
within § of the probability that\/ (z) = b. Further, this SSA processi(is, ¢)-robust with respect to stateg,
andz7, atall timest > tgg,.

The first part of the lemma states that we can embed an agbitMicomputation in an SCRN, such that
the TM computation is performed fast and correctly with @ebily high probability. The second part states
that this method can be made arbitrarily robust to pertishabf reaction propensities. The first part follows
directly from the results of [4], while the second part regaisome additional arguments on our part.

If we only wanted to prove the first part, fix any randomized TWiwith a Boolean output and any
constanty > 0. There is a population protocol of Angluin et al. that candete the TM’s computation

*Just to confirm, splitting the reactions between the sameiesp@and between different species, the sum of the propengst
> Zi(;\i/il—) +2 i “\iil = %(Zz LTy =D T+ 2D TiTyr) = %(E“/ Ty — 3o i) = n<g\;1) using the fact
that2 37, @iy =32, 0 @iy ANy, @i@i + 37, L0 Ti%yr = 30, 4 TiTyr

104

on arbitrary inputs as follows: If on some input M usest,;,, computational time ane,,,, space, then the
protocol usesn = O(1)2%™ agents, and the probability that the simulation is incdroedakes longer than
N = O(1)tymmlog* m interactions is at most/2. This is proved by using Theorem 11 of [4], combined
with the standard way of simulating a TM by a register machisig multiplication by a constant and
division by a constant with remainder. The total probapitif the computation being incorrect or lasting
more thanV interactions obtained is at masS{(1)t,,,m~¢. Since for any algorithm terminating tp,, steps,
25tm > O(1) t4n, we can make sure this probability is at még by using a large enough constant in
m = O(1)2%~. By Lemma 7.8.6, the probability th&2(1) N interactions take longer than(1) N/ time

to occur is at most /2. Thus the total probability of incorrectly simulating’ on x or taking longer than
O(1)N/X = O(1)Vty,, log*(m) /m time is at mosb. The Boolean output af/ is indicated by whether we
end up in statery, or z7,. (If the computation was incorrect or took too long we canrbaeither.) This
proves the first part of the lemma.

We now sketch out the proof of how the robustness of the Angltial. system can be established,
completing the proof of Lemma 7.8.7. The whole proof requietracing the argument in the original paper;
here, we just outline how this retracing can be done. Firstcanvert the key lemmas of their paper to use
real-valued SCRN time rather than the number of interastidrhe consequences of the lemmas (e.g., that
something happens before something else) are preservatimnthe lemmas can be still be used as in the
original paper to prove the corresponding result for SCRN& monotonicity of the processes analyzed in
the key lemmas can be used to argue that the overall coristrigtrobust.

We need the following consequence of Lemma 7.8.4:

Corollary 7.8.2. If an SSA proces$is monotonic for outcome, and with probabilityp it entersl” after time
t1 but before time, then for anyp-perturbationC of C, the probability of entering’ after timet, /(1 + p)
but before times /(1 — p) is at leastp.

Proof. Letp; = FU'(C,t,) andpy = F(C,t3). Using Lemma 7.8.4 we know that, ¥ (C,t/(1 — p))
1

FU(C,t). Thus,p; = F'(C,t1) > F(C,(1 — p)t1). Similarly we obtainp, = F'(C,t2) < FF(C, (
p)t2). ThusFY (C, (1 + p)ta) — FY(C, (1 — p)t1) > p2 — p1 = D-

O+ v

As an example let us illustrate the conversion of Lemma 2 pf [the lemma bounds the number of
interactions to infect agents in a “one-way epidemic” starting with a single inéechgent. In the one-way
epidemic, a non-infected agent becomes infected whereitanots with a previously infected agent. With our
notation, this lemma states:

Let N (k) be the number of interactions before a one-way epidemitirggawith a single infected
agent infects agents. Then for any fixed> 0 andc > 0, there exist positive constants and
¢ such that for sufficiently large total agent countand anyk > m®, cymInk < N(k) <
com In k with probability at least — m~°.

For anym andk we consider the corresponding SSA proaessd outcomé” in which at leask agents are
infected. Since the bounds dvi(k) scale at least linearly withq, we can use Lemma 7.8.6 to obtain:

Let ¢(k) be the time before a one-way epidemic starting with a singflected agent infects
agents. Then for any fixed > 0 andc > 0, there exist positive constants andcs such that
for sufficiently large total agent count and anyk > m®, cymIn(k)/A < t(k) < camIn(k)/A
with probability at least — m .

Finally consider the SSA process of the one-way epidemgzgping. The possible reactions either do nothing
(reactants are either both infected or both non-infectdd,new agent becomes infected. It is clear that for
anym andk, C is monotonic with respect to outconhein which at least: agents are infected. This allows
us to use Corollary 7.8.2 to obtain:

Fix anyp > 0, and lett(k) be the time before a one-way epidemic starting with a singkcted
agent infectd: agents in some correspondipgperturbation. Then for any fixed > 0, ¢ > 0,

there exist positive constants andc, such that for sufficiently large total agent countand
anyk > m&, cymIn(k)/ (A1 + p)) < t(k) < comIn(k)/(A(1 — p)) with probability at least

1—m~—°.

105

Sincep is a constant, what we have effectively done is convert thelrén terms of interactions to a result
in terms of real-valued time that is robust geperturbations simply by dividing byt and using different
multiplicative constants.

The same process can be followed for the key lemmas of Anglual. (Lemma 3 through Lemma 8).
This allows us to prove a robust version of Theorem 11 of Aimgét al. by retracing the argument of their
paper using the converted lemmas and the real-valued notibme throughout. Since the only way that
time is used is to argue that something occurs before songe#ise, the new notion of time, obtained by
dividing by A with different constants, can always be used in place of timalyer of interactions.

7.8.4 Proof of Theorem 7.6.1: Lower Bound on the Computatioal Complexity of
the Prediction Problem

In this section we prove Theorem 7.6.1 from the text whichdelwounds the computational complexity of the
prediction problem as a function et, ¢, andC. The bound holds even for arbitrarily robust SSA processes.
The theorem shows that this computational complexity isast linear irt andC, as long as the dependence
onm is at most polylogarithmic. The result is a consequence®fdust embedding of a TM in an SCRN
(Lemma 7.8.7).

Let the prediction problem be specified by giving the SSA psesqvia the initial state and volume), the
target timet, and the target outconiein some standard encoding such that whether a state belohgsain
be computed in time polylogarithmic in.

Theorem. Fix any perturbation boungh > 0 andd > 0. Assuming the hierarchy conjecture (Conjec-
ture 7.6.1), there is an SCR&8 such that for any prediction algorithrd and constants, co, 5,1,v > 0,
there is an SSA processof S and a(m, ¢, C, 1/3)-prediction problenP of C such thatC is (p, ¢)-robust
with respect td? and.4 cannot solveP in computational time; (logm)? 7 (C + co)Y if n < 1ory < 1.

Suppose someone claims that for any fixed SCRN, they can pea@dualgorithm for solvingn, t, C, 1/3)-
prediction problems for SSA processes of this SCRN assuthm&SA process i, 0)-robust with respect
to the prediction problem for some fixedandd, and further they claim the algorithm runs in computation
time at most

0O(1) (log(m))? t" (C + O(1))" (7.12)

for somen < 1 (5,7 > 0). We argue that assuming the hierarchy conjecture is tueh a value of; is
impossible.

To achieve a contradiction of the hierarchy conjecturesiar any function probabilistically computable
int;,(n) = O(1)n¢ time ands;, (n) = O(1)n space fox, = 511 41. Construct a randomized TM having
error at mostl /24 by running the original randomized TK2(1) times and taking the majority vote. Use
Lemma 7.8.7 to encode the TM probabilistically computirig thnction in a(p, §)-robust SSA process such
that the error of the TM simulation is at mokt24. Then predicting whether the process ends up in state
x§, or 7, provides a probabilistic algorithm for computing this ftioa. The resulting error is at most
1/24 +1/24 4+ 1/3 = 5/12 < 1/2, where the first term /24 is the error of the TM, the second term
1/24 is for the additional error of the TM embedding in the SSA mss; and the last teriy3 is for the
allowed error of the prediction problem. By repeatifigl) times and taking the majority vote, this error
can be reduced beloly/3, thereby satisfying the definition of probabilistic comgtitn. How long does
this method take to evaluate the function? We Use= m so thatC is a constant, resulting ifn,, =
OVt (n)log* m = O(1)ns*t* sincem = O(1)2". Setting up the prediction problem by specifying the
SSA process (via the initial state and volume), target fiteilesand timé, requiresO(1) logm = O(1)n
time* Then the prediction problem is solved in computation titng) (log(m))?t1,, = O(1)nS+C+4n,
Thus the total computation time @(1)(n”*+(¢+47 + n) which, by our choice ot;, is less tharO(1)n¢,
leading to a contradiction of the hierarchy conjecture.

*By the construction of [4], setting up the initial state rizgs letting the binary expansion of the molecular count@érain species
be equal the input. Since the input is given in binary and allecular counts are represented in binary, this is a lines bperation.
Setting up the final state, or z7, is also linear time. Computing the target time for the preaiicproblemtss, is asymptotically
negligible.

