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10.1 Introduction’

In order to understand and utilize the diverse functionality displayed by biological organ-
isms, it is first necessary to comprehend the regulatory network underlying such com-
plex behavior. Fortunately, biological networks share certain properties of engineered
networks [1], and thus are potentially amenable to automated design and characteriza-
tion. Recent advances in both metabolic and genetic engineering have made feasible the
investigation of novel biological functionality through the design and implementation of
synthetic biological networks. Well-characterized ‘parts’ would be essential for stream-
lining synthetic network design processes, such that complex functionality can be created
without reinventing all details of the molecules involved. One example of such an effort
towards standardized parts for abstraction is the Registry of Standard Biological Parts
(hitp://parts.mit.edu). Another important research venue is mathematical modeling includ-
ing quantitative analysis, which allows for the circuit behavior to be explored with uncertain
parameter sets and external disturbances. Today, several software tools are available to aid
biochemical kinetic simulations [2]. Tn this chapter, the current understanding of cellular
networks, synthetic network construction and the remaining challenges towards automating
biochemical processes using synthetic circuitry are reviewed.

10.2  Cellular Network: Functional Design

Cells live in a complex environment and can sense many different signals, whether physi-
cal, chemical or biological. Cells also have the ability to process information for survival
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and reproduction, such as detecting nutrients and avoiding harmful chemicals, by using
functional circuits composed of many interacting molecular species [1]. Hence, informa-
tion processing through regulatory networks lies at the heart of all living systems. By taking
a ‘top-down’ view of protein—protein interactions, signaling pathways and gene regulatory
pathways, the basic architecture of biological networks has been analyzed [3]. The net-
work description of cellular circuits allows the application of tools and concepts which have
been developed in fields such as graph theory, physics, sociology and engineering [4]. Re-
markably, biological networks share the design principles of engineered networks, namely
modularity, robustness and recurring circuit elements. A module in a network is a set of
nodes that have strong interactions and a common function [1]. Modules in engineering —
and presumably also in biology — have special features that make them easily embedded
in almost any system. The robustness of a cellular network design requires that the de-
sign must function under plausible fluctuations and interferences due to the components
and to the environment [5]. Recurring network motifs for signal processing tasks, such
as filtering out input noise, accelerating throughput of the network or temporal program-
ming, can be found in biological networks [6]. The fact that a biological organism must
function and compete for resources imposes severe constraints on the regulatory network
design, which could have shaped the biological networks with characteristics analogous to
human-engineered networks. These design principles of cellular networks will help delin-
eate system architecture with limited data, such that researchers can focus on modular and
robust patterns. Indeed, some of these patterns are already known as network motifs.

10.2.1 Network Motifs

Alon and colleagues studied the transcription network of Escherichia coli to identify
meaningful patterns on the basis of statistical significance. The transcription network was
compared to an ensemble of randomized networks, with similar characteristics such as the
same number of nodes and edges but with random connections between nodes and edges.
Patterns that occur in the real network significantly more often than in randomized networks
were termed network motifs [6, 7]. One network motif is that of negative autoregulation,
where a protein product binds to its own promoter and represses its own transcription.
Negative autoregulation has two useful features — the speed-up of response time and
robusmess to fluctuation. The response time, which is defined as the time to reach halfway
between the initial and final levels in a dynamic process, depends simply on degradation and
dilution rates in unregulated transcription and translation processes. In order to achieve
the same steady-state value, negative autoregulation employs a stronger promoter than
its unregulated counterpart; therefore, the initial build-up of signals is fast with negative
autoregulation, cutting down the response time. Moreover, the steady-state protein level
is stable with negative autoregulation, albeit with fluctuations in the production rate. An
important three-node motif — termed the feedforward loop — is defined by a transcription
factor X thatregulates a second transcription factor Y, such that both X and Y jointly regulate
an operon Z (Figure 10.1a). Most of the feedforward loops are coherent; that is, the direct
regulation of X on Z and indirect regulation of X on Z through Y are of the same sign.
Mathematical analysis suggests that the coherent feedforward loop can act as a persistence
detector, rejecting short pulses of activation signals from the general transcription factor
responses. Consider the case where both X and Y transcription factors are required for the
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Figure 710.1 Network motifs found in the E. coli transcriptional network. (a) Feedforward

“ loop: a transcription factor X regulates a second transcription factor Y, and both jointly
regulate one or more operons Zy ... Zp; (b) L-arabinose utilization network; (c) SIM motif: a
single transcription factor, X, regulates a set of operons Z: ... Z,; (d) Arginine biosynthesis
network; (e} DOR motif: a set of operons Z; ... Z,, are regulated by a combination of a set
of input transcription-factors, X ... Xn; (f) Stationary phase response network. (Reprinted by
permission from Macmillan Publishers Ltd. Ref. [6])
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activation of Z in a feedforward loop. Upon arrival of activation signal for X, the activation
of Z is delayed because Y takes time to build up to a threshold level. Thus, if the activation
signal for X has a short duration, Y cannot reach the threshold level needed to activate
Z. Response to signals such as nutrients that activate X incurs productioncost for the
final enzyme Z, but no significant benefit can be gleaned if the nutrients disappear by the
time enzyme Z level is sufficiently high. A cost-benefit analysis indicates that a coherent
feedforward loop offers more benefit over the simple regulation of X and Y on Z under a
fluctuating environment where transient activation signal is common [8].

