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Abstract. This paper investigates computation by linear assemblies of
complex DNA tiles, which we call string tiles. By keeping track of the
strands as they weave back and forth through the assembly, we show that
surprisingly sophisticated calculations can be performed using linear self-
assembly. Examples range from generating an addition table to providing
O(1) solutions to CNF-SAT and DHPP. We classify the families of lan-
guages that can be generated by various types of DNA molecules, and
establish a correspondence to the existing classes ET0Ly,; and ETO0L ;.
Thus, linear self-assembly of string tiles can generate the output lan-
guages of finite-visit Turing Machines.

1 Introduction

Adleman’s original work on molecular computation [Adl94] made use of self-
assembly for an important step in the computation: the generation of DNA
representing paths through a graph of vertices. This is a useful preprocessing
step, reducing the set of all possible sequences of vertices to just a subset (the
valid paths) that can be exponentially smaller. However, linear self-assembly of
double-helical DNA appeared to be limited, prompting the suggestion to use the
self-assembly of two-dimensional [Win96] and branched [WYS98] DNA struc-
tures for DNA-based computation. These suggestions were predicated on the



complex synthetic DNA structures invented by Seeman for DNA nanotechnol-
ogy [See82,See98]; there is now over a decade of experimental work with these
molecules, including the recent demonstration of two-dimensional (2D) crystals
and their modification [WLWS98, LYK T00,MSS99,1.SS99].

Self-assembly and branched DNA structures may be used in combination
with other DNA computing techniques. Reif has proposed using step-wise self-
assembly to reduce errors [Rei99]; the circuit satisfaction problem has a par-
ticularly elegant implementation in his model. Jonoska has considered the self-
assembly of branched DNA into flexible graph-like structures, with applications
to NP-complete problems [JKS99]. An interesting observation is that pre-formed
branched DNA structures can provide advantages for subsequent processing by
restriction enzyme digestion [JKS98]. Even knottedness can be used for compu-
tation; DNA Borromean rings implement a logical AND gate [SWY+98]. We are a
long way from understanding the full power of branched DNA and self-assembly.

However, these proposals still use complex DNA structures and assemblies
that are likely to pose at least as many technical difficulties as 2D self-assembly.
It has been suggested that fixed-width or one-dimensional (1D) self-assembly
may be an attractive and robust experimental system, with faster self-assembly
and lower error rates than two-dimensional systems [LWRO00]. In this article we
explore the computational power of 1D self-assembly of branched DNA struc-
tures.

2 DNA self-assembly and formal language theory

In DNA-based computing, a test tube of DNA oligonucleotides (equivalently,
strands) is considered to represent a set of strings over an alphabet. A strand
of DNA can be interpreted directly as a string over D = {A,C,G,T} (a DNA
sequence) by reading its bases in the 5’ — 3’ order. If S is a DNA sequence, then
its Watson-Crick complement is written S’; e.g. AGCTGCG' = CGCAGCT. We
will follow the convention that DNA strands may be taken to represent strings
over a larger alphabet X by using a codebook C : X — DV i.e., each symbol in
X is represented by an N-base subsequence. It will always be assumed that for
a # 3, occurrences of C(a) and C(B) are guaranteed not to overlap in the DNA
strands under consideration. Thus, a tube of DNA strands can be considered
to represent a set of strings over the alphabet Y. Because DNA strands can be
circular, a test tube may also contain circular strings over D and X, represented
using the prefix symbol o as described later. Finally, note that the codebook
defines a many-to-one relationship of D* to X*, because we use the convention
that DNA subsequences that are not part of any codeword C(«) are simply
ignored. For example, using a codebook where C(a) = ACT,C(b) = GAC, both
the strings ACTGACGAC and GTACTTTGGACGTGAC code for abb.
Formal languages, central to understanding computation on strings, provide a
natural formalism for DNA based computing. There is a close correspondence be-
tween generative grammars and the self-assembly and ligation of DN A molecules.
Both are processes that generate new strings from previous ones according to
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Fig. 1. The hierarchy of self-assembled languages, including the new results in this pa-
per. Here REG is the family of regular languages, LIN is the family of linear languages
(and k-LIN is the k-metalinear languages, where the axioms may have k non-terminal
symbols), CF is the family of context-free languages, CS is the family of context-
sensitive languages, and RF is the family of recursively enumerable languages.

well-defined rules. As an example, we informally describe the self-assembly model
of Winfree et al. [WYS98]. A multi-strand DNA molecule is represented as a
graph, called a DNA complez, where each node (labelled from D) represents a nu-
cleotide, directed backbone edges represent covalent phospho-diester bonds, and
undirected basepair edges represent Watson-Crick base pairing. Self-assembly at
“temperature” T starts with (an unlimited supply of) a finite set of initial DNA
complexes. Two DNA complexes with complementary sticky ends (of length
> T) can be joined to make a new complex. A DNA complex that cannot par-
ticipate in further assembly is called a mazimal (or terminal) compler. The set
of strands remaining after ligation of all nicks in all maximal complexes is a
DNA sequence language over D, encoding (via the codebook C) a language over
X. For example, in the linear duplex assembly of Figure 1, the DNA sequences
after ligation are the two strands {a bc d e, e’ d ' b a'}.