106

Isy < 1 possible? Observe thatif < n then the claimed running time of the algorithm solving the
prediction problem (expression 7.11) with timg, = O(1)Vt;,,(n)log*(m)/m can be made arbitrarily
small by decreasinyy’. This leads to contradiction of the hierarchy conjectuteergforey > n > 1.

7.8.5 OnImplementing BTL on a Randomized TM

The idealized BTL algorithm presented in Section 7.5.leseln infinite precision real-value arithmetic,
while only finite precision floating-point arithmetic is milsle on a TM. Further, the basic randomness gen-
erating operation available to a randomized TM is choosmg af a fixed number of alternatives uniformly,
which forces gamma and binomial draws to be approximate. ddmplicates estimates of the computation
time required per leap, and also requires us to ensure thaawégnore round-off errors in floating-point
operations and tolerate approximate sampling in randonbenaraws.

Can we implement gamma and binomial random number gensiatca randomized TM and how much
computational time do they require? It is easy to see thatrarp precision uniforni0, 1] random variates
can be drawn on a randomized TM in time linear in precisionis likely that approximate gamma and
binomial random variables can be drawn using methods &/aila the numerical algorithms literature which
uses uniform variate draws as the essential primitive. eSmany existing methods for efficiently drawing
(approximate) gamma and binomial random variables inviblgeejection method, the computation time for
these operations is likely to be an expectation. Specificilseems reasonable that drawing gamma and
binomial random variables can be approximately implengtotea randomized TM such that the expected
time of these operations is polynomial in the length of thatflay-point representation of the distribution
parameters and the resultant random quaitity.

The computational complexity of manipulating integer neol@r counts on a TM is polylogarithmic in
m. Letl be an upper bound on the expected computational time refjfgredrawing the random variables
and real number arithmetic;is potentially a function ofn, V, t, and the bits of precision used. Using
Markov’s inequality and Theorem 7.5.1 we can then obtainumbaen the total computation time that is true
with arbitrarily high probability. We also make the TM keepdk of the total number of computational steps
it has takemh and cut off computation when it exceeds the expectation mesfixed factor. Then we obtain
the following bound on the total computation tim@(1)((log(m))°™ + 1) ¢ (C + O(1)).

We have three sources of error. First, since BTL simulategarturbation rather than the original SSA
process, the probability of the outcome may be offdhy assuming the SSA process wgs d;)-robust.
Further, since we are using finite precision arithmetic amgl approximate random number generation, the
deviation from the correct probability of the outcome magrease by anothey,. Finally, there is a3
probability that the algorithm cuts off computation befireompletes. We have assumed a fixed< ¢,
where¢ is the allowed error of the prediction problem. We can mé&ken arbitrarily small constant by
increasing the total computation time by a constant factsing Markov's inequality). Further, let us assume
thatd, is small enough to ensure that the total efrpo# d, + 93 < 9 fulfills the requirements of solving the
(m, t,C,d)-prediction problend.

Bibliography

[1] D. Adalsteinsson, D. McMillen, and T. C. Elston. Biochiead network stochastic simulator (BioNetS):
software for stochastic modeling of biochemical netwoB®IC Bioinformatics5, 2004.

*The numerical algorithms literature, which assumes thatichfoating point operations take unit time, describes a lvemof
algorithms for drawing from an (approximate) standard ganthstribution [2], and from a binomial distribution [20]Juch that the
expected number of floating-point operations does not gow fainction of distribution parameters (however, someiotisins on the
parameters may be required). On a TM basic arithmetic dpasatake polynomial time in the length of the starting nuicervalues
and the calculated result.

fCompute the bound and write this mats/on a work tape, and after each computational step, counhefdf thels until no more
are left.

fWe conjecture that for any fixedh, we can find some fixed amount of numerical precision to noeestés for (p, 61)-robust
processes. We would like to show that robustness accordiogrt definition implies robustness to round-off errors apgreximate
random number generation. While this conjecture has strd@ndive appeal, it seems difficult to prove formally, argpresents an area
for further study.

107

[2] J. Ahrens and U. Dieter. Generating Gamma Variates by difidal Rejection Techniqud.anguage
54:853-882, 1978.

[3] U. Alon. An Introduction to Systems Biology: Design Principles afl&gical Circuits Chapman &
Hall/CRC, 2007.

[4] D. Angluin, J. Aspnes, and D. Eisenstat. Fast computdiiopopulation protocols with a leader. Techni-
cal Report YALEU/DCS/TR-1358, Yale University DepartmeftComputer Science, 2006. Extended
abstract to appear, DISC 2006.

[5] A. P. Arkin, J. Ross, and H. H. McAdams. Stochastic kioethalysis of a developmental pathway
bifurcation in phage-l Escherichia coleenetics149:1633-1648, 1998.

[6] B. Barak. A probabilistic-time hierarchy theorem folightly non-uniform’ algorithms. IrProceedings
of International Workshop on Randomization and Computa2602.

[7] Y. Cao, D. Gillespie, and L. Petzold. Efficient step sieéestion for the tau-leaping simulation method.
The Journal of Chemical Physic¥24:044109, 2006.

[8] M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swairto€hastic gene expression in a single cell.
Science297:1183-1185, 2002.

[9] P. Erdi and J. Toth.Mathematical Models of Chemical Reactions: Theory and isppibns of Deter-
ministic and Stochastic ModelManchester University Press, 1989.

[10] S. N. Ethier and T. G. KurtzMarkov Processes: Characterization and Convergentghn Wiley &
Sons, 1986.

[11] L. Fortnow and R. Santhanam. Recent work on hierardbiesemantic classeSIGACT News37:36—
54, 2006.

[12] M. Gibson and J. Bruck. Efficient exact stochastic siatioh of chemical systems with many species
and many channeldournal of Physical Chemistry,A04:1876-1889, 2000.

[13] D. T. Gillespie. Exact stochastic simulation of couptdhemical reactionslournal of Physical Chem-
istry, 81:2340-2361, 1977.

[14] D. T. Gillespie. A rigorous derivation of the chemicahster equationPhysica A 188:404-425, 1992.

[15] D. T. Gillespie. Approximate accelerated stochasiticugation of chemically reacting system3he
Journal of Chemical Physic415, 2001.

[16] D. T. Gillespie. Improved leap-size selection for decated stochastic simulationThe Journal of
Chemical Physicsl19(16):8229, 2003.

[17] D. T. Gillespie. Stochastic simulation of chemical &fits. Annual Review of Physical Chemistry
58:35-55, 2007.

[18] P. Guptasarma. Does replication-induced transotiptegulate synthesis of the myriad low copy num-
ber proteins of Escherichia colBioessaysl7:987-997, 1995.

[19] F. Horn and R. Jackson. General mass action kinefieshive for Rational Mechanics and Analysis
47(2):81-116,1972.

[20] V. Kachitvichyanukul and B. Schmeiser. Binomial randwariate generationCommunications of the
ACM, 31(2):216-222,1988.

[21] A. M. Kierzek. STOCKS: STOChastic kinetic simulatioofsbiochemical systems with Gillespie algo-
rithm. Bioinformatics 18:470-481, 2002.

108

[22] T. G. Kurtz. The relationship between stochastic aneaheinistic models for chemical reactioriBhe
Journal of Chemical Physi¢c$§7:2976—-2978, 1972.

[23] B. Levin. Genes VIl Oxford University Press, 1999.

[24] M. Malek-Mansour and G. Nicolis. A master equation aggon of local fluctuations.Journal of
Statistical Physics13:197-217, 1975.

[25] H. H. McAdams and A. P. Arkin. Stochastic mechanisms @me expression.Proceedings of the
National Academy of Scienceé®}:814-819, 1997.

[26] D. A. McQuarrie. Stochastic approach to chemical kiteetlournal of Applied Probability4:413-478,
1967.

[27] M. Morohashi, A. E. Winn, M. T. Borisuk, H. Bolouri, J. Dte, and H. Kitano. Robustness as a Measure
of Plausibility in Models of Biochemical NetworksJournal of Theoretical Biology216(1):19-30,
2002.

[28] M. Rathinam and H. El Samad. Reversible-equivalentromsolecular tau: A leaping method for “small
number and stiff” stochastic chemical systen#&urnal of Computational Physic&24(2):897-923,
2007.

[29] M. Rathinam, L. Petzold, Y. Cao, and D. Gillespie. 3tés in stochastic chemically reacting systems:
The implicit tau-leaping methodrhe Journal of Chemical Physick19:12784, 2003.

[30] M. Sipser.Introduction to the Theory of ComputatioRWS Publishing, 1997.

[31] E. Sontag. Monotone and Near-Monotone Systdmsture Notes in Control and Information Sciences
357:79, 2007.

[32] G. M. Suel, J. Garcia-Ojalvo, L. M. Liberman, and M. BoRilitz. An excitable gene regulatory circuit
induces transient cellular differentiatioNature 440:545-550, 2006.

[33] N.van KampenStochastic Processes in Physics and Chemig&tyevier, revised edition, 1997.