Two other larger motifs are called the single-input module (SIM) and the dense over-
lapping regulon (DOR). The SIM network motif — a simple pattern in which one regulator
controls a group of genes — can generate temporal programs of expression, in which genes
are turned on one by one in a defined order (Figure 10.1c). In contrast, the DOR network
motif is a layer of overlapping interactions between operons and a group of input tran-
scription factors, in which the signal inputs are integrated and the output genes are under
a combinatorial control (Figure 10.1e). Other network motifs appear in a developmental
transcription network [9], such as a positive feedback loop and a long cascade. A positive
feedback loop can serve as a memory, locking in the cell fate if an early developmental
signal ever reaches a threshold level. Long cascades are uncommon in sensory information
processing due to significant delays, but prove useful in developmental timing that spans
several cell generations. Transcription regulatory networks operate on the timescale of
tens of minutes to hours, whereas signal transduction networks rely on protein—protein
interactions to process sensory signals on the timescale of seconds to minutes. A more
complete picture of cellular networks requires an analysis of the interaction of different
network components operating at different timescales and searching for novel regulatory
mechanisms operating on such interfaces.

Network motifs provide a powerful tool to understand cellular organization from a
functional point of view, bypassing the biochemical details. The spontaneous evolution of
modularity and network motifs has been demonstrated in computational evolution models
of electronic circuits and neural networks [10]. Many such models use networks in a
population explored by means of mutations, crossover and duplication to be selected
for a defined goal. The evolved systems typically result in intricately wired nonmodular
solutions because these are more optimized than their human-engineered counterparts. A
lack of modularity has been cited as one of the reasons why computational evolution can
generate design patterns for simple tasks, but cannot be scaled-up to more complex tasks.
If the network evolution is constrained to fulfill modularly varying goals, then the achieved
architecture is built of more computational units solving subproblems; this framework has
an increased modularity but is suboptimal. Modularity decreases quickly when the network
is trained on a single goal or nonmodularly varying goals. Kashtan and Alon [10] have
suggested that modularity allows a higher adaptability to be achieved, and is therefore a
characteristic that a biological network must have in order to evolve in a constantly changing
environment that requires a certain set of basic functions in different combinations.

10.2.2 Network Architecture

An alternative approach is to abstract features from the overall architecture of cellular
networks. The architecture of a network places boundaries on its performance capabilities,
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and also explains its possible evolutionary path [3]. Clearly, cellular networks differ from
regular networks, where nearest neighbors are linked in a regular fashion, or from random
networks, where randomly selected nodes are joined together. In cellular networks, a
few nodes have a large number of connections, while most of the nodes have relatively
few connections — this is a feature of a ‘scale-free’ network. ‘Scale-free’ means that the
number of molecules (&) with-a given number of connections (k) falls off as a power law,
N(k) ~ k¢, where no characteristic peak value can be found. In a scale-free network, the
average distance between any two nodes is almost as small as the random network, while
the extent to which neighbors of a node are themselves connected (known as its clustering
coefficient) is almost as large as in a regular network. Protein—protein interaction maps have
the features of a scale-free network, with their degree sequences (number of edges per node)
often following a long-tailed distribution [11]. However, the fact that a network has scale-
free properties is of limited use, since power laws occur widely in nature, possibly with
different mechanistic origins. Thus, a much closer examination of small-scale networks,
such as subnetworks or molecular complexes, should complement the top-down network
description [3].

It has been suggested that biological networks have additional constraints that are be-
yond simple scale-free networks [12]. Networks that are simple connection networks, such
as the Internet, are able to grow in an unconstrained way, whereas regulatory networks —
such as genetic regulatory networks in biology — must be able to operate in a globally
responsive way. In order to maintain global connectivity, the number of connections must
be scaled quadratically with the network size. As a consequence, the need for an increased
number of comnnections at the regulatory level naturally imposes a limit on the size of
the network and its complexity [12]. Although dedicated hierarchies could solve such
a scalability problem, each level of regulatory hierarchy will introduce time delays and
increase stochastic noise [13]. Regulatory proteins scale almost quadratically with genome
size in prokaryotes [14], and the extrapolation of this relationship suggests that prokary-
otes have reached their complexity limit by their reliance on a protein-based regulatory
architecture. Eukaryotes have a far more developed RNA processing and signaling system
than prokaryotes, which appears to be linked to a more sophisticated pathway of gene
regulation. Recently it was suggested that, in addition to being a digital storage medium,
noncoding RNA themselves are actually transmitting digital signals [15]. In contrast, regu-
latory proteins act mainly as analogue components because their signals are transmitted as
their concentrations. Following the comparison with electronic circuits, it is possible that
the cellular network complexity limit was lifted by the use of both digital and analogue
signals. :

In summary, biological networks present different features at different scales, be-
having like scale-free networks on a large scale, and consisting of recurring network
motifs and basic functionalities on a smaller scale. Network motifs found in tran-
scriptional networks illustrate that the network design has functional consequences.
Other modalities of regulatory strategies such as RNA processing and post-translational
modifications, although sophisticated regulatory examples are known, have not been
discussed here. Investigating the cellular networks at different levels of complexity
starting from basic network motifs merits future research efforts that would lead
to an understanding-of the complexity of regulation strategies and provide useful
insights.
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10.3 Synthetic Approaches to Understand Cellular Networks

A network description in an abstract sense is not enough to understand cellular networks
with quantitative details and to construct predictive models. Rather, the investigation of de-
tailed kinetics and reaction mechanisms among the constituent macromolecules is required.
The reductionist approach attempts to explain the behavior of cellular networks in terms
of the behavior of the components. Despite many molecular components of biological or-
ganisms being identified and characterized using genetic and biochemical techniques, it is
still not possible to predict system behavior, except in the simplest systems. This indicates
that the great complexity of cellular network hinders the prediction of system behavior
from characterized components, and that alternative approaches for understanding cellular
network behavior and design principles may be necessary.