Throughout this text we are interested only in the maximal, not the inter-
mediate assemblies. That is, although we postulate an unlimited supply of the
initial DNA complexes, we assume all reactions go to completion, exhausting
the supply of their reactants. Our motivation is partly to avoid treatment of
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Fig. 2. Three DPE molecules that assemble to construct a language outside of context-
free. Both molecular schematics and string tile diagrams are shown. Sticky-end se-
quences are indicated by a, b and their Watson-Crick complements a’ and b'; the match-
ing relationship is given by the binding label 1 on the string tiles. The coding sequences
in the DNA strands are indicated by the edge labels 7, s,, and u in the string tiles.

concentrations and kinetics and equilibria, as would be necessary to study inter-
mediates, and partly because the study of maximal assemblies allows for more
elegant mathematics. (More subtle models of self-assembly that attempt to treat
kinetics and finite resources more realistically have proven to be mathematically
challenging [Adl00].)

We are interested in computational structure-function relationships: what
classes of DNA complexes (i.e. structures) give rise to what classes of languages
(i-e. functions)? As is illustrated in Figure 1, the first natural classes of DNA self-
assembly to be studied reproduced much of the Chomsky hierarchy for formal
languages.

— Self-assembly of duplex DNA by single sticky-end adhesion generates regular
languages by forming linear DNA complexes [WYS98].

— Self-assembly of hairpin and duplex DNA by single sticky-end adhesion gen-
erates 2-metalinear languages by forming linear DNA complexes (a modest
generalization of [Eng99]).

— Self-assembly of hairpin, duplex, and 3-arm DNA by single sticky-end adhe-
sion generates context-free languages by forming dendrimer DNA complexes
[WYS98].
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Fig. 3. Terminology for DNA multi-crossover structures and string tile diagrams. Ar-
rowheads indicate the 3’ end of the DNA. Note that in the molecular schematic (show-
ing a DAO molecule), the major/minor goove also indicates the 3' and 5 ends: the
3’ ends point away from the center of the narrow (minor) groove. The non-crossing
strands in an antiparallel junction are antiparallel; in a parallel junction, they would
be parallel. Hairpin strands begin and end on the same side of the tile or molecule.

— Self-assembly of DX units by double sticky-end adhesion, at a critical tem-
perature that allows discrimination between single and double matches, can
generate recursively enumerable languages by forming 2D DNA complexes
[Win96, WYS98].

In this paper, we show two new classes:

— Self-assembly of DNA multi-crossover units by multiple simultaneous sticky-
end adhesion generates ET0Ly;, languages by forming linear multi-helix
DNA complexes.

— The above case, restricted to units where in each internal tile all coding
strands cross from one side to the other side, generates ET0L,,; languages.

The context-sensitive languages have not yet arisen in DNA self-assembly.

3 Motivating examples

We develop the basic ideas by example, before introducing formal notation in
Section 5.

3.1 A non-context-free language

We begin by considering linear assembly of double-crossover (DX) molecules
[FS93], allowing hairpins on the arms. There are five types of DX molecules,
classified according to whether the strands that don’t cross at the junction are
parallel (P) or anti-parallel (A) with each other, whether there are an even (E)
or odd (O) number of half-turns between junctions, and whether the narrow (N)
or wide (W) groove is in excess on the inside between the junctions: thus they
are called DAE, DAO, DPE, DPON, DPOW.



If DPE units assemble into a linear array where each unit joins its neigh-
bors via both of two sticky ends, then the resulting language of DNA sequences
can be beyond context-free. Specifically, Figure 2 shows how to achieve L =
{r"s"t"u"|n > 1} ¢ Lcp. The hairpins on the arms of X and Z allow the
strands to turn around and return again through the tiles. Long-range correla-
tions are possible due to the fact that the final DNA strand snakes through the
assembly several times. The maximal DNA complexes assembled in this reac-
tion are of the form XY*Z, but the DNA strands encode sequences of the form
r"s"t"u™. Thus a regular language of units yields a non-context-free language
of DNA sequences.

The logic of language generation by self-assembly can be hard to see when
complex multi-helical DNA structures are drawn; the situation is clarified by
using (linear) string tiles, as shown in Figures 2 and 3 and described informally
here (we give formal definitions in Section 5). The left and right sides are called
the ports. Each port may be labelled by a symbol or color, called the binding
label, to indicate how tiles may be joined to each other. The ports also have
several input and output nodes representing the 3’ and 5’ ends, respectively, of
strands that can be ligated to strands in adjacent tiles. The input and output
nodes within a tile are connected by edges (drawn as arrows) representing the
DNA strands of the tile. A missing edge (drawn as an arrow that connects to
or from nothing) indicates a nick in the DNA strand. Each edge is labelled by
a string over the final alphabet to indicate the coding sequence on that strand.
Tiles with matching binding labels may be joined (like dominoes); assemblies
which permit no further additions are called maximal assemblies. When joined,
the edges in maximal assemblies form either paths or cycles; the strings labelling
the edges may be concatenated to form linear or circular strings, respectively.
The collection of all such concatenated linear (circular) strings, for all maximal
assemblies made from a given set of tiles, is called the linear (circular) language
generated by the tile set.

3.2 Parallel tiles that generate an addition table

A more interesting example, building on [Rei99,LYK*00], is generating a table
of all addition input/output triples. ([LWRO00] gives another implementation of
this example, based on a preliminary draft of this paper.) As shown in Figure 4,
the basic unit is still a DPE double crossover unit, each with a pair of sticky ends
on the left and on the right. The sequences for these sticky ends are such that
for any two units which bump into each other, either both sticky ends match
(and the units may be joined) or both sticky ends don’t match (and the units
may not be joined). Thus, a temperature that allows discrimination between a
partial match and a total match is not necessary.