[34] K. Vasudeva and U. S. Bhalla. Adaptive stochastic-aeteistic chemical kinetic simulationdBioin-
formatics 20:78-84, 2004.

109

Chapter 8

Enzyme-Free Nucleic Acid Logic
Circuits

Collaborators: Georg Seelig, David Yu Zhang, and Erik Winfrédy contribution: GS and | came up with
the basic idea, informed by some constructions of DYZ. | genied a couple of the experiments, but the
majority was done by GS, including data analysis. The texs watten by all.

This chapter was published asGeorg Seelig, David Soloveichik, David Yu Zhang, Erik Widr, “Enzyme-
Free Nucleic Acid Logic Circuits,” Science, 314:1585-158806. (Supplementary information appears
online.)

8.1 Abstract

Biological organisms perform complex information prodegsand control tasks using sophisticated bio-
chemical circuits, yet the engineering of such circuitsaara ineffective compared to that of electronic cir-
cuits. To systematically create complex yet reliable disselectrical engineers employ digital logic wherein
gates and subcircuits are composed modularly and sigriala¢éien prevents signal degradation. We report
the design and experimental implementation of DNA-basgialilogic circuits. We demonstrate AND, OR,
and NOT gates, signal restoration, amplification, feedpachl cascading. Gate design and circuit construc-
tion is modular. The gates use single-stranded nucleisasdnputs and outputs, and the mechanism relies
exclusively on sequence recognition and strand displaseniological nucleic acids such as microRNAs
can serve as inputs, suggesting applications in bioteogga@nd bioengineering.

8.2 Introduction

To date, no man-made chemical circuits even remotely apprtige complexity and reliability of silicon-
based electronics. Once reliable principles for theirglesire established, synthetic chemical circuits could
be used routinely to control nanoscale devices in vitro,nalye complex chemical samples in situ, or to
interface with existing biological circuits in vivo [7]. @astruction of synthetic biological circuits de novo is
a powerful test of design principles [15].

Rational design of nucleic acid devices is simplified by thedictability of Watson-Crick base pairing;
thus nucleic acids are a promising alternative to proteinsynthetic chemical circuits. Allosteric ribozymes
that take small molecules as input have been shown to petfmgizal functions [4]; however, their out-
put (a cleaved or ligated oligonucleotide) is of a differfarin than the input, hence cascading is difficult.
Automata performing multiple logical operations in pag|tL7], single-step signaling cascades [12], and a
feedback cycle that acts as an exponential chain reacti@jmfére built using deoxyribozymes controlled by
input oligonucleotides [16]. Another approach utilizegsence recognition to control enzyme catalysis of
covalent bond formation and breakage [21, 3, 2]. Alterrdyivnucleic-acid reactions can be driven without
enzyme or (deoxy)ribozyme catalysis [22, 18]; this priteipas been exploited to construct DNA-based

110

logic gates and signaling cascades [5, 6]. Such molecutareta may give rise to “smart” therapeutics
for medical applications [21, 16, 2]. Recently, enginearedeic-acid logic switches based on hybridization
and conformational changes have been successfully deratatsin vivo [8, 1]. The remaining challenge is
to design chemical logic gates that can be combined to amidéarge, reliable circuits. The analogous chal-
lenge for engineering electronic circuits was met by thesttgyment of digital design principlestikewise
these may prove essential for designing complex, yet robhetnical circuits.

We report the construction of in vitro DNA-based logic gaéesl circuits that embody digital design
principles: logic, cascading, restoration, fan-out, aratimarity. These circuits implement a complete set of
Boolean logic functions (AND, OR, and NOT) using short oligaleotides as input and output. Because the
input and output are of the same form, the gates can be cabtadeate multilayer circuits. Logical values
“0” and “1” are represented by low and high concentratioespectively. Signal restoration is performed
by threshold and amplifier gates that protect against nsigaal loss, and leaky reactions. Amplifier gates
can also be used to ensure that a logic gate generates suffiggaal to drive multiple downstream targets.
Watson-Crick interactions between modular recognitiomdms determine the connectivity of gates. Se-
guences can be chosen with few constraints, allowing thetagstion of arbitrary circuits with negligible
cross-activation. Furthermore, modular constructiooved| for interfacing with existing molecular compo-
nents — be they pre-designed subcircuits or naturally eowinucleic acids.

8.3 Gate Construction and Verification

Gate function is entirely determined by base pairing anckirg. Every gate consists of one or more
gate strands and one output strand (Figs. 8.1A and S1). Tipeitostrand either serves as an input to a
downstream gate or it is modified with a dye-label to provideadout in a fluorescence experiment. Both
ends of the output strand (Fig. 8.1A), or only one end (ttoslgates in Fig. 8.2), can be attached to the gate
complex. Fig. 8.1A shows an AND-gate assembled from an awstpand and two gate strands. Addition
of single-stranded inputs to a solution containing the gatmites a computation. Each gate strand contains
a recognition region that is complementary to its inputtidfly the recognition regions of all gate strands
are double-stranded and therefore inert, except for theotddarthest from the output strand (strand G in
Fig. 8.1A). When the first input binds this toehold, it disma the first gate strand by three-way branch
migration [9, 20], exposing the toehold for the subsequemii and releasing an inert double-stranded waste
product. A similar process can now occur for the second inpbe output strand is released if and only if
both inputs are present. To implement this design, DNA secg® (Tables S1-S3) were selected to ensure
correct complementarity while minimizing spurious inteians [23].

The two-input AND gate has four entries in its truth tableg(R.1B) and has been shown to function
correctly, using fluorescence kinetics experiments analgetrophoresis (Figs. 8.1C-D). Multi-input AND
gates can also be designed using the same principles andearmeshown to work reliably (Fig. S2). The
gates in all our experiments were purified by gel electropsisrafter triggering “leaky” complexes ([23],
Fig. S3).

8.4 Circuit Construction

The output strand of one gate may be an input strand to a dovamstgate. It is essential that the output
strand does not interact with downstream gates prior t@asele Protecting the toehold binding region of
output strands in upstream gates prevents such interactide built a circuit composed of one AND gate

and two translator gates that demonstrates this principte 8.2A and S4). A translator gate converts the
signal encoded in the input strand to the signal encodeckitiput strand and is implemented as a single
input AND gate. The translator gatgdd< and LM translate two biological microRNA sequences (mouse
let-7c and mir-124) into outputs with recognition regiodsitical to strands:;,, and F;,,. The input to a

*In contrast to digital electronic circuits, analog elentoocircuits have not advanced rapidly because circuitgiestmains more
“art” than systematic engineering, making the constructblarge reliable circuits difficult. This is often attritad to the lack of the
digital abstraction: in analog circuits even slight sigct@nges carry meaning (e.g., the value is 5.2 not 5.3) aisdéstoration to clean
up noise or gate misfunction is not possible. The lack obrasibn also complicates circuit modularity, becauseuitrisehavior can be
subtly changed when subcircuits are combined. See, €3j., [1

111

(A) G Ew (O3 |
recognition € 1 [<<Fin, Gin
, region ke / > == Fin fj’”w
i toe-hold* IR RER RO S _Sin |
binds g F |a=noinputs| |
toe—hold F S “
& .
Gi, 2 05 inputs . G Eq 1
8 added RN AR RN RN ERRR
G 8 e
iy g N f
G in S 0 “
0 T 3
tbcigdiold Time (hours)
X9%(,§Fin
Fin (D)
12345
-
F J
binds
downstream s ¥ X, EFG ~—eww ® 100bp
toe-hold EE — - -
FFin —* ws
(B) | REACTANTS | PRODUCTS -
GG, — .
1| EFG, NO INPUTS SAME AS REACT. E out — -
2| EFG + Fjy SAME AS REACT. G. F _—v
3| EFG + Gip EF + GG in in”"in “ 10bp
4| EFG +Fin+ Gin ® Fri+can

Figure 8.1: Two-input AND gate.A) The gate consists of three DNA strand5,,; (57 mer), F' (60 mer),
andG (36 mer). The 3’-ends are marked by arrows. Toeholds and toeholdifgrregions (all 6r¢) are
indicated in color. Input strands,, andG;,, (36 mers) are complementary to recognition regions within the
corresponding gate strandsandG. (B) Truth table for the two-input AND gate. The released ougitand

is highlighted. C) In fluorescence experiments, strafj TAMRA fluorophore at the 3’-end) anH, (lowa
Black RQ quencher at the 5’-end, without bulge loop) weralisstead ofF’ and F,,,; (see inset). Release
of output strand results in increased fluorescence. Exgatisrconducted at 25C with gate concentrations
of 250 nM and input concentrations of 300 nM in a Tris-aceflETA buffer containing 12.5 mM Mg™.

(D) Non-denaturing gel electrophoresis directly confirmgtiea intermediates and waste products for each
possible input combination. Lanes 1-4: The samples aresasided in entries 1-4 of the truth table. The
gate used in this experiment is as shown in (A). Lane Syiladder.

translator gate and the recognition region of its outpatratmeed only share sequence in the toehold region.
If two translators are cascaded then there is no sequericietier between the initial input strand and the
final output strand. This is called a full translator; theazaing of NO and HI is an example (Fig. 8.3
and Fig. S1). Translators can connect subcircuits that tla poiori use the same sequences for the toehold
and recognition regions. This is particularly useful foepting an existing circuit to compute on arbitrary
biological inputs.