Synthetic biology provides an alternative to the study of cellular networks, by construct-
ing increasingly complex analogues of natural circuits. This is a ‘bottom-up’ approach that
attempts to test the sufficiency of mechanistic models by actively synthesizing them: this
allows insights to be gained that observation and analysis alone do not provide {16]. A
synthetic biology approach shares the spirit of engineering community in that a successful
model system should operate upon synthesis. For engineering purposes, parts are most suit-
able when they contribute independently to the whole. This ‘independence property” allows
one to predict the behavior of an assembly by characterizing parts. In terms of satisfying
independence property, the DNA molecules described by the Watson—Crick model stand
out because each nucleotide pair contributes independently to the stability of a duplex, to
a good approximation [17]. However, the DNA molecule is rather an exception than the
rule; for instance, the behavior of a protein is generally not a function of the behavior of
its constituent amino acids.

Although amino acids may be a poor unit for the application of independence property,
natural folded proteins can be treated as interchangeable parts. Several synthetic networks
constructed by rearranging the regulatory components in a cell have been characterized,
including autoregulators [18,19], feedforward cascades [13,20], bistable memory element
[21] and oscillators [22,23]. In order for this type of network design to lead to an improved
understanding of naturally occurring networks, detailed studies of the synthetic systems
are needed [16], for example, through a systematic examination of the effects of parameter
variations with quantitative modeling and analysis [24]. Some example networks and their
design principles will be discussed.

10.3.1 Synthetic Networks In Vivo

A bistable memory was constructed by Gardner et al. [21] by employing a mutual repression
system which used two genes that each coded for a transcriptional repressor of the other
gene. These authors used combinations of the lac repressor (Lacl), tetracycline repressor
(TetR) and the temperature-sensitive lambda repressor (cl). An external stimulus inhibits
the ‘activity of a specific repressor and pushes the system to one steady state. For the
mutual repression system shown in Figure 10.2a, isopropyl-3-D-thiogalactopyranoside
(IPTG) inhibits the lac repressor, while a high temperature inhibits the cI repressor. Thus,
the addition of IPTG pushed the system to a lac-off/lambda-on state and a concomitant
increase in the green fluorescent protein (GFP) signal. This system demonstrated hysteresis,




Synthetic Networks 257

©

.tnduoer ré
GFPmRNA GEPmMRNA
OFF

ON

{b) (d)

Figure 10.2 [ngineered in vivo networks. (a) A genefic toggle switch uses a mutual repres-
sion motif. Two genes, lac repressor and fambda repressor, repress the expression of the other
gene. Transient exposure to either heat or IPTG will shift the steady-state of the system to
the expression of only one repressor; (b) A circular arrangement of repressors comprises the
genetic ring oscillator. Oscillatory output was observed via GFP expression regulated by the
tetracycline repressor; (c) The RNA “anti-switch’ refies on ligand-binding regions of RNA that,
when bound to ligand, induce changes in RNA structure. When bound to an inducer lig-
and, the anti-switch hides an antisense region of RNA that hybridizes to the 5'-UTR of target
mRNA, encompassing the translational start site; (d) An allosteric switch based on the natural
N-WASP allosteric switch. A PDZ-binding domain is used with a C-terminal PDZ ligand, result-
ing in autoinhibition of N-WASP output domain. When an exogenous PDZ ligand is added,
the intramolecular PDZ interaction is disrupted, and the output domain stimulates actin poly-
merization. (Reprinied by permission from Macmillan Publishers Ltd. Refs. [21,22,26,27])

such that once the switch was flipped toward one steady state it remained there, evenin the
absence of the original stimulus. Several plasmid constructs with different promoters and
ribosome-binding sequences were shown to be bistable, except for one construct. Thus,
bistability can be achieved for a wide range of parameter space, if two repressor sirengths
are balanced. Furthermore, a toggle switch design can be embedded in a larger system.
Kobayashi et al. [25] used a lac repressor/lambda repressor toggle switch as a memory
subsystem within the DNA damage sensor. The lambda repressor is naturally cleaved upon
DNA damage and induction of the SOS response, leading to a lac-on/lambda-off state. The
engineered cells also contained the frad gene, which activates biofilm formation under the
control of lambda repressor. Consequently, exposure of the cells to DNA-damaging agents
resulted in biofilm formation. '