How does this system work? The two possible sticky-end pairs represent the
two possible carry-bit states during bitwise addition. Starting from the right,
each new unit adds a new bit to x and a new bit to y (thus there are always
4 possibilities) and the appropriate new bit to z (as a function of the previous
carry and x and y), terminating with the sticky-end pair for the appropriate
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Fig. 4. Ten DPE molecules that assemble to construct a binary addition table. Here,
z,, 2,¢, and ¢’ are binary variables; there is a one tile for every combination of z,y, z
values. Thus, there are only four sticky-end sequences, ao, a1, bo, b1, and their Watson-
Crick complements. Likewise, there are only two binding labels, 0 and 1. Matching
binding labels are indicated below the sides of joined tiles in the assembly.

carry bit (again as a function of the previous carry and x and y). With the
capping units, the final strand through the maximal assembly zigs first through
x, then zags through y, and finally (in reverse order) through z. The generated
language is thus

Lapprev = {“x+y =2": |x| = |y| = |z| and #z" = #x + #y}

where zF gives the string z in reverse-order and #x gives the integer represented
by the binary string x. We use quotation marks to emphasize that the contained
symbols are just symbols; i.e., “+” is a symbol and not a mathematical operator
in this context.

There are two potential drawbacks to the scheme illustrated in Figure 4.
First, we note that [FS93] found that parallel variants (DPE, DPON, DPOW)
of short double crossover molecules are less stable than the antiparallel (DAE,
DAOQ) variants. Long arms in our DPE should stabilize the parallel structures,
but it is worth investigating whether the string tiles can be implemented using
only antiparallel structures. Second, the reversed output string may indicate a
limitation to the string tile approach. As we see in the next example, it does not.
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Fig. 5. Ten penta-crossover molecules that assemble to construct a binary addition
table.

In fact, we can avoid both the reversed z string and the parallel DX molecules
by using larger multi-crossover units, thus generating exactly

Lapp = {*x+y =2":|x| = |y| = |z| and #z = #x + #y}.

Figure 5 shows string tiles built from antiparallel quintuple-axis DNA molecules.
Note that we are ignoring the black strands, which will not code for anything
according to the codebook, and thus are ignored in the final language. In this
system, each adhesion event now involves multiple sticky ends, but again no
sensitive discrimination is required — either all sticky ends match, or none do.
However, the trade-off is that more complicated DNA structures and longer
stretches of non-coding DNA are required.

3.3 Hairpin tiles for CNF-SAT

We now show a use for tiles (other than cap tiles) whose coding strands involve
hairpins: they allow CNF-SAT problems to be solved in O(1) biosteps using
linear arrays of DNA multi-crossover units. The solution we present here, using
linear self-assembly, may (or may not) be faster and more robust than the two-
dimensional self-assembly of [Win96,LL00], which is also sufficient to solve this
problem in O(1) biosteps.

The main idea is as follows: A CNF-SAT problem of N clauses and M vari-
ables is solved using an initial set of 2M + 2 hairpin tiles of width N, which
assemble to form all 2M distinct tile assemblies of length M + 2. To isolate a
solution to the problem, one additional operation is required: after assembly and
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Fig. 6. Solving an N-clause M-variable CNF-SAT problem by linear assembly of 2M +2
width-N strings tiles. Shown are the cap tiles and the tiles for x; and for Z;, i = 2.
A circular strand indicates the solution to the problem. Maximal assemblies are all of
length M + 2.

ligation of the DNA, we select for circular strands (for example, by 2D gel elec-
trophoresis or by exonuclease digestion). The formula is satisfiable iff a circular
strand is present, as it gives a solution to the CNF-SAT problem.

More specifically, each clause C; is a disjunction of literals chosen from
{z1,...,ZMm,T1,--.,Zar}- The entire CNF formula, then, can be represented
as a clause table C' where each row signifies a clause, and each column signifies a
literal. Each tile will represent a column of entries in C. Thus there are two tiles
for each variable j, “True” (z;) and “False” (Z). “True” has a hairpin in each
row ¢ such that the literal x; appears in clause ¢, and “False” has a hairpin in
each row ¢ such that the literal T appears in clause ¢. In any maximal assembly
made from the tiles shown in Figure 6, the i*" row (helix axis) has a hairpin in
the jt* column (tile) iff the assignment of “True” or “False” to variable z; has
satisfied clause i. Therefore, the strand starting in the left cap tile is circular iff
every clause is satisfied. The actual satisfying assignment is deduced from the
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Fig. 7. O(N?) width-N strings tiles to solve an N-vertex Directed Hamiltonian Path
Problem. Maximal assemblies are all of length IV + 1.

intervening sequence. (By construction, no other strands in the assembly can be
circular.)

3.4 Permutation tiles for DHPP

As another example of solving an NP-complete problem in O(1) biosteps using
linear string tiles, we solve the Directed Hamiltonian Path Problem (DHPP)
using permutation tiles — that is, tiles without hairpins, but where the strands
may be re-routed as they cross the tile (that is, their order is permuted).

First, as a polynomial time preprocessing step, we convert the directed V-
vertex graph G into a feed-forward version G’ with up to N? vertices. The vertex
at layer position p of G' corresponding to vertex  in G is labelled i,. As shown in
Figure 7, we have a permutation tile for each edge i, — jp+1 in the new graph;
this tile has a single pair of non-parallel arrows from left input 4 (respectively
i+ 1) to right output ¢ + 1 (respectively 7). Binding labels are such that each
maximal assembly of tiles corresponds to a path from 1; to Ny in G’. Thus,
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starting at S in a tile assembly representing a particular length-N path through
G, the strand can advance from row ¢ to row ¢ + 1 only if vertex ¢ is visited at
some point. If an unvisited vertex is present, there is a row the strand cannot
advance beyond, and consequently it must terminate at the 3' nick. (Note that
the other strands may form a circle.) If there is no unvisited vertex, in which
case the assembly represents a Hamiltonian path, the strand containing S is
circular. Again, we isolate circular strands, and from those strands we further
must extract strands containing S.