The circuit of Fig. 8.2A was also tested under conditionsvaht to potential biological applications.
The circuit works comparably with RNA inputs as with DNA irtpibecause gate function depends solely on
Watson-Crick complementarity (Fig. 8.2A and Fig. S4). #asing the temperature to 3C does not degrade
circuit performance. Finally, the circuit functions wetl the presence of potentially interfering biological
RNA (mouse brain total RNA) at a concentration in excess té gamplexes and input strands.

Since a small set of logic gates (AND, OR, and NOT) is sufficiem effective computation of any

112

A CIRCUIT DIAGRAM FOR: let-7c AND miR-124a

% 1 total RNA, 3‘7 C i
Jout i [gates] = 25 nM S
let-7¢]
—_— - =
\ﬁ* caanid ~ a
K Sa G Eq QUENCHER 5 —~both inputs
209 =ano miR-124a| |
(T NI 3 —no let-7¢
. F g 10 total RNA
L Pid f FLUOROPHORE 2 DNA inputs
miR-124a ‘ _-7 § o d
—_—— e —— = =
T oo 2 4 6
Mout Time (hours)
B CIRCUIT DIAGRAM FOR: (NOT let-7c) AND miR-124a &
= 1+
=
, K Jot, out 2
K> —— > g
let-7¢c | let-7¢3 S L5k
/ \ Giot E, QUENCHER 30
u . 3
W T |||||||||||||||||||||||||II §
17}
e 2
miR-124a L - ~ F; FLUOROPHORE ‘g
[

" e o
O e %- r
Mout

C CIRCUIT DIAGRAM FOR THRESHOLDING
Th2 W
Thout Qout
\ Th2 QUENCHER
%& o |||||||IIIIII -——— /ﬂ

SN Thi Pt FLUOROPHORE
\

—y
T

I
o
T

co[threshold] = 125 nM
=& [threshold] = 250 nM
| | |

0 400 600
[Input] (nM)

short

Final signal (fraction of total)

(=]

-7
S~

Figure 8.2: Translator gates, NOT operation and signabrasbn. Dashed arrows indicate where input or
output strands can serve as inputs to downstream gatg€ilcuit operation at 37C with RNA inputs and
DNA gates in a total RNA background. All gates are at 25 nM tilsgtic RNA inputs are at 30 nM, and
total RNA (mouse brain) is at a concentration of 200/ml. Proper function is observed. For comparison,
experiments with no total RNA were performed, using eithethbRNA inputs or both DNA inputs. B)
The NOT gate consists of a translator gate and an inver@ndgttomplementary to let-7c. Gate, inverter
strand, and input concentrations are 250 nM, 300 nM, and 800 &spectively. Here and in all following
experiments the temperature was €5 and DNA equivalents of the biological microRNAs were uséd.
let-7c is present, inverter strarid will preferentially hybridize to let-7c. Otherwise, inter strandi™ will
trigger the translator@) The thresholding gate, using a dye/quencher-labeledi“ced” gate to monitor the
output. Strand’h2;,, is part of the thresholding unit and is added before the sfdite experiment. The final
fluorescence is plotted against the input concentratiotwordifferent concentrations of the threshold gate.

Boolean function, we developed DNA gates to perform theseaimns. Logical OR functionality is obtained
by using two gates that produce the same output. We constracthree-gate chemical circuit in which a
logical OR feeds into a logical AND (Fig. S4B). Acting as ailca) OR, translator gateST andU'V take
different inputs (mir-15a and mir-10b) but release outpuith identical recognition regions. If Boolean
values are represented by the presence of either one stFpnd gnother strand (1) — the so-called “dual-
rail” representation [11] — then AND and OR are themselvdfcent to compute any Boolean function.

If a Boolean value is represented by the presence or abséa@rmle input strand, a NOT gate may be
necessary. We maodified the circuit shown in Fig. 8.2A to ibtlee let-7c input (Fig. 8.2C). The NOT gate
makes use of an additional “inverter” strand that triggbesdate unless the input strand is present to act as
a competitive inhibitor. Since the inverter strand must 8éeal simultaneously with the input, NOT gates
are restricted to the first layer of the circuit. This is suéfit to create a dual-rail representation from which
arbitrary subsequent computation can be performed withAN® and OR.

113

CIRCUIT DIAGRAM FOR: let-7c AND miR-124a AND (miR-15a OR miR-10b) AND (miR-143 OR miR-122a)

INPUTS TRANSLATION AND INPUT COMPUTATIONAL SUBCIRCUIT SIGNAL RESTORATION
AMPLIFICATION
Jout Eout
let-7¢ Th2i,
e TN e * . ‘
K I T \ can FLUOROPHORE
A £
miR-124a - % Thou ///’/’////// W
—_—— - / QUENCHER
T —-— c \ Th2
Mou == N m
IIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIII il |IIIIIIIIIIII \ T
2= - \ Thishort Y caz
miR-15a .
- -7 CcA1
N [ey AN -
- =
miR-10b [all gates] = 200 nM, signal restoration
St T) z
z T }
=] =1
> > ON
5 §0.51
5 5 t
S05F 8
{93 [
miR-143 s o 0.25x miR-124a, 2
@ @
o o
@ @
0.25x £ £ 0.25xmiR-124a|
3 0 1t ER ; e, OFF
i . | | . | i n | | . }
0 1 2 3 4 5 6 0 2 4 6 8 10 12
Time (hours) Time (hours)
oall inputs no miR-15a and no miR-10b
" =ano miR-15a no miR-143 and no miR-122a
miR-122a ~-no miR-10b —no let-7¢
Ko = -——= <o miR-143 no miR-124a

o no miR-122a «—+miR-124a 0.25x

Figure 8.3: Signal propagation through a complex chemiicaliit combining AND, OR, sequence transla-
tion, input amplification, and signal restoration. The $elacircuit consists of a total of eleven gates and
accepts six inputs. With the exception of the threshold gdtieh is at 100 nM Th2;,, is at 150 nM), all
gates are at 200 nM (1x) per gate. Unless otherwise spedifjpats were added at 250 nM (1.25x). Mir-143
was added at 50 nM (0.25x) and subsequently amplified by tmet iamplifier. Inset: fluorescence traces
of circuit operation without and with the signal restoratimodule (threshold plus amplifier). The traces for
input conditions corresponding to a logical TRUE outputiI'Qare clearly distinguishable from the logical
FALSE output (“OFF”"). Cases tested include when all inputsgesent, all cases where exactly one input
is missing, and combinations of inputs that turn off an ORista Assuming monotonicity, withholding ad-
ditional inputs will never lead to a logical TRUE output. Tetdrmine the response of the circuit to a leaky
OFF signal, input mir-124 was added at 50 nM (0.25x) whileo#iker inputs were added normally.

A gate may fail in two ways: it may fail to produce enough outyhen triggered, or it may “leak” by
spontaneously releasing the output strand. Both typegof exquire signal restoration; the former requires
increasing a moderate output amount to the full activatemel, and the latter requires decreasing a small
output amount to a negligible level. To implement signatoestion, we developed gates for amplification
and thresholding. The threshold gate (Fig. 8.2D) is a timpat AND gate with identical first and third
inputs. The second input is only necessary for structurgd@aes; it is always present and can be considered
part of the thresholding unit. A substoichiometric amoufrihput (with respect to threshold gates) will cause
most gates to lose only their first and second gate strandsus+réleasing no output. Input concentrations
two-fold greater than the concentration of threshold gat#iscause most gates to produce output. The
threshold gate’s concentration sets the threshold forradigal non-linearity (Figs. 8.2D, S5, [23]).

Since the threshold gate’s output cannot exceed half the Bignal, subsequent amplification is neces-
sary. A hybridization-based system for catalytic amplifwawas demonstrated previously [14]. With minor
modifications, the system serves as both an input amplifidrfalh translator (Fig. S6 and Fig. 8.3, left,
mir-143 translator), or as a fluorescence readout (Figs. 8¥WA8.3, right). Alternatively, amplifiers based
on feedback logic can be designed (Fig. S6B). A threshole tagether with an amplifier gate constitutes a
signal restoration module whose incorporation into laiigeuits at multiple intermediate points ensures the
stability of digital representation [19].

Finally, to demonstrate modularity and scalability we casgd eleven gates into a larger circuit. The
circuit combines previously introduced modules for ingabslation and amplification, calculation of AND

114

and OR, and signal restoration (Fig. 8.3). The inputs to treuit are DNA analogs of six mouse microR-
NAs. To determine the effectiveness of signal restorati@constructed an equivalent circuit without signal
restoration and tested both circuits with an input at 0.2bsinulate a large upstream leak. The complete
circuit maintained a low output signal, whereas the cirauthout signal restoration exhibitedra 25% out-

put leak (Fig. 8.3, inset). To verify other circuit compotgrseveral subcircuits were constructed and tested
independently (Figs. S8 and S9). The feedback fluorescanpéfi@r was tested as a replacement for the
catalytic amplifier at the output, resulting in a circuit ¢aning 12 gates (Fig. S10).