The first synthetic oscillator was a ring oscillator constructed by Elowitz and Leibler [22],
where three repressors (the lac, lambda and tetracycline repressors) regulated the expres-
sion of the next repressor in the cycle (Figure 10.2b). A GFP reporter protein under the
control of tetracycline repressor was used to monitor periodic changes of output. An im-
portant part of the design process was a rough quantitative model of the system to explore
parameter spaces. A tightly regulated promoter and a shorter protein half-life improved
the performance in the mathematical analysis, which was implemented in the experimental
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design. The authors described a single plasmid construct, which suggests that the. ap-
proximate calculation used to design the ring oscillator was enough to achieve oscillatory
behavior in engineered E. coli cells. Interestingly, the oscillation period showed much
more variability than did natural oscillators, with only 40% of the cells ‘exhibiting oscilla-
tion. These findings suggested that the stability properties observed in wild-type circadian
oscillators might result from the coupling of these clocks to other cellular processes. Al-
ternatively, the architecture of the oscillator itself may dictate the stability of oscillation.
In fact, the models of circadian oscillators fall in the class of relaxation oscillators [28],
where a positive feedback loop and a negative feedback loop operate with slow and fast
time scales. The synthetic oscillator design of Elowitz and Leibler does not fall into this
category, but is a phase oscillator [29]. The oscillator design of Atkinson et al. [23] in-
volved a positive autoregulatory circuit linked to a repressor module, analogous to the
relaxation oscillator model of Barkai and Leibler [28]. Atkinson and colleagues used the
components of a nitrogen-regulated response system for the activation signal and Lacl for
the inhibitory signal. This design did not involve a degradation sequence, as was used by
Elowitz and Leibler [22], to shorten the protein lifetime, and the experiments were per-
formed in a continuous bioreactor under constant cell density. Surprisingly, this oscillator
displayed oscillation dynamics at population level, despite the oscillation being damped.
Through mathematical analysis, the authors suggested a variety of parameter changes, such
as messenger RNA stability and protein stability, to achieve sustained oscillation. Yet, an
experimental exploration of such parameter change was not achieved and the mechanism
for synchronization was unclear {30].

RNA molecules play important and diverse regulatory roles in the cell by virtue of their
interaction with other nucleic acids, proteins and small molecules. For instance, diverse
cis and frans gene regulation by noncoding RNA molecules such as microRNAs [31]
and antisense RNAs [32] have been characterized in natural organisms. Researchers have
engineered RNA molecules with new biological functions realized in bacteria and yeast
[26,33]. Isaacs et al. [33] achieved the repression of a target gene by forming a hairpin
structure in the 5’ untranslated region (UTR) of the mRNA (cis-regulator), sequestering
the ribosome-binding sequence. The expression of a targeted trans-RNA activator allowed
translation from modified mRNA by exposing the ribosome-binding sequence. Bayer
and Smolke [26] developed RNA regulatory molecules that have an aptamer domain to
recognize specific effector molecules and an antisense domain to control gene expression,
analogous to naturally found riboswitches (Figure 10.2c). The specific and dose-dependent
switching responses of these regulatory RNA molecules have been demonstrated; for
example, theophylline and tetracycline were each used to control the expression of GFP
and yellow fluorescent protein (YFP) reporter proteins, without significant crosstalk. The
stem stability of the designed RNA regulators turned out to be an important parameter that
shifted switching thresholds. These results point to an intriguing possibility where designed
RNA switches can be employed as cellular sensors and effectors to create programmable
cells [34]. However, the engineered synthetic RNA regulation systems mainly demonstrated
switching behavior rather than general network construction; consequently, quantitative
models for the dynamics of RNA regulators need to be developed.

The signal transduction cascades composed of multiple proteins with enzymatic
and structural interactions mediate many cellular functions and interactions with the
environment. The interaction domains within signaling proteins can be rearranged to create
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novel interactions. For example, when Dueber ez al. [27] described the modular reprogram-
ming of an allosteric protein signaling switch in yeast, their hybrid protein was constructed
with an N-WASP-regulated actin polymerization output domain, a PDZ domain and a PDZ
ligand (Figure 10.2d). This synthetic design has autoinhibitory architecture because the
binding of a PDZ domain and a PDZ ligand blocks actin polymerization output, analogous
to its natural counterpart GTPase-binding domain that represses actin polymerization. An
external supply of PDZ ligand releases this autoinhibition in a dose-dependent manner.
Furthermore, a library of hybrid proteins was created using PDZ- and SH3- binding
domains with a variety of ligand affinities. Exploiting novel protein—protein interactions
in addition to transcriptional regulation will enlarge the design space of synthetic
networks.

10.3.2 Synthetic Networks In Vitro

An in vitro reconstruction with known components offers a unique opportunity to investi-
gate how system behavior derives from reaction mechanisms. The first nontrivial system
behavior created by an in vitro chemical system was the Belousov—Zhabotinsky oscilla-
tor [35], although it was difficult to see how these reaction mechanisms could support a
wide variety of chemical logic, as is found in biochemistry. An excellent example of in vitro
reconstruction using biochemical components is the cyanobacterial circadian clock, the op-
eration of which has been shown to be independent of transcription and translation [36].
Operating and characterizing biochemical circuits in a cell-free system present some chal-
lenges, partly due to the complexity of synthesis machinery. A reconstituted cell-free
transcription—translation system requires almost 100 purified components [37] or poorly
characterized cell extracts [38]. Yet, several research groups were able to successfully
construct a variety of interesting circuits within cell-free transcription-translation systems.
For instance, Noireaux ef al. [38] constructed transcriptional activation and repression cas-
cades, where the protein product of each stage activated or inhibited the following stage.
Tsalan et al. [39] constructed a transcription—translation network that emulated Drosophila
embryonic patterns and, by utilizing regulatory interaction mediated by previously char-
acterized zinc-finger proteins, different network connections were tested. The patterning
behavior was qualitatively correct and more mutual repression led to an overall lower ac-
tivity, but with sharper patterns. Moreover, the addition of a protease stabilized the pattern
over time. Thus, these bare-bone in vitro systems can be used to illustrate design principles,
although further refinement of model systems and quantitative characterization would be
required.