Note that DHPP could also be solved with hairpin tiles as was CNF-SAT,
and conversely CNF-SAT could be solved with permutation tiles; this is left as
an exercise to the reader.

4 Constructibility of string tiles

The CNF-SAT and DHPP examples made use of string tiles for which no explicit
DNA structures were given. Can we construct DNA molecules for the string tiles
in question? We approach this first by informally defining several classes of (sim-
pler and then more complex) string tiles, and then demonstrating a procedure
to build complex string tiles from simpler ones.

4.1 Classes of string tiles

As illustrated in Figure 8, we classify linear string tiles into parallel tiles, in
which the i** input node on one side is connected to the i** output node on
the other side; permutation tiles, in which nodes must be connected to nodes
on the opposite side only, but in any order; hairpin tiles, which are like parallel
tiles with the additional possibility that an input node may be connected to
an adjacent output node on the same side; planar tiles in which the strands do
not cross, as drawn on the tiles; and general tiles, in which any connections are
allowed. These classes are subdivided into left and right cap tiles, which have
one unlabelled side, and into tiles with a given number of nicks (i.e., internal 3'
and 5' ends, measured in pairs).

4.2 Criteria for constructibility; prototiles

We might ask at this point, can general tiles of significant complexity actually
be made out of DNA? To be a useful implementation of a string tile, a proposed
DNA complex must

— be geometrically compatible with DNA molecular structure,

— have strand routing identical to that in the string tile,

— be “rigid” as a molecule, so that each helical domain remains parallel to the
other helical domains,

— self-assemble reliably from the individual strands, when mixed according to
some protocol.
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cap tiles of each class are shown, and the number of nicks is indicated in the superscript.
(left) Example tiles. (right) Tile class inclusion diagram.

For example, consider the two sets of tiles proposed for generating the ad-
dition table. In both sets, each double helix domain is connected to each neigh-
boring domain by at least two junctions, ensuring that the axes will be parallel
in the molecule and that the molecule will be rigid. The first set (Figure 4)
was implemented with DPE molecules, which have been characterized in the
laboratory [FS93], so they are known to self-assemble from the four component
strands (although with questionable reliability). The second set (Figure 5) was
implemented with hypothetical quintuple-axis molecules, which have not been
experimentally demonstrated yet, although they are likely to be feasible (N. See-
man, private communication). In fact, it is unlikely that the internal tiles would
spontaneously self-assembly from their 10 component strands, unless the long
black strand were broken into several shorter strands; but this is a question to
be answered by experiment. Direct assembly of tiles from component strands
poses an even greater difficulty for larger string tiles.

Therefore, we pursue an approach where larger string tiles are assembled
from a small set of prototiles, which consist of (or are very similar to) molecules
that have already been characterized experimentally. In fact, we give two possi-
ble implementations for each prototile, one using parallel junctions (essentially
DPE molecules [FS93]) and one using anti-parallel junctions (essentially triple-
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Fig. 9. Prototile sets (using only parallel junctions or only antiparallel junctions) from
which all general linear string tiles can be built.

crossover molecules [LYK™'00,LWRO00]). Thus, the constructions below show that
either parallel or anti-parallel junctions alone are sufficient for implementing all
general tiles. The six prototiles are shown in Figure 9; note that they are all
rigid.

4.3 Constructions

We construct a general tile in three steps. First (Figure 10a), we observe that
every general tile is the composition of a permutation tile, a hairpin tile, and a
permutation tile.

Second (Figure 10b), we show that any permutation tile can be built from the
E, P,S+,S— prototiles. To see how to arrange the prototiles, we make a list of
the desired destination for the left input nodes and sort this list using the Even-
0Odd Transposition Sort, which is guaranteed to finish within N rounds [Knu73].
Wherever we performed a swap, we place an S+ prototile; where we didn’t swap,
we place a P prototile; and we use the E prototile for untested positions. This
correctly routes the rightward arrows, without affecting the leftward arrows. A
similar procedure can be done to route the leftward arrows without altering the
rightward arrows. Once the proper arrangement of the prototiles is determined,
the actual DNA molecules can be made with unique sticky ends for the prototile
in each position; each of these prototiles can be assembled from their component
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E, P, S+,S— prototiles. Here we show the construction for the rightward arrows; a
similar construction routes the leftward arrows. (c) A hairpin tile with & hairpins can
be construction from the E, P, H+, H— prototiles.

strands in separate reactions, and then mixed and ligated to form the entire
string tile.

Third (Figure 10c), we note that hairpins tiles of the form required (hairpins
within a helix axis, but not between them) can be built from the E, P, H+, H—
prototiles. Three columns of prototiles are always sufficient.

5 Generative power of string tiles

We use a formal language theory approach to analyze the generative power of
string tile assembly. We first give a general definition of string tiles, and then
specialize to the fixed-width linear string tiles used in this paper.

5.1 Preliminaries

A represents the empty string. From a given alphabet @ we construct a distinct
barred alphabet ® = {5 : 0 € ®}. Thus, #N & = () and, treating as an operator
that is its own inverse, 6 = 0. We will use & to represent a set of unique sticky
ends, while ¢ will represent their complements.