8.5 Conclusion

As increasingly larger circuits are constructed, speedimes a limiting factor. The circuit without signal
restoration take® hours to reach half-activation (Fig. 8.3, inset, left). Tdiecuit with signal restoration
has two additional layers and takes 10 hours to achievedudilfation (Fig. 8.3, inset, right). Despite the
slow operation, in both cases a clear difference betweeanffon states can be distinguished much earlier.
Speeding up the responses of individual gates (e.g., byesting recognition domains) or changing other
reaction conditions may improve overall circuit perforroan

Our success in creating large circuits can be attributeddberence to the tenets of digital logic, toehold
sequestering combined with branch migration and strarglatisment, reduction of leak reactions by purifi-
cation, and modularity of design. The logic gates develdyd and the principles they are based on can also
be used to construct analog or hybrid circuits [13] and &ed\lito prove compatible with other approaches
to building molecular automata in vitro and in vivo [16, 6,, B 2, 8, 1]. Since evidence suggests that our
logic gates can use natural RNA as input, and that they betwavectly in the presence of mouse total RNA,
our hybridization-based circuits might be adapted fortna dietection of complex expression patterns or even
in vivo logic processing.

Acknowledgments

We thank Nadine Dabby for help with extensive revisions.nded Yurke built the custom fluorometer used
for these experiments, and we are further indebted to himinfpiration and advice. GS was supported
by the Swiss National Science Foundation and the Center ifdo@cal Circuit Design at Caltech. EW
acknowledges NSF awards #0093846 and #0506468, and HFSE #R&Y0074/2006-C. DS and DYZ
were partially supported by an NIMH Training Grant to the Qutation and Neural Systems option at
Caltech. DYZ was patrtially supported by a Caltech Grubstakard.

Bibliography

.S. Bayer and C.D. Smolke. Programmable ligand-cdielaiboregulators of eukaryotic gene ex-
1] T.S.B d C.D. Smolke. P ble ligand-cdiewlaib I f euk i
pression Nature Biotechnology?23(3):337-343, 2005.

[2] Y. Benenson, B. Gil, U. Ben-Dor, and R. Adar. An autonormawlecular computer for logical control
of gene expressiorNature 429:423-429, 2004.

[3] Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livhelimd E. Shapiro. Programmable and au-
tonomous computing machine made of biomolecuNssture 414(6862):430—-4, 2001.

[4] R.R. Breaker. Engineered allosteric ribozymes as bissecomponentCurrent Opinion in Biotech-
nology, 13(1):31-39, 2002.

[5] R.M. Dirks and N.A. Pierce. From the Cover Triggered Affipation by Hybridization Chain Reaction.
Proceedings of the National Academy of Scient64(43):15275-15278, 2004.

[6] M. Hagiya, S. Yaegashi, and K. Takahashi. Computing Wakrpins and secondary structures of DNA.
In Nanotechnology: science and computation, Natural compusieries pages 293-308. Springer,
2005.

115

[7] F.J. Isaacs, D.J. Dwyer, and J.J. Collins. RNA synthieitidogy. Nature Biotechnology24:545-554,
2006.

[8] F.J. Isaacs, D.J. Dwyer, C. Ding, D.D. Pervouchine, CRntor, and J.J. Collins. Engineered riboreg-
ulators enable post-transcriptional control of gene esgios. Nature Biotechnology22(7):841-847,
2004.

[9] C.S. Lee, R.W. Davis, and N. Davidson. A physical studyelactron microscopy of the terminally rep-
titious, circularly permuted DNA from the coliphage pale of Escherichia coliJournal of Molecular
Biology, 48(1):1-22, 1970.

[10] M. Levy and A.D. Ellington. Exponential growth by cresatalytic cleavage of deoxyribozymogens.
Proceedings of the National Academy of Sciences of the dJSli@es of Americal00(11):6416, 2003.

[11] D.E. Muller. Asynchronous logics and application téormation processingSymposium on the Appli-
cation of Switching Theory to Space Technolqgages 289-297, 1962.

[12] R. Penchovsky and R.R. Breaker. Computational desigreaperimental validation of oligonucleotide-
sensing allosteric ribozymebhlature Biotechnology23:1424-1433, 2005.

[13] R. Sarpeshkar. Analog Versus Digital: Extrapolatingnii Electronics to NeurobiologyNeural Com-
putation 10(7):1601-1638, 1998.

[14] G. Seelig, B. Yurke, and E. Winfree. Catalyzed relasatdf a metastable DNA fuelJournal of the
American Chemical Societ§28(37):12211-12220, 2006.

[15] D. Sprinzak and M.B. Elowitz. Reconstruction of genadircuits. Naturg 438(7067):443—448, 2005.

[16] M.N. Stojanovic, T.E. Mitchell, and D. Stefanovic. Degibozyme-based logic gatesJournal of
American Chemical Societ$24(14):3555-3561, 2002.

[17] M.N. Stojanovic and D. Stefanovic. A deoxyribozymesbd molecular automatoNature Biotechnol-
ogy, 21(9):1069-1074, 2003.

[18] A.J. Turberfield, J.C. Mitchell, B. Yurke, A.P. Mills JM.I. Blakey, and F.C. Simmel. DNA Fuel for
Free-Running Nanomachinaghysical Review Letter90(11):118102, 2003.

[19] J. vonNeumann. Probabilistic logics and the synthesi®liable organisms from unreliable compo-
nents.Automata Studiepages 43-98, 1956.

[20] B. Yurke and A.P. Mills. Using DNA to Power Nanostruatst Genetic Programming and Evolvable
Machines4(2):111-122, 2003.

[21] B. Yurke, A.P. Mills, and S. Lai Cheng. DNA implementatiof addition in which the input strands are
separate from the operator stranBsoSystemsb2(1-3):165-174, 1999.

[22] B. Yurke, A.J. Turberfield, A.P. Mills Jr, F.C. Simmeln@ J.L. Neumann. A DNA-fuelled molecular
machine made of DNANature 406(6796):605-8, 2000.

[23] Materials and methods are available as supporting nahten Science Online atht t p: / / www.
sci encemng. org/ cgi/content/full/sci; 314/ 5805/ 1585/ DCL.

116

Chapter 9

DNA as a Universal Substrate for
Chemical Kinetics

Collaborators: Georg Seelig and Erik Winfredlly contribution: | developed the formulation of the goal,
and came up with the construction. The text was written by nte@S.

9.1 Abstract

We show that a DNA-based chemical system can be construatddtisat it closely approximates the dy-
namic behavior of an arbitrary system of coupled chemicattiens. Using strand displacement reactions
as a primitive we explicitly construct reaction cascadeth eifectively unimolecular and bimolecular ki-
netics. Our construction allows for individual reactionsbie coupled in arbitrary ways such that reactants
can participate in multiple reactions simultaneouslyrecdtty reproducing the desired dynamical properties.
Thus arbitrary systems of chemical equations can be cothjpite chemistry. We illustrate our method on a
chaotic Rossler attractor; simulations of the attractat af our proposed DNA-based implementation show
good agreement.

9.2 Introduction

Chemical reaction equations and mass action kinetics geavpowerful mathematical language for describ-
ing and analyzing chemical systems. For well over a centuggs action kinetics has been used to model
chemical experiments, in order to predict and explain thaution of the various species over time, and to
elucidate the dynamical properties of the system undestigation. Chemistry exhibits complex behavior
like oscillations, limit cycles, chaos or pattern formatjall of which can be explained by the corresponding
systems of coupled chemical reactions [4, 7, 2]. While treeafsmass action kinetics to describe existing
chemical systems is well established, the inverse probleaxperimentally implementing a given set of
chemical reactions is typically much harder, and has not Iseésed in general. Many systems of coupled
chemical equations appear to not have realizations in krahemistry.

Here we propose a method for implementing an arbitrary systecoupled chemical reactions using
nucleic acids. We develop an explicit implementation ofwliecular and bimolecular reactions which can
be combined into arbitrarily coupled reaction networksa fiormal system of chemical reactions such as

A MoB
A+B X c4+D
c L

a species may need to participate in multiple reactionsy asta reactant and/or as a product (spedieB
or C) and these reactions need to progress at rates determinbe bgte constants:(, k2 andks). This

117

imposes onerous constraints on the chemical propertidsedfiecies participating in these reactions. For
example, it is likely hard to find a physical implementatidrttte chemical reaction equations using small
molecules, since small molecules have a limited set of iéées. Information-bearing biopolymers such as
proteins or nucleic acids provide a more promising physicdistrate for implementing arbitrary chemical
reactions. Nucleic acids have the unique advantage ttemtictions between different single-stranded species
can be programmed since sequence determines reactityghiWatson-Crick base pairing.

In our DNA implementation, we assign each formal specias (4, B, C, D) to a set of DNA molecules.

In some instances it may be possible to map a formal speceesitwgle oligonucleotide but more generally

a single formal species will correspond to several DNA spea order to reproduce the correct kinetics.