Nucleic acid-based networks greatly reduce the complexity of the production machin-
ery. For example, feedback circuits modeled after predator—prey dynamics have been
constructed as a much simpler iz vitro system containing only three enzymes — T7 RNA
polymerase, M-MLV reverse transcriptase and E. coli RNase H [40,41]. The reaction
scheme is based on self-sustained sequence replication, an isothermal amplification scheme
for the coupled amplification of both DNA and RNA oligomers [42]. Mathematical
modeling suggests that coupling prey and predator cycles (where the prey cycle provides
a primer for the predator cycle) with an appropriate flow rate in a chemostat can lead to
oscillatiom. Yet, a-quantitative agreement of models and experiments was not achieved,
possibly because of unmodeled dead-end side reactions and further couplings of reaction
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rates by the common use of enzymes. Kim et al. [43] presented an alternative approach
which relied on the transcription and degradation of RNA signals rather than replication and
dilution. These authors constructed and analyzed feedforward circuits and a bistable mutual
repression circuit with reasonable agreement to a mathematical model. However, it remains
to be seen whether such nucleic acid-based networks can be utilized for regulating cellular
behavior.

10.4 Challenges in Synthetic Networks

10.4.1 Saturation of Degradation Machinery In Vivo

Predictions about network behaviors through computational modeling and analytical theory
is central to computational and systems biology. Many models of biological systems use
simplifying assumptions [22,44,45] such as no spatial dependency of molecular species
and no crosstalk between promoters. It is a widely accepted abstraction to view translation,
transcription and degradation as composite processes, neglecting the detailed underlying
reactions; however, these simplifying assumptions turned out to be inappropriate in some
cases.

The transcriptional regulatory networks of Guet et al. [46] used three repressors — the
lac repressor, lambda repressor and tetracycline repressor — with combinatorially assigned
promoters; this allowed for a total of 27 different network topologies. The output of the
network was monitored using GFP under control of the lambda repressor. Experimentally,
GEP outputs were measured under four conditions: (1) without effector; (2) with IPTG,
which inhibits Lacl; (3) with anhydrotetracycline (aTc), which inhibits TetR; and (4) with
both effectors. Kim and Tidor [47] studied the behavior of these combinatorial circuits by
assuming a monotonic dependency of transcription, translation and degradation reactions to
substrates and effectors, without detailed functional description or parameterization. Thus,
without any detailed measurements of regulatory functions, it was possible to predict — for
certain network topologies — the network output as upregulation, downregulation, or no
change. Interestingly, two networks of equivalent topology (but with interchanged regula-
tory elements) showed different behavior in the study conducted by Guet and coworkers.
According to the model, the addition of IPTG to the first network led to an increased
production of both Lacl and TetR, as the effect of Lacl autorepression was decreased.
Consequently, the model predicted that the cI level would decrease and the GFP output
level would increase, in contrast to the experimental observations (Figure 10.3a). However,
the addition of aTc in network 2 showed an increase of GFP output level, as predicted by
the model (Figure 10.3b). :

After ruling out some of the potential weakness of their model, such as not accounting for
cell growth and stochastic noise, Kim and Tidor proposed that the saturation of degradation
machinery could be one possible mechanism to reconcile the experimental results and
model predictions. As all three repressors of the synthetic network were known to carry
ssTA tags, they would be degraded by a special cellular machinery, the Clp system [48].
Because the components of Clp system are at fairly low cellular concentrations, this
degradation machinery could be saturated. In network 1, IPTG released the LacI repression
on both Lacl and TetR production, which in turn reached high cellular concentrations and
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Figure 10.3 Experimental and predicted behavior of synthetic repressor networks consisting
of lac, lambda and tetracycline repressors. The two networks shown in (a) and (b) have
identical topologies but with lac repressor and tetracycline repressor interchanged. In the rows
titled IPTG, aTc and IPTG/aTc, the GFP level changes are shown as + (increase), — (decrease),
0 (no change). (Reproduced by permission of Cold Spring Laboratory Press. Ref. [47])

outcompeted cI for degradation. Consequently, under saturating degradation conditions cI
could potentially accumulate, even with basal expression rates. A direct measurement of
cellular repressor levels could answer the question of the validity of this scenario. The
results of this study show that care must be taken for a seemingly general assumption such
as the monotonic dependency of production and degradation functions on substrates and
effectors, particularly with synthetic networks that introduce new components and novel
interactions among the cellular machinery.

10.4.2 Saturation of Production Machinery In Vitro

Noireaux and colleagues [38] characterized the cell-free genetic circuits constructed in a
transcription—translation extract by engineering transcriptional activation and repression
cascades in which the protein product of each stage was the input required to drive or
block the following stage. The protein expression reactions were carried out in batch
‘mode, without any continuous exchange of nutrients and byproducts. In order to boost
protein production, 5'-polyguanylic acid was used to increase the mRNA lifetime [49]
from 2030 min to 2h. At the same time, both the creatine phosphate concentration (for
ATP regeneration) and the magnesium concentration were adjusted to optimal levels.