A circular string over X is a finite set ¢ C X' such that (ab € ¢ = ba € ¢) and
(z,y € c= Ja,b : x = ab and y = ba). Le. ¢ consists of all circular permutations
of a given string. If z € ¢, the shorthand ox denotes c.
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A directed graph with edges labeled over X' is a pair g = (V, E) where E C
V x X* x V. We use the notation V; and E, to refer to the vertices V and edges
E of g, respectively. Two graphs g; and g» are disjoint if Vy, NV, = 0.

A mazimal path 7 in graph g is a list # = vyvy - - - V41 Where for 1 < i <k,
(vi, 8i,vi41) € Ey, and in-deg(vy)=0, out-deg(vg4+1)=0, and v; =v; = i =j. In
that case, word(m) = 5182 -+ k-

A cycle m in graph ¢ is a list # = vivy---vg41 where for 1 < ¢ < &,
(vi, 8i,Vi41) € Eg and v1 = vpqr, and v; = v; = ¢ =jfor 1 <4,j < k. In
that case, cword(m) = 08182 - - - 8.

Let g1 and go be disjoint graphs over X and let A; = {a1,1,...,a1,n}

N

%1, A2 = {0,2,1,...7a27m} g ng, Bl = {bl,ly---;bl,m} g %17 and BQ
{b2,1,...,b2n} C V,, be disjoint ordered subsets. Then the join of g; and g»
using Ay, As, By, and Bs is

n m
91 ALBiFA2,B,92 = (Vg UVyy, By, UB,, U J{(A1i, A, Byi) Jul { (42,3, A, Bri) ).
i=1 i=1
That is, we add unlabeled edges from nodes in A; and A, to the respective nodes
in Bg and Bl.
5.2 String Tiles

A port (over the alphabet &) of graph g is a triple p = (0,1,0) where

o € ®UPU{\} is called the binding label,

— I CV is an ordered set of input nodes with in-deg 0,

— O CV is an ordered set of output nodes with out-deg 0,

INO =0,

— o =MXiff I = O = (), in which case the port is said to be empty.

We use the notation oy, I, and O, to refer to the binding label o, input nodes
I, and output nodes O of p, respectively. Two ports P, and P, are disjoint if
Ip,, Op,, Ip,, and Op, are mutually disjoint.

A (k-sided) string tile over X, & is a pair t = (P,G) where

— (@ is a directed graph over X s.t. all nodes have in-deg < 1 and out-deg < 1,
— P ={p1,p2,...,pr} is a set of mutually disjoint ports over ¢ of G.

Here, X is the alphabet for string labels (and thus the alphabet for the language
generated by the tiles) while @ is the alphabet for the binding labels (which are
relevant only for the self-assembly process). We use the notation P; and Gy to
refer to the ports P and graph G of ¢, respectively. When ¢ is understood, o,
Il and O refer to the binding label, the i*" input node and i** output node of
the port indexed by n, respectively. Two string tiles are disjoint if their graphs
are disjoint. Note that the connected components of G are paths and cycles.

A string tile t is of width w if |Ip| = |Op| = w for all ports p € P. A
string tile is uniform if it is of width w for some w. A string tile ¢ is primitive
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Fig. 11. (a) Diagram of a linear string tile (width 4). Note the order of the input and
output nodes. The edge labels are not shown; nor are the binding labels. The half-edges
indicate nodes that aren’t involved in edges. (b) Illustration of the composition of tiles.
(¢) Numbering used in definition of planar tiles.

if UpE p, Ip U Op = Vg,; i.e. every vertex is in a port. Note that in a primitive
string tile, all edges are of the form (I}, s, 0% ). If a tile is not primitive, it is
composite. See Figure 11a.

Let t; and ¢2 be disjoint string tiles over X, & and let p; and p, be ports
of t; and ty respectively. Then we say that ¢; and ty are p;-ps-compatible if
Tpy = 0Opy A\, |Ip,| = |Op, |, and |Op, | = |Ip, |- For p1-ps-compatible tiles ¢; and
to, the p1-ps-composition is

t1 pytps te = (P, U Py N Ap1,02}, Gy 0,,,1,, 10,0, Gts)-

P17P

Note that it is easily verified that ¢; ,, +5, t2 is indeed a string tile. If p; and
p2 are understood, as they are for all linear string tiles (below), then they are
omitted as subscripts for notational convenience. See Figure 11b.

5.3 Classes of tiles

A linear string tile is a 2-sided string tile such that one port (the left port, by
convention indexed by L) is labelled from & U {\} and the other port (the right
port, indexed by R) is labelled from & U {A}.

If t is a linear string tile, then it is called a complete tile if o, = X\ = og; it is
called a left cap tile if o, = X\ # og; it is called a right cap tile if o, # X\ = oR;
and it is called an internal tile if o7, # A # ogr. The intuition here is that ports
with binding label A cannot be extended.

A linear string tile with n input nodes of degree 0 and m output nodes of
degree 0 is said to be n, m-nicked; if n = m, the tile is said to have n nicks. Note
that a width w string tile always has n = m.
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Let SET be a set of uniform linear string tiles, then SET™ is the subset of
tiles with n or fewer nicks; SET). is the subset of left cap tiles; SET,. is the
subset of right cap tiles; SET; is the subset of internal tiles. This notation is
illustrated in Figure 8.