Effective interactions between the species are mediateahtadditional set of DNA complexes. Since the

underlying chemistry involves aqueous-phase nucleiclagididization and strand exchange reactions, arbi-
trarily large rate constants and concentrations cannottamed. However, any system of coupled chemical
reactions can be scaled to use smaller rate constants aocentrations without affecting the kinetics except

by a scaling factor (see Section 9.7). While our constractiare purely theoretical at this point, they are
based on realistic assumptions and provide a roadmap fmefekperiments.

In the next section we describe strand displacement resctvbich will serve as the basic building block
for our construction. In the following section we show howirtplement arbitrary unimolecular reactions,
and then extend our construction to cover bimolecular r@ast In the final section we give a demonstration
of our approach on a system due to Willamowski and Rosslerif® 3 species and reactions exhibiting
chaotic concentration fluctuations. Numerical simulagiohthe original formal system and our DNA-based
chemical reactions using realistic rate constants andestretions are in good agreement.

9.3 Cascades of Strand Displacement Reactions

Single-stranded nucleic acids with complementary seceeeimgbridize to form an inert double-helical molecule.
Although hybridization reactions involve multiple elentary steps, for short oligonucleotides the kinetics is
approximately a second-order process [1, 6]. However,idigation between two complementary strands
is insufficient to implement systems of coupled bimolecu&actions. For instance, the double-stranded
product is inert, and thus incapable of acting as a reaataaridther reaction.

Strand displacement reactions provide for a more promigiirgitive. The basic principle is illustrated
in Fig. 9.1(b). Although a strand displacement reactiomives multiple elementary steps, likely including
a random walk process, it is well modeled as a second-or@eeps for a wide range of reaction condi-
tions [5, 10]. The effective rate constant of the secondeppdocess is governed by the degree of sequence
complementarity between the toeholds on the single-sédsgecies and on the partially double-stranded
species.

We have recently used strand displacement cascades touii3NA-based logic circuits (Chapter 8).
Here we use some of the nomenclature and ideas from that Wigyk9.2 shows a two-stage strand displace-
ment cascade where an input single-stranded nucleic aeiciesp(strand) initiates a strand displacement
cascade between two complexes (gates) leading to the esdéas output strand. In strand displacement
cascades, a strand is functionally inactive before itsasgldrom a gate and becomes active upon becoming
completely single-stranded. For example, intermediatndio cannot react with translator gatdefore it
is released from gate because its toehold domaln which is required for initiating the reaction with is
double-stranded. Similarly, outpiits cannot initiate a downstream strand displacement casa#det us
released from translator gatébecause its toehold domainis double-stranded. However, upon the addi-
tion of free As, intermediate strand s released through strand displacement, which then céluseslease
of output Bs.* The release of stranBs makes it capable of initiating other strand displacemestades
in turn. Multiple outputs can be produced by attaching twtpats to translator gateand extending the
intermediate strand (as is shown in Fig. 9.3).

An input or output strand has two regions: a recognitionaegihich can participate in a strand dis-
placement reaction, and a history region which cannot. €qaence of the history region (e.g., domain 7 on
strandBs) is determined by the translator gate from which the straasl rgleased. All strands with the same

*The binding of a toehold domain to its complement is trartsigress a strand displacement reaction can be initiatepréictice
toehold domains are 2-10 nt long). Thus thdomain of inputAs does not block th8* domain of translator gate

118

a) —
strand 4 R N SIS

—

product C
strand B
b) input 4 output B
—
3
12 - 133 2 2
3 ~ LI L
2 1x 2% 1 2
LIIIIIZII*IIIII W
gate g waste

Figure 9.1: Hybridization and strand displacement reastia) Hybridization reaction. Two complementary
strandsA andB react with each other to form a double helix The hybridization reaction proceeds through a
set of partially hybridized intermediates. Neverthel#ss,overall reaction kinetics is well approximated as a

bimolecular reactionl+ B — C. The3’ end of each strand is indicated by an arrb)vStrand displacement.
Functional sub-domains are numbered and the star indicateplementarity. The reaction between input
strandA and gatey is initiated at the toe-hold (green, sub-dom&if. The reaction then proceeds through
multiple short-lived intermediates and leads to the reeafsan output strand3 and the formation of a
chemically inert double-stranded waste product. Kindicéhe overall reaction is well approximated as
being bimolecular,i.e A+ g LN B, where we omit the inert waste product. The value of the ratstant:

depends on reaction conditions (salt, temperature), theaigtl sequence composition of the toe-hold as well
as the degree of complementarity between the toe-holdseostithnd and gate.

a) history recognition 4
region region 7

A ?
1 2 3 2 3 / q 1.2 3 2 3 7 4
- + T _ NINNIANNE +
* * * * * . .
input As 1w 2% 3 b2 3 intermediate o
gate g waste
history recognition
b) 6 region region
5 23 7 4
2 3 7 4 A 92 7Y% 5 6
+ T _ PEIINIIINIINNES + —_————
intermediate o 3 T a4 36 7x 4k output Bs
translator gate ¢ waste

Figure 9.2: Two-stage strand displacement cascade. Bumattiomains are numbered and all toehold do-
mains are indicated in color. Input or output strands witiniitcal recognition regions react equivalently and
are therefore grouped into the same species. For examplis, any strand with recognition domain 1-2-3,
and Bs is any strand with recognition domain 4-5-6, irrespectif¢heir history domains. The two-stage
cascade shown producé&s with history domain 7. Note that the sequences of the re¢ogniegions of
input and output strandds and Bs (domains 1-2-3 and 4-5-6) are completely unrelated to oo¢han and
therefore such a two-stage strand displacement cascadialcamy input with any output speciea) Input
strandAs binds to gatey and by a strand displacement reaction releases the intataetranc. b) The
intermediate strand binds translator gateand by a strand displacement reaction releases the oBtput

recognition region react equivalently and we do not distialy between them. For example, any strand with
recognition domain 1-2-3 is calledls and any strand with recognition domain 4-5-6 is called Since there

are no sequence constraints (i.e., complementarity orligguaetween the recognition region of the input
strandAs and the output stranés (similarly for multiple outputs as in Fig. 9.3), arbitrarhans of such
two-step cascades can be linked together. This is possiblevb-step cascades as shown; however, a one-
step cascade would force a part of the recognition regiohedutput strand to have sequence equality with
the input strand (see “full translator” in Chapter 8). Wd ta¢ second gate a translator gate to emphasize its

119

11
a) history recognition 4
region region >

> 1 2 3 2 32 q1 L2 3 2 3 10 4 11 7
- + T S I +
* 3% * 2% 3%) .
input As 1 23 e 2 3 intermediate o
gate g waste
history recognition
region region
A
10% 5 6
b) 6 9
5 8 2
2 3 104 117 10 4 17 173 310 4 L7 output Bs
+ L —_— [N NN
intermediate o v 10% 4x 11x7x 3% 10% 4% 11x 7% Tk "
translator gate ¢ waste 11Y7 5 9
——
output Cs

Figure 9.3: Molecular implementation of the unimoleculeagtionA — B + C. Orange boxes highlight
the DNA speciesis, Bs, andC's that correspond to the formal speciésB, andC. The sequences of the
recognition regions of input and output strandls, Bs, andC's (domains 1-2-3, 4-5-6, and 7-8-9, respec-
tively) are completely unrelated to one another. The redondesired unimolecular kinetics (concentrations
of g, t and rate constantg, ¢2) is described in the text) Input strandAs binds to gatey and by a strand
displacement reaction releases the intermediate strandThe intermediate binds translator gateand by

a strand displacement reaction releases the oufputndC's.

role in translating the input to the appropriate output.

In the design of systems of coupled two-step cascades,ioadiel sequences need to be constructed to
avoid unintended interactions. For instance, we can firsigdeall recognition regions to have maximally
independent sequences, and then for every translatordgsiggn maximally independent history regions of
its output strand$. Then a gate can react with only one recognition domaitype gates) or intermediate
strand (translator gates), ensuring the specificity ofautons.

9.4 Arbitrary Unimolecular Reactions

As a first step we will implement the basic monomolecular tieacA LA B, such thatd and B are single-
stranded nucleic acid species with completely indepenge&agnition regions. As we will show, the appro-
priate monomolecular kinetics can be obtained as a limitasg of the reaction kinetics for a two-step strand

displacement cascade:

As+g9g 5 o

o+t -2, Bs

ALt B = {
We use the notatiod s and Bs to mean the implementation of formal specieand B by DNA strands with
recognition regions unique fod and B, respectively. We now discuss the conditions required tkethe
implementation valid. First, we will work in a regime whehetconcentrationjg] and[t] are in large excess
of [As] and o] so that they remain effectively constant at initial vallids and|[t], respectively. Then the
two-step strand displacement cascade becomes equivakpiir of monomolecular reactions:

As qﬂo
qﬂ) Bs

By varying the toehold strength of gatewhich determines rate constaqt, or the initial concentration
[g]o, we setq [g]o equal to the formal rate constahtand attaind[As]/dt = —k[As] as desired. To also

*In addition, all sequences must have minimal secondargtsire, such as hairpin loops, because it can inhibit desitecactions.