A single-level cascade was constructed as a T7-luc plasmid composed of T7 RNA
polymerase promoter site and firefly luciferase gene. Upon the addition of T7 RNA poly-
merase, this single-level cascade began to accumulate luciferase protein after 15 min,
reaching a maximum concentration of 500 n#/ after 6 h. A two-stage cascade, constructed
with the plasmids T7-SP6RNAP and SP6-luc, used SP6 RNA polymerase produced from
T7-SP6RNAP plasmid to drive the production of luciferase output from the Inciferase gene
downstream of SP6 polymerase promoter (Figure 10.4a). The two-stage cascade started
to produce luciferase after a 1h delay, such that the final luciferase level was 100nM —
fivefold less than for a single-stage cascade. A three-stage cascade constructed with the
plasmids T7-SP6RNAP, SP6-rpoF and Ptar-luc using E. coli sigma factor F from the rpoF
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Figure 10.4 Two-and three-stage cascades. (a) Kinetics of expression of the cascade with T7
RNA polymerase, and both T7-SPérnap and SP6-luc plasmids (filled circles) or SP6-luc plasmid
only (open circles); (b) Kinetics of expression of the cdscade with T7 RNA polymerase and
afl three plasmids (fiffed circles) or two plasmids, SP6-rpof and Ptar-luc (open squares) or
Piar-luc only (open triangles). (Copyright National Academy of Sciences, U.5.A. Ref. [38])

gene as a new relay signal (Figure 10.4b) produced luciferase after about a 3h delay,
redching a final concentration of only 1 1 after 6 h. Interestingly, substantial time delays
and dramatic decreases in output were observed with each additional stage.

A detailed characterization of the two-stage cascade with various RNA polymerase
and plasmid concentrations revealed that the translation machinery was saturated for the
combinations of polymerase and plasmid concentrations which resulted in high transcript
concentrations. Above the first-stage transcription rate, that maximized luciferase
production, the overproduced first-stage mRNA occupied translation machinery and
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inhibited luc mRNA translation. In contrast, Tuciferase production did not show saturation
for similar RNA polymerase and plasmid concentrations if short-lifetime mRNAs without
polyG modification were transcribed. The results of the study indicated that a conventional
approach of maximizing single-protein synthesis in cell-free systems must be reconsidered
for in vitro gene circuits. The authors suggested that a rapid turnover of mRNA might
avoid saturation of the translation machinery and that implementing gene autoregulation
would prevent overproduction.

In a follow-up study of the cell-free expression system, Noireaux and Libchaber [50]
employed the phospholipid encapsulation of synthesis machinery to construct a vesicle
bioreactor. Without access to nutrients outside, the vesicle bioreactor could not prolong
the expression of reporter proteins by more than 5h. In order to solve the material and
energy limitation, the o-hemolysin pore protein from Staphylococcus aureus was expressed
inside the vesicle to create a selective permeability for nutrients. Subsequently, the vesicle
bioreactor thus created could take up nutrients from a feeding solution containing amino
acids and nucleic acids, and maintained protein expression for up to four days. This study
proved to be an important step towards the synthesis of a minimal, self-reproducing cell.

10.4.3 Saturation in a Mutual Repression Circuit

The saturation of production and degradation machinery has a significant impact on. the
network dynamics. Take an example of a mutual repression circuit where (wo repressors,
X and Y, downregulate the synthesis rates of each other (Figure 10.5a). By assuming
equivalence of the two 1epressors, the behavior of the circuit can be understood using the
following dimensionless model (Equation 10.1):

dx_ o
@ 1+y
+y (10.1)
dy «
dr ~ 14" ¥

where x and y are the concentrations of the repressors, o is the effective synthesis rate of
repressors, and n is the cooperativity of repressor binding. The repressor binding to pro-
moter is fast compared to transcription, translation and degradation processes. Therefore,
it is assumed that the promoter-repressor binding is already at steady state when consid-
ering repressor production and degradation dynamics. Thus, the fraction of active gene x
with an unoccupied promoter region can be described by 1/(1 + y™), and similarly for the
fraction of active gene y. With the repressor cooperativity >1 and for a large synthesis
rate, the two nullclines (dx/dz = 0 and dy/dt = 0).were seen to intersect at three points,
producing one unstable and two stable steady states [21]. The nullclines for the circuit with
cooperativity of two and maximum production rate of five indicates such bistable behavior
(Figure 10.5b).