Let the general tiles, GEN, be the set of all uniform primitive linear string
tiles. The parallel tiles, PAR, the permutation tiles, PERM, the hairpin tiles,
HAIR, and the planar tiles, PLA, are subsets of GEN, defined as follows (and
see Figures 8 and 11c). Let t € GEN be of width w. Then

— te PARIff (Il,s,0%) € Eg, = i = j and (n,m) € {(L,R), (R, L)},
— t€ PERM iff (I:LaSaOgn) € EGt = (n,m) € {(LaR)a (R7 L)}:
— t€ HAIRff (I},s,0},)) € Eg, = eitheri = j and (n,m) € {(L,R), (R,L)}
ori—j € {1} and (n,m) € {(L, L), (R, R)},
— t € PLAiff for i < k, (c;,8,¢5), (ck,s',¢a) € Eg, = either i < k,1 < j or
i,j < k,lorl<i,j<k,where (c1,ca,...,caw) is the counterclockwise list
of port nodes (I},0%,12,0%,...,1%,0%,I},0%).

5.4 Assemblies and languages

Let T be a finite set of width w linear string tiles. The string over T, a =
titots -+ tn, withn > 1 and ¢t; € T for all 1 < ¢ < n, is an assembly over T if
either n = 1 or ¢; and ¢;;1 are compatible for all 1 < 4 < n. Furthermore, « is
a mazimal assembly over T if « is not a proper substring of any other assembly
over T. A(T) is the set of all maximal assemblies over T'. Note that A(T') is
always a regular language.

Each assembly « induces a single tile t, = t'y +t'2 +t'3 +--- +t',,, where t/;
is a unique isomorphic copy of ¢; (required for distinctness). Note that for n > 1,
this tile is always not a primitive tile!

A tile ¢t (and thus an assembly «) induces a set of linear strings

L(t) = {word(w) : 7 is a maximal path in G}
and a set of circular strings (only possible if the tile is composite)
C(t) = {cword(n) :  is a cycle in G¢}.

Then, for T a finite set of linear string tiles, the linear and circular languages
generated by T are, respectively,

L= U L)
acA(T)

and

crm = |J Clta).

a€A(T)

Thus, we arrive at the family of languages generated by a (possibly infinite)
set of linear string tiles, SET"

Lsr(SET) = {L(T) : T C SET is finite }
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Axiom Production
X1A1 XoA; X3A 3 X4A4 X5 <B,B2, B3 B> <y, ¥, ¥, Y4 >

Production
<ALAAGGA S <KXB Y XB Y X B X B 4y >

—
—%”
—®%”

Fig. 12. The correspondence between a scattered grammar and parallel string tiles
with HAIR}, and HAIR?,.

e
O

e

<'veviyy>

<A,AALAS
<'g‘tgeg'g>

<B.,B,B5,B,>

and
CsT(SET)={C(T) : T C SET is finite }.

ST stands for “String Tile”. For sets of tiles SET1,SET2, and SET?3, in the
following we refer to the family of languages Lsr(SET1;. U SET2; U SET3,..)
as LsT(SET1,SET2,SET3), for notational convenience.

5.5 Scattered linear grammars for parallel string tiles

We will show that the family of languages generated by parallel tiles is a subclass
of the languages generated by scattered context grammars. A scattered context
grammar (see [RS97], page 128) is a quadruple G = (Xn, X, P, S). Xy are the
non-terminal symbols and X1 are the terminal symbols. S is a finite set of axiom
strings over X = Xy U X7 and P is a finite set of vector productions of the form

(Al,Az,...,An) — <£U1,.Cl}2,...,.’l§'n)

where A; € Yy and z; € X* and n > 0. A single derivation step, using the
above production, transforms the string

MmA1N2 ANz - N Aplny1 = MT1M2T203 - MuTnlnt1

where 7; € X*. That is, we are performing synchronized application of context-
free productions. The language generated by G is

L(G)={z:s5s—>"zand s € S}

where —* is the symmetric, transitive closure of —.
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We define a scattered n-metalinear grammar to be a scattered context gram-
mar restricted to axiom strings of the form

x1A1x2A023 - - - annSUn-i-l
and to productions of the form
<A1, AQ, ceey An> — <.’L’1Bly1, .’L'QBQyQ, e ,."L'anyn)

and
<B1,B2a"'aBn) - (ylayZa"-ayn)

where A;,B; € Yy and z;,y; € X%. That is, we are requiring synchronized
application of linear productions to a string with n non-terminals. Lgps is the
family of languages generated by a scattered n-metalinear grammars, for some
n.

Figure 12 shows a one-to-one correspondence of axioms to left cap tiles,
productions to parallel tiles and right cap tiles, such that the language generated
by the grammar is identical to the (linear) language generated by the tiles. In
this way, it is straightforward to prove that

Theorem 1. Lgp = Lsr(HAIR', PAR®, HAIRP).

5.6 Parallel Normal Form for Permutation Tiles

We will sketch the main ideas needed to prove that the languages generated by
permutation tiles are the same as those generated by parallel tiles (although
fewer permutation tiles may be required).

We use a two-step process for converting a finite set of permutation tiles (with
general caps) into a finite set of parallel tiles (with hairpin caps) that generate
the same language (Figure 13). Let Ty C GEN;. U PERM; U GEN,.; we will
define Ty C GEN, UPERM? UGEN?, and T» C HAIR}, U PAR) U HAIR?,,
as sketched in Figure 13, by creating new maximal assemblies from the original
ones, and collecting the new tiles to form 77 and 7T5. Such an approach can
easily guarantee that every string in the original language is still in the language
generated by the new tiles; it must also be shown that no additional strings are
generated.

Suppose without loss of generality that the tiles in Tp are all width w, and
that all maximal assemblies induce complete tiles (i.e., they have cap tiles on
each end).