120

ensure thatl[Bs|/dt = k[As], we makeg[t] large enough that intermediate strgnfisettles to its quasi-
steady-state valug [g]o[As]/(g=2[t]o) on a much faster time scale than that on whidk] changes. Then
d[Bs]/dt = q2[t]olo] = q1[g]o[As] = k[As] as desired. To make the quasi-steady-state approximatidn h
in this example, we can increase the relative toehold stheoggatet compared to gate, or use a much
larger initial concentratioft], than[g]o.

While experimentally, it may be useful to vary the degreeagthiold complementarity affecting or
concentration of gatelg], to tune the effective rate constant, for simplicity throaghthis paper we con-
trol reaction kinetics by tuning toehold strengths, whikating all gates as being present at the same high
concentratiorg. Thus we set; equal tok/¢.

The same scheme can be extended to more complex unimoleeatdions. Reactions with more than
one product species (e.gd,— B + C or A — 2B) including catalytic (e.g.A — A + B) and autocatalytic
reactions (e.g.A — 2A) can be constructed using a translator gatbat releases multiple strands as in
Fig. 9.3. Removing the translator gate altogether allowsifomolecular decay reactions (e.g..—). Frac-
tional product stoichiometry (e.g4 —(1/3)B + C) can be realized using a mixture of translator gates with
some fraction having incomplete output strands. For exapnphctiord —(1/3) B+ C can be implemented
if 2/3 of translator gatesin Fig. 9.3 are missing the 7-8 domaihs.

Arbitrary sets of unimolecular reactions can be couple@tiogr by reusing the same recognition region
in multiple reactions. Each reaction corresponds to amdistivo-step strand displacement cascade. For
example, the system

A M Byc
B 2, 9B

can be implemented with gate-mediated reactions

k1/¢€
A Bio = As+gq == o
00+t — DBs+Cs

ko /€
Blaop o | Bsta 25 o
0o+t — 2Bs

where unlabeled rate constants are much largerthafandk, /¢ and initial concentration;]o, [giJo = £

are high enough to remain effectively constant. The exprasdor the DNA gate-mediated reactions in
terms of formal rate constants are obtained from the aboglysis. As described in the previous section,
the different two-step strand displacement cascades doavetsignificant undesired interactions. Thus each
reaction proceeds without interference from the othergjgitirough the desired coupling of input and output
strands.

9.5 Arbitrary Bimolecular Reactions

Consider the basic bimolecular reactidn+ B % C. Since a reaction between an input strand and a gate
can be viewed as being bimolecular, it provides a possibfgamentation of this reaction. As beforé,is
mapped to strands, but nowB would have to be mapped to a gate. To emphasize that a gatgjsech&o

a formal specie$3 we call the gatd3g. As in the case of unimolecular reactions, we can use thslaem
gatet to ensure sequence independence between recognitiomsegfiols and C's. The corresponding

*Fractional product stoichiometries are equivalent to iplgltreactions in which the same reactants produce diffguepducts,

L __ . . 2K/ k/: - .
where the products are in integer stoichiometries. E.gtwloereactionsA —/30 and A *3 B + C are kinetically equivalent to a

single reactionA i>(1/3)B + C. Conversely, all reactions with the same reactants bugreifit products can always be combined
into one reaction with possibly fractional product stohetries.

121

gate-mediated reactions therefore are:

k
o+t — Cs

We set the unlabeled rate constant to be very large and tied soncentration of the translator gtk = ¢

to be big enough to remain effectively constant. Then udimgduasi-steady-state approximation for the

intermediate strand as in Section 9.4 we obtain the desired effective bimolecselaction raté:[As|[By].
Having said that, this naive implementation has severashimings. Since strands must directly bind

gate By, their sequences are not independent. Gajean react only with inputls and cannot participate

in reactions with other strand species. Further, it is noagb possible to uniquely assign reactants to a gate

or a strand. One such example is the following system:

At B
A+B 2 ¢
If we combine the implementation of monomolecular reactidaveloped in the previous section with the

proposed bimolecular scheme, in the resulting system epé&cis mapped to two different forms, a strand
Bs and a gate3g»:

k .
Al p o As+q aks 01 0)
oo+t — DBs (i)

ko
ArBP 0o = As+ Bga — 09 (!u)
o2+t — Cs (iv)

The concentrations of strand for®is and gate formBg, are entirely independent, and therefore the DNA
reactions do not implement the desired formal chemicaksyst

However, if the two forms ofB could be interchanged into one another on a time scale thasis
compared to the other reactions in the system, the corréevim can be restored. We can link the two
speciesBs and By, through a fast reversible reaction

ket
Bs = Bgs
Y

such that the two species achieve pseudoequilibrium. THeefotmal specie® exists in two different forms:
B = {Bs, Bg2} and the total concentration @ is [B] = [Bs] + [Byz]. Let f(Bg2) = [Bgz]/[B] be the
fraction of B in gate formBgs. Under the pseudoequilibrium assumptigiBg.) = (k™ + k~)/kT is a
constant. Since the second formal reaction can only useateefgrmBg. as a reactant, and not all &f,

we scale the rate constant of reaction (iii) byf (Bgz) so that the new rate constantiis/ f(Bg2). Then

the effective rate of the implementation 4f+ B LENGET (k2/ f(Bg2))[As|[Bga] = k2| A][B] as desired.
We can easily extend this idea to create a pseudoequililietmeen strands and gated3g; for multiple
reactions.

We realize the above reaction establishing pseudoequiitivetweerBs and By, via a linker gate shown
in Fig. 9.4 (top). The mechanism corresponds to the follgviiMNA reactions:

kT q+
Bs+=DBgs = Bs+1l = Bgy+b
k— q-

. L Kt . .
For the correct first-order kineticBs = Bg, the linker gate and the buffer strand must be in excess,

k
such that their concentrations remain effectively cortst@henk™ = ¢* [b]o andk™ = ¢~ [l]o where[b]o
and|l], are the initial concentrations of the buffer and linker stiarespectively. For simplicity we will use

[bo] = [l]Jo = £ andg™ = ¢~

122

a) history recognition
region region 7 7
—Ae—r 10
> 1 5 3 2 34 s ey g+ 1 2 3 5 6 2 34
+ T LI P ELLLLLTE = T T +
1% 2% 3%4x 5% 6% q- 1x 2% 3%4x 5% 6% buffer b
input Bs linker gate I gate Bg
b) history recognition
region region 7
A 10
2 4 5 6 N1o2 o3 56/ q N 1 2;'9456 5 6 10 7
—— + NN RN —_— N AN + —_—
) 1x 2% 3%4x 5% 6% 1x 2% 3x4x 5% 6% intermediate o
input As gate Bg waste
C) history recognition
9 region region
8 5 A
5 6 10 7 107/ 4 R 6_107 107 8 9
—_— + T e, T + _—
. . lo* T*
intermediate o 6x 6% 10% 7* output Cs
translator gate t waste

Figure 9.4: Molecular implementation of the bimoleculaaaton A + B — C'. Orange boxes highlight the
DNA speciesAs, Bs, andC's that correspond to the formal speci¢sB, andC'. The sequences of the recog-
nition regions of input and output strands, Bs, andC's (domains 1-2-3, 4-5-6, and 7-8-9, respectively)
are completely unrelated to one another. The regime foretkbimolecular kinetics (concentrationsiob,

t and rate constants", ¢, q1, ¢2) is described in the text) Input strandBs reversibly binds to the linker
gatel forming the activated gatBy, i.e., B + = Bg + b. b) Input strandAs binds to the activated gate
complexBg and irreversibly releases intermediate stratidrough strand displacemem). The intermediate
strando binds translator gateand by a strand displacement reaction releases the aUtput

Lastly, we need to confirm the absence of unintended crasgioms when implementing multiple cou-
pled bimolecular reactions. As in the simple strand disgiaent cascades described in Section 9.3, gates
can only react with specific recognition domains or interratedstrands. The exception to this rule is the
reaction of gaté3g with the buffer strand. Gate formBg can react with any strand with accessible domains
... 3-4. Because without loss of generality we can assume that therdy one formal reactiod + B —

(see footnote on page 120), and domairsd4 are unique taBs and As respectively, nothing other than
the correct buffer strand can react here.

9.6 Systematic Construction

In this section we take the ideas developed above and descafsstematic algorithm for compiling arbitrary
unimolecular and bimolecular reactions into DNA gate-ragsli chemistry. This algorithm is used in the
next section to implement a Rossler attractor chaotic éteraystem.

Without loss of generality we assume that every reactionéhasique combination of reactants (see
footnote on page 120). Letindex reactions and; € {A, B,C,...} index species. Lef(X;s) be the
fraction of X; in strand formX;s. Similarly let f (X ¢;) be the fraction ofX; in gate formXg;.

Consider any unimolecular formal reaction Write the reaction asy; £>Oé2 S Xo+ 4 - Xy,
wherea < 1. We implement this reaction by a two-step strand displacgicescade (Fig. 9.3), modeled by
the DNA gate reactions below (where we omit inert waste pctgjiand combine all strands with the same
recognition domains into a single species).