Consider the case where the production machinery is saturated for the mutual repression
circuit. Assuming that & is the maximum synthesis rate for the system, and that the sharing
of synthesis machinery is strictly between two 1epressor genes with unoccupied promoters,
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Figure 10.5 Dynamics of a mutual repression system. (a) A mutual repression system con-
structed from two repressors, X and Y, that repress the expression of each other; (b, ¢)
Dynamics of mutual repression system without saturation of synthesis machinery (b) or with
saturated synthesis machinery (c). Nullclines are drawn for both dx /dt = O (dotted line) and
dy/dt = 0 (solid line) with vector flow (arrows). The parameters are v =5 andn=2

the behavior of the circuit can be described using the following dimensionless model
(Equation 10.2):

1
dx jEse 14 x"
—_— = — = — X,
dr ot o 24 xm 4y

1 (102)
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The nullclines for the circuit intersect at three points with a cooperativity of two and
a maximum synthesis rate of five, analogous to the previous example (Figure 10.5c).
However, the circuit dynamics around the unstable steady state is different: the approach
towards the unstable steady state is slower, while the exit from the unstable steady state
is faster than the previous example. The production of repressor X, in effect, inhibits the
production of repressor ¥ because the two promoters compete for the same synthesis
machinery. Thus, it is expected that saturated production leads to bistability even when
the repressor cooperativity is relatively low. For example, bistability is achieved for the
repressor cooperativity of 1.4 and a maximum synthesis rate of five with saturated synthesis
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(Equation 10.2), but bistability is not achieved for the same parameters in the other model
(Equation 10.1). ,

On the other hand, saturation of the degradation machinery would be detrimental to the
bistability of a mutual repression circuit because the accumulation of one repressor would
allow an accumulation of the other repressor. In natural organisms, it is rarely the case that
a few proteins dominantly occupy the synthesis and degradation machinery. However, for
synthetic networks in vivo or in vitro, inducing the overproduction of network elements

" can lead to the saturation of such machinery. Hence, saturation effect must be carefully
modeled, depending on the context, and can potentially be exploited for circuit operation.

10.4.4 Waste Product in an In Vitro Oscillator

Kim and colleagues developed an experimental analogue to a genetic regulatory circuit
that uses only T7 RNA polymerase and E. coli RNase H in addition to synthetic DNA
templates regulated by RNA transcripts [43]. A synthetic template — a gene analogue —
consists of a regulatory domain, a promoter and an output domain. Each synthetic template
requires a DNA oligonucleotide activating signal that complements the promoter region for
a strong transcription of its output. The addition of an RNA inhibitor complementary to the
DNA-activating signal hybridizes to — and consequently eliminates — the DNA-activating
signal from the target synthetic template and greatly reduces transcription rates. At the
same time, the degradation of RNA signals by RNase H releases the DNA signals from a
functionally inert DNA-RNA hybrid state. Thus, the difference of activating and inhibitory
signals determines the transcription speed of outputs. Consequently, a sigmoidal response
curve with adjustable thresholds is achieved through a competitive binding of nucleic acid
species. )

A two-node oscillator was constructed as follows. An RNA activator (rA) activates the
production of an RNA inhibitor (rT) by regulating a synthetic template (gene I), while
the RNA inhibitor, in turn, inhibits the production of RNA activator by controlling gene
A (Figure 10.6a). These two genes form a negative feedback loop and can potentially
show oscillatory behavior. By measuring RNA signals, up to six oscillation cycles were
observed before the production rate could no longer be sustained due to exhaustion of the
NTP fuel (Figure 10.6c). Interestingly, the concentration of 1l was seen to build up after
“each cycle, although it was expected that the RNA inhibitor signal would oscillate around
a fixed threshold, the concentration of DNA-activating signal. One hypothesis was that
the short fragments of 1l generated by degradation process might interfere with the correct
hybridization reaction of I signals to its regulatory target, gene A, and therefore, more
signals would be needed to overcome the interference. The short fragments of 1T produced
by RNase H processing would encompass the toehold binding sequence of 1l because
RNase H cannot process several bases on the 5 side of the RNA strand on an RNA/DNA
hybrid substrate [51]. Thus, the short fragment of 11 could block the (otherwise freely
available) toehold region that was essential for providing a fast kinetic pathway [52}. The
concentration of short degradation products estimated from the gel showed a linear build-
up over time (Figure 10.6b). Intriguingly, subtracting a fraction of short products from 1l
signal resulted in an oscillation around a fixed threshold (Figure 10.6¢). A mathematical
model taking acceunt of the interference from short products was able to reproduce
these experimental observations qualitatively. Taken together, the in vitro oscillator
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Figure 10.6 A synthetic in vitro oscillator. (a) The synthetic oscillator is composed of two
gene analogues, an activator and a repressor; (b) Gel measurement of oscillator outputs up
to 4 h. The leftmost lane contains size markers, while the rightmost lane contains purified rA
and rl products. It is assumed that the band of ~35 nucleotides in the gel is representative
of accumulating short products; (c) The 1l signal, the short product level normalized to be of
similar scale to rl, and rl signal minus the normalized short product level are shown

demonstrated sustained oscillations and was robust to the build-up of interfering signals to
some extent. However, for a sustained and reliable operation of oscillators the incomplete
degradation products need to be further processed, ultimately to the mononucleotide
level. -

Lessons can be learned from the degradation machinery of natural organisms. For
example, E. coli has a high-molecular-weight complex called the degradosome which
consists of RNase E, polynucleotide phosphorylase (PNPase}, an ATP-dependent helicase,
RhIB and enolase, a glycolytic enzyme [53]. When the decay of mRNA is initiated via
endonucleolytic cleavage by RNase E, the newly formed 3’ end can be attacked by PNPase,
which performs processive exonucleolytic digestion. The ATP-dependent RNA helicase
in the degradosome presumably helps the degradation by unwinding RNA structures that
impede the cleavage by RNase E and PNPase. The concerted action of these enzymes
would explain the observation that, once initiated, the decay of mRNA proceeds without any
accumulation of the decay intermediates. Although many mRNAs are subject to alternative
decay processes, the existence of a highly orchestrated multienzyme complex such as the
degradosome indicates that a complete degradation of messages without byproducts is an
essential regulatory step.
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10.5 The Minimal Cell