Step 1, removing nicks: For every assembly a € A(T)), create a new assembly
of width-(w + 1) tiles for each maximal path in ¢,. All the edges in the original
tiles are present in the new tiles, but we keep only the edge labels on the chosen
maximal path (which we imagine colored black); edge labels on the remaining
edges (say, yellow) are replaced by A. Additionally, we add A-labelled edges from
the left cap’s bottom port to the start of the maximal path (red), and from the
end of the maximal path back to the left caps’ bottom port (cyan). All remaining
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o g
br b r
m v
Fig. 13. The correspondence between permutation tiles and parallel tiles. At the top is
an original assembly in A(Tp); in the middle are the corresponding assemblies in A(T1),
one assembly per maximal path in the original assembly; and at the bottom are the
assemblies in A(T%>), where the chosen path has been moved to the upper rows. o is the
binding label joining the two central tiles in the original assembly. < o, yyyyyyybry >
is the binding label in step 1 augmented by the color pattern of the ports. 7 is the

permutation applied to the right port of the tile on the left, and and = is applied to
the left port of the tile on the right.

nicks are closed with A-labelled edges (magenta). Finally, the binding labels are
augmented by the color pattern of the ports. The union of all such tiles created
for all maximal paths for all assemblies in A(Tp) is the set Ty . Note that T; must
be a finite set, because there are a finite number of possible width-(w + 1) tiles
with the allowed edge and binding labels.

To see that Ls7(To) C Ls1(T1), note that for every word in Lg1(Tp) there
is an assembly in A(Tp) that contains that word on a maximal path, and thus
there is an assembly in A(7}) that contains the same word on a maximal path.

To see that Ls7(T1) C Ls7(Th), note that every assembly in A(77) induces
a complete tile with a unique maximal path (and perhaps many circles). The
augmented binding labels ensure that this path is colored red-black-cyan, and
thus that it corresponds to a maximal path in the corresponding assembly in
A(Tp) obtained by replacing each tile by one that had been used to create it.

Step 2, removing routing: For every assembly a € A(T}1), create a new as-
sembly of width-(w + 1) tiles by permuting the input and output nodes on each
original tile so that in the new assembly, all internal tiles are parallel tiles and
the maximal path is layered at the top. Augment each port’s binding label to
include the permutations used for its input and output node lists. Finally, since
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Fig. 14. Planar tiles can be built from hairpin tiles.

the yellow edges are all A-labelled and involved in cycles, we replace the yellow
edges in the cap tiles so as to obtain hairpin cap tiles. Again, the union of all
such tiles created for all assemblies in A(T}) is the set Ty. Again, 75 must be a
finite set, because there are a finite number of possible tiles. The argument that
Lsr(Th) = Ls7(T2) is similar to the one given above.

Thus, we have sketched the proof for:

Theorem 2. Lsr(HAIR', PAR®, HAIR®) = Ls7(GEN, PERM,GEN).

5.7 Hairpin Normal Form for General Tiles

A similar normal form, using hairpin tiles, can be found for general tiles. The
argument has three steps. First, hairpin tiles are a normal form for planar tiles.
Second, planar tiles are shown sufficient to generate the output languages pro-
duced by Hennie Machines. Third, a Hennie Machine can be found that outputs
the language generated by any given set of linear string tiles.

Figure 14 illustrates the first step, which is given without proof:

Theorem 3. Lsr(HAIR', HAIR®, HAIR®) = Lsr(HAIR', PLA°, HAIRY).

For the second step, we will use Turing Machines (TM) equipped with a 2-
way read/write input tape and a 1-way write-only output tape. Let @ be the
(finite) set of head states, X1 be the (finite) set of input tape symbols, and Xo
be the (finite) set of output tape symbols. Then the state transition table for
a TM consists of entries of the form go — ¢'0¢’Ds where q,¢' € Q, 0,0’ € X7,
D € {L,R,Hy, Hg}, and s € X}; every pair in () x X appears exactly once
on the left-hand-side in the state transition table. The action H 4 is to halt and
accept; the action Hg is to halt and reject; L and R indicate moving left and
right, respectively. A TM has the k-visit property, and hence is a finite-visit TM,
if for no input does the machine enter any tape cell more than k times.

Related models include Hennie Machines (HM), which are finite-visit TMs
whose use of tape space is bounded by a linear function of the input string length
(i-e. they are linear bounded automata); and two-way generalized sequential ma-
chines (2gsm), which are Hennie Machines with a read-only input tape that is
never accessed beyond the ends of the input string.
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Fig. 15. Planar tiles that simulate a finite-visit Turing Machine. (top) The general
form of tiles, showing start edges (yellow), action edges (red), and halt edges (cyan).
Although formally not part of the tile, we label the cell with tape symbols o; along the
center, indicating what must be on the tape during each visit of the Turing Machine
head. Each action edge corresponds to an entry in the TM state transition table, as
shown on the right. (bottom) An assembly containing the history of a Turing Machine
computation.

If a TM m computing on input z enters the accepting halt state with y on
the output tape, then we say that y = m(z). The output language of a TM m is

L(m) ={y : y = m(x) for some z}.
The family of all output languages of finite-visit TMs is
Lty ={L(m) : m is a finite-visit TM }.

Likewise,
Lam ={L(m):misaHM }

and
Lagsmsin = {L(g) : g is a finite-visit 2gsm }.

By padding input strings with extra blank symbols, it is easy to see that
L1y, = Lam- A corollary of our argument will be that, additionally, L7as,,, =
£2gsmfin .