X18—|—g1' L 0;
0+t — ag-Xos+ -+ ay, - Xys.

Product fractions:; are set by preparing translator gatevith «; fraction of complete anti— «; incomplete

123

output strands forX ;s as discussed in Section 9.4. Unlabeled rate constants hssvitle initial concen-
k

trations[g;]o = [t:]o = £ are as high as possible. Rate constdris set 3 eer) by varying the degree
of complementarity of the toehold on gajewith the toehold on strand’;s. Note that by following the
argument of Section 9.4, and using the fact {#&t] = [X1s]/f(X1s), the effective rate of this reaction is
k'[X1s]€ = k[X4] as desired.

Consider any bimolecular formal reactionWrite the reaction aXx(’; + X, LA a3 Xz+ -+ an - Xy,
wherea < 1. We implement this reaction by a linker gate mechanism caetivith the two-step strand
displacement cascade (Fig. 9.4) and is modeled by the DN&rgattions below (where we again omit inert

waste products, and combine all strands with the same ré@mgdomains into a single species).

Xis+1 = X19i + bi
XgS-i—Xlgi k—/’ 04
0; +t; — asg - X35+ -4 a, - Xps

Product fractions:; are set by preparing translator gatevith «; fraction of complete anti— «; incomplete
output strands forX ;s as discussed in Section 9.4. Unlabeled rate constants dniglass possible, with
the forward and reverse rates of the first reaction beingled®ae constant’ is set tom by
varying the degree of complementarity of the toehold¥ory; with the toehold on strand’;s. The initial
concentration$l;]o = [bilo = [t:]o = £ are as high as possible. Note that by following the argumént o
Section 9.5, and using the facts that] = [X2s]|/f(X2s) and[X1] = [X14:]/f(X19:) the effective rate of
this reaction i9:'[X2 s][X1 ¢;] = k[X1][X2] as desired.

With the above construction, determinifigX ;s) andf (X g¢;) is easy: forevery, j, f(X;s) = f(X,9:) =
1/(m + 1) wherem is the number of bimolecular reactions in whi&h appears as the first reactant.

The sequences of the DNA components can be designed assofanst, for every speciek ;, design an
independent recognition region. Then, for each formaltieacdesign independent history regions for every
output of that reaction. At this point all auxiliary DNA spes are fully specified. Significant unintended in-
teractions between auxiliary species participating ifedént formal reactions cannot occur by the arguments
in Sections 9.3 and 9.5. The system is initiated by adding@pfate starting amounts of the formal species
in single-stranded form with arbitrary history domains.

9.7 Example

We illustrate our method of using DNA-based chemistry tolengent arbitrary formal systems of coupled
chemical equations on the chaotic system due to Willamowaski/Rossler [9]. We start with the following
formal reactions, where the rate constants are from Ref. [3]

A 2% 94
24 25 4
B+A — 2B
B
A+C
c 2 2¢
20 22 ¢

N O O e W N
=
[=2]
ot

The strange attractor for the concentrationslof3, andC' is in the range of aboui40.

First we scale this system into a regime realistic for DNAdzhchemistry which constrains reaction rates
and concentrations. Second order rate constants for stliapthcement reactions can be approximately in
the rangeh—10°/M /s, with their value determined by the degree of toehold compietarity [10]. Typical
experimental concentrations are on the ordef-ef0—3A/. Similar to experimental implementations of
other dynamical chemical systems, a flow reactor may be wsexptenish the stock of unreacted gates and
remove waste to maintain the appropriate reaction comditj@]. This may make it possible to use lower

124

a) Original system b) Reactions for DNA implementation
0.03 e fa /€ ;
! A 5><_10)4 24 1 As+ g4 = 01 4 { Bs+ ga kafnft
2 24 i} A o1+t — 2As
10
4 : B — As+ Iy = A92+b2 5 ks fafc
5: Avc % o £ Cs+ Ags ﬂ
6 o 00165 o 2 As + Ags — 02
016 »
5x10% o2+ 2 7 As Cs+ go fofoft 06
7 20 — C 6
06 + ts — 2C's
Bs+ 13 = Bgs + b3
3 As + Ags kaf—A{B 3 Cs+ Iz S Cgr + b7
03 + t3 — 2Bs 7% Cst Cys kl‘(f: 0
o7 + t7 — C's
C) time d) time
1000 2000 3000 7000 5000 500010000 15000 20000 25000 30000 33000

S
T

log1o concentration
ES
T

log1o concentration

o
T

Figure 9.5: Rossler attractor examplé@) The formal chemical reaction system to be implementga).
Reactions modeling our DNA implementation. Each brackeléments the formal reaction with the number
indicated. Herd:, throughk; are the original rate constants for reactidriirough? as in (a). Multiplicative
factorsfa = 1/f(As) = 1/f(Ags) = 1/ f(Ags) = 3, f5 = 1/f(Bs) = 1/f(Bgs) = 2, fo = 1/f(Cs) =
1/f(Cg7) = 2. We use initial concentration of the gates and buffer ssane= 10~%. Unlabeled rate
constants aré0®. (c) Plot of the log-concentrations of (solid), B (dashed) (dotted) for the original
system (red), as well as their modeled concentrations Kplad) Longer time plot showing also the log-
concentrations of; (blue, decreasing) angd (blue, increasing)(e,f) Trajectories of the original system and
DNA implementation in the 3-dimensional phase-space Gitsburs).

125

gate concentrations.

Clearly, by scaling all rate constants by the same factorimglg speed up or slow down the system
without affecting the dynamical behavior. We can scale thecentrations at which the chaotic system
operates by scaling the bimolecular rate constants diffgrérom the unimolecular ones. In general if
[X](t) are solutions to differential equations arising from a geatromolecular and bimolecular reactions,
thena[X;](¢) are solutions to the differential equations arising from same set of reactions but in which
we divide all bimolecular rate constants oy We first slow down the system by multiplying all rate conssan
by 10~3, and then use concentration scaling factor 10~8, obtaining the rate constants in Fig. 9.5(a).

Applying our construction yields a DNA implementation gaved by the equations in Fig. 9.5(b). Sim-
ulations confirm (Fig. 9.5(c, d)) that the DNA implementatioehaves very close to the formal system (a)
until the depletion of linker gatek and the buildup of buffer strands sufficiently alters the effective rate
constants to destroy the chaotic behavior at arduhdurs (see (d)).

9.8 Conclusion

We have proposed a method for approximating an arbitratgsyef coupled unimolecular and bimolecular
chemical reactions using DNA-based chemistry. Our congtm takes advantage of cascades of strand
displacement reactions (Chapter 8), and elementary tgabgiof approximation in chemical kinetics. Each
formal species occurring in the system of chemical reastismepresented as a set of strands and gates. The
multiform representation is necessary because it is nadyavpossible to find a single DNA species that
is capable of participating in all reactions involving a givformal species. However, the different forms
are constructed to be in equilibrium with each other and frar§icipate in kinetics as if they were a single
species, up to a scaling of rate constants.

While we have taken care to provide a systematic algorithradmpiling a set of chemical reactions into
DNA, in practice it may often be possible and preferable ttuoe the complexity by optimizing the con-
struction for the particular system of interest. For examipl many cases complete sequence independence
between strands may not be necessary, possibly allowingoogléeminate some translator gates. Similarly,
pseudoequilibrium linkage is unnecessary if mapping aispatirectly to a strand or gate does not cause
problems.

Acknowledgments

This work was supposed by NSF Grant 0728703. We thank D. Zhharschaeffer, and M. Magnasco for
useful discussions.

Bibliography

[1] C. R. Cantor and P. R. SchimmeBiophysical Chemistry, Part Ill: The behavior of biologicaacro-
moleculesW. H. Freeman and Company, 1998.

[2] I. R. Epstein and J. A. Pojmarn Introduction to Nonlinear Chemical Dynamics: Osciltats, Waves,
Patterns, and ChaogOxford University Press, 1998.

[3] P. GaspardEncyclopedia of Nonlinear Scienahapter “Rossler Systems”, pages 808-811. Routledge,
2005.

[4] G. R. Gavalas.Nonlinear Differential Equations of Chemically Reactingst@ms Springer-Verlag,
1968.

[5] C. Green and C. Tibbetts. Reassociation rate limitegldiement of dna strands by branch migration.
Nucleic Acids Resear¢B:1905-1918, 1981.

[6] L.E. Morrison and L. Stols. Sensitive fluorescence-blasermodynamic and kinetic measurement of
dna hybridization in solutionBiochemistry32:3095-3104, 1993.

126
[7] S. K. Scott.Chemical ChaasOxford University Press, 1991.

[8] G. Seelig, D. Soloveichik, D. Y. Zhang, and E. Winfree. Zgme-Free Nucleic Acid Logic Circuits.
Science314(5805):1585-1588, 2006.

[9] K. D. Willamowski and O. E. Rossler. Irregular oscillats in a realistic abstract quadratic mass action
system.Zeitschrift fir Naturforschung A35:317-318, 1980.

[10] B. Yurke and A. P. Mills. Using DNA to Power Nanostruatst Genetic Programming and Evolvable
Machines4(2):111-122, 2003.