On a larger scale of synthetic efforts, the assembly of a type of cell — that is, a self-
replicating, membrane-encapsulated collection of biomolecules — would be the next major
challenge [54]. However small, a cellular gene set must be self-sufficient in the sense
that cells generally import metabolites, but not functional macromolecules. Mycoplasma
genitalium, a parasitic bacterium with a small genome size, is recognized as an attractive
model in the search for the minimal genome. After comparing. the 468 predicted M.
genitalium protein sequences with the 1703 Haemophilus influenzae protein sequences,
Mushegian and Koonin [55] suggested 256 genes as a minimal genome set, including 234
M. genetalium genes. Most of the proteins encoded by genes from the minimal set suggested
by these authors had eukaryotic or archaeal homologues, whereas the key proteins of DNA
replication did not, which led these authors to speculate that the last common ancestor
had an RNA genome. The estimated gene number could be further reduced by eliminating
cofactors and regulatory genes, and by applying the parsimony principle [56].

A recent estimate suggested that-the minimal genome would comprise 151 genes,
38 RNAs and 113 proteins [54]. Lipids alone have been shown to be sufficient for the
formation of rudimentary membranous compartments capable of both the transmembrane
transport of small molecules and autocatalytic fission [57]. A bare-bones genome
would perform basic DNA replication, transcription and translation processes, in which
alternative approaches for essential mechanismus such as the adaptation of rolling circle
amplification for DNA replication were employed to reduce the number of genes. A
surprisingly large fraction (96%) of the minimal gene set is devoted to translation
mechanisms, including ribosome components, a set of transfer RNAs (tRNAs), a set
of translational initiation, elongation and release factors, and a few chaperones. In light
of this, the simplest approach for creating a minimal cell may be to evolve an RNA
polymerase made exclusively from RNA that would replace all of the protein components
of the in vitro replicating and evolving systems [57]. An exciting development in this
direction is the templated assembly of RNA products catalyzed by ribozymes [58];
these ribozymes used nucleoside triphosphates and the coding information of an RNA
template to extend an RNA primer by the successive addition of up to 14 nucleotides, with
high accuracy. These findings support the ‘RNA-world’ hypothesis regarding the early
evolution of life — the main tenet of which is that ribozymes would have been far easier to
duplicate than proteinaceous enzymes. Given that most of the minimal gene set is devoted
to translation, a nucleic acid-based artificial cell would certainly be attractive, justifying
a search for different sets of ribozymes through in vitro evolution approaches.

Estimates of the minimal genome typically do not include catabolism (nucleases and
proteases), the active conversion or removal of waste products (energy-regenerating
enzymes and membrane transporters) and regulatory feedback. It is unclear whether a
minimal cell could sustain growth and replication without such regulatory mechanisms. At
any rate, a much simpler purified system based on a real cell would be easier to model and
understand, and it could certainly answer questions that cannot be answered in vivo, such as
which set of macromolecules would be sufficient for a functional cellular subsystem [54].
The iterative synthetic process in which the performance of an irn vitro model system is con-
tinuously improved may, in time, culminate in viable minimal cells as complex analogues
of cells.
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10.6 Conclusions

Today, synthetic biology provides the ability to study cellular regulation and behavior using
de novo networks, with future applications of synthetic systems extending also to the fields
of medicine and biotechnology. Yet, challenges remain that call for novel approaches and
creative solutions. Synthetic networks in vivo have recycled previously used parts because
a single point mutation may alter the in vivo activity of the network, and it is difficult
to predict how redesigned molecules such as synthetic promoters would behave [59].
Mutations and the loss of synthetic network control can be a serious problem, especially
when a large population of cells is considered. A ‘population control’ circuit [60] has been
described which utilized a bacterial quorum-sensing system linked to a cell death signal to
regulate the cell density of an E. coli population. Here, the steady-state cell density in the
regulated cell culture was about tenfold lower than that of the control culture. However,
due to the disadvantage in growth rate, cells that acquired mutations to disrupt the synthetic
circuit control easily outgrew the regulated cells. A microfluidic microreactor was used to
alleviate this problem by greatly reducing the population size [61], and allowed the synthetic
circuit behavior to be monitored over hundreds of hours. Engineered cells would retain
the synthetic network design that conferred a selective advantage in cellular growth rate,
allowing further observation and analysis. For ir vifro networks, the lack of any complex
feedback regulation for the production and degradation machinery can lead to a high
variability and a lack of robustness in their performances. As observed previously, dead-end
side reactions, the saturation of the enzyme machinery and interference from incomplete
products must be correctly addressed for successful in vitro network construction. Further
developments of in vitro networks, accompanied by effective encapsulation in membranous
compartments and ensuing growth and fission, will provide a good starting point for a
minimal cell.

These synthetic approaches have successfully demonstrated several interesting net-
works, and have provided valuable engineering tools to study motifs, modularity and the
robustness of cellular networks. Nonetheless, the development of new frameworks for
regulatory costs, trade-offs and energy consumption of network structures remains a major
problem, the solution of which could eventually lead to the construction of viable minimal
cells.
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