Given a HM m, we must define a finite set of tiles T C HAIR} U PLAY U
H AIRY, that generate the same language; i.e. L(m) = Lgr(T). Foreach z € X%,
we draw the execution of m computing on z as shown in Figure 15, including
a (imagine it yellow) path from the leftmost tile to the beginning of the input
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where the head starts, and a path (cyan) from where the head halts back to the
bottom of the leftmost tile, filling up all space in between. Each tile represents
a single tape cell, and contains information about every visit to that cell by the
Turing Machine head. The binding labels give the state of the Turing Machine
head for each entry to and exit from the cell, thus ensuring that any maximal
assembly represents a valid execution of the Turing Machine. The union of all
tiles so created is T'. Using a similar argument to that given for parallel normal
form, we see that Lgr(T) = L(m).

Theorem 4. Ly C Losr(HAIR', PLA°, HAIR?).

For the third step of the argument, we need to find a Hennie Machine that
outputs the same language as any given set of general tiles. Let T C GEN be
a finite set (without loss of generality, assume that all maximal assemblies of T'
have cap tiles on both ends) of width-w linear string tiles over X, ¢. Our HM
will have input alphabet X1 =T =T x{L; : 0<i <w} x{R; : 0 <i <w} and
the output alphabet Yo = X. L; and R; are used only to select which path to
read in assemblies containing multiple nicks. The HM proceeds in two phases:
first it checks that the input represents a valid maximal assembly, then it reads
the word off one of the maximal paths. The (finite) information about the tile
types, edges, and labels is contained in the HM’s finite state logic. The HM
first checks that the first input symbol represents a left cap tile; then it scans
right (producing no output) so long as each successive tile is compatible with
the preceding one; either it arrives finally at a right cap tiles, or else it halts in
the rejecting state, thus producing no output. In the former case, the HM then
scans back to the left until it finds the first symbol (¢, L;, R;) where Of or O, is
nicked. (If it finds no such tile, it halts in the reject state.) The HM then simply
follows the chosen edges from its beginning until its end, producing as output
the edge labels, then halting in the accept state. Note that because symbols can
contain Ly and Ry but ports are numbered starting from 1, the HM can copy
any maximal path from any assembly. Also note that this HM uses the input
tape for reads only, and hence is a finite-visit 2gsm. Thus, we have:

Theorem 5. Ls7(GEN,GEN,GEN) C Logsm,, -
Altogether,

Theorem 6. Ls7(HAIR', HAIR®, HAIR®)
= Ls7(GEN,GEN,GEN)
= ﬁHM = £2gsmf,-n .

6 Conclusions and Open Questions

We can now fit the languages generated by linear string tiles into known language
classes. ETOL systems [Roz73,RV78,RV80] are the most convenient well-studied
model. Diagrams very similar to string tiles came up in the study of crossing se-
quences [Hen65] and transductions by finite-visit machines [EH98 EH99]. Of par-
ticular interest are the metalinear ET'0L systems, which generate the languages
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in ETOL,,;, and the ET0L systems of finite index, which generate the language
in ETOLf,. It is straightforward to show that scattered metalinear grammars
are a normal form for metalinear ET0L systems, and thus Lgyr = ET0L,;. In
[ERS80] it was proved that Logsm,;,, = ETOLjy;,. Furthermore, it was shown
in [RV8&0] that the language {a”b" : n > 1}* is in ETO0L;,, \ ET0L,y,;. Indeed,
there is a simple set of width-2 planar tiles that generate this language, and we
can conclude that no set of parallel tiles can do so. Thus Figure 1 is justified.

We have given a full characterization only of the language classes generated
by finite sets of tiles. However, complexity issues remain to be investigated —
how many tiles are necessary to generate a specific language? The parallel nor-
mal form theorem potentially uses exponentially (in w) more parallel tiles than
permutation tiles. This question has obvious relevance to using string tiles to
solve NP-complete problems, such as CNF-SAT or DHPP.

Our definition of string tiles allows edges to be labeled by the empty string,
corresponding to tiles with DNA containing no coding sequence. Thus, the result-
ing ligated DNA strands may have very long regions coding for no information.
How do our language classes change if we insist on only A-free string tiles?

Are the circular languages significantly different from the linear languages?
Unlike linear DNA strands, circular DNA strands can be knotted with themselves
and with other circular strands (although this is not part of the current formal
model); can knottedness increase the computational power? Careful routing of
strands using string tiles augments the computational power of linear DNA as-
sembly; for 2D or 3D assembly, although string tiles cannot increase the language
class beyond RE, can string tiles be used for more efficient computation?

Do the constructions and results presented in this paper point to better
practical implementations for DNA-based computing? It is hard to say at this
point, although the following calculation is illustrative. Consider a 40 variable
CNF-SAT problem, with 160 clauses. In our construction, 80 string tiles must
be prepared, each assembled from 240 prototiles (this number could be reduced
substantially with an improved construction). These tiles would be 240 x 75 nm,
with 160 sticky ends on each side. At a prototile concentration of 20uM, one
ml of solution would hold 12 x 10'® prototiles, thus 4 x 103 tiles and 1 x 102
maximal assemblies — just sufficient for 1X coverage of variable assignments. If
self-assembly of these monsters were reliable (40 sticky-end sets would have to
be sufficiently distinct) and roughly as fast as oligonucleotide hybridization, the
maximal assemblies would form in a few minutes. The assembly containing the
satisfying strand would still have to survive ligation at each of up to 160 x 40
nicks, at (on a good day) 90% yield for each nick. That doesn’t leave much. On
the one hand, we’re excited to see a new approach for DNA based computing
by self-assembly, which may have payoff for simple examples like generating an
addition table; on the other hand, significant practical applications at this point
seem rather far off.

Acknowledgements. The authors are indebted to Joost Engelfriet and Hen-
drik Jan Hoogeboom for their guidance through the maze of results on the output
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